
Sentiment Analysis of Movie Review Comments
6.863 Spring 2009 final project

Kuat Yessenov
kuat@csail.mit.edu

Saša Misailović
misailo@csail.mit.edu

May 17, 2009

Abstract
This paper presents an empirical study of efficacy of machine learning techniques in

classifying text messages by semantic meaning. We use movie review comments from
popular social network Digg as our data set and classify text by subjectivity/objectivity
and negative/positive attitude. We propose different approaches in extracting text fea-
tures such as bag-of-words model, using large movie reviews corpus, restricting to adjec-
tives and adverbs, handling negations, bounding word frequencies by a threshold, and
using WordNet synonyms knowledge. We evaluate their effect on accuracy of four ma-
chine learning methods - Naive Bayes, Decision Trees, Maximum-Entropy, and K-Means
clustering. We conclude our study with explanation of observed trends in accuracy rates
and providing directions for future work.

1 Introduction

Internet today contains a huge quantity of textual data, which is growing every day. The text
is prevalent data format on the web, since it is easy to generate and publish. What is hard
nowadays is not availability of useful information but rather extracting it in the proper context
from the the vast ocean of content. It is now beyond human power and time to seed through
it manually; therefore, the research problem of automatic categorization and organizing data
is apparent.

Textual information can be divided into two main domains: facts and opinions. While
facts focus on objective data transmission, the opinions express the sentiment of their au-
thors. Initially, the research has mostly focused on the categorization of the factual data.
Today, we have web search engines which enable search based on the keywords that de-
scribe the topic of the text. The search for one keyword can return a large number of pages.
For example, Google search for the word “startrek” finds more than 2.3 million pages. These
articles include both objective facts about the movie franchise (e.g. Wikipedia article) and
subjective opinions from the users (e.g. review from critics).

In recent years, we became witnesses of a large number of websites that enable users
to contribute, modify, and grade the content. Users have an opportunity to express their
personal opinion about specific topics. The examples of such web sites include blogs, forums,
product review sites, and social networks.

Opinion can be expressed in different forms. One example may be web sites for review-
ing products, such as Amazon [1], or movie review sites such as RottenTomatoes [4] which

1



enable rating of products, usually on some fixed scale as well as leaving personal reviews.
These reviews tend to be longer, usually consisting of a few paragraphs of text. With respect
to their length and comprehensiveness they tend to resemble blog messages. Other type of
web sites contain prevalently short comments, like status messages on social networks like
Twitter [5], or article reviews on Digg [2]. Additionally many web sites allow rating the pop-
ularity of the messages (either binary thumbs up/thumbs down or finer grained star rating),
which can be related to the opinion expressed by the author.

Sentiment analysis aims to uncover the attitude of the author on a particular topic from
the written text. Other terms used to denote this research area include “opinion mining”
and “subjectivity detection”. It uses natural language processing and machine learning tech-
niques to find statistical and/or linguistic patterns in the text that reveal attitudes. It has
gained popularity in recent years due to its immediate applicability in business environ-
ment, such as summarizing feedback from the product reviews, discovering collaborative
recommendations, or assisting in election campaigns.

The focus of our project is the analysis of the sentiments in the short web site comments.
We expect the short comment to express succinctly and directly author’s opinion on certain
topic. We focus on two important properties of text:

1. subjectivity – whether the style of the sentence is subjective or objective;

2. polarity – whether the author expresses positive or negative opinion.

We use statistical methods to capture the elements of subjective style and the sentence
polarity. Statistical analysis is done on the sentence level. We apply machine learning tech-
niques to classify set of messages.

We are interested in the following questions:

1. To what extent can we extract the subjectivity and polarity from the short comments?
What are the important features that can be extracted from the raw text that have the
greatest influence on the classification?

2. What machine learning techniques are suitable for this purpose? We compare in total
four techniques of supervised and unsupervised learning.

3. Are the properties of short messages important for sentiment analysis similar to the
properties of some existing corpus? We compare our manually annotated corpora to
the larger existing corpus

We present the analysis on manually annotated examples from Digg. We describe the
experiments and interpret the results.

2 Methodology

Our method of sentiment analysis is based upon machine learning. We explain what sources
of data we used in 2.1, how we selected features in 2.2, and how we performed classification
in 2.3.

2



2.1 Sources

We chose the domain of social web site comment messages. We obtained the comments
from articles posted on Digg. Digg [2] is a social networking web site which enables its
users to submit links and recommend the content from other web sites. Digg has a voting
system which allows users to vote for (+1) or against (-1) posted items and leave comments
on posts. The total sum of diggs, that is the difference between thumbs up votes and thumbs
down votes, represents the popularity of the post. Besides popularity, which is assigned by
other users, there is no clue about the sentiment of the author of the messages.

