
EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)

Volume 37 (2018), Number 2

Fast Fluid Simulations with Sparse Volumes on the GPU

Kui Wu 1 Nghia Truong 1 Cem Yuksel 1 and Rama Hoetzlein 2

1 University of Utah 2 NVIDIA Corporation

Figure 1: City scene simulated with 29 million particles on a 512× 256× 512 grid with our spatially sparse, matrix-free FLIP solver on a
Quadro GP100 GPU at an average 1.8 seconds/frame.

Abstract

We introduce efficient, large scale fluid simulation on GPU hardware using the fluid-implicit particle (FLIP) method over a
sparse hierarchy of grids represented in NVIDIA R© GVDB Voxels. Our approach handles tens of millions of particles within
a virtually unbounded simulation domain. We describe novel techniques for parallel sparse grid hierarchy construction and
fast incremental updates on the GPU for moving particles. In addition, our FLIP technique introduces sparse, work efficient
parallel data gathering from particle to voxel, and a matrix-free GPU-based conjugate gradient solver optimized for sparse
grids. Our results show that our method can achieve up to an order of magnitude faster simulations on the GPU as compared
to FLIP simulations running on the CPU.

CCS Concepts
•Computing methodologies → Physical simulation; Massively parallel and high-performance simulations;

1. Introduction

The Fluid-Implicit-Particle (FLIP) method [ZB05] has been pop-
ular for simulating various types of fluid phenomena in computer
graphics due to its simplicity and low dissipation. As a hybrid tech-
nique, high-quality FLIP simulations require both large numbers of
particles and high resolution grids. Our method addresses these is-
sues by reducing memory requirements, dynamically tracking the
domain, and making use of parallel GPU-based computation resid-
ing on a sparse volume representation.

We make use of the GVDB sparse voxel data structure [Hoe16],
a GPU-friendly implementation of the VDB sparse grid hierar-
chy [Mus13]. Computation with sparse grids provides several ad-
vantages for fluid simulation. First, it reduces the storage of empty
space not occupied by fluid. As we consider simulations entirely
in GPU memory this is a crucial factor in running large-scale sim-
ulations. Furthermore, with GVDB Voxels the grid size does not
have to be pre-defined. As the fluid moves in space new voxels
can be allocated automatically as needed. Moreover, voxel data is
stored in 3D textures as a collection of dense voxel groups (i.e.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

bricks), which allows fast data retrieval during computation and
hardware-accelerated trilinear filtering. Finally, neighbor lookups
are achieved with apron voxels to accelerate stencil operations on
the GPU.

Fluid simulation on sparse grids involves a number of challenges
that we address here. First of all, the sparse structure must be rebuilt
at every frame from a large number (tens of millions in our tests)
of particles. We solve this by introducing an efficient algorithm
for rebuilding and updating the tree topology. Second, particle-to-
grid rasterization presents performance challenges which we ad-
dress by introducing a parallel gathering method that efficiently
utilizes GPU thread blocks and data coherence while keeping all
computation on the GPU. Finally, we introduce a matrix-free con-
jugate gradient solver for sparse voxel grids to efficiently handle
the pressure solver step of FLIP. Together the sparse grids and the
matrix-free solver allow us to support much larger volumes than
previously achieved in GPU memory as well as reaching up to two
orders of magnitude speedup compared to similar dense, multi-core
CPU implementations.

Our primary contributions consist of fast dynamic hierarchical
topology with incremental update, an efficient GPU-friendly sparse
spatial division by subcells, and a fast FLIP simulation with accel-
erated particle-to-grid rasterization and a matrix-free conjugate gra-
dient solver directly on sparse volumes. Each of these contributions
are discussed in detail.

2. Background

There is a large body of work on fluid simulation in computer
graphics. Our discussions focus on prior work that is closely re-
lated to FLIP and fluid simulations on the GPU. We provide a brief
description of the GVDB Voxels structure used for simulation.

2.1. Related Work

Fluid simulation using FLIP [BR86] has been a popular approach
since it was introduced to computer graphics [ZB05], along with
the particle-in-cell (PIC) method [Har64].

Both PIC and FLIP use particles for advection with the
pressure solve performed on the grid. FLIP addresses the nu-
merical diffusion of PIC, but not numerical energy dissipa-
tion [MCP∗09]. Thus, back and forth error compensation and cor-
rection (BFECC) [KLLR07] and the derivative particles [SKK07]
methods can be used for reducing numerical dissipation when
transferring data between particles and voxels. Researchers later
improved the PIC/FLIP method by providing amplified splashing
effects [KCC∗06, GB13], accurate solid-fluid coupling [BBB07],
and proper air-liquid interfaces [BB12]. Recently, Affine Particle-
In-Cell (APIC) [JSS∗15] were introduced to stably remove the dis-
sipation problems of PIC, providing exact conservation of angular
momentum during particle-to-grid transfers. The Integrated Vortic-
ity of Convective Kinematics (IVOCK) [ZBG15] method was in-
troduced for approximately restoring the dissipated vorticity during
advection, independent of the advection method.

The PIC/FLIP method is not limited to simulating fluids, as
it’s first use in computer graphics was in sand simulation [ZB05]

and later to solving the internal pressure and frictional stresses
in granular materials [NGL10]. PIC/FLIP is also used for han-
dling hair collisions with itself and other objects [MSW∗09]. More
recently, the Material Point Method (MPM), which generalizes
PIC/FLIP using a continuum formulation, was shown to effec-
tively handle simulations of various kinds of materials such as
snow [SSC∗13], sand [DBD16,KGP∗16], viscoelastic fluids, foams
and sponges [RGJ∗15, YSB∗15], and anisotropic elastoplasticity
materials [JGT17].

There is also an extensive amount of prior work on accelerat-
ing the PIC/FLIP method. The pressure solve on the grid, which
involves solving the Poisson equation as a sparse linear system, is
often the bottleneck of the PIC/FLIP approach. Decomposing and
solving the pressure in parallel over sub-domains has received some
attention [NSCL08,WST09,GNS∗12]. Other approaches use a low-
resolution grid [PTC∗10,LZF10,EB14,ATW15] or a multigrid cy-
cle as a preconditioner for a conjugate gradient solver [MST10].
Instead of using uniform grids, tetrahedral discretization [ATW13],
far-field grids [ZLC∗13], and sparse uniform grids [AGL∗17]
are used for aggressive adaptivity. Sparse volumetric structures
were also used for reducing storage requirements [SABS14]. Re-
cently, Azevedo at el. [ABO16] introduce a topologically cor-
rect, boundary-conforming cut-cell mesh to simulate liquid on very
coarse grids, while Liu et al. [LMAS16] and Chu et al. [CZY17]
present a Schur-complement for solving the Poisson equation on a
decomposed domain in parallel. Bailey et al. [BBAW15] also em-
ploy sparse volumetric structures on distributed systems for large
liquid simulations.

