
DIRICHLET’S THEOREM ON PRIMES IN ARITHMETIC PROGRESSIONS

KUAT YESSENOV

Abstract. In this expository paper we present a proof of the Dirichlet’s theorem on the existence
of infinitely many prime numbers in arithmetic progressions {a + bn | n ≥ 0} with relatively prime
a and b. 1

1. Introduction

We know that the prime numbers greater than 2 are odd. Alternatively, we can say that the
arithmetic progression {1 + 2k | k ∈ Z>0} contains infinitely many primes. One may wonder
whether same is true for arbitrary arithmetic progressions provided some necessary conditions. It
can be shown in elementary ways that it is true for progressions {±1 + 4k | k ∈ Z>0} (see [1].)

Our goal is to prove the following celebrated:

Theorem 1.1 (Dirichlet). Let a and m be relatively prime positive numbers. Then there exist
infinitely many prime numbers p such that p ≡ a (mod m).

We will develop our two basic tools first: characters of finite abelian groups and L-series. We
are following the proof in [1].

2. Characters

Consider a finite abelian group G.

Definition 2.1. A character of G is a homomorphism χ : G → C× of G into the multiplicative
group of complex numbers.

The characters form a group Ĝ with group operation χ1χ2(x) = χ1(x)χ2(x) and identity charac-
ter χ0(x) = 1 for any x ∈ G. This group is called the dual group of G. For any character χ, there
is a corresponding character χ̄ obtained by complex conjugation such that χ̄(x) = χ(x) = 1

χ(x) .
Some of the properties of characters are true in the general setting of finite abelian groups

although we will restrict our attention to one particular type of groups later.
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Proposition 2.2. The dual group Ĝ is isomorphic to G. In particular, they have the same number
of elements.

Proof. We show G ∼= Ĝ by induction on the number n of elements of G. For a cyclic group G with
generator x, χ(x) is an n-th root of unity. Clearly, any character χ is uniquely identified by χ(x).
Pick any n-th root of unity σ. Then the characters χi(xk) = (σi)k are the only ones in the group
Ĝ. Notice that χi = χi

1, so Ĝ is also cyclic of order n and G ∼= Ĝ.
Now suppose G is not cyclic. Then G = G1 ×G2. There is an isomorphism Ĝ ∼= Ĝ1 × Ĝ2 which

sends a character χ of G to a pair of its restrictions to subgroups (χ|
bG1
, χ|

bG2
). Indeed, one may

check that the inverse map is defined by the rule:

(χ1, χ2) maps to χ ∈ Ĝ such that χ(a1, a2) = χ1(a1)χ2(a2).

Applying the induction assumption, we see that G1
∼= Ĝ1 and G2

∼= Ĝ2, so G ∼= Ĝ. �

Proposition 2.3. For any character χ ∈ Ĝ and any element a ∈ G,∑
x∈G

χ(x) =
{

#G if χ = 1
bG

0 if χ 6= 1
bG
.

∑
χ∈ bG

χ(a) =
{

#G if a = 1G

0 if a 6= 1G.

Proof. Choose any y ∈ G such that χ(y) 6= 1. If there is no such one, then χ = 1
bG

and the first
formula follows. Otherwise,

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(yx) =
∑
x∈G

χ(x)

Then
∑

x∈G χ(x) = 0.
The map χ 7→ χ(a) is a character of Ĝ. It is trivial only if a = 1G. Now apply our previous

formula to the dual group Ĝ to obtain the second formula.
�

For the rest of the paper, we fix our attention on the group G = (Z/mZ)×, the multiplicative
group of residues mod m. We call characters of this group as characters mod m.

Definition 2.4. The order of the group (Z/mZ)× is φ(m), the totient function.

Hence, by previous proposition there are φ(m) distinct characters mod m. It is useful to consider
a character χ ∈ Ĝ as a function on all of Z in the following way:

χ(n) =
{
χ(n̄) if n and m are relatively prime
0 otherwise

where we denote n̄ the image of n in the quotient Z/mZ.
A function f : Z>0 → C is said to be multiplicative if for any positive integers n and k, f(nk) =

f(n)f(k). Note that characters mod m are multiplicative.
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3. Dirichlet L-series and ζ function

For a character χ mod m and s ∈ C, the Dirichlet L-series is defined by

L(s, χ) :=
∞∑

n=1

χ(n)
ns

Definition 3.1. The zeta function is defined for s ∈ C by ζ(s) =
∞∑

n=1

1
ns

.

These two functions share many similarities. We would like to explore properties of them which
are crucial in the proof of the Dirichlet’s theorem. First, we would like to have a test for convergence
of the series of the similar type.