We have chosen two relatively popular posts from Digg. Both articles share the theme;
they are about movie reviews of recent blockbuster movies:

1. http://digg.com/movies/Quantum_of_Solace_disappoints : a review of new
James Bond movie “Quantum of Solace” (684 diggs);

2. http://digg.com/movies/Star_Trek_The_best_prequel_ever : a review of
“Star Trek” movie (669 diggs.)

We have retrieved all comments from these posts and stored them in the original format
in files qos.txt and startrek.txt.

The reason we have chosen movie reviews is that they provide good material for ana-
lyzing subjectivity and opinions of the authors. Movie reviews have been used before for
sentiment analysis. We expect that comments express the same range of opinions and sub-
jectivity as the movie reviews. The main difference between the movie reviews and Digg
comments is length of the text. Typical comment is only one or couple of sentences short,
and is usually narrowly focused on a single claim made in the article. Movie reviews tend
to be more focused on the plot and the impression about the movie. However, we would
expect the subjective expression of both to be the same.

Sentiment analysis technique can be performed either at the document level, or sentence
level [11]. In this project we assume that the sentiment of the whole message is expressed as
the sum of sentiments of each individual sentence. This model proves to be correct in most of
our examples. This model was successful due to the brevity of the messages. Indeed, many
messages have only one or a couple of sentences. In some cases we experienced that the
sentences in the message were of the opposite polarity.

Since the messages were not annotated by their authors, we manually graded them. The
grades are discrete, denoting only the presence of the properties. Each sentence was graded
for its subjectivity – either subjective or objective, and for its polarity – either positive, neg-
ative, or neutral. In this phase, we followed the guidelines outlined in [13]. We created a
simple parser that converts text in the form that allows giving the grade to each sentence
(parsedig.py.) The annotated sentences were checked independently by both authors, and
the decisions were made by consensus. The graded sentences are stored in qos.txt.out

and startrek.txt.out.

2.1.1 Corpora Properties

“Quantum of Solace” (QoS) corpus contains comments on a review of the new James Bond
movie. The review assumes a critical position towards the movie. The participants in the
discussion express both agreement and disagreement with the article and show both positive

3



and negative towards the movies itself. The discussion becomes tense at a moment, but
without longer flames.

“StarTrek” (ST) article is a short neutral review of the movie, and commentary on its
relation to the old franchise. Discussion revolves around the question whether the movie
is up to the high standard of the old franchise. Considering there are many fans of the
series among participants, many negative opinions about the changes in the plot from the old
movie are expressed. Sometimes, the discussion goes off-topic and shifts towards prequels in
general (“God Father” in particular), and failure of another recent blockbuster “Watchmen”.

Text Msgs Sents Sents/Msg Subj/Obj Pos/Neg/Neutr
Quantum of Solace (QoS) 110 262 2.38 110 / 152 62 / 84 / 116
Startrek (ST) 49 169 3.43 61 / 107 34 / 68 / 66

Table 1: The properties of the annotated documents. Msgs – number of messages in a cor-
pus, Sents – number of sentences in a corpus, Sents/Msg – number of sentences per message,
Subj/Obj – number of sentences annotated as subjective and objective, Pos/Neg/Neutr – num-
ber of sentences annotated as positive, negative or neutral, respectively

From table 2.1.1 we can see that the messages, indeed, are short. In QoS corpus, there
are only around two sentences per message, while ST corpus is a bit more verbose having
3.5 sentences per one post. We can see the relative disbalance of sentences annotated as
subjective and objective. This might seem counterintuitive. Our explanation is that many
ambiguous sentences, for whose subjectiveness we didn’t have a definite clue, were marked
as objective. In addition to that, sentences were generally reviewed without regards to their
context (by reading long comments backwards, for example.) Example ambiguous sentences
include:

1. The same people who are like, ”OMG THIS MOVIE ROCKS! I SEEN IT 14 TIMES!”,
are saying, ”That movie was meh. It was borderline fail.”, a few months later.

2. 1) Watch the documentary FLOW, out on DVD soon, see how serious the water supply
situation can get thanks to actual companies doing what is described in this film, and
2) typing spoilers in your comment is an amateur move.

