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Wearable 3D Machine Knitting: Automatic
Generation of Shaped Knit Sheets to Cover

Real-World Objects
Kui Wu, Marco Tarini, Cem Yuksel, James McCann, Xifeng Gao

Abstract—Knitting can efficiently fabricate stretchable and durable soft surfaces. These surfaces are often designed to be worn on
solid objects as covers, garments, and accessories. Given a 3D model, we consider a knit for it wearable if the knit not only reproduces
the shape of the 3D model but also can be put on and taken off from the model without deforming the model. This “wearability” places
additional constraints on surface design and fabrication, which existing machine knitting approaches do not take into account. We
introduce the first practical automatic pipeline to generate knit designs that are both wearable and machine knittable. Our pipeline
handles knittability and wearability with two separate modules that run in parallel. Specifically, given a 3D object and its corresponding
3D garment surface, our approach first converts the garment surface into a topological disc by introducing a set of cuts. The resulting
cut surface is then fed into a physically-based unclothing simulation module to ensure the garment’s wearability over the object. The
unclothing simulation determines which of the previously introduced cuts could be sewn permanently without impacting wearability.
Concurrently, the cut surface is converted into an anisotropic stitch mesh. Then, our novel, stochastic, any-time flat-knitting scheduler
generates fabrication instructions for an industrial knitting machine. Finally, we fabricate the garment and manually assemble it into one
complete covering worn by the target object. We demonstrate our method’s robustness and knitting efficiency by fabricating models
with various topological and geometric complexities. Further, we show that our method can be incorporated into a knitting design tool
for creating knitted garments with customized patterns.

Index Terms—knitting, fabrication, stitch meshes.
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1 INTRODUCTION

Machine knitting is a powerful mechanism for fabricating
3D shapes. Knitting machines can naturally produce curved
surfaces directly in 3D, using various shaping techniques,
i.e., short-rows and increase/decrease stitches, as shown
in Fig. 3. While knitted artifacts can typically withstand
relatively strong external forces without breaking, most yarn
materials form soft fabrics that easily deform, even with
their own weights under gravity. This makes knitting an
ideal way to fabricate garments and coverings with user-
defined shapes (e.g., upholstery, equipment covers).

In the commercial sphere, knitting machine program-
ming remains a difficult process which must be undertaken
by skilled engineers working in low-level languages. Recent
research has made strides in automating the programming
of machine-knittable 3D shapes [1], [2], [3], [4]. However,
these methods do not consider the eventual assembly of the
fabricated knit artifact with a target solid object. Therefore,
the resulting knit artifacts with these methods may not be
placed over the target real-world solid objects and, thereby,
fail to fulfill their main purpose.
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To address this crucial problem, we define the term
wearability in the context of fabricating knit artifacts. Given
a target configuration of a deformable 3D surface S and
rigid object O, both embedded in R3, we define fabricated
deformable surface S′ as wearable regarding O if it can be
near-isometrically deformed to S without intersecting O.

Though most previous works focus on tubular knit-
ting [2], [5], tubular surfaces are often not wearable by our
definition for rigid 3D shapes (e.g., a cover for a torus or a
sweater for a statue of a character in a T pose). Rather than
creating tubes that must be cut to obtain wearability, our
framework follows the industry-standard practice of “fully-
fashioned” knitting – creating shaped sheets that are hand-
assembled into the final product.

In this work, we present the first pipeline that can
automatically produce a wearable and machine-knittable object
S′ given a 3D garment surface S and a target rigid object O.
In particular, given S and O, our pipeline determines the
set of stitches and knitting instructions needed to fabricate a
garment, including automatically determining and placing
cuts to ensure that the resulting garment can be slipped
onto the target 3D object. These cuts are closed by lacing
manually after the garment is placed on the object. Note
that though our pipeline is designed to create coverings
that conform to the target solid, it is not limited to it. Our
system supports designing full coverings, partial coverings,
and even loose coverings.

Our pipeline first cuts the input 3D surface into a topo-
logical disc (cut-mesh). It then runs two modules in parallel:
the wearability test and the machine-knittability test. The
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wearability test is used to determine which edges of the cut-
mesh should be temporarily laced and which may be perma-
nently sewn. Concurrently, the machine-knittability module
generates an anisotropic stitch meshes [6], and schedules
the machine knitting instructions, adding additional cuts as
needed. Finally, the garment is fabricated using an industrial
knitting machine, and cuts are manually assembled using
sewing or lacing (as determined by the pipeline). We verify
our pipeline by fabricating models with various topological
and geometrical complexities that cannot be handled by
state-of-the-art knitting techniques.

We particularly wish to emphasize that by focusing on
disc-based knitting (flat knitting), we are filling a gap in
the current automatic knitting design space. This is a par-
ticularly relevant gap, given that many currently-deployed
knitting machines don’t include the take-down systems nec-
essary to deal with complex shaping on tubes, and knitting
of shaped sheets that are hand-assembled (“fully-fashioned”
knitting) remains industry-standard practice.

In summary, our key technical contributions are the
following:

• an automatic cutting algorithm to turn any 3D sur-
face into a knittable topological disc;

• an anisotropic stitch meshing technique and a set of
local mesh modifications to improve knitting stabil-
ity;

• a stochastic, any-time scheduler for knit sheets;
• a conservative simulation scheme to reduce lacing

cuts while preserving wearability.
• a complete system that puts it all together to guaran-

tee both machine-knittability and wearability for 3D
knitting design.

2 BACKGROUND

Before we discuss the details of our method, we provide a
brief review of the most related prior work on fabrication,
knitting, surface cutting, and undressing covers.