In addition to pressure solve, other methods are introduced
to improve performance of the PIC/FLIP method. Lentine et
al. [LCPF12] proposed computing an accurate level set represen-
tation in order to take large time steps. Rather than using eight par-
ticles per voxel as typically in FLIP, Batty and Bridson [BB08] pro-
pose using only one particle per voxel with a larger particle radius
to transfer particle velocities to the grid using a wider SPH-like ker-
nel. Ferstl et al. [FAW∗16] introduce a narrow band FLIP method to
only maintain particles within a narrow band of the liquid surface.

The computational power of GPUs have made them an attractive
hardware solution for fluid simulation in general. Harris [Har05]
implements Eulerian fluid simulation on the GPU with the it-
erative Jacobi method. Molemaker et al. [MCPN08] introduced
Iterated Orthogonal Projections (IOP) as an iterative multigrid-
based Poisson solver on the GPU. Horvath and Geiger [HG09]
divided pre-simulated fire data on a coarse grid into 2D slices
and performed secondary Eulerian Navier-Stokes solvers in par-
allel across many separate GPUs. Chentanez and Müller devel-
oped a specialized multigrid method for pressure projection on the
GPU [CM11a, CM11b] and introduced a GPU-friendly sharpening
filter that conserves mass locally and globally [CM12]. Recently,
Chen et al. [CKIW15] introduced a GPU-based fixed-point method
for accelerating Jacobi iterations for real-time painting simulations.

2.2. The GVDB Data Structure

GVDB Voxels is a framework for efficiently representing voxels on
a sparse hierarchy of grids [Hoe16] based on the work of [Mus13].

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

Figure 2: The GVDB Data Structure represents sparse voxels cov-
ering a spatial domain (a), as a tree of 3D grids (b) whose leaf
nodes point to voxel data in bricks. The GVDB data structure makes
use of two memory pools (c) to efficiently store basic node attributes
in pool 0 and child lists in pool 1. Leaf nodes reference actual voxel
data as bricks, which are dense 3D sub-volumes pooled inside a 3D
voxel atlas (d) and surrounded by an extra border of apron voxels
for later neighbor calculations.

The GVDB data structure sparsely covers a spatial domain with
voxels using a hierarchy of 3D grids as shown in Figure 2a. A con-
figuration vector identifies the resolution of each grid level as a vec-
tor of log2 dimensions. For instance, the 〈2,3,4〉 configuration indi-
cates a tree with three levels, having a root node L2 with (22)3 = 64
children, intermediate nodes at level L1 with (23)3 = 512 children,
and leaf nodes at level L0 referring to dense bricks of (24)3 = 4,096
voxels. This configuration can address a volumetric domain of
(22+3+4)3 ≈ 134 million voxels. GVDB Voxels allows for up to
five level trees by default, giving a very large address space. Levels
are numbered from zero (leaf nodes) to L (root node) to conve-
niently allow the tree height to change, as in Figure 2b.

For efficient GPU memory management, GVDB Voxels stores
the tree hierarchy with two pools of nodes, shown in Figure 2c.
Each node N(i)l at a given level l is stored in memory pool group
P0l and consists of a world space position, parent index and a child
list stored in a separate pool P1l . For interior nodes, each child in
the list is a reference to a node in P0l−1 at the next lowest level.
Leaf nodes at level 0 have no children and instead maintain a refer-
ence to a brick of voxels stored in a 3D texture atlas.

Whereas the node pools store the GVDB topology, the voxel
data is represented in dense n3 bricks allocated from a pool of sub-
volumes in a voxel atlas, shown in Figure 2d. The atlas is imple-
mented as a 3D hardware texture to enable trilinear interpolation
and GPU texture cache. Channels, or voxel attributes, are supported
with multiple atlases.

3. GVDB Voxels for Simulation

The original GVDB data structure was designed to mimic the VDB
approach, where bitmasks are used to compact child lists. In prac-
tice, storage of the topology is small (<1 MB) compared to the
voxel atlas, and bitmask compaction complicates dynamic inser-
tion and removal of nodes. We modify GVDB Voxels to use ex-
plicit child lists for each node. Sparseness is still achieved since
these lists only occur in occupied nodes. The new implementation
removes the bitmask table and uses a null value in P1 to indicate an
inactive child node. Dynamic insertion and removal of children are
now O(1).

Neighbor calculations are accelerated with apron voxels that are
maintained as an extra voxel border around each brick, and dupli-
cate the values across brick boundaries. Updating apron voxels is
non-trivial since the correct values are voxel neighbors in world
space (see Figures 2a and 2d). Since apron update is called repeat-
edly to maintain data consistency, and is used during the inner loop
of our CG solver, performance is critical. The previous technique
launches one kernel along each axis, where each thread resolves
one apron voxel in atlas space by traversing the GVDB topology to
identify its world-space neighbor. We launch a single kernel cover-
ing all six sides of a brick, including edges and corners, with one
thread per apron voxel performing the traversal. Performance is im-
proved by 5× over the original three-kernel method.

4. Simulation Algorithm Overview

Our fluid simulation technique is presented in Algorithm 1, and
follows the Fluid-Implicit Particle (FLIP) method with additions to
account for sparse volumes and to enable computation on the GPU.
First, the GVDB topology changes dynamically per frame, so we
begin with full or incremental rebuild of the tree (Sections 5.1 and
5.2). Previous volume data is cleared on each frame. Second, to ac-
celerate point-to-voxel rasterization on GPU, including level sets

Algorithm 1 Sparse FLIP simulation
1: procedure SparseFLIP()
2: P← initial points
3: V ← GVDB structure
4: for each f rame do
5: if first frame then
6: Vtopo← full rebuild (P) . Section 5.1
7: else
8: Vtopo← incremental build (P) . Section 5.2
9: end if

10: V ← resize and clear (Vtopo)
11: S← insert points in subcells (V,P) . Section 6
12: V (vel)← particles-to-voxels (S,P) . Section 7
13: V ← update apron (ρ,vel,marker)
14: V (velold)← V(vel)
15: V (div)← divergence (V (vel))
16: V (ρ)← CG pressure solve (V,div) . Section 8
17: V (vel)← pressure-to-velocity (V (ρ))
18: V ← update apron (V (vel))
19: P← advance (V (vel),V (velold))

20: end for
21: end procedure

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

Figure 3: Full Topology Rebuild in 2D: Given input points a, b, c, d, e, and f the goal is to build a containing tree. The index positions of
GVDB nodes are at the top-left of the node. After converting points to a list of keys 〈`,x,y,z〉, called the level-index list, we using a radix sort
to sort all levels simultaneously. Then, each value of the sorted list is checked with the previous one. If they are the same, set a 0 value in the
marker list, otherwise set a value of 1. From the marker list, we compute the prefix sum to provide absolute positions for the output compact
list. The sorted list value is written to the compact list at the prefix location only if the marker value is 1. The resulting list can be used to
directly populate the multi-level tree topology shown at right. Note that empty boxes in the child lists are null values.

for rendering, we insert points into subcells described in Section 6.
Third, we handle sparse brick boundaries with apron updates. Fi-
nally, our matrix-free conjugate gradient solver for sparse voxel
grids is used to efficiently handle the pressure solver step of FLIP
(Section 8). All other steps follow a typical FLIP implementation
with GPU acceleration, including divergence, pressure-to-velocity,
and advection using old and new grid velocities.

