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Abstract

High dynamic range (HDR) imaging is an area of increasing im-
portance, but most display devices still have limited dynamic range
(LDR). Various techniques have been proposed for compressing the
dynamic range while retaining important visual information. Multi-
scale image processing techniques, which are widely used for many
image processing tasks, have a reputation of causing halo artifacts
when used for range compression. However, we demonstrate that
they can work when properly implemented. We use a symmetrical
analysis-synthesis filter bank, and apply local gain control to the
subbands. We also show that the technique can be adapted for the
related problem of “companding”, in which an HDR image is con-
verted to an LDR image, and later expanded back to high dynamic
range.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement; I.3.3 [Computer Graphics]: Picture/Image Genera-
tion

Keywords: high dynamic range, tone mapping, range compres-
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1 Introduction

In recent years there has been an explosion of interest in high dy-
namic range (HDR) imagery. HDR image data is increasingly avail-
able from sources such as digital photography, computer graphics,
and medical imaging [Ward 1994; Debevec and Malik 1997; Mit-
sunaga and Nayar 2000; Mann and Picard 1995]. Although new
HDR display systems are being developed [Seetzen et al. 2004],
the dominant display technologies, such as printed paper, CRTs,
and LCDs, have limited dynamic ranges. Therefore various tech-
niques have been developed for compressing the dynamic range of
the signal so the information can be displayed effectively. Ideally,
these techniques should be easy to implement, and should work au-
tomatically, with minimal human intervention. They should also
avoid introducing unpleasant artifacts.

It would also be desirable to retrieve an HDR image from an LDR
image with minimal degradation. In accord with audio terminol-
ogy, we refer to the compression/expansion process as “compand-
ing”. We will describe a technique that can, for example, turn a 12
bit/channel image into an 8 bit/channel TIFF, and later convert it
back to a good approximation of the original 12-bit image. Since
a great deal of hardware and software is designed around 8 bit im-
agery, this could have many uses. It is possible to do further data
compression with JPEG, and still retrieve a 12 bit image with only
modest degradations.

2 Previous Work

The recent literature on HDR range compression has been ex-
tensively reviewed by others [Tumblin 1999; Dicarlo and Wan-
dell 2001; Devlin et al. 2002] and we refer the reader to these
sources. The most straightforward techniques, sometimes called
“global” tone-mapping methods, use compressive point nonlinear-
ities. The image, I(x,y), is simply mapped to a modified image,
I′(x,y) = p(I(x,y)), where p() is a compressive function such as
a power function, or a function that is adapted to the image his-
togram [Tumblin and Rushmeier 1993; Ward 1994; Ferwerda et al.
1996; Larson et al. 1997]. The dynamic range is reduced, but the
contrast of details is compromised and the images can look washed
out. To compress the range while maintaining or enhancing the vis-
ibility of details, it is necessary to use more complex techniques.An
early technique was described by Stockham [1972], who observed
that the image L(x,y) is a product of two images: an illumination
image I(x,y), and a reflectance image, R(x,y). The illumination
can vary greatly from region to region, which causes the dynamic
range problems. Stockham estimated the local illumination as a ge-
ometric mean over a patch, and divided it out. This is equivalent
to subtracting a blurred version of the image in the log luminance
domain. The method unfortunately introduces artifacts known as
“banding” or “halos” when there is an abrupt change of luminance,
i.e., at large step edges. The size of the halo depends on the size of
the blur. Multiscale techniques [Jobson et al. 1997; Pattanaik et al.
1998; Tumblin and Turk 1999], including some designed to capture
properties of the human visual system, have reduced the visibility
of the halos but have not removed them, and the computer graphics
community has therefore explored other approaches. One popular
approach is to estimate the illumination level, and a correspond-
ing gain map, with an edge-preserving blur. The notion is that the
gain map should have sharp edges at the same points that the orig-
inal image does, thereby preventing halos [Nakazawa et al. 1995;
Dicarlo and Wandell 2001]. Durand and Dorsey [2002] achieved
particularly good results by computing a gain map with the bilat-
eral filter described by Tomasi and Manduchi [1998]. They also
developed methods for fast computation. An alternate approach is
to work in the gradient domain, as is done in Retinex algorithms
[Land and McCann 1971]. Fattal et al. [2002] computed a gain
map for the gradient of the image, reducing large gradients rela-
tive to small ones, and then solved Poisson’s equation to retrieve
an image with compressed range. Solving Poisson’s equation after
manipulating the gradient field can be problematic, but Fattal et al.
developed approximations that gave visually satisfying results with
reasonable computation times.