2.1 Fabricating Surfaces
Researchers have considered the problem of 3D surface
fabrication in many areas. For instance, freeform surfaces
can be discretized with planar polygons for fabrication
from hard materials like glass (e.g., [7], [8], [9], [10]). These
techniques extend to the soft domain, including design-
ing custom plush toys [11], inflatable structures [12], and
garments (e.g., [13], [14]). Researchers have also proposed
novel techniques to improve the fabrication, e.g., woven
wires [15], pre-stretched 2D cloth pieces embedded in a
planar rod network [16], ribbon-like pieces of fabric attached
with zippers [17], and fabric formwork [18]. Closest to our
work is the existing research on covers for 3D objects [19],
[20]; but while these previous approaches create covers
from cut-and-sewn flat cloth, our system uses the intrinsic
shaping available with machine knitting to produce surfaces
with a large range of curvature.

2.2 3D Forming Knitting
Knitting is a technique to produce fabric from yarn by
forming stitches. The juxtaposition of various stitch types

(e.g., knit, increase, decrease, and short-row) allow fabrics with
complex surface textures [21] and 3D shapes [22] to be
formed. Overall, knitting allows the creation of curved 2D
surfaces from a wide variety of yarn materials; but design-
ing yarn-level structures for given target shapes remains
complex.

It is known that a 2D surface of any topology can
be hand-knit [23]. Igarashi et al. [24], [25] presented a
design software that semi-automatically creates a knitting
pattern from a 3D model by covering the surface with a
winding strip and finding areas where increase or decrease
type stitches are needed. Yuksel et al. [6] introduced stitch
meshes, a data structure for modeling knitting structures.
Recently, Wu et al. [26] introduced an automatic pipeline
for converting arbitrary shapes into quad-dominant stitch
meshes, though their results are not guaranteed to be knit-
table. Wu et al. [27] also extended stitch meshes to represent
complex 3D hand-knittable structures.

Knitting machines add more complexity to the knitting
design process. Industrial knitting machines use hook-like
shaped needles in two rows: the front bed and back bed
(Fig. 1). These needles are used for holding the yarn loops
and manipulating the loops to create stitches. The needles
on the two beds (front and back) are aligned with each
other, allowing yarn loops to be transferred between beds.
Knitting machines can also rack (laterally move) the beds to
change which needles are aligned, which can be used for
moving loops along the beds. Much of the complexity of
designing for these machines comes from deciding how to
schedule loops to needles.

Commercial knitting design software includes built-in
templates to defray some of this design complexity [28],
[29], [30]; however, these templates are limited to standard
designs, e.g., sweaters, jackets, gloves, and skirts. More
complex or non-standard patterns must be hand-designed at
the stitch level, though there exist guidebooks of advanced
techniques that can assist with this process [22].

Meißner and Eberhardt [31] proposed one of the earliest
methods to visualize machine knittable structures during
design, using particles to simulate the dynamics of yarn-
level structures. Researchers have proposed alternative de-
sign tools including mid-level primitives [1], [4], direct
conversion of 3D models [2], [3], and stitch-level output-
domain editing [5]. As these systems become more preva-
lent, researchers are also beginning to examine how to create
more efficient patterns by changing how loops are moved
between needles [32] and inlay strong yarn as tendons [33].
Much of this work has been enabled by the generic low-level
knitting assembly language, knitout [34], which we also use
in the present work. The system proposed by [3] is the
closest to the method introduced in this paper. While their

(a) (b)

Back bed Front bed

Fig. 1. Machine needles and beds: (a) side view and (b) top view.
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Fig. 2. Pipeline overview: our pipeline converts an input garment surface into a machine-knittable output wearable by an input target object.
(a) the garment surface is cut into a disc; (b) a physically-based simulation is used to verify the wearability of the cut-mesh with given cut label
assignments; (c) an anisotropic stitch mesh is generated from the initial cut-mesh; (d) knitting instructions are generated and (e) sent to an industrial
knitting machine for fabrication; and (f) the knitted fabric is manually sewn, the target object is dressed, and the garment is laced.

method requires placing directional singularities manually
to split the input surface into a number of topologically-disc-
shaped patches, our system achieves singularity-placement
automatically and generates a single topological disc. Di-
rectional and positional singularities in stitch meshes corre-
spond to unknittable mismatch and irregular faces (short-
row and increase/decrease). Please refer to [35] for more
details about singularities. In order to design any knitted
item, an underlying representation is required. For this,
our pipeline uses the augmented stitch meshes structure, as
shown in Fig. 3, embedded with machine knitting instruc-
tions. More details can be found in [5], [6].

Top course edge

Bottom course edge

W
al

e
ed

ge

W
al

e
di

re
ct

io
n

Course direction

(b) Regular (Knit) (c) Short-row

(a) Stitch Mesh (d) Decrease (e) Increase

Fig. 3. Stitch mesh representation: (a) an example of stitch mesh
patch with corresponding yarn geometry; (b) regular quad stitch mesh
with the yarn geometry of Knit type; (c) short-row face, (d) decrease,
and (e) increase.

2.3 Surface Cutting

In geometry processing, cuts are used during parameter-
ization to minimizes mapping distortions between a cut
surface and a planar domain with either a fixed [36] or freely
moving [37], [38] boundary. Gu et al. [39] proposed a simple
strategy to cut a manifold surface into a topological disk,
which provides the first step for parameterization. More
recent works provide topological and geometrical guaran-
tees, such as locally injective mapping and intersection-
freedom [40], [41]. While many parameterization works
assume a fixed cut and start their optimization from the

Tutte embedding [42], [43]; cut modification has been shown
to lower distortion in UV mapping [44] and surface flatten-
ing [45]. Li et al. [46] recently introduced a joint optimization
method for minimizing both seam lengths and distortion,
though the resulting irregular seams are not ideal for ma-
chine knitting. Surface cuts have also been employed to
connect directional singularities in order to generate pure
quad meshes [47], [48]. For this purpose, the distortion of
the cut is often ignored. While the above is by no means a
comprehensive literature review on surface cutting, to the
best of our knowledge, our cut algorithm is the first one
that is designed for easing physical constraints from knitting
machines and the wearability of the garment.