Proposition 3.2. Assume {ai} are complex. Let F (s) =
∑∞

i=1
ai
is . If F (s) converges for s = s0

then it converges on all domain Re{s} > Re{s0} and it is holomorphic on this domain.

Proof. Without loss of generality, we may assume that s0 = 0 (by setting a′i = ai
is0 .) For a positive

number α < π
2 consider the compact set

Cα = {z ∈ C | Re{z} ≥ 0 , | arg {z}| ≤ α}
If we can show that F (s) converges uniformly on any Cα then by Weierstrass theorem ([2] p.

174.) it is holomorphic on the union of the sets which contains the domain Re{s} > 0.
Indeed, denote the sum

∑k
i=n ai by An,k. Since F (s) converges at 0, by the Cauchy property, for

any ε > 0 there exists N such that for any n, k > N , |An,k| < ε. Using Abel’s summation formula,
we obtain for N < n < k:∣∣∣∣∣

k∑
i=n

ai

is

∣∣∣∣∣ ≤
k−1∑
i=n

|An,i| · |i−s − (i+ 1)−s|+
∣∣∣∣An,k

ks

∣∣∣∣ < ε

(
k−1∑
i=n

|i−s − (i+ 1)−s|+ |k−s|

)
Now for x = Re{s}:

|i−s−(i+1)−s| = |e−s log i−e−s log(i+1)| = |−s
∫ log(i+1)

log i
e−tsdt| ≤ |s|

∫ log(i+1)

log i
etxdt =

|s|
x

(i−x−(i+1)−x)

Notice that for s ∈ Cα there is a bound M = 1
cos α for |s|

x . Then∣∣∣∣∣
k∑

i=n

ai

is

∣∣∣∣∣ < ε(M(n−x − k−x) + k−x) ≤ ε(M + 1)

for any s ∈ Cα. So it converges uniformly and we are done. �
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Proposition 3.3. Let f : Z>0 → C be a multiplicative function. Consider the series F (s) =
∞∑
i=1

f(i)
is

.

(a) If the partial sums Ak =
∑k

i=1 f(i) are bounded, then F (s) converges for Re{s} > 0.
(b) If the coefficients {f(i)} are bounded, then F (s) converges absolutely for Re{s} > 1, and

we have

F (s) =
∏
p∈P

1
1− f(p)p−s

Proof. For the first part, we use Abel’s summation. Assume M is a bound for |Ai| for all i. Then
for n < k:∣∣∣∣∣

k∑
i=n

f(i)
is

∣∣∣∣∣ ≤
k−1∑
i=n

|Ai−An−1| · |i−s−(i+1)−s|+
∣∣∣∣Ak −An−1

ks

∣∣∣∣ ≤ 2M

(
k−1∑
i=n

|(i−s − (i+ 1)−s)|+ |k−s|

)

By previous proposition, it suffices to consider the case when s is real:
∣∣∣∑k

i=n
f(i)
is

∣∣∣ ≤ 2M
ns (remove

absolute values above.) For s > 0 the Cauchy criterion implies that F (s) converges.
To show the second part, denote by M the bound for coefficients. Then notice∣∣∣∣f(i)

is

∣∣∣∣ ≤ M

|is|
=

M

iRe{s}

It is well-known that if Re{s} > 1 then the sequence on the right converges, so F (s) converges
absolutely.

Let SN = {s1, . . . , sk} for positive N be the of prime numbers less than N . Then

∏
p∈SN

1
1− f(p)p−s

=
∏

p∈SN

( ∞∑
n=0

f(pn)
pns

)
=

∞∑
i divisible only
by primes in SN

f(i)
is

As N approaches ∞, SN approaches P , and the right hand side tends to F (s). �

Throughout the paper we denote the set of all prime numbers by P . Since characters mod m
and the constant function 1 are both multiplicative and bounded we have the following:

Corollary 3.4. The L-series converges absolutely for Re{s} > 1, in which case

L(s, χ) =
∏
p∈P

1
1− χ(p)p−s

If the character χ 6= 1, then it converges on the domain Re{s} > 0 and it is holomorphic.

The ζ function converges absolutely for Re{s} > 1. On this domain ζ(s) =
∏
p∈P

1
1− p−s

.
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Proof. The only part we need to verify is that the partial sums
∑k

i=1 χ(i) are bounded for χ 6= 1.
But character on Z>0 is a periodic function and by property 2.3, the sum of its values over a period is
zero. Hence, since the number of elements in a period is φ(m), for a partial sum |

∑n
i=1 χ(i)| ≤ φ(m).