Although multiscale representations have lost favor in the com-
puter graphics community, there is some patent literature that sug-
gests their utility. Labaere and Vuylsteke [1998] adapted Mallat
and Zhong’s wavelet method [1992], which represents signal in
terms of positions of and magnitudes of maxima of the outputs of
edge-sensitive filters. By reducing the size of the high magnitude
edges, the dynamic range can be controlled. Lee [2001] described
a method that combines multiscale processing with traditional tone
mapping. First, an image is run through a point non-linearity to re-
duce its dynamic range. The resulting image suffers from the usual
reduced visibility of edges and other details. Lee then computes a



subband decomposition of the original image, and adds portions of
the subbands back to the the tone-mapped image in order to aug-
ment the visibility of detail at various scales. Gain maps are used
to control the amount of augmentation from the subbands. Vuyl-
steke and Schoeters [1998] describe the use of several subband de-
compositions, including Laplacian pyramids, wavelets, and Gabor
transforms, along with sigmoidal nonlinearities to limit the ampli-
tude of the subband signals. This approach is effective, but can
introduce distortions including haloes. We have explored a set of
methods with a similar structure, in an effort to achieve good range
compression with minimal artifacts.

3 Subbands and Nonlinear Distortion

There are many ways of building subband systems for decomposing
and reconstructing images. Each has its advantages and disadvan-
tages. Here we discuss how this choice interacts with the problem
of dynamic range compression.

For simplicity, we start by considering continuous signals. A sim-
ple multiscale decomposition is shown in Fig 1(a). A signal, s(x),
is split into a set of bandpass signals, b1(x),b2(x), . . . with filters
f1, f2, . . . chosen so that the original signal can be reconstructed by
directly summing these bandpass signals:

s(x) = ∑
n

bn(x) (1)

A nonlinearity, labelled “NL”, can be imposed on the bandpass
signals before summation.

Suppose that the filters consist of difference-of-Gaussians, with
scales increasing by factors of two. Fig 2(a) shows a step edge,
along with four of the subbands (Fig 2(b)) decomposed using this
filter bank. The full set of subband signals can be summed to re-
trieve the original input signal.

To limit the amplitude of strong edges, we can limit the ampli-
tudes of the strong subband responses to these signals. If a partic-
ular subband signal is b(x), then a soft limit can be imposed with

a sigmoid, e.g., b′(x) = b(x)[b(x)+ ε]−2/3 (ε is a constant, if equal
to 0 then b′(x) is the cube root of b(x)). Fig 2(d) shows a picture
of the nonlinearity, and Fig 2(e) shows the result of imposing it on
one of the subbands. The peaks are flattened, and the low values
are expanded. This prevents b′(x) from being too large, but it also
leads to a distortion in its shape. When the subbands are summed,
they produce a distorted signal. The multiscale scheme described
by Dicarlo and Wandell [2001], which uses ratios of blurred im-
ages, is quite similar to this one when computed in the log intensity
domain.

To get better results we need to reduce the distortion of the sub-
band signals. There are various ways to do this, either by modifying
the way that signal strength is controlled (gain control), or by mod-
ifying the filter bank architecture. We will discuss both.