Even greater disbalance exists when considering sentences that show negative emotion
versus positive emotion. In ST corpus, there are almost twice as many negative sentences
as there are positive sentences. We expect that such disbalance may reflect unjustly on the
classification performance. Partly, the reason is that both movies come as sequels to existing
media product, and thus, cause disappointment from old fans.

2.2 Feature Selection and Extraction

In order to perform machine learning, it is necessary to extract clues from the text that may
lead to correct classification. Clues about the original data are usually stored in the form of
a feature vector, ~F = (f1, f2, . . . fn). Each coordinate of a feature vector represents one clue,
also called a feature, fi of the original text. The value of the coordinate may be a binary value,

4



indicating the presence or absence of the feature, an integer or decimal value, which may
further express the intensity of the feature in the original text. In most machine learning
approaches, features in a vector are considered statistically independent from each other.

The selection of features strongly influences the subsequent learning. The goal of select-
ing good features is to capture the desired properties of the original text in the numerical
form. Ideally, we should select the properties of the original text that are relevant for the
sentiment analysis task. Unfortunately, the exact algorithm for finding best features does not
exist. It is thus required to rely on our intuition, the domain knowledge, and experimenta-
tion for choosing a good set of features.

In this section we discuss the possible candidates for good features that are applicable to
sentiment analysis. In section 3 we present the evaluation of different selection techniques
on our test examples.

2.2.1 Bag-of-words Model

Bag-of-words is a model that takes individual words in a sentence as features, assuming their
conditional independence. The text is represented as an unordered collection of words. Each
feature of the vector represents the existence of one word. This is effectively a unigram model,
where each word is conditionally independent from the others. All the words (features) in
the feature vector constitute the dictionary. The challenge with this approach is the choice of
words that are appropriate to become features.

Using this model the sentence This is a great event may be represented by the following
feature vector:

~F0={’a’:1, ’event’:1, ’great’:1, ’is’:1, ’this’: 1}.

(Here we represent the feature vector as a python dictionary; NLTK, for example, uses
this representation of a feature vector.) This would be a satisfactory representation if that
single sentence was only one in the whole corpus. If we want to be able to represent other
sentences sentences, for example It is a great Startrek movie, the previous feature vector would
not be a good representative. It is thus required to extend the set of words, and incorporate
them as the features in the feature vector. The set of features in this case would be

{’a’, ’event’,’great’, ’is’, ’it’, ’movie’, ’Startrek’, ’this’}.

Feature vectors that fully represent both sentences would be (for the first sentence; similar
feature vector is created for the second sentence):

~F1 = {’a’ : 1, ’event’: 1,’great’ : 1, ’is’ : 1, ’it’ :0,

’movie’ : 0, ’Startrek’: 0, ’this’ : 1}

Only some of the words appear in both sentences, and they are used for expressing the
similarity between the sentences. Obviously, for any real use, the feature vector would have
to contain a much larger number of words. We will explore some of the choices for selection
of words that are suitable for sentiment analysis.

5



It is possible to register either the presence of the word appearance in some text, or the
frequency – the number of times the word appeared. The frequency in the feature vector
for sentence I really really enjoyed the movie for word “really” would have value 2 (number of
word appearances.) This may indicate the extent of the sentence polarity on a finer grained
scale. However, since we compare single sentences, it not very common to have one word
appearing multiple times. Furthermore, previous research have shown that for sentiment
analysis the mere presence or absence of the word have the same performance as the more
detailed frequency information [12]. For that reason, we have chosen the appearance of the
word as feature vector values in subsequent experiments.

Ideal bag-of-words feature vector would contain all the words that exist in the language.
It represents de facto a dictionary of the language. However, this model would not be prac-
tical for at least three reasons. One reason is model complexity, since the model would cap-
ture more information than required. It would represent training corpus of text ideally,but
it would overfit to it as well and lead to bad performance when exposed to new examples.
Additionally, computational complexity of the subsequent learning (for e.g. one million el-
ements long vector) is tremendous. Finally, if the two previous obstacles were overcome,
handling new words is still not possible. Languages are very dynamic, and new words are
invented often, especially in the Internet community.

Sentiment of the author is often expressed via certain words and phrases. For example,
in the sentence This was a great event. the word “great” is the best indicator of the author’s
opinion. One approach that could be imagined is to manually select the most important
keywords (such as great, excellent, terrible when we want to express polarity of a sentence)
and use them as the features. However, Pang et al. [12] show that manual keyword model
is outperformed by statistical models, where a good set of words that represent features are
selected by their occurrence in the existent training corpus. The quality of selection depends
on the size of the corpus and the similarity of domains of training and test data. Using
statistical trends from different domains, that don’t have the same desired properties as the
original domain, may lead to inaccurate results; for example, if subjectivity analysis is done
on a set of sentences from newspaper reports, where most of the sentences were written in
objective style.