5. Dynamic Topology Construction

During simulation each particle must be covered by a sparse voxel
brick to contain it. However, each GVDB brick may contain thou-
sands of particles. If we traverse the tree for each particle, even
in parallel, there will be a large number of write conflicts and du-
plicate nodes. Fortunately each GVDB node has a unique absolute
spatial index which can be used to classify particles belonging to
it. Thus our solution is to sort particles based on the spatial index
at all levels simultaneously, and then remove duplicates. The re-
maining set is the list of unique nodes that will cover all particles.
Consequently, all GVDB nodes are identified in parallel and real-
located once. We consider both full and incremental rebuild of the
GVDB tree hierarchy using this method, with incremental update
of moving particles an order of magnitude faster than full rebuild.

5.1. Full Topology Rebuild

The goal of topology rebuild is to efficiently construct the set of
interior and leaf nodes of a GVDB tree covering a set of particles.
This is performed in two passes to assign voxels up to the particle
radius.

5.1.1. First Pass at Particle Centers

The first pass determines the set of tree nodes that cover par-
ticle centers. As the fluid domain is virtual unbounded the tree
depth may vary, and is recomputed on each frame from the particle

bounding box. The set of covering nodes is determined by generat-
ing nodes at all levels in parallel and removing duplicates. Finally,
nodes are reallocated and parent-child lists are updated. The details
of these steps are as follows:

Step 1. Determine the number of tree levels L. We begin by
computing the bounding box that contains all particles, which
determines the level L of the root node required to contain all
particles. Thus, only nodes from levels 0 to L− 1 are identified
in the following steps. The bounding box is computed by a par-
allel GPU reduction algorithm [Har07].

Step 2. Generate the level-index list. We define a level-index list
to consist of the indices of tree nodes that contain each particle at
every level of the hierarchy. Let n be the number of particles. The
total size of this list is nL and it is generated with a single pass
over all particles. The three indices x, y, and z of a node that con-
tains a particle at level ` is determined from the particle position.
For each level `, where 0≤ `≤ L−1, a single concatenated in-
teger value level-index, 〈`,x,y,z〉, is written to the list. Thus all
indexed positions at multiple levels can be sorted together, re-
ducing the number of GPU kernel launches.

Step 3. Compact the level-index list. The level-index list gener-
ated in the previous step contains many duplicated values since
each node may contain many particles. We first compact this
list using a radix sort to group duplicates values. We then mark
each element with 1 if it differs from the preceding element, or
0 otherwise, to construct a marker list. A parallel prefix sum
(scan) [HSO07] over the marker list provides offsets for the fi-
nal compacted list. Note that the level-index list, marker list, and
prefix sum have the same length. The output compacted list is
constructed by finding each unique level-index node using the
prefix sum for position and only if its marker list value is 1. Each
value in the compacted list corresponds to a unique tree node
that must be added to the topology to cover all particles. Fig-
ure 3 demonstrates construction of the compacted list in 2D.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

Step 4. Allocate and initialize nodes. We allocate the two mem-
ory pools of GVDB based on the size of the compacted level-
index lists. Then, we initialize the node data by assigning the
level and position values of each node. All child-node indices
are initialized to a null value.

Step 5. Set child node lists. Finally, we set the child node indices
in multiple passes. Each pass launches a kernel per level, de-
scending from LN−1 to L0. For each node N(i)l , its parent is
found by traversing the tree from the root. The corresponding
child node index of the parent node is set at the same time. By
induction the top-down order guarantees that each parent has
been added to the topology before processing lower levels. Upon
completion the GVDB structure contains correct parent and child
lists for every node.

5.1.2. Second Pass for Influencing Box

The second pass guarantees that voxels exist to cover up to a unit
edge distance for particle-to-grid velocity transfers, or two times
the radius to generate level sets (for rendering). We call this bound-
ing box per particle the influence box, shown in Figure 4. The first
pass generates GVDB nodes which cover particle centers. While
it is possible to modify the first pass to extend the level-index list
to cover the influence box, this naïve modification would produce
a level-index list eight times larger or more. The second pass is
used to quickly generate neighboring bricks touched by influenc-
ing boxes.

The goal of this second pass is to generate the relatively few
voxel bricks that do not yet exist in the tree, do not contain parti-
cle centers, but are required due to the influencing box of the par-
ticles. For this pass, we modify Step 2 of the first pass to check
whether each corner of a particle’s influencing box already exists
as a GVDB node. If corner nodes are not found, we add these to the
list.

Since only missing nodes are added to the list using atomic in-
dices, a much shorter list is generated in comparison to the first
pass. As duplicate nodes may still be included, we perform Step 3
again to compact the list. Step 4 and 5 are identical to the first pass.

5.2. Incremental Rebuild

We observe that the tree topology for two consecutive time steps of
a FLIP simulation will be very similar even with large time steps
since most particles will be moving within the same node, while
others may cross nodes. Therefore, we perform incremental up-
dates rather than rebuilding the topology from scratch. Typically,
at each step, we only need to allocate a relatively small number of
new nodes and voxels and just a small portion of existing nodes
are no longer needed. As a result, incremental updates can be per-
formed much more efficiently than complete reconstruction of the
topology.

Our incremental rebuild is very similar to the full topology con-
struction algorithm. The main difference is in Step 2 that generates
the level-index list. Note that the desired incremental list is the sub-
set of the full node list which only contains new nodes not already
in the existing GVDB tree. Thus, for each particle, we check each
corner of the particle’s influencing box to determine whether there

already exists a node at that level. If so, mark the node; otherwise,
〈`,x,y,z〉 is added to the new node list.