3.1 Smooth Gain Control

It is useful to think of the sigmoid as controlling the gain at each
location. The gain is low for high values and high for low values. In
the case considered above, the effective gain, G1(x) is shown in Fig
2(f). It dips twice, at the two extrema of the signal. The compressed
subband signal, can be expressed as b′(x) = b(x)G1(x). The rapid
variation of G1(x) is the cause of the distortion of the compressed
signal b′(x).

To prevent the rapid variation in gain, we can simply compute a
new gain signal (gain map) and force it to be smooth. If the gain
varies more slowly than the subband signal itself, then there will be
reduced distortion. In Fig 2(i), we have constructed a smooth gain
signal, G2(x), by taking the absolute value of the subband signal,
blurring it (Fig2(g)), and imposing the sigmoid on this smoothed
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Figure 1: Subband Architectures.
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Figure 2: Subbands and nonlinear distortions. (a) A step edge s(x).
(b) Subbands of s(x). (c) Lowpass residue of s(x). (d) A sigmoid.
(e) Subband b(x) modified by the sigmoid in (d). Note the shape
distortions. (f) Effective gain G1(x) of the sigmoid. (g) Rectified
and blurred subband to derive a smooth gain control signal G2(x).
(h) Subband modified by G2(x). Distortions are reduced. (i) G2(x).



version of subband activity. The compressed subband signal b′′(x)
is shown in Fig2(h). It is almost the same shape as b(x), but atten-
uated in amplitude.

The use of smooth gain maps leads to a major reduction in arti-
facts, and is one of the most important improvements one can make
in a subband scheme. The details of computing gain maps for range
compression are discussed in section 3.3 and 3.4.

3.2 Analysis-Synthesis Filter Banks

The filter bank above is conceptually simple, but in many appli-
cations a different architecture is preferred. Fig 1(b) shows an
analysis-synthesis filter bank, in which one set of filters, f1, f2, . . .,
called the analysis filter bank, is used to split the signal s(x) into
subbands b1(x),b2(x), . . . and then another set of filters, g1,g2, . . .,
called the synthesis filter bank, is applied to those subband sig-
nals b1(x),b2(x), . . . to produce signals c1(x),c2(x), . . .. These post-
filtered subband signals c1(x),c2(x), . . . are summed to reconstruct
the original signal s(x). It is common for the filter banks to be con-
structed symmetrically, so that the synthesis filters are essentially
the same as the analysis filters. Nonlinear distortions generally pro-
duce frequencies outside the original subband, and these will tend
to be removed by the corresponding synthesis filter. The signal is
forced into its proper frequency band before summation, which re-
duces distortion.

Analysis-synthesis filter banks are often implemented with hierar-
chical subsampling, leading to a pyramid. Wavelets and quadrature
mirror filters (QMFs) are often used this way, in which case they
yield orthogonal transforms [Adelson et al. 1987; Mallat 1998].
This is most easily explained by starting in 1-D and using the Haar
wavelet pair, which consists of a lowpass filter f0 = [1,1] and a
highpass filter f1 = [−1,1]. In Fig 1(c), an input signal s(x) is split
into a low band and a high band by convolution with f0 and f1. The
filter outputs are subsampled by a factor of two, meaning that every
other sample is dropped. If the input has N samples, each subband
will have N/2 samples (sometimes called subband coefficients).
The subbands are now upsampled by a factor of two by inserting
a zero between each sample. Each of these zero-padded subband
signals is convolved with a second filter, which is g0 = [1,1] for
the low band and g1 = [1,−1] for the high band. These signals are
summed, and the original is reconstructed exactly.

If the same bandsplitting and subsampling procedure is applied to
the lowpass signal, as shown in Fig 1(d), and the process is iterated,
we have a Haar pyramid. The number of samples falls by 1/2 at
each stage. The effective spatial scale of the corresponding high-
pass filter doubles, and the effective peak spatial frequency halves.

