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Automatic Generation of Shaped Knit Sheets to
Cover Real-World Objects
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1 CUTTING FOR DIFFERENT QUAD-(DOMINANT)
MESHES

The number of cuts generated by our method depends on
the quality of input mesh, i.e. number of singularities and
how well aligned they are. Fig. [1|demonstrates our method
can robustly cut input quad-(dominant) meshes which are
generated from previous papers [1[], [2], [3], [4], [5], [6].

2 KNITTABILITY

The stitch mesh our system generates is guaranteed to be
knittable:

As we discuss in Section 4, our flood fill algorithm is
guaranteed to produce a topological disc (i.e., the cut-mesh)
without any directional singularities. Since the cut-mesh is a
topological disc, it cannot contain any holes. This means that
the skeleton of the cut-mesh with the assigned directions is a
polytree — and, thus, has an upward-planar embedding. This
is a sufficient condition for machine-knittability (at least,
from infinitely-thin, infinitely-stretchy yarn), as established
by prior work [7]. More importantly, the procedure in the
our knitting instruction generation (Section 7) will always
succeed unless there is a directional singularity, since our
algorithm will add extra cuts to the surface when necessary
to guarantee the machine-knittability.

3 LOCAL KNITTING MACHINE ORIENTED MESH
MODIFICATIONS
Fig. 7 demonstrates four local mesh modifications to avoid

mesh configurations that can lead to instabilities during
machine knitting:

1) A short-row face below a decrease (Fig. 7a), will
require the machine to knit one loop through three
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others, an operation it cannot always complete suc-
cessfully. Our system, therefore, moves the short-
row face either below or to another location along
the same row.

2) If the wale edge of a short-row face is on the
boundary (Fig. 7b), the stitch above the short-row
face becomes unstable and unravels. Our system
collapses the triangular stitch mesh face to avoid
this situation.

3) Stitches at a boundary cannot be consistently moved
by the knitting machine because there is no previous
loop to hold the stitches down. Thus, our system
turns decrease faces on the boundary (Fig. 7c) into
regular stitches (collapsing the two course edges on
the boundary).

4) At least two consecutive stitches must be created
when adding loops to empty needles. Therefore,
if there is only one casting-on stitch, our system
collapses the corresponding course edge to form an
increase stitch with one of its neighbors (Fig. 7d).

4 KNITTING ORDER DETERMINATION
4.1 Random Knitting Order Generation

We generate a number of knitting orders for the patch-graph
by using topological sort. Our sorting algorithm picks the
patches of the garment one by one and places them to the
next slot in the knitting order. A patch can only be picked
if it is ready, meaning it does not have any patches below
it in the wale direction that are not already picked. At the
beginning, we mark all boundary patches that do not have
any patches below them as ready and place them into a
queue Q. We begin our iterations by fetching a patch P
from Q. At each iteration, we add the chosen patch P to
the knitting order P. For all patches immediately above P
in the wale direction, we mark them as ready, if they do not
have other patches below them that are not already picked.
For the next iteration,

e If P has only one ready patch that is directly above,
we pick this patch as the next one.

e If P has multiple ready patches directly above, we
randomly pick one of them and add all others to Q.

e If P has no ready patch directly above, we randomly
pick a patch from Q.
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Fig. 1. The cut bunnies and the corresponding approximated paramteric spaces generated using the quad-(dominant) mesh from: (a) |1], (b) |2],

(©) [3]. (a) [4]. (e) 3], and (f) [6].

This approach of picking the next patch favors continuity
in the knitting order (by picking a patch directly above
when possible), so that multiple patches can be knit together
without cutting the yarn. The sorting is completed when Q
is empty. Since the patch-graph is a DAG, this operation will
always place all patches to the knitting order.

4.2 Kbnitting Simulation

For each knitting order, we simulate the knitting process on
the machine bed following the given knitting order. The goal
of the knitting simulation is to detect potential overlaps.
We achieve this by keeping track of the occupancy of each
needle on the machine bed. Starting with the first patch
of the knitting order, we process each row of each patch
in order to determine which needled are occupied during
knitting. For each row, we mark all needles used by the
bottom course edges of the row as unoccupied, if the bottom
course edges are not on a boundary, since the loops held in
those needles will be used for knitting new stitches through
them. Then, we mark all needles used by the top course
edges of the row as occupied, as the resulting stitches will
be held by those needles. Note that a needle can only be
marked as occupied only if it is unoccupied (and vice versa).
During the simulation of a patch, we detect overlapping if
we must mark an occupied needle as occupied. When we
detect overlapping, we simply introduce a cut before this
patch and start a new (unconnected) piece with this patch.
Thus, the stitches of the first row of this patch are effectively
converted to cast-on stitches.

At the end of the knitting simulation, it returns the
number of additional cuts introduced (i.e. the number of
overlapped patches detected). Notice that when an overlaps
is detected, current traced patches are cut, even there is
another patch connecting with traced patches without over-
lapping, but not traced yet. As an optional optimization, we
check all separated pieces from the selected order and see
if any of them can be connected with each other without
overlapping, thereby reducing additional cuts.
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