It is important to create the comprehensive dictionary (feature vector) which will capture
most important features both in training set and in previously unseen example. We evaluate
two different approaches for selection of features in bag-of-word model. Both are based on
the selection of the most frequent words in a text corpus. One approach is to use the elements
from the same domain. We will divide each text into two pieces. One piece will be used as the
known set, one for the training purposes. Note, however, that the variance may be large due
to the small corpus that we have. Another approach assumes using set of features based
on word frequencies in existing corpus, which is similar by topic and by sentiment. An example
of such corpus is the movie review corpus described in [10]. Advantage of such choice of
features is the ability for better comparison of new messages. Messages may belong to other
articles on a given web site.

The selection of all words that appear in corpora may lead to overfitting, analogous to
the case of selecting all words in a language, described previously. Other risks mentioned
there apply as well. Certain bounds must be set to constrain the size of the feature vector. In
our experiments we consider two approaches to constraining the size of the feature vector.
Both consider the words that appear most number of times. In one scenario, we directly

6



bound the size of the feature vector, and select the words that appeared most number of times. In
the second scenario, we select all words which have the frequency over certain threshold. Re-
moving infrequent words may lead to improvement in the performance of the classification.
The influence of the words that are not mapped in the feature vector may, however, be indi-
rectly encoded by additional feature UNKNOWN, which would represent either the presence or
the frequency of unknown words in a sentence. Additionally, it is possible to remove some
of the existing frequent words via black listing. Common practice for search engines is to
remove words such as a, the, do, . . . which bring little useful information.

This model is simple, and it has several limitations. Limitations include the inability to
capture the subjectivity/polarity relations between words, distinguishing between parts of
speech, inability to handle the negation, and different meanings of one word.

An extension of the model that may appear natural and straightforward would be includ-
ing pair of words (bigrams) as features instead of unigrams. However, we did not evaluate
this model for two reasons. First reason is the sparsity of our hand-crafted corpus. Second
reason is the result presented in [12] which doesn’t show the advantage of bigrams over un-
igrams in sentiment analysis. The experiments in this paper used the movie review corpus
that is now incorporated in NLTK.

2.2.2 Handling Syntactic and Semantic Properties

Bag-of-words model does not capture the relations between the words. For example, it will
consider the two sentences I saw a fantastic movie and I saw an excellent film as two quite differ-
ent sentences. The similarity between words fantastic and great, as well as words movie and
film is obvious to the human reader. It is apparent that each of these pairs synonym words
may be represented by a single feature. We modified the model so that feature vector has
only one word representing a synonym cluster. The features then become semantic similar-
ity rather than exact word match. For every word present in a sentence, we check whether
there is a feature word that is synonymous to at least one sense of the word. We marked the
presence of the feature if there is one.

WordNet [9] is a lexical database, which contains the relations between similar words.
The relations include synonym, hyponym, hypernym, and so on. We used primarily syn-
onymity of words, and looked at synonym closures of words in text. In addition to that,
WordNet provides path similarity measure between sense which is a numerical value that
tells how close two words are by their meaning. This way we could produce a numerical
values for features telling how close words are to the feature word meanings. Unfortunately,
WordNet does not include many words from the movie reviews, but given information from
WordNet we can handle some interesting cases.

Some parts of the speech may give more information about polarity of the sentence. Ad-
jectives and adverbs are often good clues about the opinion of the author. Examples include
phrases as a nifty plot or acted the role vehemently. We evaluated the performance of the clas-
sifier when only adjectives and adverbs are considered as features. We manually checked
whether the tagged words in our corpus get the correct part-of-speech tag. In most cases the
tags were indeed correct. Additionally, filtering out the personal names (e.g. names of ac-
tors, movies. . . ) may influence the classification, especially when making transition between
multiple texts.

7



2.2.3 Handling Negation

Negation plays an important role in polarity analysis. One of the example sentences from
our corpus This is not a good movie has the opposite polarity from the sentence This is a good
movie, although the features of the original model would show that they are. Words that are
influenced by the negation, especially adjectives and adverbs should be treated differently.
This involves both the feature selection and the extraction from the new sentences. On a level
of feature selection, a simple, yet effective way [8] for the support of the negation is to include
additional feature [word]-NOT, for each adjective and adverb. On a level of extraction the
feature values from new sentences, one way to support negation in the sentence is to perform
full parsing of the sentence. This approach is both computationally expensive and may be
inaccurate due to the lack of the tagged corpora for training. Alternative method is chunking
the sentence according to some criterion. We applied basic chunking for our corpus. The
results show that this technique can yield an improvement to the classification. Although
at this moment we support only a small number of patterns, which handle adjectives and
adverbs, it would be possible to create more extensive set of rules that would match nouns
and verbs instead.