In 2-D, the process can be applied separably in the x and y direc-
tions. This leads to three highpass filters and one lowpass filter at
each stage, with a subsampling by a factor of 2 in each dimension.

The subsampled pyramids are highly efficient in terms of compu-
tation and representation, because the number of samples falls by
half in each dimension at each level. The subsampling can lead to
problems with aliasing. In the absence of nonlinearities, the alias-
ing from one subband cancels that from the others, by construction.
However, if nonlinearities are imposed, the aliasing cancellation no
longer holds. Since range compression inherently involves nonlin-
earities, this is a concern.

A straightforward solution is to avoid the subsampling altogether.
The doubling of spatial scale is achieved by spreading the filter taps
and padding with zeros, so that f1 = [1,−1] becomes [1,0,−1] and
then [1,0,0,0,−1] on succeeding stages. f0 is padded in the same
way, and by combining f0 and f1 separably in the x and y directions
we get four 2D zero padded filters (hix,hiy,hixy, lo in Fig 1(e)). The
synthesis filters are basically the same, also combining f0 and f1
separably, except that f1 is temporally reversed. This means that
the transform is highly overcomplete, but the math still works out

so that the output is a replica of the input, if no operations are per-
formed on the subband signals. This oversampling technique is
commonly used in denoising.

The Haar filters that we have used in the above discussion are not
very frequency selective, and so don’t cleanly separate the informa-
tion in the subbands. Vuylsteke and Schoeters [1998] specifically
eschew the Haar filters due to their poor bandpass characteristics.
However, they are the easiest filters to explain and to implement.
We find that they can produce surprisingly good results when cou-
pled with oversampling and smooth gain maps.

Since step edges are such important stimuli, one might assume
that the best filters would be those that are specifically responsive to
edges, i.e., odd-symmetric filters such as first derivatives. Retinex
and other gradient domain methods have this attractive property,
and both the Lee [2001] and the Labaere and Vuylsteke [1998]
patents advocate the use of the Mallat and Zhong wavelets, which
are discrete derivatives on the analysis side and more extended edge
operators on the synthesis side. However, we have found that even-
symmetric filters such as Adelson et al’s 9-tap QMFs [1987] per-
form very well on this task when used with smooth gain maps, often
giving more pleasing results than the Haars. Note that these QMFs
have much better frequency tuning than the Haars.

It is interesting at this point to compare the Haar bandsplitting ap-
proach to the gradient domain approach used by Fattal et al. [2002],
in the simple case of 1-D signals. In both cases the signal is con-
volved with the filter f1 = [−1,1], which is a discrete derivative
operator and emphasizes the high frequencies. In the case of the
one stage Haar, there is a second filter path containing the low fre-
quencies passed by the filter f0 = [1,1]. Reconstruction (the inverse
transform) involves convolutions and summation using matching
filters. By contrast, in the gradient (derivative) domain, although
the gradients can be modified in a multi-scale fashion, there is no
second signal devoted to the low frequencies. All the information
(except DC) is carried in the highpass signal, and the inversion pro-
cess implicitly involves amplification of the low frequencies.

The Laplacian pyramid is another example of a subsampled sys-
tem with analysis and synthesis filters. Note, however, that it is
not symmetrical. The analysis filters are bandpass, and the synthe-
sis filters are lowpass. Thus the synthesis filters can remove high
frequency artifacts introduced by nonlinear processing, but not low
frequency artifacts. It is possible to use the Laplacian pyramid ar-
chitecture without subsampling, which reduces aliasing effects, but
the asymmetry remains. When nonlinearities introduce distortions
that show up in low frequencies, the synthesis filters cannot remove
them. In spite of these problems, we can get fairly good results with
the Laplacian pyramid when we compute smooth gain maps.

In summary, there are many ways to build subband systems, and
they will deal with nonlinear distortions differently. It is generally
better to oversample, in order to avoid the introduction of aliasing
artifacts. It is generally better to use an analysis-synthesis filter
bank, with the nonlinear operations sandwiched in the middle. A
symmetrical analysis-synthesis filter bank, in which the synthesis
filters are tuned to the same frequency band as the analysis filters,
will be especially effective in controlling the nonlinear distortions.

