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ABSTRACT

Health and fitness are becoming increasingly important in the
United States, as illustrated by the 70% of adults in the U.S.
that are classified as overweight or obese, as well as glob-
ally, where obesity nearly tripled since 1975. Prior work used
convolutional neural networks (CNNs) to understand a spo-
ken sentence describing one’s meal, in order to expedite the
meal-logging process. However, the system lacked a com-
plementary exercise-logging component. We have created a
new dataset of 3,000 natural language exercise-logging sen-
tences. Each token was tagged as an Exercise, Feeling,
or Other, and mapped to the most relevant exercise, as well
as a score of how they felt on a scale from 1 to 10. We
demonstrate the following: for intent detection (i.e., logging
a meal or exercise), logistic regression achieves over 99% ac-
curacy on a held-out test set; for semantic tagging, contex-
tual embedding models achieve 93% F1 score, outperform-
ing conditional random field models (CRFs); and recurrent
neural networks (RNNs) trained on a multiclass classification
task successfully map tagged exercise and feeling segments
to database matches. By connecting how the user felt while
exercising to the food they ate, in the future we may provide
personalized and dynamic diet recommendations.

Index Terms— Semantic tagging, Bidirectional Encoder
Representations from Transformers (BERT), RNN, CRF

1. INTRODUCTION

Obesity is a serious health concern in the United States and
globally. In 2013, U.S. adults spent $80 billion in an attempt
to lose weight.1 The next year, the National Institute of Health
reported that 175 million, or about 70%, of U.S. adults were
“overweight or obese.” 2 In 2018, 49% of U.S. adults were
“trying to lose weight” [1]. “Worldwide obesity has nearly
tripled since 1975,” and there are more obese people than
underweight [2]. “Globally, around 23% of adults” over 18
“were not active enough in 2010,” and “insufficient physical
activity is one of the leading” causes of death worldwide [3].

1https://money.usnews.com/money/personal-
finance/articles/2013/01/02/the-heavy-price-of-losing-weight

2https://www.niddk.nih.gov/health-information/health-
statistics/overweight-obesity

Healthy eating and physical exercise are important ele-
ments of weight control, but can be written off as simply too
difficult or time-consuming. One contributing factor may be
that current diet and exercise logging apps, such as MyFit-
nessPal, are tedious to use because the user has to manually
enter and scroll through many food or exercise options to find
the specific type of food or exercise the user wants to log.

Fig. 1. BIO tagging on a sample user utterance from the
new corpus. The tags are BE (i.e., Begin-Exercise), IE
(i.e., Inside-Exercise), BF (i.e., Begin-Feeling),
IF (i.e., Inside-Feeling, and O (i.e., Other).

Prior work in the space of spoken diet tracking includes
the spoken diet tracking system Coco Nutritionist, which
makes food tracking much easier for adults trying to watch
their diet [4, 5]. This system allows the user to speak out loud
what they ate, and it parses the sentence in order to log the
food that was mentioned. It does this by matching the words
it recognizes as food to the U.S. Department of Agriculture
(USDA) food database using deep neural networks [6, 7].
Specifically, the system uses a convolutional neural network
(CNN) model to recognize these tags since this model is
efficient, interpretable, and effective on this task.

The addition of an exercise logging component to Coco
Nutritionist is needed because diet is only one aspect of
a healthy lifestyle. Long-term benefits of exercise include
weight control, a lower risk of stroke and heart disease,
improved sleep quality, decreased risk of depression, and
increased lifespan.3 Creating an easy-to-use exercise log-
ging component will encourage users to log their exercise
more often. The system will log the exercise as it does food,
by matching words the system recognizes to a database of
exercises. Regular exercise logging may allow the user to
create an exercise routine, improve upon previous routines
in increments to build strength and endurance, and inspire

3https://www.hhs.gov/fitness/be-active/importance-of-physical-
activity/index.html
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the user to exercise more. With enough people logging their
daily diet and exercise, we may even be able to find corre-
lations, including what foods result in the best performance
and energy levels for different demographics (e.g., youth,
elderly, gluten-free diet, vegetarian diet). This would allow
for providing personalized suggestions to the user based on
their demographics and tracking history [8, 9].