3 SYSTEM OVERVIEW

Our system’s input is a 3D surface model for the garment
and another 3D model representing the solid object (i.e. the
target object) that will wear the garment. The output of our
system is a knitting-machine-fabricated garment that can be
worn on the target object. The first step of our system is to
identify a suitable set of cuts of the garment surface model.
The cuts here serve two purposes: to allow the knitting
machine to produce the garment (knittability), and to allow
the garment to be put over the target object (wearability).
We refer to the resulting cut surface as the cut-mesh and
the edges that are cut during this process as the cut-edges.
After fabrication, the cut-edges will either be permanently
sewn back together or temporarily laced – as determined
by the wearability test result. Our system performs two
separate pipelines for the cut-mesh, testing the wearability
and ensuring knittability. As shown in Fig. 2, the system
includes the following steps:

• Surface Cutting (Section 4). A patch-growing algo-
rithm is used to cut the input 3D surface into a
topological disc, while no singularities are allowed
in the interior of the cut-mesh. Our method also
employs two soft criteria, improving cut straightness
and lessening 2D overlaps.

• Wearability Test (Section 5). The system iteratively
tests the wearability of the cut-mesh while eliminat-
ing cut-edges until no more cuts can be eliminated.
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Fig. 4. The motorcycle-graph procedure is used to identify straight sequences of edges, which are then favoured to be elected as part of the
cuts (thus encouraging straightness): “motorcycle” particles (black thick segments) are spawned from irregular vertices (dots) and traced over the
quad-dominant mesh.

The eliminated cut-edges are labeled for sewing (per-
manent assembly), while the remainder are labeled
for lacing (reversible assembly).

• Anisotropic Stitch Meshing (Section 6). Concur-
rently to the wearability test, our system generates
an anisotropic stitch mesh from the initial cut-mesh.
Further, our method adjusts the mesh’s local connec-
tivity to remove invalid faces and avoid unreliable
knitting. This ensures that the fabricated garment is
the correct size and can be knitted smoothly.

• Knitting Instruction Generation (Section 7). In the
final algorithmic step, our system generates machine
knitting instructions using our stochastic sheet-based
scheduler. Additional cuts (labeled for sewing) may
be automatically introduced to guarantee the knitta-
bility during this step.

• Fabrication and Assembly. The finished garment is
produced by running the low-level instructions on a
knitting machine. Then, the cuts labeled for sewing
are manually sewn. The target object can then be
dressed, and the remaining cuts closed by lacing.

4 SURFACE CUTTING

In this section, we describe the algorithm used to produce
the initial set of cuts. Our cutting guarantees that:

1) the cut surface has no interior singularities be-
cause inconsistent course/wale labeling will pre-
clude knittability;

2) and the cut surface is a single topological disk,
which provides a good starting configuration for
ensuring wearability.

4.1 Selecting Cuts
The input surface S is first converted into a quad (-
dominant) proxy mesh Q, from which a cross field [49] –
a 2-fold rotationally-symmetric field can be derived. The
cross field is used to define the labeling of edges of the cut-
mesh as either course or wale. When Q is a quad-dominant
mesh, our code splits all pentagons into one quad and one
triangle by adding the edge that splits the largest corner.
Then, for triangular faces, the most acute corner is labeled as
a vanishing corner: the two edges it connects are considered
to represent a pair of opposite wale or course edges rather
than one wale edge and one course edge.

We employ a patch-growing algorithm, similar to [39],
but extended to deal with singularities. The algorithm be-
gins forming a patch with an arbitrary seed quad, the edges
of which are labeled using field directions and grows it, one
face at a time. During this process, the boundary B of the

patch is tracked as a circular sequence of half-edges of Q.
At the end of this process, B represents the initial cuts (plus
any original mesh boundaries). Specifically, each growing
step consists of three steps: edge selection, expansion, and
fusion.

Edge selection randomly picks any one edge e in B that
neighbors a non-visited face f . Then, expansion attaches
that face into the patch over e; in B, edge e is replaced
by all edges of f except e. Edge labels are propagated
consistently to the attached face. Last, fusion removes one
pair of edges if there are two consecutive elements of B on
opposite sides of the same edge. Importantly, this move is
only allowed if the pair of dissolved half edges is labeled
as having opposite directions (incidentally, which prevents B
from being reduced to an empty set).

Since consistency is enforced during patch growth, no
field singularity can exist in the interior of the patch. Fur-
thermore, this process opens a connected Q into a single
simply connected disk: after seeding, the visited region
consists of a single face, and neither type of move changes
its topology. Since each face is only visited once, no loop
will be formed.

4.2 Improving Cut Selection
Although our goal is accuracy rather than aesthetics, we still
add some guidance to edge expansion. We assign each edge
in B a cuttability score and have cutting expand over the edge
with the lowest cuttability score. This approach is able to
accommodate any user-specified criteria for assigning cut-
tability scores (for example, to discourage cuts over certain
regions). In our examples, we always employ a combination
of two soft criteria: improving cut straightness and lessening
2D overlaps, as explained below.