3.3 Automatic Gain Control

As noted above, it is advantageous to use a smooth gain map to
control the strength of the subband signals. For ideas on creating
this map, it is interesting to consider the use of gain control in the
human visual system.

The human visual system confronts a serious challenge with dy-
namic range in everyday life. Neurons have a low dynamic range,
and they are noisy, so it is important to keep them within an opti-
mal operating range whenever possible. The first type of automatic
gain control happens at the retina, where the photoreceptors rapidly



adapt to the ambient light level. For our purposes this process can
be crudely modeled as taking the log of the input intensity. In the
first stages of visual cortex, area V1, the important variable is con-
trast rather than intensity[Peli 1990], and the neurons have a gain
control mechanism known as “contrast gain control” or “contrast
normalization” [Heeger 1992]. Responses to moderately low con-
trasts are boosted, while responses to high contrasts are reduced.
This makes good use of the information capacity of the neurons by
keeping the responses away from the ceiling and floor. Area V1 has
neurons tuned to different orientations and spatial frequencies, and
can be thought of as doing a local subband decomposition using fil-
ters similar to wavelets. The gain of a given neuron is controlled by
the activity level of many neurons in its immediate neighborhood.
Additionally, the gain is not just controlled by neurons tuned for the
same orientation and spatial scale; rather, the gain signal involves a
pooling of multiple orientations and scales.

The gain control varies from point to point depending on the ac-
tivity, so we can think of it as forming a gain map in register with
the subband image. This is analogous to Fattal et al’s gain map
applied to the gradient image.

In building gain maps for range compression, we first construct
an activity map from local filter responses. Since the responses can
be positive or negative, we take the absolute value. We then pool
over a neighborhood with a simple blur. The activity map is then
converted to a gain map, which has lower gain in regions of high
activity.

Here is a more detailed description of the construction of a gain
map. In a standard separable n-level subband pyramid there are
3n + 1 subband images, and they are denoted as Bi(x,y) (i =
1, . . . ,3n + 1), where B3n+1(x,y) is the lowpass residue. We rec-
tify each subband image Bi by taking the absolute value, and then
blur it with a Gaussian kernel to get an activity map:

Ai(x,y) = g(σ)∗ |Bi(x,y)| (2)

The size of the Gaussian kernel is proportional to the subband’s
scale. If the kernel used for the subbands at the finest scale has
variance σ1, then the kernel for the subbands at the next coarser
level will be twice as big.

The nonlinear function p() used to derive a gain map from an ac-
tivity map, should be monotonic decreasing, turning the gain down
where the activity is high and up where the activity is low. There
are various choices as of the particular form of p(). One of them
gives gamma-like mapping:

Gi(x,y) = p{Ai(x,y)} =

(

Ai(x,y)+ ε

δ

)(γ−1)

(3)

where γ is a compressive factor between 0 and 1, ε is a noise level
related parameter which prevents the noise from being blown up,
and also prevents singularities in the gain map, considering the
power (γ − 1) is below zero. δ can be understood as a gain con-
trol stability level: the gain is turned up for places where activities
are below δ and turned down for places where activities are above
δ , in either case bringing the activities closer to δ .

Since we are modifying each subband separately, it is possible
that gains at different scales will be mismatched at important fea-
tures, leading to distortions of these features. Therefore we need a
method that keeps the gains matched. Similar to the method pro-
posed by Fattal et al. [2002], we set the parameter δ according to
the activity statistics (with M and N being the width and height of
the subband image):

δi = αi

∑
(x,y)

(

Ai(x,y)
)

M×N
(4)

where αi is a constant related to spatial frequency. We have it lin-
early range from 0.1 at the lowest frequency to 1.0 at the highest fre-

quency. In natural images, the subband activity measures are highly
correlated at different scales, and the separate gain maps with δ set
this way, tend to line up. Other parameters like γ and ε are set to be
the same for all the subbands.