�

Proposition 3.5. Define the function Ψ(s) = ζ(s)− 1
s−1 . Then for Re{s} > 0, Ψ(s) is holomorphic.

Proof. Indeed,

Ψ(s) = ζ(s)− 1
s− 1

=
∞∑
i=1

1
ns
−
∫ ∞

1
t−sdt =

∞∑
i=1

∫ n+1

n
(n−s − t−s)dt

Set ψn(s) =
∫ n+1
n (n−s − t−s)dt. Each of these functions is holomorphic. So if we can show that

the series
∑
φn converges uniformly on all compact sets in the domain Re{s} > 0, then according

to Weierstrass theorem ([2] p. 174), Ψ is holomorphic on the domain. But the derivative of the
integrand with respect to real number t is s

ts+1 , so:

|φn(s)| ≤ sup
n≤t≤n+1

|n−s − t−s| ≤ |s|
|ns+1|

≤ |s|
|nRe{s}+1|

Therefore, the series
∑
φn(s) converges uniformly on every compact subset of the domain

Re{s} > 0 since Re{s} ≥ ε for some ε > 0. �

Note that from the product expressions we have:

L(s, 1) = ζ(s)
∏
p∈P
p|m

(1− p−s)

From the result above, we can extend L(s, 1) analytically to Re{s} > 0 so that it has a simple pole
at 1.

When we consider the log of a holomorphic function, we mainly mean its principal branch, so
that the Taylor series expansion log 1

1−z =
∑∞

k=0
zk

k is valid.

Corollary 3.6. We have
∑

p∈P p
−s ∼ log 1

s−1 for real s→ 1+ in the domain of convergence.

Proof. From the product formula above, we derive:

log ζ(s) =
∑
p∈P

∑
i≥1

1
ipis

=
∑
p∈P

p−s + ψ(s)

where we denoted by ψ(s) the rest of the terms
∑

p∈P,i≥2
1

ipis . We estimate the error term:

ψ(s) ≤
∑

p∈P,i≥2

p−is ≤
∑
p∈P

1
ps(ps − 1)

≤
∑
p∈P

1
p(p− 1)

≤
∑
n≥2

1
n(n− 1)

= 1

Hence, the term ψ(s) is bounded. Since ζ(s) = 1
s−1 + Ψ(s) has a pole at 1 for Ψ holomorphic at

1, we get the asymptotic relation. �
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The property above exposes an interesting fact about the distribution of prime numbers. For
out purpose we need to look at a particular subset of P and for that we use L-series. It turns out
to be essential that L(1, χ) does not vanish for χ 6= 1. This requires some additional theorems from
complex analysis so we devote a separate section for it.

4. L(1, χ) Does Not Vanish for χ 6= 1

It is natural to consider the following function:

ζm(s) =
∏
χ∈ bG

L(s, χ)

For a positive number p relatively prime to m, denote by ord(p) the order of p̄ in the group G.
There is a nice product expression for ζm:

Proposition 4.1. For Re{s} > 1: ζm(s) =
∏
p∈P
p-m

(
1

1− p−s·ord(p)

) φ(m)
ord(p)

Proof. Note that ∏
χ∈ bG

(1− χ(p)x) = (1− xord(p))
φ(m)
ord(p)

Indeed, let us expand 1− xord(p) =
∏

σ∈Uord(p)
(1− σx) where we denote the set of all n-th roots of

unity as Un. Since χ(p) is ord(p)-th root of unity, it suffices to check that there are φ(m)
ord(p) of them

attaining same value. This follows from the isomorphism of the group with its dual.
Now we are using the product formula for L-series:

ζm(s) =
∏
χ∈ bG

L(s, χ)

=
∏
χ∈ bG

∏
p∈P

1
1− χ(p)p−s

=
∏
p∈P

∏
χ∈ bG

1
1− χ(p)p−s

=
∏
p∈P
p-m

(
1

1− p−s·ord(p)

) φ(m)
ord(p)

for x = p−s and we can interchange products due to absolute convergence in the domain. �

We expand the product expression above to obtain a series of the form F (s) =
∑∞

i=1
ai
is with

nonnegative real coefficients ai. We claim the following fact for the functions of this type:
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Proposition 4.2. Suppose that F (s) converges for Re{s} > ρ where ρ ∈ R. If the function
extends analytically to a neighborhood to ρ then there exist an ε > 0 such that F (s) converges for
all Re{s} > ρ− ε.

We will not prove this fact in this paper. Interested reader should refer to [1] or [3].

Proposition 4.3. L(1, χ) is nonzero for χ 6= 1.