Steps 3 through 5 operate similarly. If an existing node is un-
marked during Step 2, the node is no longer needed and can be
safely removed from the tree. We remove these nodes with an addi-
tional step, using multiple passes in a bottom-up order. We remove
the unmarked nodes by setting the corresponding child node indices
of parent nodes to a null value. Removed nodes and their bricks are
dereferenced but not deleted from memory pools, allowing them to
be reused for new bricks which are relinked on each frame.

6. Subcell Division

We introduce subcells, as shown in Figure 4, which spatially di-
vide each voxel storage brick into multiple, small sub-volumes or-
ganized for GPU hardware. Then, we create particle position and
velocity lists to store all particles belonging to, or overlapping, each
subcell.

The optimal size of a voxel brick depends on the applica-
tion, with tradeoffs between performance and occupancy [Hoe16].
Whereas large bricks are ideally suited for disk IO and raytrac-
ing, the number of voxels-per-brick typically exceeds a GPU thread
block, making local computation inefficient. Therefore we retain
GVDB Voxel bricks for storage, and introduce subcells to create
a logical grouping for thread blocks, shown in Figure 4. Subcells
organize a given geometry (e.g. points, polygons) for computation
with respect to a set of voxels.

The total memory consumed is the union of particles in every
subcell including duplicates that overlap other subcells. At one ex-
treme, if a subcell is only one voxel (13), each subcell will be ex-
actly the ideal list of particles impacting that voxel. However, the
total list length will be much longer than the original particle list.
With larger subcells, more unnecessary particles are checked per
subcell, but the total list length will be shorter. We use 43 = 64 vox-
els per subcell as an even multiple of CUDA warps (32× threads)
and to balance search length with memory consumption while also
fitting into a single GPU thread block (512× threads). To improve
hardware coherence, instead of storing particle indices, the posi-
tions and velocities are copied into each subcell.

Due to duplication in the lists caused by overlaps, the subcell list
occupies the most memory during simulation. To further reduce
memory usage, we encode position and velocity as 16-bit ushort
values dividing by their range. Encoded data only occupy half as
much memory overall.

7. Particle-to-Grid Rasterization

A key aspect of a FLIP simulation is to transfer particle veloci-
ties to the voxel grid. The weighted sum of nearest particles con-
tribute to any given voxel. Two common approaches are to per-
form this as either a scatter or a gather. Scatter introduces texture
write conflicts as multiple particles write to the same location. It
also requires atomic texture ops and produces unbalanced thread
workloads. Gathering offers several benefits on the GPU, as found
by [KBT∗17]. GPU occupancy is improved as each voxel collects
values from a fixed shared list of nearby particles, without the need

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

Figure 4: Subcell Division: Subcells are a logical sub-division of voxel bricks into computation units. While bricks organize the sparse
domain, and are sized for global performance of raytracing and I/O, they contain too many voxels for efficient GPU compute. Subcells are
64 voxels, sized to fit into a GPU thread block and an even multiple of CUDA warps (32 threads). Every voxel in a subcell shares the same
subcell particle list. Notice this requires duplication as, for example, particle d exists in subcells 0,0 and 1,0, but reduces the search length
per voxel. During construction, the covered subcells of a particle are determined by rasterizing the particle’s influence box (orange).

Figure 5: Inner Product by 3D Reduction of a volume: To com-
pute inner products for our CG solver, global voxel data from two
channels are multiplied into shared memory. Then a 3D reduction
by powers-of-two is applied to 43 voxels in shared memory to write
one value per subcell to a 1D array. Finally, a 1D reduction on the
subcell results is performed to return the single output value.

for atomics. A naïve technique would check the distance of each
voxel to every particle, whereas the subcell division described ear-
lier is the ideal shared list of particles for localized, fixed-radius
gathering.

A kernel is launched for every active voxel, with each subcell
as a GPU grid block. A typical gather accesses each particle once
to perform a sum of some attribute. We implement several raster-
ization kernels to gather velocity and density to generate level set
values for rendering. Additionally, many gather operations, such as
velocity and fluid-air markers, are combined in a single kernel.

8. Matrix-Free Conjugate Gradient Solver on GPU

The pressure solve is the most important component of an incom-
pressible fluid simulation. Its goal is to solve a linear system Ax= b,
where x is the unknown pressure values, b is divergence, and A is
a sparse matrix that only depends on voxels properties, which can
be solid, fluid, or empty. The matrix A is the seven-point Laplacian
matrix. Since matrix A is symmetric positive definite, the Conjugate
Gradient (CG) algorithm is one of the most commonly used tech-
niques. We introduce a parallel, matrix-free CG solver for FLIP
simulation on sparse voxel grids residing directly on a sparse tree
hierarchy.

Algorithm 2 provides the pseudo-code for our matrix-free CG
solver. Each CG iteration requires one SpMV (Line 10), two inner
products (Line 11 and 15), and three vector additions (Line 12, 13,
and 17). Vector r, b, q, d, and x are stored as channels in sepa-
rate 3D GVDB textures. Note that apron voxels in vector d has to
be updated before being used in SpMV(Line 10), which will ac-
cesses neighbor voxels. The solver termination criteria is checked
using the residual norm, read back to the CPU every ten iterations
to reduce pipeline stalls (Line 20). Final particle advection is a
straight forward sampling of the voxel data at particle locations.
Corresponding to the FLIP technique, the old and new grid veloc-
ities are sampled and subtracted to give the new particle velocity.
Hardware interpolation is supported by GVDB Voxels to retrieve
velocity values at arbitrary positions.

The most expensive operation in the CG solver is sparse matrix-
vector multiplication (SpMV). The matrix A is a 2D dimensional
matrix of size N × N, where N is the total number of active
fluid voxels, thus growing rapidly with grid resolution. Even with
sparse matrix libraries, the matrix would quickly consume GPU
memory for large systems. Therefore, following a matrix-free ap-
proach [MGSS13], we avoid storing the matrix A by constructing

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

Figure 6: Column scene with 29 million particles and grid size of 450× 300× 300. Simulation takes 2.4 seconds per frame with 1e−4 CG
solver epsilon on a Quadro GP100. Rendered with NVIDIA R© GVDB Voxels and OptiX at twice the grid resolution.

matrix values from voxels directly as needed on-the-fly. Each row
of matrix A corresponds to one pressure equation, in which only
seven entries are non-zero at maximum. The diagonal value corre-
sponds to the number of non-solid neighboring voxels and the other
six values depend on the six neighboring voxel properties. Due to
apron voxels co-located with bricks, immediate neighbors can be
accessed as direct texture fetches without tree traversal.