After the gain maps are computed they are used to modify the
subbands:

B′
i(x,y) = Gi(x,y)×Bi(x,y) (5)

The modified subbands are then convolved with the synthesis fil-
ters and summed to reconstruct the range compression result.

3.4 Aggregated Gain Map

To some extent, the matching of local subband gains depends on
accidents of image statistics: it is usually the case that high activity
in one band is spatially correlated with high activity in adjacent
bands. To avoid depending on this assumption, we can create a
single gain map that will be used to modify all the subbands. This
is straightforward to apply when all of the subbands are represented
at full resolution. To compute the gain map, we first compute an
aggregated activity map by pooling activity maps over scales and
orientations:

Aag(x,y) = ∑
i=1,...,3n+1

Ai(x,y) (6)

A single gain map can then be derived from this aggregated ac-
tivity map Gag(x,y) = p(Aag(x,y)), where p() is of the same form
as in Eq.(3). δ is set to one tenth the average of Aag.

(a) (b) (c)

(d) (e) (f)

Figure 3: Activity and gain maps, with Haars (a-c) and QMFs (d-
f), respectively. (a,d) Aggregated activity map Aag pooled from all
orientations and scales. (b/e) Gain map Gag computed from Aag.
(c,f) The resulting range-compressed monochrome image. HDR
image source: Paul Debevec.

This gain map is then used to modify all the subbands, and a
scale-related constant mi is used to control to what extent different
frequencies are modified:

B′
i(x,y) = miGag(x,y)×Bi(x,y) (7)



Such a gain map Gag with a Haar pyramid is shown in Fig 3(b),
along with the corresponding aggregated activity map Aag shown
in Fig 3(a), from which Gag is derived. Fig 3(c) shows the gray-
scale range compression result after Gag is applied to the subbands.
Fig 3(d,e,f) show Gag, Aag, and the range compression result using
QMFs. As Aag is pooled from all frequencies, Gag contains en-
ergy in all frequencies. At first it may seem strange to modify the
low frequency subbands with a gain map that contains a lot of high
frequency detail, or vice versa, but due to the symmetric analysis-
synthesis subband architecture, modified subbands are post-filtered
by the synthesis filter bank, and therefore all modifications are con-
fined within the subbands themselves.

4 Experimental Results on Range Com-
pression

Handling color and clipping. For color images we first convert
RGB to the HSV space. Then we perform range compression on
the V (value) channel, keep the hue (H) and the saturation (S) un-
changed, and then convert it back to RGB to get the result. Some-
times the range compressed images look over-saturated, in which
cases they can be desaturated, by reducing the saturation (S) by a
factor of rs (S′ = S/rs) before converting HSV back to RGB. rs can
be set between 1.0 and 2.0.

As a final step the extreme percentiles of the intensities are
clipped, and values in between are linearly scaled, so as to elim-
inate the sparse regions on the ends of the final histogram, and to
maximize the use of the display range. This can cause some mi-
nor clipping in the very brightest and the very darkest pixels, but in
practice does not cause visible problems.

(a) (b) (c)

(d) (e) (f)

Figure 4: Igloo. (a)Laplacian pyramid with sigmoid. (b) Oversam-
pled Haars with sigmoid. (c)Laplacian pyramid with smooth gain
control. (d) Oversampled Haars with multiple gain maps. (e) Over-
sampled Haars with an aggregated gain map. (f) Result by Fattal et
al. [2002] (color is modified). HDR image source: Shree Nayar.

Experimental Results. Fig 4 shows the effects of smooth gain
control and different subband architectures on the “igloo” picture.

(a) (b)

(c) (d)

Figure 5: Memorial Church. (a) Our result using multiple gain
maps; (b) Our result using one aggregated gain map. (c) Result by
Durand and Dorsey [2002]. (d) Result by Fattal et al. [2002]. HDR
image source: Paul Debevec.