Proof. Assume L(1, χ) = 0 for some character χ 6= 1. All of the functions L(s, χ) are holomorphic
for the region Re{s} > 0 and nontrivial character χ by proposition 3.4. Recall, that L(s, 1) was
extended to the domain so that it has a simple pole at 1.

So the function ζm is holomorphic at 1 since pole and zero cancel. Now from proposition 4.2 it
follows that ζm converges for all s in the domain Re{s} > 0.

Now we are coming to a contradiction. Indeed, the factor in the product expression of ζm is

(1− p−ord(p)s)−
φ(m)

ord(p) =

( ∞∑
i=0

p−i·ord(p)s

) φ(m)
ord(p)

It dominates the sum
∑∞

i=0 p
−iφ(m)s. Hence, if we look at ζ(s), it dominates:

∏
p∈P
p-m

( ∞∑
i=0

p−iφ(m)s

)
=

∑
(n,m)=1

1
nφ(m)s

If we substitute s = 1
φ(m) we get a contradiction, since the RHS diverges. Hence, our assumption

was wrong, and we are done. �

5. The Proof of the Dirichlet Theorem

By now we have all the tools required to prove the Dirichlet’s theorem. In order, to give an
estimation of the number of prime numbers in a set, we need the notion of Dirichlet density:

Definition 5.1. For a subset A of prime numbers P , the Dirichlet density δ(A) of the set A is the
limit of ∑

p∈A p
−s∑

p∈P p
−s

when s tends to 1 along the real line (provided it exists.)

Let us fix a positive number m. We are interested in the set Pa of prime numbers in {a+ nm |
n ∈ Z>0} for a relatively prime to m. In fact, we claim even stronger result than Theorem 1.1:

Theorem 5.2. The density δ(Pa) exists and is equal to 1
φ(m) , i.e. the densities of the sets Pa and

Pb are the same for any a and b relatively prime to m.

As a corollary we will obtain a proof of Theorem 1.1 since nonzero density implies infinitude of
Pa.

Proof. Our first step is to consider the following series:
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Lemma 5.3. For any character χ mod m and real s→ 1+,∑
p∈P,p-m

χ(p)
ps

∼ log
1

s− 1
for χ = 1

The series on the left is bounded for χ 6= 1.

Proof. First note that the series above converges for s > 1. For χ = 1, the series misses only finitely
many terms of the series

∑
p∈P p

−s, and by proposition 3.6 we are done.
Assume now χ 6= 1. To express the series we will use logarithm of L-series logL(s, χ). We are

using the product formula for L(s, χ) as in corollary 3.4:

logL(s, χ) =
∑
p∈P

log
1

1− χ(p)p−s
=
∑
p∈P

∑
n≥1

χ(p)n

npns

=
∑
p∈P

χ(p)
ps

+
∑
p∈P
n≥2

χ(pn)
npns

The second sum
∑
p∈P
n≥2

χ(pn)
npns

is bounded as s → 1+ since it is dominated by the sum from corol-

lary 3.6. Since L(s, χ) does not vanish in a neighborhood of s = 1, logL(s, χ) is bounded in that
neighborhood. Therefore, the sum

∑
p∈P
p-m

χ(p)
ps is bounded in the limit s→ 1+ as well. �

Now we are able to estimate the numerator expression of the density as follows:

Lemma 5.4. ∑
p∈Pa

p−s =
1

φ(m)

∑
χ∈ bG

χ(a)

 ∑
p∈P,p-m

χ(p)
ps


Proof. Rewrite the sum on the right as follows using multiplicative property of characters:∑

p∈P,p-m

∑
χ∈ bG

χ(a)−1χ(p)

 p−s =
∑

p∈P,p-m

∑
χ∈ bG

χ(a−1p)

 p−s = φ(m)
∑
p∈Pa

p−s

Here used the formula from proposition 2.3 for sum of characters. The inner sum vanishes unless
a−1p ≡ 1 (mod m) which is equivalent to p ∈ Pa. �

Our last step is to notice that by lemma 5.3 for real s→ 1+,∑
p∈Pa

p−s ∼ 1
φ(m)

log
1

s− 1

since the only nonzero asymptotic contribution comes from χ = 1. But we know for the denominator
expression of the density

∑
p∈P p

−s ∼ log 1
s−1 (corollary 3.6). Therefore, δ(Pa) = 1

φ(m) and we
finished the proof of the theorem 5.2. �
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6. Conclusion

The usage of complex analysis was essential in this proof as we can see. This demonstrates the
power of complex analysis tools and complexifications of real functions in number theory. In fact,
that was the step that allowed Dirichlet to prove the theorem, although it has been conjectured by
mathematicians long before him. The original proof by Dirichlet in 1837 marked the beginning of
rigorous analytic number theory.
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