To compute SpMV, one thread per voxel is launched and six
neighboring voxel values are checked to compute the inner prod-
uct between the input vector and the row of matrix A. The result is
written to the output vector directly. For instance, to compute the
matrix-vector multiplication of A with vector b at row i, we exam-
ine the six neighbors of voxel i (x,y,z) to retrieve scalars s0, s1,
s2, s3, s4, and s5 on voxels (x± 1,y,z), (x,y± 1,z), (x,y,z± 1).
Note that due to GVDB apron voxels, neighbors are already avail-
able in GPU texture cache co-located in the same brick as voxel i.
For the result vector c, we compute ci = bi ∑

5
0 sn−∑

5
0 bnsn. While

mapping between world space and atlas space can be performed in
constant time with GVDB helper functions, since CG solver oper-
ations only require neighbor locality these kernels can be launched
directly in atlas space. Result values are written directly to another
output channel.

Vector addition is straightforward using a GVDB compute ker-
nel over two channels, but the inner product of two vectors, used for
computing the residual in the CG solver, is a complicated operation.
For the inner product we perform a three dimensional parallel re-
duction. Given vector a and b in one subcell, each thread multiplies
ai with bi and writes to 43 shared memory. Then, a 3D reduction is
performed in shared memory as shown in Figure 5. Each sub-group
of eight voxels will be reduced to one value on each iteration. The
3D reduction step ends with one accumulated value written to a
global 2D array. The final step performs a similar 1D array reduc-
tion on the results of each subcell to get the final product value.

9. Results

Our results show greatly improved simulation times compared to
CPU implementations of FLIP. We perform tests on a variety of
scenes at different scales. Performance is measured for topology re-
build, simulation experiments on both GPU and CPU, and memory
usage. The CPU performance is measured on a 4-core (8 threads)

Algorithm 2 Matrix-free Conjugate Gradient Solver
1: . Given the inputs divergence b, starting value x, maximum of iterations

imax, and error tolerance ε

2: procedure MatrixFreeConjugateGradientSolver(b,x, imax,ε)

3: i = 0
4: r = b−SpMV(x)
5: d = r
6: δnew = InnerProduct(r, r)
7: δ0 = δnew

8: while i < imax do
9: UpdateApron(d)

10: q = SpMV(d)
11: α = δnew/InnerProduct(d,q)
12: x = x+αd
13: r = b−αq
14: δold = δnew

15: δnew = InnerProduct(r, r)
16: β = δnew/δold
17: d = r+βd
18: i = i+1
19: if i mod 10 == 0 then
20: if δnew > ε2δ0 then . Read back to CPU for check
21: Stop solver and return
22: end if
23: end if
24: end while
25: end procedure

Intel Core i7 6700K 4.0GHz with 32 GB memory and GPU per-
formance is measured on an NVIDIA Quadro GP100 with 16 GB
GPU memory.

9.1. Topology Construction

We measure the performance of the topology construction using
4M, 8M, 16M, 32M, and 64M particles with the dam break exam-
ple, Figure 8. The performances of full CPU, full GPU, and incre-
mental GPU rebuilds are shown in Table 1. Full topology rebuild
on GPU is 7–20× faster than CPU rebuild, and incremental rebuild
is from 80–180× faster than the original CPU rebuild.

More importantly, incremental topology update requires less
than 2% memory usage as compared to full topology build on the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

GPU, since the update lists are much smaller. Therefore, in our sim-
ulations, a full GPU topology build is only used in the first frame,
then the memory is released and made available for later operations,
allowing for larger simulations.

Table 1: Performance of our dynamic topology for full build on
CPU, full build on GPU, and incremental on GPU for one frame
(in milliseconds). Data is measured with the dam break example.

Particles # CPU Full GPU Full GPU Incremental
4M 384 56 (7×) 4.8 (80×)
8M 807 96 (8×) 5.6 (144×)

16M 1598 204 (8×) 9.6 (167×)
32M 3249 313 (10×) 18.7 (174×)
65M 6368 366 (17×) 35.5 (179×)

9.2. Simulation Performance

We compare the performance of our GPU simulations to three dif-
ferent multi-threaded CPU implementations. The first two use a
dense grid with and without an incomplete Cholesky precondi-
tioner for improved performance (Dense CPU CG/PCG). The third
comparison is to a CG solver on CPU which achieves sparseness
by aggregating active voxels (Sparse CPU CG). Although different
from brick-based storage in GVDB, we use this to investigate CG
solver performance as the systems will be of similar size.

These three solvers are tested on two relatively simple scenes,
see Figures 8 and 9, using different grid sizes and particle counts.
As shown in Table 2, our projection step is up to an order of magni-
tude faster than the CPU-based sparse CG solver. Note that we use
1e-4 as the CG tolerance for all tests. Compared with Dense CPU
PCG, which requires one third the iterations, our method is still
10× to 28× faster. Compared with the Sparse CPU CG solver, the
performance of which highly depends of the sparsity of grid struc-
ture, our GPU solver still achieves a 6× to 10× speedup. In the
future we seek to investigate preconditioners suitable for parallel
hardware, further improving performance.

Table 3 demonstrates the timing for each step of our simulation.
By using our incremental method, the time for topology construc-
tion is less than 3% of the total time. The CG solver is still the
most expensive part, requiring kernel launches for SpMV, two in-
ner products, three vector additions, and update apron for each iter-
ation. With hardware trilinear interpolation, the final advection step
takes around 1% of the total time. We found that performance de-
pends highly on the distribution of particles in space. When water
splashes and scatters more bricks are required, increasing the ratio
of unused (air) to occupied (fluid) voxels. As long as there is one
fluid voxel inside a brick, all voxels in the brick need to be pro-
cessed. This can be alleviated somewhat by reducing the GVDB
brick size at the expense of increased topology rebuild and update
time.

9.3. Memory Usage

We measure the peak memory usage for the simulation, which de-
termines the size of simulations that can be handled on the GPU. As
described in Section 6, subcell lists occupy the most memory dur-
ing simulation. The next largest usage of memory is voxel channel

Figure 7: Teapot scene: Simulation of an expanding, sparse do-
main with 2 million particles. The domain reaches up to 3360×
160×2272, with the fluid fully simulated in the sparse bricks indi-
cated in blue. Each brick is (25)3 = 32768 voxels. Simulation takes
1 second per frame on a Quadro GP100, a lower efficiency than
typical for 2M particles due to a higher ratio of unused voxels per
brick.

data. All voxel data is stored in thirteen GVDB channels: density,
fluid markers, new and old velocity components at x, y, and z direc-
tion, divergence, pressure, and two extra channels for vectors used
by the CG solver. Although a single channel is relatively small,
around 200 MB for a 20 million particle scene, all 13 channels will
take nearly half of the simulation memory. Channel data is stored
in 3D textures that dynamically resize to assign bricks covering the
fluid.