We get Fig 4(a) using Laplacian pyramid and a point-wise sigmoid
on the coefficients, Fig 4(b) using oversampled Haars and a point-
wise sigmoid, Fig 4(c) using Laplacian pyramid and smooth gain
control, Fig 4(d) using oversampled Haars, where each subband is
modified by its own gain map (3.3), Fig 4(e) using oversampled
Haars, where all the subbands are modified by one single gain map
computed from an aggregated activity map (3.4). Note the halo
artifacts around the pole, in (a) and (b). The worst halos are seen
with the Laplacian pyramid and a sigmoid (Fig 4(a)); however, the
Laplacian pyramid performs fairly well when smooth gain maps
are used (Fig 4(c)). Pattanaik et al. [1998] also used Laplacian
pyramids with gain control, but got halo artifacts. The difference
between their method and the one giving Fig 4(c) lies in how the
gains are computed. Pattanaik et al. [1998] control the bandpass
gains using the lowpass signals, whereas for Fig 4(c) we control the
gain of each bandpass signal using a rectified and blurred version
of the bandpass signal itself. We also compare these results with
that published by Fattal et al. [2002], shown in (f). The colors
of (f) are adjusted so that they match those of (a-e). We can see
Fig 4(c-f) all did well in both preserving details and compressing
the range. The difference in appearance between (f) and (c,d,e)
depends mainly on how aggressive the compression is, and should



not be over-interpreted.

Shown in Fig 5 are range compression results on the memorial
HDR image. For Fig 5(a) each subband is modified by its own
gain map (3.3), while for Fig 5(b) all the subbands are modified by
the aggregated gain map (3.4). The one using a single gain map
achieves a cleaner look. We compare our results with the ones pub-
lished by Durand and Dorsey [2002] (Fig 5(c)), and by Fattal et al.
[2002] (Fig 5(d)). All of the methods give visually pleasing results,
and are successful in making detail visible in both the bright and
dark regions. Again, there are some differences between the re-
sults, including overall difference in color and sharpness, but these
should not be over-interpreted since they may change depending on
the details of the implementation.

More results with a single gain map are shown in Fig 6. For all
the results shown here, gamma nonlinearity (Eq.(3)) is used, and γ
is set to 0.6. mi in Eq.(7) is set to 1.0 for the three subbands at the
finest scale, 0.8 for the three subbands at the second finest scale,
and 0.6 for all the others including the lowpass.

Figure 6: More range compression results. HDR image sources:
Shree Nayar, Cornell CS.

5 Companding of HDR Images

Given that we can compress the range of an HDR image into an
LDR image, it is interesting to ask whether the process can be in-
verted. Suppose, for instance, that we have squeezed a 12-bit image
into an 8-bit image. Can we retrieve a good 12-bit image? Clearly
we can’t do it perfectly, but perhaps we can get a good approxima-
tion. We will refer to this process as “HDR image companding”.
This problem appears to have received little attention.

There are various ways of representing 12 bit images, including
various lossless and lossy standards. There are also some hybrid
techniques that combine an 8-bit format like JPEG with auxiliary
information (a second image) to increase the dynamic range [Ward
and Simmons 2004]. However, the question we ask is this: Can
we retrieve a high quality 12 bit image from an 8 bit image with-
out sending another image in a side channel? And further, can we
do this so that the 8 bit image is one that we would want to view
directly on an 8 bit display?

The default method for converting a 12 bit image to 8 bits is sim-
ply to divide by 16 and quantize the 4096 levels to 256 levels. To
retrieve a 12 bit image, the 256 levels are stretched back to the orig-
inal 4096. It is better to do this with non-linear quantization, in
which the original linear intensity values are compressed with, for
example, a log or a power function, followed by quantization. The
12 bit image is retrieved by applying the inverse function. This
method will lead to visible quantization steps in the 12 bit image,
since there are only 8 bits worth of intensity levels.