Improving cut straightness
To discourage the sequence of boundaries edges that are
zig-zagging, our algorithm assigns higher cuttability scores
to certain straight sequences of edges stemming from ir-
regular vertices, identified beforehand using an algorithm
(Fig. 4) similar to the generalized version [50] of motorcycle
graphs [51]. First, our code identifies the irregular vertices: the
internal vertices of Q surrounded by n 6= 4 polygon corners
(not counting vanishing corners of triangles). From each
irregular vertex, it spawns n particles called motorcycles, one
along each edge. A motorcycle travels across edges in a
topologically straight fashion until it reaches a vertex that is
previously visited by a motorcycle or is on the boundary of
the mesh. When a motorcycle reaches the vanishing corner
of a triangle, it randomly picks one of the two possible
“straight” edges. The cuttability score of edges traversed by
a motorcycle is increased by a user-defined constant cs.
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Fig. 5. Results of the initial cut selection procedure with different
edge prioritization strategies: From left to right, the purely random
selection of expansion move, cut-straightening only, overlap avoidance
only, and the combination of the two criteria, which we use in all other
examples. In each case, we show the cut over the mesh Q. The approx-
imated parametric space (with overlaps in darker grays – on the right,
the patch boundary in 2D may appear artificially less straight due to the
approximations of parametric position estimation).

Lessening 2D overlaps

We discourage expansion moves that would cause the patch
to grow, in 2D, over other areas of itself, especially when
the extent of the overlap or the number of overlaid lay-
ers is large, because excessive overlaps can force later knit
scheduling steps to add additional cuts (Section 7). To this
end, our algorithm estimates the parametric 2D positions of
each face of Q inside the patch, which it uses to compute
an estimated overlap for each expansion move (and, thus,
modifies its cuttability score).

Specifically, when inserting a face qj in Q, we determine
its 2D integer parametric position (ui, vj). The initial seed
is assigned, arbitrary, e.g. to (0, 0). During an expansion
move, the newly included face’s position is obtained as the
position of the starting face, increased or decreased by 1
along u or v axis, according to the field direction of the
traversed edge. Thus, our parameterization treats each face
as an axis-aligned unit square, disregarding, as a further
approximation, the effect of the presence of triangles.

Our algorithm stores an overlap count per face to indicate
the number of faces with the same 2D parametric position.
Each face added to the patch with an expansion is also as-
signed an overlap score, which estimates the minimal number
of overlapping faces that one needs to cross to reach that face
from the seed face. When a face qj is added to the patch with
an expansion from face qi, the overlap score of qi is assigned
as the overlap score of qi plus the overlap count of qj minus
1. When a fusion is performed dissolving the edge between
faces qi and qj , both faces’ overlap scores are re-assigned
to the minimum of their current overlap scores, increased
by the occupancy grid value at the respective parametric
position minus 1. Finally, the cuttability score of each edge
in B is increased by the overlap score of the face that would
be added to the patch, multiplied by a user-defined constant
co. Thus, expansion favors picking faces that do not lead to
deeper overlaps.

In our experiments we use co � cs (specifically, cs = 103

and co = 1), to reflect that cut straightness is more important
for our purposes and that minor overlaps can be tolerated.
Fig. 5 shows an example of the individual and combined
effect of these two heuristics.

Last, our method doesn’t rely on any specific meshing
algorithm. We include more cut examples with different
input quad-dominant meshes generated by previous quad
meshing techniques in the supplemental document.

5 WEARABILITY VERIFICATION

So far, our system has identified a set of cuts which make
the garment knittable. In this stage, our system ensures the
wearability of the cut surface while removing as many cuts
as possible. These removed cuts can be permanently sewn
in the fabrication phase. The other cuts instead have to be
opened and resealed every time the garment is put on or off
and is implemented by lacing.

In computational design for fabrication projects, the
penalties for creating a non-working object are high (100%
loss of time and material, must restart process) while the
penalties for fabricating a slightly-less-than-optimal but
working object are low (some fraction of material or fab-
rication time may be saved). Thus, we design a conservative
wearability test that never overestimates wearability.

Our strategy is as follows: first, our wearability test
verifies that the initial set of cuts make the garment wear-
able. Our method then splits the set of cuts into cut-arches,
straight sequences of cut edges. It tentatively removes one
cut-arch at a time and reinserts it if the resulting design is
determined, by the test below, not to be wearable. Each cut-
arch will be tested once and marked for permanent sewing
if it can be successfully removed in the process.

To quickly determine whether or not a given design is
wearable, our system deploys a physically-based simulation
of the process of wearing the garment. One problem is that
the act of wearing a garment (or putting it on a passive
wearer) can require a complex sequence of precise move-
ments. For example, human dressing strategies require deep
reinforcement learning with tens of hours of training [52].
Therefore, instead of searching for a strategy for putting on
the garment, our system follows a similar strategy used in
[53] to checks if the garment can be stripped off by a set of
simple external forces, starting from a configuration where
it is already worn over the subject.

Two types of external stripping forces are employed.
The local forces repels the garment away from the wearer
(Fig. 6b); our code applies a force to each garment mass
in position p, in the direction of the gradient of the signed
distance to the wearer at p, and with a magnitude inversely
proportional to the square of that distance.

Meanwhile, a global force, of constant magnitude, drags
all the garment masses in an arbitrary direction, which is
changed randomly every fixed number of simulation steps.
This force helps disentangle the garment from complex
shapes, such as tubular structures (for example, Fig. 6, c–
f). Fig. 13 demonstrates that our physical wearability test
aligns well with the simulation.

(a) (b) (c) (d) (e) (f)

Fig. 6. An example of our wearability test: (a) the Bolt model wearing
the cut-mesh, (b) simulation with local force (blue arrows) only, and (c)–
(f) additional global force (red arrows) that changes direction periodically
until garment is removed.
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The wearability test is passed as soon as the garment is
detected to be sufficiently far from the target object. If that
does not happen within a fixed span of simulated time, the
wearability test is considered to have failed.

Note that the initial cut surface does not necessarily
guarantee wearability even it is a disk-like shape. For ex-
ample, it is trivially impossible to insert a sphere inside a
closed surface featuring a single cut. Furthermore, even a
disc-shaped soft object can be crimped between corrugated
surfaces in such a way that no near-isometric deformation
can remove it. Hence, a wearability test needs to be per-
formed after generating initial cuts. Fortunately, if the initial
cut mesh is not wearable, we can generate a different set of
initial cuts, as the procedure is stochastic.