Full topology build requires a long level-index list for sorting, as
well as another list of the same length to store the sorting result,
marker list, and prefix sum list. However, the temporary memory
can be released after full topology build and used for other purposes
such as GVDB channel data. We resize the sorted level-index list,
marker list, and prefix sum lists as needed, but do not currently
resize the level-index list since it would require an additional pass
to compute list length, lowering performance, while it is not the
primary memory bottleneck. Note that full topology build requires
2×more memory than incremental topology update in Table 4, but
the actually usage of incremental topology update is less than 2%
of full rebuild.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

Table 2: Average time per frame for Matrix-Free Conjugate Gradient solver on CPU, CPU with preconditioner, and on GPU.

Dense CPU CG Dense CPU PCG Sparse CPU CG Sparse GPU CG (GVDB)
Particles # Domain Iter. # Iter. Time Total Iter. # Iter. Time Total Iter. Time Total Iter. Time Total Speedup

(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)
Dam Break 8M 2563 229 100 22900 49 120 5870 8.3 1901 0.9 206 9×

27M 3843 367 334 122578 77 370 28551 27.1 9946 3.1 1138 9×
65M 5123 511 792 404712 105 841 88959 69.7 35617 6.8 3475 10×

Water Drop 4M 1283 243 14 3402 64 21 1392 3.4 826 0.6 146 6×
13.5M 1923 350 50 17500 92 80 7444 12.0 4200 1.7 595 7×

32M 2563 456 110 50160 111 163 18240 29.1 13270 3.5 1596 8×

Table 3: Average time per frame for each step in simulation. All times in milliseconds. Our GPU solution sparsely occupies the domain grid,
whereas the two CPU solutions cover the domain with voxels. Thus part of our performance gain is due to less work from sparseness. For
teapot and flow scene, the domain size is the maximum extent of an unbounded simulation. Each brick is 323.

CPU Total GPU time per frame (ms) GPU Total
Particles # Domain # Bricks w/ PCG Topo. Particle- CG Solve Advect Others per frame Speedup

Extents Ave / Peak Update to-Voxel (ms)
Dam Break 8M 2563 128 / 207 6892 6 34 206 4 8 258 27×

27M 3843 32050 16 120 1138 14 11 1299 25×
65M 5123 101131 36 298 3475 34 18 3861 26×

Water Drop 4M 1283 1858 5 18 146 2 8 179 10×
14M 1923 9067 12 56 595 7 10 680 13×
32M 2563 265 / 512 22080 19 144 1596 17 11 1787 12×

Column 29M 450×300×300 551 / 1006 − 23 138 2260 10 12 2443
City 22M 512×256×512 468 / 1033 − 17 112 1721 7 11 1868

Teapot 2M 3360×360×2272 800 / 2976 − 20 8 983 2 70 1083
Flow 74M 1056×288×768 665 / 812 − 68 270 3377 35 40 3790

9.4. Rendering

Raytracing was performed on a Quadro GP100 using NVIDIA R©

OptiX with GVDB Voxels integration at twice the grid resolution of
the simulation. We render each scene with one primary, one reflec-
tion, two refraction, and one shadow ray using Monte-Carlo ray-
tracing. These five rays constitute one sample with each frame ren-
dered at 128 samples per pixel.

Simulated water is raytraced directly as a sparse volume with
GVDB Voxels without conversion to polygons, while collision ob-
jects are raytraced as polygonal models. Both use OptiX for hybrid
polygon-volume scattering and shading. The particles are gathered
as a narrow-band level set for raytracing, which requires extending
the influencing box to cover values outside the particle radius. A
typical frame is rendered in between 10 to 30 seconds at 1920×1080
resolution with 128 samples/pixel.

10. Conclusions and Future Work

We have presented a sparse, efficient, GPU-based FLIP simula-
tion for fluids on virtually unbounded domains. Our method builds
a sparse tree topology, incrementally updates the tree, efficiently
sorts particles into subcells, and performs the FLIP simulation steps
with a fast, matrix-free Conjugate Gradient solver over millions of
particles. Overall we can achieve simulation times that are up to an
order of magnitude faster than similar CPU-based solutions.

We describe a matrix-free CG solver operating on sparsely
placed bricks and optimized for GPU hardware. Rather than stor-
ing the sparse matrix A, voxel values are examined directly as
needed on-the-fly, greatly reducing memory usage and enabling

Figure 8: Dam break: Test scene simulated with 8, 27 and 65 mil-
lion particles at 2563, 3843 and 5123. Simulation at 2563 shown.

Figure 9: Water drop: Test scene simulated with 4, 14 and 32 mil-
lion particles at 1283, 1923 and 2563. Simulation at 2563 shown.

much larger simulations in GPU memory. Accelerated solver oper-
ations include fast 3D reduction for inner products, efficient apron
updates for neighbors, and hardware interpolated particle advec-
tion. Our system can simulate up to 74 million particles with a few
seconds per frame on modern GPU hardware.

Although the performance of our method is already significantly

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

Table 4: Peak Memory Usage in megabytes (MB). Object refers to voxel grid for collision geometry.

Particles # GVDB Topology GVDB Channels Topology Build Subcell Lists Particle Data Object Total
(MB) (MB) (MB) (MB) (MB) (MB) (MB)

Dam Break 8M 0.06 592 120 305 180 − 1233
27M 1999 445 1120 664 − 4283
65M 4664 992 2530 1488 − 9708

Water Drop 4M 592 60 148 88 − 900
14M 592 206 520 308 − 1640
32M 0.08 1111 498 1258 746 − 3636

Column 29M 0.09 2221 441 1120 662 56 4583
City 22M 0.11 1851 346 876 518 46 3762

Teapot 2M 0.78 2591 43 70 43 50 3231
Flow 74M 0.14 2517 1127 2818 1691 − 8931

higher than CPU-based solvers, we foresee several potential fu-
ture improvements. It is possible to introduce a GPU-friendly pre-
conditioner such as a multi-grid technique similar to McAdams et
al. [MST10], but implemented on the sparse domain. Another pos-
sible improvement would be to implement narrow band FLIP to
reduce the number of particles [FAW∗16], as particle insertion and
sorting into subcells is currently our highest performance cost. Fi-
nally, the GVDB topology is naturally suited to an out-of-core ap-
proach as the space can be divided along tree boundaries.

Several limitations may be overcome in future work. Collisions
are currently handled by voxelization of polygonal obstacle mod-
els into a separate GVDB object, which is sampled on a differ-
ent sparse grid to identify solid boundary voxels. We have plans to
support moving rigid objects by updating the transformation ma-
trix (local reference frame) of this collision grid without needing to
revoxelize, and by introducing level sets for boundary conditions.