This paper describes the key technical details of the novel
exercise logging component in our food and fitness spoken
dialogue system (see Figure 1), as well as a new, publicly
available dataset of 3,000 natural language exercise logs
with their semantic tag and database match annotations.4 We
show that statistical classifiers (specifically logistic regression
and random forest) correctly predict the user intent with an
accuracy over 99%. We then demonstrate that the recently
released contextual embedding models such as Bidirectional
Encoder Representations from Transformers (BERT) outper-
form prior state-of-the-art conditional random field (CRF)
and long short-term memory (LSTM) on a semantic tagging
task with 93% F1 score (i.e., harmonic mean of precision
and recall) on a held-out test set. We demonstrate that recur-
rent networks map from exercise and feeling logs to the best
database matches with top-1 recall scores of 77% and 80%,
respectively (where we define top-1 recall as the number of
test instances in which the correct exercise was ranked first).

2. RELATED WORK

Recently, neural networks such as bidirectional recurrent
neural networks (RNNs) [10, 11], long short-term memory
(LSTMs) [12], and convolutional neural networks (CNNs)
[13], have been shown to outperform conditional random
fields (CRFs) in spoken language understanding, which mo-
tivates the use of neural networks on our novel exercise un-
derstanding task. In addition, there has been work on jointly
training RNNs for slot filling and intent and domain detection
[14, 15, 16, 17, 18], as well as end-to-end neural networks for
mapping directly from speech to semantic tags [19].

Within the past year, several papers have come out that
learn contextual representations of sentences, where the en-
tire sentence is used to generate embeddings. ELMo [20]
uses a linear combination of vectors extracted from interme-
diate layer representations of a bidirectional LSTM trained
on a large text corpus as a language model; in this feature-
based approach, the ELMo vector of the full input sentence
is concatenated with the standard context-independent token
representations and passed through a task-dependent model
for final prediction. This showed performance improvement
over state-of-the-art on six NLP tasks, including question an-
swering, textual entailment, and sentiment analysis. On the
other hand, the OpenAI GPT [21] is a fine-tuning approach,
where they first pre-train a multi-layer Transformer [22] as

4Code and data at: https://github.com/mayaepps/exercise-logs

a language model on a large text corpus, and then conduct
supervised fine-tuning on the specific task of interest, with
a linear softmax layer on top of the pre-trained Transformer.
Google’s BERT [23] is a fine-tuning approach similar to GPT,
but with the key difference that instead of combining sepa-
rately trained forward and backward Transformers, they in-
stead use a masked language model for pre-training, where
they randomly masked out input tokens and predicted only
those tokens. They demonstrated state-of-the-art performance
on 11 NLP tasks, including the CoNLL 2003 named entity
recognition task, which is similar to our semantic tagging
task. Finally, many models have recently been developed that
improve upon BERT, including RoBERTa (which improves
BERT’s pre-training by using bigger batches and more data)
[24], XLNet (which uses Transformer-XL and avoids BERT’s
pretrain-finetune discrepancy through learning a truly bidirec-
tional context via permutations over the factorization order)
[25], and ALBERT (a lightweight BERT) [26].