6 ANISOTROPIC STITCH MESHING

Our system generates a stitch mesh from the cut-mesh using
the remesh-and-label approach of [26], with a simplified
labeling stage (enabled by our cut-mesh generation step).

6.1 Anisotropic Remeshing
The first step is to convert the cut-mesh into a quad-
dominant mesh in which there are only triangles, quads,
and pentagons, and all faces have the same size and the
same ratio between the course and wale edge lengths. These
lengths are determined by the configuration of the knitting
machine and the yarn material used for fabrication, so any
mismatch between the mesh and the target lengths will
result in inaccurate fabrication.

Conveniently, the course and wale directions are already
determined during surface cutting, so any field-aligned
anisotropic remeshing pipeline (e.g., [54], [55]) can be em-
ployed for this step. We chose to use the local anisotropic
parameterization method of [56], coupled with the mesh
extraction approach described in previous work [26] to
produce an anisotropic quad-dominant mesh with relatively
few triangles and pentagons.

6.2 Labeling
Then, our system assigns a knitting direction to each edge
of the generated anisotropic mesh. Recall that our surface
cutting process assigns directions to every edge of the cut-
mesh during the patch-growing process (Section 4). To label
the anisotropic mesh, all our system needs to do is to
transfer these knitting directions from the cut-mesh to the
anisotropic mesh. This transfer is done by first interpolating
local knitting directions on the cut-mesh to each vertex in
the anisotropic mesh; then averaging these values to com-
pute local knitting direction at each edge of the anisotropic
mesh; and, finally, comparing each edge’s orientation to the
local knitting directions so computed in order to determine
a course or wale label.

6.3 Local Mesh Modification
In our system, a valid stitch mesh face must be either a
triangle with a single wale edge or a polygon that has a
degree of four or higher with only two disconnected wale
edges. However, our remeshing (rarely) introduces incon-
sistent wale and course labels because of its local nature.

Further, the resulting stitch mesh can still pose challenging
cases for machine knitting, even when no invalid face exists.
To address these problems, our system performs a local
mesh modification step after anisotropic mesh generation.

We only allow three types of stitch mesh faces:

• A quad with two disconnected wale edges,
• A pentagon with two disconnected wale edges, indi-

cating an increase or a decrease, and
• A triangle with a single wale edge, indicating a short-

row.

We consider all other face labeling configurations as
invalid. Such invalid configurations can appear during la-
beling due to multiple positional singularities on the surface
with close proximity. In order to convert the invalid faces to
valid faces, we follow the post-processing procedure of [26],
which first cuts invalid polygons into triangles and then
merges some of these new triangles with the neighboring
faces to form valid ones. It is important to note that the out-
put stitch mesh here is guaranteed to be machine-knittable
(details can be found in the supplemental document).

At this point, our generated yarn topology is valid and
stable, meaning that it would fabricate perfectly on an
ideal knitting machine using perfect yarns. However, in
reality, some mesh configurations might lead to instabilities
during knitting because of the real-world machine and yarn
variations. Hence, we introduce local mesh modifications
to encode “rules of thumb”. We arrived at these rules by
knitting test patterns and by using “Knitting Assist” in the
Shima Seiki KnitPaint software [28], which generates warn-
ings for structures that don’t match industry best practices.
In particular, we have identified four such cases, as shown
in Fig. 7. A detailed explanation of our solution to these
cases can be found in the supplemental document.

(a) (b)

(c) (d)

Fig. 7. Examples of the mesh topology causing unstable yarn loops.
Dashed lines indicate mesh boundaries.

7 KNITTING INSTRUCTION GENERATION

Given a stitch mesh, each stitch mesh face can be translated
into low-level machine knitting instructions [5]. However,
the instructions must be assigned to needle locations in or-
der to execute properly. This is known as the knit scheduling
problem. Unfortunately, existing schedulers only work on
tubes [2], [5]; and our stitch mesh is a flat sheet.

The primary challenge faced by any scheduling algo-
rithm is that loops stacked on the same needle at the
same time can never be separated. This means that each
independent part of an in-progress knit sheet needs to be
held at a different needle location. This resource conflict is
easy to see if the machine is visualized with a needle × time
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(a) (b) (c) (d) (e) (f)
Fig. 8. Grouping faces into patches: (a) the stitch mesh, (b) faces grouped into rows, (c) the graph induced by the rows and their connections, (d)
redundant paths from short rows merged, (e) serial chains merged (avoiding red split/merge edges), and (f) the final patch assignment.
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Fig. 9. Knitting order and knittability: (a) a garment flattened into 2D
with two knitted pieces B and C connected with A, (b) the needle × time
“bed view” for knitting the garment. If C is knit before B, loops held for B
interfere with the needles needed by C. This can be resolved by, e.g., (c)
shifting C one needle per row to make it knittable, or (d) knitting B after
A.

“bed view” (Fig. 9), which shows which needles are holding
loops at which points during the construction time.

Our scheduler’s job is to assign needles and knitting
orders in order to avoid these resource conflicts. Unfor-
tunately, as with most resource scheduling problems, it is
impossible to find globally optimal solutions in practice,
given the exponential spaces of needle locations and knit-
ting orders. We provide a practical method to find the locally
optimal solution by using two reductions:

• grouping stitch mesh faces into patches (Section 7.1);
• and assigning needle locations without considering

overlap (Section 7.2).

Following these reductions, our system can determine the
patch knitting order based on assigned needle locations
(Section 7.3), subdivide and trace the stitch mesh (Sec-
tion 7.4), and produce machine instructions (Section 7.5).