Regarding rendering, we found surface polygonization and
smoothing to reduce quality, and use direct volumetric level set
raytracing to preserve fine details. In the future we seek to iden-
tify and render isolated particles, which are not currently visible.
Whereas raytracing uses trilinear gradients for smoothness, stair-
stepping artifacts may be visible (see Figure 10) as we do not en-
force the free surface Dirichlet boundary condition up to second
order accuracy [GFCK02].

To our knowledge we have introduced the first spatially sparse,
complete FLIP solver running entirely on the GPU. Every part of
the FLIP simulation pipeline has been optimized for parallel exe-
cution on GPU hardware using GVDB Voxels for storage, compute
and rendering, with significant increases in performance while re-
ducing memory to handle larger simulations.

Acknowledgements

The authors would like to specially thank Ken Museth (Weta Dig-
ital), Gergely Klar (Dreamworks Animation), and Tristan Lorach
(NVIDIA) for their support and guidance. This work was supported
in part by NSF grant #1538593.

References

[ABO16] AZEVEDO V. C., BATTY C., OLIVEIRA M. M.: Preserving
geometry and topology for fluid flows with thin obstacles and narrow
gaps. ACM Trans. Graph. 35, 4 (July 2016), 97:1–97:12. 2

Figure 10: Flow: Simulation of 74M particles in domain
1056×288×768

[AGL∗17] AANJANEYA M., GAO M., LIU H., BATTY C., SIFAKIS E.:
Power diagrams and sparse paged grids for high resolution adaptive liq-
uids. ACM Trans. Graph. 36, 4 (July 2017), 140:1–140:12. 2

[ATW13] ANDO R., THÜREY N., WOJTAN C.: Highly adaptive liquid
simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4 (July 2013),
103:1–103:10. 2

[ATW15] ANDO R., THÜREY N., WOJTAN C.: A dimension-reduced
pressure solver for liquid simulations. Comput. Graph. Forum 34, 2
(May 2015), 473–480. 2

[BB08] BATTY C., BRIDSON R.: Accurate viscous free surfaces for
buckling, coiling, and rotating liquids. In Proceedings of SCA (2008),
SCA ’08, Eurographics Association, pp. 219–228. 2

[BB12] BOYD L., BRIDSON R.: Multiflip for energetic two-phase fluid
simulation. ACM Trans. Graph. 31, 2 (Apr. 2012), 16:1–16:12. 2

[BBAW15] BAILEY D., BIDDLE H., AVRAMOUSSIS N., WARNER M.:
Distributing liquids using openvdb. In ACM SIGGRAPH 2015 Talks
(New York, NY, USA, 2015), SIGGRAPH ’15, ACM, pp. 44:1–44:1.
2

[BBB07] BATTY C., BERTAILS F., BRIDSON R.: A fast variational
framework for accurate solid-fluid coupling. ACM Trans. Graph. 26,
3 (July 2007). 2

[BR86] BRACKBILL J. U., RUPPEL H. M.: Flip: A method for adap-
tively zoned, particle-in-cell calculations of fluid flows in two dimen-
sions. J. Comput. Phys. 65, 2 (Aug. 1986), 314–343. 2

[CKIW15] CHEN Z., KIM B., ITO D., WANG H.: Wetbrush: GPU-based
3d painting simulation at the bristle level. ACM Trans. Graph. 34, 6 (Oct.
2015), 200:1–200:11. 2

[CM11a] CHENTANEZ N., MÜLLER M.: A multigrid fluid pressure
solver handling separating solid boundary conditions. In Proceedings
of SCA (2011), SCA ’11, ACM, pp. 83–90. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

K. Wu & N. Truong & C. Yuksel & R. Hoetzlein / Fast Fluid Simulations with Sparse Volumes on the GPU

[CM11b] CHENTANEZ N., MÜLLER M.: Real-time eulerian water sim-
ulation using a restricted tall cell grid. ACM Trans. Graph. 30, 4 (July
2011), 82:1–82:10. 2

[CM12] CHENTANEZ N., MÜLLER M.: Mass-conserving eulerian liq-
uid simulation. In Proceedings of SCA (2012), SCA ’12, Eurographics
Association, pp. 245–254. 2

[CZY17] CHU J., ZAFAR N. B., YANG X.: A schur complement precon-
ditioner for scalable parallel fluid simulation. ACM Trans. Graph. 36, 5
(July 2017), 163:1–163:11. 2

[DBD16] DAVIET G., BERTAILS-DESCOUBES F.: A semi-implicit ma-
terial point method for the continuum simulation of granular materials.
ACM Trans. Graph. 35, 4 (July 2016), 102:1–102:13. 2

[EB14] EDWARDS E., BRIDSON R.: Detailed water with coarse grids:
Combining surface meshes and adaptive discontinuous galerkin. ACM
Trans. Graph. 33, 4 (July 2014), 136:1–136:9. 2

[FAW∗16] FERSTL F., ANDO R., WOJTAN C., WESTERMANN R.,
THUEREY N.: Narrow band FLIP for liquid simulations. Computer
Graphics Forum (Proc. Eurographics) 35, 2 (2016), 225–232. 2, 10

[GB13] GERSZEWSKI D., BARGTEIL A. W.: Physics-based animation
of large-scale splashing liquids. ACM Trans. Graph. 32, 6 (Nov. 2013),
185:1–185:6. 2

[GFCK02] GIBOU F., FEDKIW R. P., CHENG L.-T., KANG M.: A
second-order-accurate symmetric discretization of the poisson equation
on irregular domains. J. Comput. Phys. 176, 1 (Feb. 2002), 205–227. 10

[GNS∗12] GOLAS A., NARAIN R., SEWALL J., KRAJCEVSKI P.,
DUBEY P., LIN M.: Large-scale fluid simulation using velocity-vorticity
domain decomposition. ACM Trans. Graph. 31, 6 (Nov. 2012), 148:1–
148:9. 2

[Har64] HARLOW F. H.: The particle-in-cell computing methods for
fluid dynamics. Methods in Computational Physics 3 (1964), 319–343.
2

[Har05] HARRIS M.: Fast fluid dynamics simulation on the GPU. In
ACM SIGGRAPH 2005 Courses (New York, NY, USA, 2005), SIG-
GRAPH ’05, ACM. 2

[Har07] HARRIS M.: Optimizing parallel reduction in cuda. Presentation
Packaged with CUDA Toolkit (2007). 4

[HG09] HORVATH C., GEIGER W.: Directable, high-resolution simula-
tion of fire on the GPU. ACM Trans. Graph. 28, 3 (July 2009), 41:1–41:8.
2

[Hoe16] HOETZLEIN R. K.: GVDB: Raytracing sparse voxel database
structures on the GPU. In Proceedings of High Performance Graphics
(2016), HPG ’16, Eurographics Association, pp. 109–117. 1, 2, 5