3. DATA COLLECTION AND ANNOTATION

We collected three different types of data in one Amazon Me-
chanical Turk (AMT) task [27, 28]: exercise logs, tags, and
values. The tasks were created and completed in Qualtrics
due to the helpful tools it provides such as response-length
checking and the ability to “pipe” previous responses into
subsequent questions. First, the workers described a real or
imaginary exercise they had performed, as well as how they
felt during or after that exercise, in the same manner they
would expect to describe them to a conversational agent (see
Table 1 for a few examples). Next, the workers were asked
to tag the specific words that described the exercise and how
they felt. Finally, they were asked to assign a value to the
identified words in the previous step. For the exercise identi-
fied, this value was an exercise from a predefined list of exer-
cise words. The list was manually updated when it was miss-
ing exercises that the workers were logging. For the feeling
logs, they were asked to assign their identified word or phrase
a value on a scale from 1, meaning very bad and they would
not want to feel this way during or after exercise again, to
10, meaning very good and they would want to feel that way
during or after exercising again (see Figure 2). Due to data
quality issues, we manually edited some of the responses that
had more minor errors to ensure a high quality dataset.

During our first attempt at collecting data in this format on
AMT, we realized that the quality of some of our responses
was not as good as we had hoped. Some issues we identi-
fied included workers simply copying and pasting some of
the examples instead of coming up with unique logs, inco-
herent logs that didn’t make sense, misidentification of which
words in the logs were the exercises or how they felt, and logs
that were missing any description of an exercise or how they
felt. To solve this problem, we ended up checking over most
of the logs by hand, only accepting the logs that were com-
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Exercise log Exercise Value Feeling Value
I ran a mile , I felt pretty good afterward . Much more energetic . Running 6
I did weight lifting and felt much more exhausted but still strong Dead Lifts 5

I performed 45 weighted squats , and I felt pumped up . Squats 10
I curled 50lbs and my arms were very sore . Bicep Curl 2

I cycled for one hour and my legs were in so much pain after ! Bicycling 2

Table 1. Five examples from the new exercise logging corpus, where the tagged exercise and feeling segments are in bold. The
ground truth exercise and feeling labels are shown in the columns to the right.

pleted correctly, and correcting simple errors. For instance,
in the example in Figure 1 above, the worker might have mis-
labeled the exercise as Walking or Other when their log
specifically describes Running, or incorrectly identified the
word or phrase that described the exercise as “miles” instead
of “ran,” or how they felt as “felt” instead of “terrible.” In ad-
dition, to make this approval process much more efficient, we
wrote our own checks that each part of the task had to pass
in order to move on to the next part. For instance, some of
these checks included making sure the word they identified as
an exercise was also present verbatim and without mistakes in
the exercise log, confirming the word or phrase they identified
as how they felt was in their feeling log, and checking that the
logs they entered were not in the examples that were given as
a part of the instructions.

To measure the inter-annotator agreement, we computed
Fleiss’s Kappa score [29] as follows:

κ =
P̄ − P̄e

1 − P̄e
(1)

where 1− P̄e is the possible agreement above chance, P̄ − P̄e

is the observed agreement above chance, and a kappa score
of one indicates perfect agreement. P̄ is the mean of each
token’s agreement, and P̄e is the sum of squares for each cat-
egory’s proportion of words assigned to that category. We
measured agreement for three types of per-token categories:
semantic tags, exercise labels, and feeling labels (which we
binarized to positive or negative sentiment). The kappa score
is 0.53 for semantic tags, which indicates moderate agree-
ment. Consistency among exercise and feeling labels is lower,
with only fair agreement of 0.36 for exercise labels and 0.50
for binarized sentiment, indicating the task’s difficulty.

In total, we collected 3,000 annotated exercise logs, each
concatenated with their respective annotated feeling logs.
20% of that data (600 logs) constituted the test set, while
the other 80% of the data (2,400 logs) made up the training
set (Tables 2 and 3). This is a preliminary study on the new
exercise logging corpus; in order to improve our database
mapping NN models, which overfit to small datasets, we will
perform data augmentation in future work.

Dataset # Train Data # Test Data # Tags
Meal logs 35,130 3,412 5

Exercise logs 2,400 600 5

Table 2. The data statistics for each corpus.

BE BI BF IF O
3,037 1,040 3,830 1,184 32,302

Table 3. The frequency of each tag in the exercise corpus.