7.1 Grouping Faces

Our knitting instruction generation begins by grouping
faces into patches which can be naively scheduled without
overlap. Given a stitch mesh (Fig. 8a), our system first
groups all faces into rows, where each row contains the
faces that are placed side-by-side along the course direction
(Fig. 8b). These rows are viewed as a graph where each node
corresponds to a row, and edges are induced by connections
between rows (Fig. 8c). Graph paths are removed if remov-
ing would not lead to disconnected graphs (Fig 8d). Finally,
all serial chains can be collapsed (Fig. 8e), resulting in the
desired patch grouping (Fig. 8f).
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Fig. 10. More examples of knitting order affecting the knittability: A
garment (a) in which no order (b,c) is knittable, however, adding a cut
(d) makes it knittable.

7.2 Assigning Needle Locations

Before exploring the space of knitting orders, our system
assigns needle locations without considering potential over-
laps of different patches on the needle bed. It begins by pro-
cessing each patch independently and then shifts the needle
locations of patches, as needed, to connect the consecutive
patches (i.e., to make sure that needle locations along the
boundaries of consecutive patches match).

Needle indices are assigned to course edges instead of
faces. The bottom course edge indicates where the previous
loop is positioned, and one for its top course edge, speci-
fying where the new loop will be placed after the stitch is
formed.

Our system assigns needle locations from its bottom row
within each patch, starting with one face on the bottom row
chosen randomly. The course (both the bottom and the top)
edges of the chosen face is assigned to an arbitrary needle.
The course edges of the neighboring faces along the course
direction (i.e., on the same row) are placed on neighboring
needles. Then, to minimize the total transfer distance (i.e. the
shift of the row along the needle bed), which would make
the fabrication process more stable, we shift the top edges’
needle locations such that the total difference between top
and bottom edge locations are minimal. Note that, for the
row containing short-row face, we align the needle locations
based on the short-row face, so the needle locations of edges
of short-row dace are aligned. The bottom edge locations of
the next row are simply copied from the top edge locations
of the current row. We process all rows of the patch until all
edges get assigned their needle locations.

After that, our system traverses all patches and aligns the
needle locations along patch boundaries by shifting the next
patch’s needle locations accordingly. This forms a global
needle assignment for the entire stitch mesh.
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7.3 Determining the Knitting Order
As mentioned above, resource conflicts can cause stitch
mesh to be unknittable. It is possible to avoid this problem in
some cases by simply shifting loops along the machine bed
and separating the overlapped pieces (Fig. 9c). However,
this can lead to over-stretched yarn and broken stitches.
Instead, our system avoids resource conflicts by adjusting
the order of patches that are scheduled to be knit (Fig. 9d)
or by adding additional cuts (Fig. 10d).

Our solution is to test a fixed number of randomly-
generated knitting orders. For each knitting order, our sys-
tem performs a knitting simulation on the needle bed to
identify overlaps. When an overlap is detected, the system
introduces a cut between consecutive patches as shown in
Fig. 10d. After testing a user-specified number of knitting
orders, the system picks the one that introduces the smallest
number of cuts. Details can be found in the supplemental
document.

7.4 Subdivision and Tracing
After the patch knitting order and needle locations are
determined, our system subdivides the stitch mesh and
specifies its faces’ knitting order.

The subdivision operation splits each row into two rows
by converting each quad face into two faces, each triangle
into a quad (i.e., a short-row face), and each pentagon into
two or three faces, as shown in Fig. 11. This converts each
short row into a pair of short rows, which reduces the
number of separate yarn pieces needed for fabrication; more
discussion can be found in prior works, which use a similar
tactic [2], [26]. Note that all course edges in the resulting
subdivided stitch mesh inherit the needle locations from the
original stitch mesh.

(a) (b)

(c) (d)

Fig. 11. Subdivision: (a) each quad is subdivided into two quads; (b)
each increase face is subdivided into two quads and one increase; (c)
each triangle is converted into a special quad (short-row face) by adding
one vertex on the wale edge; and (d) each decrease face is subdivided
into one quad and one increase.

Our system traces the resulting mesh to generate the
knitting order for its faces. Our system traces along the
row until reaching the wale boundary and then switches
to the next row and traces in the opposite course direction.
Short-rows, however, require special consideration. When
our code reaches a face below a short-row face that is on the
right end of a short-row, it modifies the local mesh topology
as shown in Fig. 12. The goal is to alter the yarn path to
perform a “tuck and turn” (Tracing Rule 4 in [2]) and trace
the short-row before continuing to the next face on the same
row. Since subdivision converts each row to two rows, it
guarantees that the yarn path comes back after finishing the
short-row.

(a) (b)
Fig. 12. When upper face is short-row end face, modify the mesh locally.
(a) when tracing, reach a face (blue) right below a short-row face that
is on the right end of a short-row and the pair of short-rows form a
closed loop, which is not knittable. (b) shift the short-row face upward
and trace the short-row before continuing to the next face. Black arrows
here indicate tracing direction.

7.5 Scheduling
Our system converts each face type into low-level machine
instructions using the bottom course edges’ needle loca-
tions. At the end of each row, a transfer pass is used to
move the loops to the new locations recorded in the top
course edges. Transfers are planned using the Schoolbus
algorithm [32]. Note that extra passes for cast-on and bind-
off stitches are required for the top course edges and bottom
course edges for the course edges on the boundary, respec-
tively.

8 RESULTS

We test our pipeline on a set of 3D objects with vary-
ing topology and geometry complexities. Once fabricated,
seams marked for sewing are hand-sewn, the garments
are placed on 3D printed target objects, and the seams
marked for lacing are hand-laced with additional yarn in
a contrasting color. Lacing our examples takes 10 mins – 1
hr. The computational steps are run using a single thread on
a desktop machine with an Intel(R) Core(TM) i7-7700 CPU
@ 3.60Hz and 64 GB of memory. Knitting instructions were
executed by a Shima Seiki SWG091N2 industrial knitting
machine with 15 needles per inch. All examples were knit
from a 2-ply acrylic yarn (Tamm Petit). Machine knitting
instructions for all examples are included in the supplemen-
tary material.