2.3 Classification

Classification algorithm predicts the label for a given input sentence. There are two main
approaches for classification: supervised and unsupervised. In supervised classification,
the classifier is trained on a labeled examples that are similar to the test examples. Contrary,
unsupervised learning techniques assign labels based only on internal differences (distances)
between the data points. In classification approach each sentence is considered independent
from other sentences. The labels we are interested in this project are (1) subjectivity of the
sentence and (2) polarity of the sentence.

We consider three supervised – Naive Bayes, Maximum Entropy and Decision Trees,
and one unsupervised classification approach – K-Means clustering. All four algorithms are
available in NLTK framework [3] [7].

2.3.1 Supervised Learning

Naive Bayes assumes that all features in the feature vector are independent, and applies
Bayes’ rule on the sentence. Naive Bayes calculates the prior probability frequency for each
label in the training set. Each label is given a likelihood estimate from the contributions of
all features, and the sentence is assigned the label with highest likelihood estimate.

Maximum Entropy classifiers compute parameters that maximize the likelihood of the
training corpus. They represent the generalization of Naive Bayes classifiers. The classifier
apples iterative optimizations, that find local maximum. The start state is initialized ran-
domly. They are run multiple times during the training to find the best set of parameters.

Decision trees create a flowchart based classifier. At each level it utilizes decision stumps,
a simple classifiers that check for the presence of a single feature. The label is assigned to the
sentence at the leaf nodes of the tree.

Supervised learning techniques divide the data corpus into two groups – training set and
test set. The training of the classifier is done on the sentences from the training set. The

8



quality of the training is later evaluated on the sentences from the test set. In order to de-
crease the bias of particular choice of training and test data, common practice is to perform
the cross-validation. The corpus is divided into N groups (called folds). The classification
process is repeated N times, where data from one group is used for testing, and other data
is used for training. The result of classification is the mean of results for single folds. Clas-
sification has the greater confidence if the result from each fold give similar results, i.e. the
resulting variance is small. We performed the 10-fold cross-validation on our examples.

Accuracy is the simple measure for the evaluation of classifier. It is the relation between
the sentences that were correctly classified and all the sentences in the test set. The accuracy,
however, may give flawed results. If the number of e.g. objective sentences is much larger
than the number of subjective, then if we skip training and assign all test data label “nega-
tive”, the accuracy will still be very high, despite the obviously faulty classifier. We also used
B3 (B-Cubed) metric [6] that was initially used for evaluation of unsupervised classifiers. B3

takes into consideration both precision and recall. Their combination is called F-score (it is
in fact the harmonic mean or precision and recall). F-score can be weighted to give more
penalty on either precision or recall. We used unweighted version, that treats both precision
and recall equally. We observed the values of accuracy and and B3, and found that both give
similar results in our experiments for the classification, but B3 imposes somewhat higher
penalty on misclassified example sentences. Finally, we used the accuracy in our evaluation
results, for the comparison with previous papers that used this measure.

2.3.2 Unsupervised Learning

K-Means tries to find the natural clusters in the data, by calculating the distance from the
centers of the clusters. The position of centers is iteratively changed until the distances be-
tween all the points are minimal. The centers are initially randomly assigned. K-Means can
find only local maximum, and the final label assignment can be suboptimal. Common prac-
tice is to repeat the algorithm on the same data multiple times, and to report the best result.
We have repeated the procedure 10 times in our experiments. We have used Euclidean dis-
tance as dissimilarity metric between feature vectors. We use B3 measure to evaluate the
performance of the classifiers.

3 Evaluation

3.1 Experimental Set-up

We implemented a Python program that performs the experiments and handles the results,
based on the description from section 2. The program is available here http://mit.edu/
˜kuat/www/6.863/sentiment.py. It uses NLTK 0.9.9 including its movie review corpus,
machine learning facilities, and WordNet bindings. Specifically, we use packages nltk.*,
nltk.cluster, nltk.classify, nltk.corpus.wordnet, and nltk.corpus.movie reviews

. We also used numerical library for python numpy and optparse for parsing of command
line parameters. Additionally, we used matplotlib package for automatic drawing of plots.