4. MODELS

Here we describe the full pipeline for our food and fitness
spoken dialogue system, including the following three com-
ponents for the new exercise logging component: user in-
tent detection, semantic tagging of natural language descrip-
tions, and database mapping to retrieve the results. The user’s
speech is first converted into text with the Google recognizer
(if using the browser) or the Siri recognizer (if on iOS).

4.1. Intent Detection

In order to predict the user intent (i.e., whether they logged a
meal or an exercise), we trained logistic regression and ran-
dom forest classifiers on standard features: word counts; uni-
gram, bigram, and trigram TFIDF scores; and character-level
bigram and trigram TFIDF, where TFIDF represents the term
frequency inverse document frequency.

4.2. Semantic Tagging

The second step in the spoken dialogue system for food
and fitness is semantic tagging within the domain of in-
terest. In this work, we focus on fitness. Thus, the tags are
B-Exercise, I-Exercise, B-Feeling, I-Feeling,
and Other, as shown in Figure 1. As in prior work [30], we
compare previous state-of-the-art neural networks and con-
ditional random field (CRF) models to newer contextual
embedding methods such as BERT.
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Fig. 2. The AMT task on Qualtrics for tagging and database mapping of exercise logs.

4.2.1. Majority Baseline

For the baseline, we predict the tag for each token that was
assigned to it most often in the training data.

4.2.2. Conditional Random Field

The CRF features we use consist of the lowercase unigram;
the suffix of the token; whether the token is all caps, a title, or
a digit; whether the token is at the beginning or end of the sen-
tence; the previous word; and the subsequent word. Although
CRFs are a powerful discriminative classifier for sequential
tagging problems, they require manual feature engineering,
which is why we also investigated neural network models that
do not require any manual feature engineering.

4.2.3. Neural Network Models

We implemented three baseline neural network models in the
PyTorch deep learning toolkit [31]: a feed-forward (FF) net-
work, a convolutional neural network (CNN) [30, 7], and a
long short-term memory (LSTM) variant of RNNs. These
models first feed the input exercise log through a learned em-
bedding layer, followed by a single convolutional or recurrent
layer, and a final linear layer with a softmax function in order
to generate a probability distribution over all possible tags for

each input token. In addition, we implemented a biLSTM-
CRF, i.e., a CRF layer on top, where the emission features are
taken from the hidden layer output of a bidirectional LSTM.

4.2.4. Contextual Embedding Models

Finally, we investigated four contextual embedding models
that have been released over the past couple years, demon-
strating success on many natural language processing tasks,
including sequence labeling tasks such as ours. We used the
base pre-trained BERT, XLNET, RoBERTa, and ALBERT
models and tokenizers in PyTorch with a fine-tuned softmax
token classification layer added on top specific to our domain.

4.3. Database Mapping

The last step is to rank the database matches, using as input
either the entire exercise log or the tagged exercise or feeling
segments, which we hypothesized would perform better.

4.3.1. Exact String Matching Baseline

First, we conducted a simple database lookup that found exact
string matches, given the input sentence or segment. This
approach clearly suffers when predicting how the user felt,
since we map that to a number, but the user does not describe
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in natural language their feelings with numbers. We thus need
a semantic representation.

4.3.2. Embedding Similarity Baseline

The second baseline we implemented was predicting the best
database match by ranking according to embedding cosine
similarity scores. We summed the vectors for each lower-
cased token in either the segment or full description of the
exercise and feeling log, using one of three pre-trained em-
beddings: word2vec [32], Glove [33], or FastText [34]. Since
the feeling labels are numeric values rather than words, we
used all the feeling segments in the training data as potential
matches, and mapped to their assigned numeric value.

4.3.3. Logistic Regression Models

We formulate the problem as a multiclass classification prob-
lem, where the classifier directly predicts one of the database
matches as the output. We used two types of input features:
bag of words (BoW) and string similarity scores (i.e., Monge
Elkan [35], Jaro Winkler [36], TFIDF, and soft TFIDF).