8.1 Knitted Results
In order to avoid the curling that can happen in all-knits
fabric, our system uses the “Seed” pattern, a checkerboard
of “knit” and “purl” stitches that is balanced (i.e., lies
flat). Anisotropic meshing edge lengths were determined
by measuring a 40 × 40 stitch seed pattern knit on our
target machine – 4.2cm × 11.5cm with our knitting machine
settings and selected yarn.

We first test our system with a simple but interesting
model, Bolt. The input surface is first cut into a topological
disc. Through the wearability test, most of the cut-arches
are sewn without compromising wearability. As shown in
Fig 13, only a small hole is left in order to put the garment
on. Fig. 6 reports the physical simulation used to verify
wearability, and Fig. 13 depicts the process in reality.

Fig. 13. The Bolt model: rendered result and photographs of the real
garment being removed following the wearability simulation (Fig. 6).
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(a) (b) (c)

(d) (e) (f)

Fig. 14. 3D printed rigid Bunny wearing our knitted results: (a) and (d)
rendered bunny from different views, (b), (e), and (f), front, back, and
bottom views of knitted bunny with “Seed” pattern, and (c) knitted bunny
with “Plain” pattern.

Fig. 15. Two different views for the Rockerarm model wearing our knitted
garment.

We create a wearable garment for the Stanford Bunny,
which is printed as a rigid body. In this case, our system
is given a partial covering of the original shape, with three
holes designed around ears and tail. As shown in Fig. 14,
the knitted garment fits the input shape as intended. Fig. 15
shows another physically realized example, the RockerArm
model. Observe how the garment can reproduce the shape
of the physical object, including in the strongly concave
regions.

The fertility model is a challenging shape for both cutting
and scheduling. Due to the UV overlap minimization of
the surface-cutting algorithm, our system could knit the
whole garment without any additional cuts introduced from
scheduling. The shape presents high curvature regions re-
flected in either irregular vertices or triangles in the quad-
dominant mesh. In the physical produced garment, the
curvature is recreated in part by the re-sewing of the cuts
during assembling, and, importantly, in the interior of the
knitwork, by virtue of the computed knitting pattern, as
shown in Fig. 16.

The garment mesh doesn’t need to follow the target
mesh closely. For example, we used our system to produce
both a tight-fitting “sweater” and a loose “skirt” for the
Centaur model (Fig. 17). In Fig.19 we show several other
knitted designs obtained with our framework, including a
pair of “pants” for a Cat model, a covering for an Aquadom

(a) (b)

Fig. 16. The Fertility model: (a) the stitch mesh with yarn texture and
(b) the real knitted garment on the 3D printed model and the same
knitted but flatted garment as shown on top right.

Fig. 17. The Centaur model: left, wearing a knitted sweater, and right,
wearing a knitted skirt.

model, a “sweater” for a Dragon model, and a covering
for the Sculpt model. In order to resolve two-layer over-
laps, during machine instructions generation, Aquadom
covering, Dragon sweater, and Sculpt covering have to be
separated into 2, 5, and 6 pieces, respectively.

Our framework can directly incorporate the knitting
texture design system proposed by [5], as exemplified in
Fig. 14.

Comparison with [2] One clear difference is that our
pipeline outputs a garment wearable by a rigid wearer,
while the knits in these previous papers [2], [5] are shown
on soft foam, because – despite the stretchiness of knit fabric
– their tubular knit covering cannot be fit on a solid model.
Further, knitting a flat sheet saves knitting time owing to
more efficient transfer plans. For example, on the same
knitting machine with the same speed settings, the knitted
“plain” bunny in Fig. 1 of [2] takes 43 mins using data
provided by those authors, while our result for the same-
sized bunny model (Fig. 14c) only needs 16 mins. Even our
“seed”-pattern bunny (Fig. 14b), which requires transferring
stitches front and back each row, still takes only 33 mins to
finish. Of course, some of this saved knitting time is lost to
sewing as a post-process.
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(a) (b)
Fig. 18. (a) the Fertility model with the cuts and different colors indicating the probability of being laced, based on 300 full wearability tests on the
same set of cuts with different cuts testing order and (b) histogram of all cuts respecting to the probability of being laced.

Fig. 19. Extra results generated using our method: From left to right,
columns are front, back, and knitted pieces. From top to bottom, Cat
pant, Aquadom, Dragon sweater, and Sculpt. Note that knitted piece
photographs have been hue-adjusted with software to match renders.

8.2 Physically-based Simulation for Wearability Test

We modeled the garment as a mass-spring system and the
wearability test uses NVIDIA Flex – a GPU implementation
of Position Based Dynamics (PBD) [57]. In particular, we
use three types of springs: along each edge for stretch resis-
tance, along the diagonals of quads for shear resistance, and
connecting every other vertex along the wale and course
directions to provide bending resistance. The stiffness pa-
rameters for these three types of springs are manually set,
based on our experiments with small real-world samples.
Since knit cloth is stretchable, our simulations do not include
any inextensibility constraint. The global force is aligned to
an axis-aligned direction and its direction is switched after
every 300 steps to another axis-aligned direction. Experi-
ments (Fig. 20) suggest that similar results are obtained for
wide ranges of used constants. Observe this test only needs
to be conservative: failure to detect a potential way to strip
off a garment only results in under-sewing, not over-sewing,
in the final object, meaning it will still be wearable. For all

100 Percentage of success 100 Percentage of success

80 80

60 60

40 40

20 20

0 0
0 600 1200 1800 0 600 1200 1800

Fig. 20. Left, probability of wearability test success (taking the garment
off the target object) for the same set of laced and sewn cuts with
different force directions using a different number of iterations; right, the
Cumulative Distribution Function (CDF) of the probability of wearability
test success the same set of laced and sewn cuts with different force
directions with 1800 as the maximum number of iterations.

the tested models, the combined computational time for the
surface cutting, stitch meshing, and knitting code genera-
tion stages are around a few minutes. The wearability test
process takes from a few minutes to less than 20 minutes,
depending on the number of tested cut-arches. The slowest
stage is the knitting fabrication process itself, which takes
from 0.5 to 1.5 hours.