All our experiments were run on Ubuntu Linux 9.04 installed on a commodity work
station.

9



Figure 1: Classification by Polarity

3.2 Comparison of Machine Learning Algorithms and Feature Extractors

In our first experiment we consider the relation between supervised and unsupervised clas-
sification techniques as well as relation between different choices of the feature extractor. We
measured accuracy of automated classification for each corpus and each label using 10-fold
cross validation.

We considered four choices of classification technique – Naive Bayes (N), K-means Clus-
tering (K), Decision Trees (D), and Maximum-Entropy using the default algorithm (M). For
feature extractors, we used plain bag-of-words (B), bag-of-words using frequencies from the
movie reviews corpus (C), and bag-of-words using only adjectives and adverbs and account-
ing for negation (G).

Figure 1 shows results for classification by the opinion – positive, negative, or neutral.
Since there are three choices for the label, the base line is 33%. For QoS corpus, Naive Bayes
and max-entropy perform the best at about 45% accuracy. For ST corpus, Naive Bayes is
the winner at about 45% accuracy rate. Maximum-entropy does not perform as well as for
the other corpus. In combination, Naive Bayes is the most effective classification technique
with Max-Entropy and Decision Trees coming next close to it. These results lead us to the
conclusion that the distinction of polarity of comments when there are neutral comments as
well may be harder problem than simpler binary polarity analysis.

It is interesting to consider only two-value classification for opinions. Figure 2 shows
the plot of each technique applied only to sentences that are either negative or positive,
but not neutral. The results here is that both Naive Bayes and Decision Tree perform almost
equally well on both corpora at around 67% accuracy rate. It is remarkable that unsupervised
K-Means clustering algorithms and Max-Entropy classification perform almost as well and
better on ST corpus as the winners. One experiment (KC) did not complete because of an

10



Figure 2: Classification by Strict Polarity

assertion violation in K-Means clustering algorithm in NLTK.
Figure 3 presents results for subjectivity analysis. Accuracy on QoS is noticeably better

than on ST on all combinations except for clustering algorithm. For ST there is very little
difference between the technique and the feature extractor accuracy rates, and they all are
around 60%. For QoS, Decision Trees, Naive Bayes, and Max-Entropy perform very well in
range 70-80%.

Our experiments demonstrate that our three choices of feature extractor influence the
outcome for the techniques. For example, selecting words from our little domains, may give
better results than features selected from word frequencies of the movie reviews corpus. We
can see that by comparing bag-of-words (B) with bag-of-words from movie reviews (C) on
all three plots. In some cases, such as strict opinion on QoS, the results of having features se-
lected from most popular words from movies reviews are significantly worse. This indicates
that the words that are good clues about subjectivity and polarity of the messages appear
even in corpora that are very small in size.

The most effective classification technique is Naive-Bayes combined with bag-of-words
feature extractor that uses negated words. This combination performs consistently well on
all experiments. It is surprising that unsupervised clustering algorithm performs excellent
on subjectivity analysis on ST domain.

It is interesting to note the influence of recognition of negation and inclusion of such
features the feature vector on the classification results. We can see the improvement in the
case of strict polarity classification (figure 2.) In this case, it helps classifiers achieve the best
accuracy rates. We would expect greater influence of negation in larger corpus, especially
together with related word recognition (that we evaluated in section 3.4.) Negation features
perform worse when it is required to recognize neutral sequences. They also don’t help in
subjectivity analysis. This is even expected – negation is not the property that is required

11



Figure 3: Classification by Subjectivity

for detection of subjective opinion. Its inclusion in feature vectors just increases noise, and
decreases the quality of the classifier.

We also performed experiments with features such as inclusion of special field for un-
known words. The results don’t show significant improvement, but also don’t decrease the
classification accuracy. We haven’t noticed any difference when we used frequency count
instead of presence notification. We observed a relatively small decrease in accuracy (1-2%)
when we apply removal of usual blacklisted words. We noted that using only certain parts
of speech (attributes) in polarity analysis yields almost the same result for Naive Bayes clas-
sifier.

However, we also need to say a word of caution. The accuracies between single folds in
the cross-validation varied greatly in most of the cases. The intensity of single rounds was
diverging up to 15% percents from the mean value. This results implies that although the
results are encouraging, it is necessary to have larger corpus that would help produce more
accurate classifiers. In section 3.5 we describe the experiment where we use the subset of
sentences from the existing movie reviews corpus.