4.3.4. Neural Network Models

As in our prior work, we also trained neural network (NN)
models on the multiclass task, which we found outperformed
the binary verification approach used in prior work [7]. We
fed as input to the network either the full user’s exercise log,
or only a tagged exercise (or feeling) segment. The architec-
ture consisted of an input embedding layer (64-dim), a gated
recurrent unit (GRU) with ReLU activation (128-dim), and a
linear layer which output the logits of the final predictions.

5. EXPERIMENTS

5.1. Intent Detection

To balance the data, we used the full corpus of exercise logs
and only a subset of 3,000 food logs. We then randomly shuf-
fled and split the data into 90% training and 10% testing.

Model Features Accuracy
LR Word counts 99.4
LR Unigram TFIDF 99.6
LR All n-gram + Char TFIDF + Counts 99.4
RF Word counts 99.5
RF Unigram TFIDF 99.4
RF All n-gram + Char TFIDF + Counts 99.2

Table 4. Intent detection accuracy with logistic regression
(LR) and random forest (RF) classifiers using various feature
sets, averaged over three runs on the held-out test set.

Interestingly, we see in Table 4 that simpler feature sets
(i.e., word counts or unigram TFIDF scores) seem to work
best for intent detection, rather than adding n-grams or char-
acter n-grams. This may be due to the data’s simplicity, since
it is possible for the model to distinguish between the two in-
tents using one word only (e.g., a food name or an exercise).

5.2. Semantic Tagging

We split the training data into training and validation for
fine-tuning the neural network hyperparameters. We exper-
imented with both pre-trained embeddings (i.e., Glove [33],
word2vec [32], and fastText [34]) and learning embeddings
from scratch, adding multiple layers, lowercasing, and sweep-
ing the hidden dimension size. We found that lowercasing
helped, and that using pre-trained embeddings helped the
LSTM, but not the CNN or FF network. Thus, for the ex-
periments shown in Table 5, we used pre-trained word2vec
embeddings for the LSTM, and learned embeddings from
scratch for the CNN and FF network. We used one hidden
layer per model. The hidden dimension was 64 for FF and
256 for LSTM. The embedding dimension was 50 when
trained from scratch and 300 for word2vec. For the CNN,
we used 64 filters of width 1, 2, 3, and 5. We used the SGD
optimizer, negative log-likelihood loss, and 0.1 learning rate.

For the contextual embeddings, we used the base cased
models (they outperformed uncased) and default hyperparam-
eters of a batch size of 32 and fine-tuning for 3 epochs [37].

Model BE BF IE IF O Avg
Majority 0.75 0.78 0.56 0.23 0.94 0.88

CRF 0.85 0.84 0.66 0.46 0.96 0.91
BiLSTM-CRF 0.81 0.79 0.60 0.44 0.95 0.90

FF 0.80 0.77 0.55 0.31 0.95 0.89
CNN 0.80 0.75 0.56 0.23 0.95 0.89

LSTM 0.85 0.82 0.61 0.56 0.96 0.91
BERT 0.90 0.86 0.74 0.52 0.97 0.93

RoBERTa 0.91 0.86 0.74 0.58 0.97 0.93
XLNet 0.91 0.87 0.73 0.51 0.97 0.93

ALBERT v2 0.90 0.86 0.77 0.55 0.97 0.93

Table 5. Semantic tagging F1 scores for several neu-
ral models, a CRF, and a majority baseline. The tags
are BE (Begin-Exercise), BF (Begin-Feeling),
IE (Inside-Exercise), IF (Inside-Feeling),
O (Other), and the weighted average of all tags.

As shown in Table 5, the majority baseline performs the
worst. It often mislabels common words such as “of,” and
“to” as Other (O) since that is usually the correct tag. How-
ever, these should sometimes be part of the feeling descrip-
tion (IF), as shown in Figure 3 below. For completeness, we
also report entity-level scores in Table 6, as is standard in
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the CoNLL (Conference on Computational Natural Language
Learning) tasks for named entity recognition [38].