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel Prefix Sum
(Scan) with CUDA. In GPU Gems 3, Nguyen H., (Ed.). Addison Wesley,
August 2007, ch. 39, pp. 851–876. 4

[JGT17] JIANG C., GAST T., TERAN J.: Anisotropic elastoplasticity for
cloth, knit and hair frictional contact. ACM Trans. Graph. 36, 4 (July
2017), 152:1–152:14. 2

[JSS∗15] JIANG C., SCHROEDER C., SELLE A., TERAN J., STOM-
AKHIN A.: The affine particle-in-cell method. ACM Trans. Graph. 34, 4
(July 2015), 51:1–51:10. 2

[KBT∗17] KLÁR G., BUDSBERG J., TITUS M., JONES S., MUSETH
K.: Production ready mpm simulations. In ACM SIGGRAPH 2017 Talks
(New York, NY, USA, 2017), SIGGRAPH ’17, ACM, pp. 42:1–42:2. 5

[KCC∗06] KIM J., CHA D., CHANG B., KOO B., IHM I.: Practical
animation of turbulent splashing water. In Proceedings of SCA (2006),
SCA ’06, Eurographics Association, pp. 335–344. 2

[KGP∗16] KLÁR G., GAST T., PRADHANA A., FU C., SCHROEDER
C., JIANG C., TERAN J.: Drucker-prager elastoplasticity for sand ani-
mation. ACM Trans. Graph. 35, 4 (July 2016), 103:1–103:12. 2

[KLLR07] KIM B., LIU Y., LLAMAS I., ROSSIGNAC J.: Advections
with significantly reduced dissipation and diffusion. IEEE Transactions
on Visualization and Computer Graphics 13, 1 (Jan. 2007), 135–144. 2

[LCPF12] LENTINE M., CONG M., PATKAR S., FEDKIW R.: Simulat-
ing free surface flow with very large time steps. In Proceedings of SCA
(2012), SCA ’12, Eurographics Association, pp. 107–116. 2

[LMAS16] LIU H., MITCHELL N., AANJANEYA M., SIFAKIS E.: A
scalable schur-complement fluids solver for heterogeneous compute
platforms. ACM Trans. Graph. 35, 6 (Nov. 2016), 201:1–201:12. 2

[LZF10] LENTINE M., ZHENG W., FEDKIW R.: A novel algorithm for
incompressible flow using only a coarse grid projection. ACM Trans.
Graph. 29, 4 (July 2010), 114:1–114:9. 2

[MCP∗09] MULLEN P., CRANE K., PAVLOV D., TONG Y., DESBRUN
M.: Energy-preserving integrators for fluid animation. ACM Trans.
Graph. 28, 3 (July 2009), 38:1–38:8. 2

[MCPN08] MOLEMAKER J., COHEN J. M., PATEL S., NOH J.: Low
viscosity flow simulations for animation. In Proceedings of SCA (2008),
SCA ’08, Eurographics Association, pp. 9–18. 2

[MGSS13] MÜLLER E., GUO X., SCHEICHL R., SHI S.: Matrix-free
gpu implementation of a preconditioned conjugate gradient solver for
anisotropic elliptic pdes. Comput. Vis. Sci. 16, 2 (Apr. 2013), 41–58. 6

[MST10] MCADAMS A., SIFAKIS E., TERAN J.: A parallel multigrid
poisson solver for fluids simulation on large grids. In Proceedings of
SCA (2010), SCA ’10, Eurographics Association, pp. 65–74. 2, 10

[MSW∗09] MCADAMS A., SELLE A., WARD K., SIFAKIS E., TERAN
J.: Detail preserving continuum simulation of straight hair. ACM Trans.
Graph. 28, 3 (July 2009), 62:1–62:6. 2

[Mus13] MUSETH K.: VDB: High-resolution sparse volumes with dy-
namic topology. ACM Trans. Graph. 32, 3 (July 2013), 27:1–27:22. 1,
2

[NGL10] NARAIN R., GOLAS A., LIN M. C.: Free-flowing granular
materials with two-way solid coupling. ACM Trans. Graph. 29, 6 (Dec.
2010), 173:1–173:10. 2

[NSCL08] NARAIN R., SEWALL J., CARLSON M., LIN M. C.: Fast
animation of turbulence using energy transport and procedural synthesis.
ACM Trans. Graph. 27, 5 (Dec. 2008), 166:1–166:8. 2

[PTC∗10] PFAFF T., THUEREY N., COHEN J., TARIQ S., GROSS M.:
Scalable fluid simulation using anisotropic turbulence particles. ACM
Trans. Graph. 29, 6 (Dec. 2010), 174:1–174:8. 2

[RGJ∗15] RAM D., GAST T. F., JIANG C., SCHROEDER C., STOM-
AKHIN A., TERAN J., KAVEHPOUR P.: A material point method for
viscoelastic fluids, foams and sponges. In Symposium on Computer An-
imation (2015), ACM, pp. 157–163. 2

[SABS14] SETALURI R., AANJANEYA M., BAUER S., SIFAKIS E.: Sp-
grid: A sparse paged grid structure applied to adaptive smoke simulation.
ACM Trans. Graph. 33, 6 (Nov. 2014), 205:1–205:12. 2

[SKK07] SONG O.-Y., KIM D., KO H.-S.: Derivative particles for simu-
lating detailed movements of fluids. IEEE Transactions on Visualization
and Computer Graphics 13, 4 (July 2007), 711–719. 2

[SSC∗13] STOMAKHIN A., SCHROEDER C., CHAI L., TERAN J.,
SELLE A.: A material point method for snow simulation. ACM Trans.
Graph. 32, 4 (July 2013), 102:1–102:10. 2

[WST09] WICKE M., STANTON M., TREUILLE A.: Modular bases for
fluid dynamics. ACM Trans. Graph. 28, 3 (July 2009), 39:1–39:8. 2

[YSB∗15] YUE Y., SMITH B., BATTY C., ZHENG C., GRINSPUN E.:
Continuum foam: A material point method for shear-dependent flows.
ACM Trans. Graph. 34, 5 (Nov. 2015), 160:1–160:20. 2

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM Trans.
Graph. 24, 3 (July 2005), 965–972. 1, 2

[ZBG15] ZHANG X., BRIDSON R., GREIF C.: Restoring the missing
vorticity in advection-projection fluid solvers. ACM Trans. Graph. 34, 4
(July 2015), 52:1–52:8. 2

[ZLC∗13] ZHU B., LU W., CONG M., KIM B., FEDKIW R.: A new grid
structure for domain extension. ACM Trans. Graph. 32, 4 (July 2013),
63:1–63:12. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