3.3 Effect of Word Frequency Threshold

This experiment is designed to demonstrate the effect of feature vector size on the accuracy
rates. It shows how the word frequency in training data can influence the selection of features
for the dictionary. We evaluated Naive-Bayes technique on different feature vector selections
by imposing a threshold on the feature occurrence. If we consider only the words that appear
most frequently in the corpus, we might get better results by avoiding over-fitting as well as
adjusting to the corpus style.

Figure 4 shows the effect of maximum threshold on the accuracy rate of Naive Bayes

12



Figure 4: Effect of Threshold on Strict Opinion Classification

algorithm with the simple bag-of-words feature extractor on both inputs in strict opinion
analysis. As we can see, there is a certain pick in for which the threshold is optimum. For
small corpora, such as our annotated ones, the satisfactory frequency is between 3 and 10.
As a comparison, the size of feature vectors in these two cases are 216 and 57 respectively,
for corpus QoS. The whole corpus contains 993 different words.

The small threshold means more words in the feature vector. We can see that if we in-
clude all words, a noise is introduced, which reduces the accuracy rate. In fact, in case of
small threshold, the classifiers overfit to the training data, and perform worse on test data.
However, by picking too few words (only the most frequent ones), we may lose the text
properties that are required for proper classification. For example, if we use only words
that appear more than 10 times in a corpus, the accuracy drops. For larger corpora, like
movie reviews, the best accuracy is for the threshold is between 8 and 13 appearances of
the word.

3.4 WordNet Analysis

In this analysis, the feature vector consisted of all words that appeared at least 3 times in
the corpus. Feature selector was simple bag-of-words selector, and the classifying algorithm
was Naive Bayes. The results are shown in table 2.

Text Naive Bayes without WordNet Naive Bayes with Wordnet
QoS opinion 64.982 % 66.065 %
ST opinion 72.122 % 69.189 %

Table 2: WordNet analysis

We have observed the increase of accuracy for the QoS corpus, but it drops with ST cor-
pus. We think that the reason for such divergent results may be due to the size of the corpora
and relatively small number of words that could be replaced by others in the corpora. Ad-
ditionally, it is possible for one word to have multiple meanings, being synonym to other

13



words only in certain cases. All these variations are hard to catch on small training set. It
would be necessary to analyze a larger corpus in order to make a definite conclusion.

3.5 Using existing movie review Corpus for Training

In this experiment we have used the existing movie review corpus to train the classifiers.
Classifiers are then applied on the whole corpora QoS and ST. Movie review corpus contains
tags for positive and negative sentences. This corpus makes experiment suitable only for
evaluation of strict polarity analysis, and only for supervised learning algorithms. We used
a subset of 1000 positive and 1000 negative sentences. The feature vector contained 200 most
used words.

Text C+N C+D C+M
Quantum of Solace (QoS) 58.219 % 52.740 % 58.904 %
Startrek (ST) 61.765 % 60.784 % 64.706 %

Table 3: Using Movie Review Corpus for Training

The results of the classification are shown in table 3. We initially expected this classifi-
cation to be better than the one on the small corpora. The performance of the classifiers is
not very satisfactory. They achieve at most around 58% of accuracy. This is for more than
10% lower than the training done on our corpora. The number of training sentences is quite
larger than the number of test sentence. The inspection of feature vectors reveal the existence
of many words that don’t appear in the test corpora.

3.6 Threads to Validity

We have shown experimental evaluation of feature selection and classification of sentiments
in natural language texts. We have tried to objectively assess the contribution of different
factors. However, the conclusions of this project must be taken with precaution. Potential
threats to validity include following:

1. size of corpus – we have worked with very small corpora. Number of sentences in each
corpus doesn’t exceed 300 sentences. Research corpora include multiple thousands of
polarized sentences.

2. manually annotated corpora – two corpora were manually annotated by the authors. It
is possible that there exist random or systematic error induced in the annotations. This
may be especially applicable to the results of the experiment in section 3.5.

3. relation between messages and their sentences – we have assumed that the attitude
of the message is represented by the attitudes of its sentences. In case of short mes-
sages we believe this is true. However, additional experiments would be necessary to
confirm or rule out this hypothesis.

4. topic – we have explored only one type of comments. These are comments on movies.
The language in this comments may be specific. We believe that the same technique

14



may be applied to other kinds of comments, such as product announcements, political
debates, etc. To confirm this conjecture, it would be necessary to perform experiments
on a broader set of topically distinct messages

5. community – we used comments from only one web site (Digg.com). Although un-
likely, the community of this web site may be different from the community of some
other web sites.