Model Exercise F1 Feeling F1 Avg F1
Majority 64.1 67.2 65.8

CRF 78.1 80.3 79.3
BiLSTM-CRF 73.5 76.2 74.9

FF 69.5 68.3 68.9
CNN 68.5 68.1 68.3

LSTM 73.7 75.1 74.5
BERT 79.0 82.3 80.8

RoBERTa 79.4 82.0 80.9
XLNet 80.7 82.0 81.4

ALBERT v2 79.0 82.3 80.8

Table 6. F1 scores per exercise and feeling entity. With
CoNLL-style evaluation, performance differences are clearer.

Fig. 3. An example error by the majority baseline.

All the models are best at predicting the Other tag (O),
since this tag occurs most often. The second easiest tags
are Begin-Exercise (BE) and Begin-Feeling (BF),
whereas Inside-Exercise (IE) and Inside-Feeling
(IF) are most difficult due to appearing the least often. The
CRF and LSTM outperform the FF and CNN, but all the con-
textual embeddings perform by far the best, with a weighted
F1 score of 93% (averaged over all semantic tags):

F1 =
2 × precision× recall

precision+ recall
(2)

In general, performance on tagging exercise segments
seems to be higher than that on feeling segments.

5.3. Database Mapping

We evaluated the database mapping with top-1 recall scores
(i.e., the number of test instances in which the correct exercise
was ranked first), for random and string matching baselines,
logistic regression, and neural networks, as shown in Table 7
for exercise, and in Table 8 for feelings. We used an SGD
optimizer with a learning rate of 0.01 and momentum of 0.9.

We found that predicting how the user felt is harder than
for exercise, since we are mapping from natural language to
a number (even when we reduce the 10 classes to two, i.e.,
binary). The GRU outperformed an LSTM, likely due to our
small dataset, for which an LSTM may be too powerful. For
exercise, we confirmed our hypothesis that mapping from the

Model Input Sentence Exercise Segment
Random 0.01 0.01

Str matching 0.41 0.66
Glove emb sim 0.10 0.58
w2v emb sim 0.05 0.42

FastText emb sim 0.07 0.47
LR BoW 0.69 0.74

GRU 0.60 0.77

Table 7. Top-1 recall scores for exercise mapping, with either
the whole sentence as input, or only the exercise segment.

Model Input Sentence Feeling Segment
Random 0.10 0.10

Str matching 0.07 0.05
LR BoW 0.28 0.28

GRU 0.28 0.28
Random (binary) 0.50 0.50
Glove (binary) 0.65 0.70
w2v (binary) 0.69 0.73

FastText (binary) 0.67 0.72
GRU (binary) 0.80 0.80

Table 8. Top-1 recall scores for sentiment mapping, with ei-
ther the whole sentence as input, or only the feeling segment.

tagged segment performs better than using the whole sentence
as input. These are preliminary results—we will collect more
data so we can properly train an LSTM without overfitting.

6. CONCLUSION

In this paper, we have illustrated the success of deep neural
networks for incorporating a novel exercise logging compo-
nent into an existing food and fitness spoken dialogue sys-
tem. We have shown that, in particular, contextual embed-
dings such as XLNet outperform prior state-of-the art CRFs
and LSTMs on semantic tagging, without requiring any man-
ual feature engineering or hyperparameter fine-tuning. The
ease with which such models can be ported to a new domain,
and their superior performance on a wide array of natural lan-
guage processing tasks, demonstrates the importance of pre-
training neural network models on large datasets.

In future work, we plan to collect more data, especially
spoken exercise logging data in the wild on the iOS platform
Coco Nutritionist, to further refine our models. With suffi-
cient users and data, we may learn correlations between diet
and how users felt while exercising, enabling us to provide
personalized recommendations. Finally, we plan to incorpo-
rate data augmentation techniques for training neural models
for the database mapping component, specifically Noisy Stu-
dent [39] and Psuedo Meta Labels [40].
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