Our system tests cut-arches in a random order, although
user preferences could be easily accounted for. Surprisingly,
experiments (Fig. 18) suggest the choice of the order has
only a limited impact on the probability of a given arch to
wind up as laced or sewn.

Note that the PBD simulator we use can be easily re-
placed with another simulation system. We picked a GPU-
based PBD implementation because of its high performance.
On the other hand, our simulator does not accurately model
the anisotropic behavior of knit cloth. A higher fidelity sim-
ulation can be achieved using a more comprehensive data-
driven approach with an anisotropic constitutive material
model [58] or a yarn-level simulation system [59], but they
would have higher computation cost.

9 DISCUSSION

As we explain in this paper, automated fabrication of
wearable knit artifacts poses a complex and challenging
problem space. Therefore, the framework we present in
this paper involves multiple components, some of which
provide effective but sub-optimal solutions. Nonetheless,
each component is carefully designed for the target problem
and preferable to similar approaches in prior work in this
context.
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For example, prior work includes sophisticated un-
dressing strategies that ensure wearability [19], [53], [60].
However, [19] relies on convex hulls, unsuitable when
the wearer has complex geometry/topology. The gradient-
based method introduced by [60] highly depends on the
initial guess by nature, making it unsuitable for our prob-
lem. Also, with complex shapes, locking (when the flux field
force is balanced by the stretching force) and tangling issues
are common. Finally, the strategy of [53] starts from multiple
pieces and requires extra cuts introduced in the wearability
test, which is undesirable in our case. In contrast, our
method offers a simple and effective solution, though it is
sub-optimal, providing a baseline with potential for future
innovation.

Our work also fills in an important missing part of the
automatic knitting design space: topological-disc-shaped
knitting. Our sheet-based scheduler makes complementary
algorithmic choices to those made by [2]. Our scheduler
works with only sheets, is stochastic, and always quickly
finds a valid solution (by adding cuts if needed); thus, it
can be used as an “any-time” algorithm, running longer
for more optimal results or returning quickly with feasible
results. In contrast, the scheduler of [2] works with only
tubes, is deterministic, and fails (after quite a few minutes)
if the pattern cannot be embedded.

Though our method is able to generate garments for
an arbitrary 3D shape, it is still restricted by physical con-
straints of the knitting machine, e.g., the curvature of the
shape, stitch size, yarn materials, and garment resolution,
which poses challenges when knitting models with high
curvature features, such as the fingers in Armadillo or
claws in Dragon. For example, in Fig. 21a, there are 157
singularities and causes 166 cut-arches. Stitch-meshing this
detail requires a mesh resolution beyond what is feasible
to knit. It would be interesting to investigate the maximum
surface curvature that can be represented with a given stitch
mesh face size.

As mentioned in Section 5, designing an effective drag-
ging strategy to take the garment off from the target object is
a challenging problem. A global directional force can cause
the garment to intertwine with the target object if the model
is complicated. For instance, the shape of the Elk model can
easily form locks that prevent the garment from being torn
off, as shown in Fig. 21b. Designing an efficient way to take
off the garment from a complicated shape would be a very
interesting future direction.

Fig. 21c demonstrates that a complicated shape such
as the Botijo model would cause tens of separated knitted
pieces, which would be challenging to sew together manu-
ally. It would be interesting to automate the sewing process
in the future. Zippers or buttons would be a good alternative
to lacing, though it would require moving to a larger scale of
knitting and adding selvage to edges (e.g., during the local
mesh modification phase).

The layout of the cuts in the knitted garment is largely
determined by input mesh. While we use quad meshes
from [61], [62], [63] for our surface cutting since they have
few singularities, tailoring a meshing technique specifically
for knitting purposes is an interesting direction.

The framework we describe in this paper is limited to
fabricating coverings for rigid objects. Targeting non-rigid

(a) (b) (c)
Fig. 21. Failed cases: (a) the Armadillo model with hundred of singular-
ities (blue), which leads tens of cuts (black), (b) the geometry of the Elk
model preventing the garment being tore off, and (c) the Botijo model
with 26 separated pieces shown with different colors.

objects, like plush toys, would involve accurately measur-
ing and simulating their behavior of real-world objects,
which can be challenging. Articulated rigid bodies do not
include this additional challenge; however, as demonstrated
by Clegg et al. [52], with a sequence of body and limb
movements, wearability can be preserved using fewer cuts
than rigid objects. Therefore, extending our framework to
articulated models and humanoids/animals requires a more
sophisticated motion planning and unclothing strategy.

Finally, our paper focuses on automatic and generic
covering generation rather than the design of human gar-
ments, meaning that it does not implement aesthetics and
affordances from garment design. That being said, our
system can accommodate several degrees of user control
(for example, painting areas where cuts are undesired or
manually selecting cuts for earlier testing, making them
more likely to end up sewn rather than laced). Building a
semi-automatic interface to assist expert clothing designers
would make for good future work.

10 CONCLUSION

In this paper, we proposed an automatic method that
produces knits that are ensured to be both wearable and
machine knittable. The effectiveness of our pipeline has been
verified on a set of 3D models that are typically challenging
for machine knitting.
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