4 Conclusion

In this report, we have analyzed the sentiment of social network comments. We used the
comments on articles from Digg as our text corpora. We evaluated the fitness of different fea-
ture selection and learning algorithms (supervised and unsupervised) on the classification
of comments according to their subjectivity (subjective/objective) and their polarity (pos-
itive/negative). The results show that simple bag-of-words model can perform relatively
good, and it can be further refined by the choice of features based on syntactic and semantic
information from the text. We looked into the influence of feature vector on the classification
accuracy. We also observed that existing corpus from apparently similar corpus which con-
tains sentences from movie reviews. Our results show that such corpus, although contains
similar polarity of the words, as well as the common topic, may not perform classification
well.

The future work includes:

1. performing larger scale experiments using our techniques; we could benefit from hav-
ing larger data set but unfortunately it requires manual work of tagging sentences with
labels;

2. using WordNet path similarity for obtaining numerical features of how close the sen-
tence is to the selected features;

3. analyzing correspondence between number of Diggs (measure of popularity) and the
comments;

4. using off-topic and on-topic as labels.

15



5 Appendix A – The list of command line options

In order to perform the analyses, we have created a Python program sentiment.py. This
section all options that it supports.

Usage: sentiment.py [options] file1 [file2]*

Options:
-h, --help show this help message and exit
-q, --quiet print status messages to stdout
-V, --verbose-all print status messages to stdout
-s, --subjectivity Classify sentences based on subjectivity

(subjective/objective)
-o, --opinion Classify sentences based on opinion (thumbs up/down or

neutral)
-f, --count-frequency

Count the frequency of word occurrence in sentence
-p O_TESTPERCENTAGE, --test-percentage=O_TESTPERCENTAGE

Percentage of initial data saved for testing
-c O_CROSSVALIDATE, --crossvalidation=O_CROSSVALIDATE

Crossvalidate (add % of cv. )
-w, --wordnet Use wordnet to select synonyms (or near synonyms)
-x, --strict-opinion Use only +1 -1 labels for opinions
-y O_TAG_WORDS_FILTER, --tag-words-filter=O_TAG_WORDS_FILTER

Put P-O-S tags that filter feature vectors (e.g.
JJ;NN;NNP)

-t, --tag-sentences Tag sentences with corresponding P-O-S
-b, --use-blacklist Exclude some common words such as I, a, the from the

vectors
-u, --use-unknown Add a field(s) for unknown words encountered in test

sentences
-i, --use-impersonal Use personal names in feature vectors
-m O_MAX_FV_SIZE, --max-feature-vector-size=O_MAX_FV_SIZE

Maximum feature vector size (if less than 15 it is
threshold for word appearance)

-B, --bag-of-words Feature extractor is bag of words
-C, --corpus Feature extractor is bag of words, features are

selected from existing corpus
-G, --negation Feature extractor is bag of words, features are both

adjective positive and negations
-N, --naive-bayes Perform Naive Bayes classification
-M CL_MAX_ENTROPY, --max-entropy=CL_MAX_ENTROPY

Perform Maximum Entropy classification (provide
algorithm: default, GIS, IIS, CG, BFGS, Powell,
LBFGSB, Nelder-Mead)

-D, --dec-tree Perform decision tree classification
-K, --k-means Perform K-Means clustering classification
-A, --agglomerative Perform Agglomerative clustering classification

16



References

[1] Amazon online retailer web site. http://www.amazon.com.

[2] Digg social networking site. http://www.digg.com.

[3] Natural language toolkit. http://www.nltk.org.

[4] Rottentomatoes movie review site. http://www.rottentomatoes.com.

[5] Twitter social networking site. http://www.twitter.com.

[6] A. Bagga and B. Baldwin. Algorithms for scoring coreference chains. In In The First International
Conference on Language Resources and Evaluation Workshop on Linguistics Coreference, pages 563–
566, 1998.

[7] S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python – Analyzing Text with the
Natural Language Toolkit. O’Reilly Media, 2009.

[8] S. R. Das and M. Y. Chen. Extracting market sentiment from stock message boards. SSRN, 2001.

[9] C. Fellbaum. WordNet: An Electronical Lexical Database. The MIT Press, Cambridge, MA, 1998.

[10] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In In Proceedings of the ACL, pages 271–278, 2004.

[11] B. Pang and L. Lee. Opinion Mining and Sentiment Analysis. Now Publishers Inc, July 2008.

[12] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? sentiment classification using machine
learning techniques. 2002.

[13] J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and emotions in lan-
guage. Computers and the Humanities, 39(2-3):165–210, May 2005.

17