Suppose, however, that we convert the 12 bit image to an 8 bit
image through subband range compression, and then invert the pro-
cess to retrieve a 12 bit image. The compression process amplifies

low amplitudes and high frequencies, and the expansion process
reduces them (relative to the other components). Since quantiza-
tion artifacts tend to be dominated by low amplitudes and high fre-
quencies, this means that the artifacts will have less visibility in the
expanded image than they would with ordinary quantization. One
application would be in driving HDR displays. Most software ap-
plications today only handle 8 bit images, and most video cards can
only put out 8 bit images. It would be very useful if our laptop
could output an 8 bit image and have it magically converted into a
clean 12 bit image by a specialized display. Of course, we cannot
hope to make this conversion without any loss of information, but
we can distort our image space so that the accessible set of images
more closely matches the ones that we wish to display.

Another application is HDR image storage and transmission. Af-
ter we turn a 12 bit image into an 8 bit one, the image can be stored
in a standard lossless 8 bit format, or can be further compressed
with a lossy format such as JPEG. The JPEG will not have the
same quality as the original raw 12 bit image, but it will require
much less storage space and will be in a standard format. A digi-
tal camera that stores HDR JPEGs rather than standard JPEGs will
give its user much more flexibility when manipulating the captured
image data.

Suppose we ran our range compression algorithm and generated
an 8 bit image. If we knew the gain map that was used for each
subband, the inversion process would be simple. Unfortunately, we
don’t know the gain maps, since they were not stored; all we have is
the range compressed image itself. We can estimate the gain maps
from this image, but these estimates will be imperfect so we will
not get the original image back.

To solve this dilemma it is useful to begin at the end. Let us estab-
lish a standard method for doing range expansion; i.e., given an 8
bit image, we have an algorithm for expanding it to a 12-bit image.
This can be thought of as a decoding process. Our problem now
is to create an “encoded” image that will yield the desired image
when it is decoded. We do not have a method for finding this image
directly, but we can search for it using an iterative technique. In the
next section, we describe our range-expansion method, and then an
iterative range-compression method that can be coupled with it.

5.1 Range Expansion

The range expansion follows almost exactly the same scheme as
the range compression does, except that instead of multiplying the
subband coefficients with their gains we divide them by their gains.
The gain maps are computed in the same way as described in sec-
tion 3.3. An LDR image Il is first decomposed into subbands Bl,i,
which are then rectified and blurred to give the activity maps. Gain
maps Gl,i are then computed from the activity maps using Eq.(3),
and they are used to modify the subbands:

B′
l,i(x,y) =

Bl,i(x,y)

Gl,i(x,y)
(8)

A range expanded image Ie is reconstructed from the modified
subbands.

Next, given this range expansion method, we want to find an LDR
image Il that, when expanded, well approximates a target HDR im-
age Ih. A first thought would be to get Il directly by compressing
the range of Ih, using subband decomposition and automatic gain
control as described in Section 3.3. Gain maps Gh,i are computed
from the subbands Bh,i of Ih, and are multiplied with the subbands:

B′
h,i(x,y) = Gh,i(x,y)×Bh,i(x,y). If the transforms are orthogonal,

and somehow magically Gh,i(x,y) is equal to Gl,i(x,y), then by do-
ing the expansion in Eq.(8) we can get Ie equal to Ih. This will not
occur because Gh,i and Gl,i cannot be the same, since one is esti-
mated from the subbands of Il and the other from the subbands of
Ih. But these will be close, as the subbands of Il and those of Ih are
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Figure 7: The companding flowchart.

highly correlated, which makes Gl,i and Gh,i highly correlated. We
can look at how much Ie and Ih differ, and add a signal El to Il in
order to reduce the error between Ie and Ih. We do this iteratively
until we find a satisfactory result.

5.2 Error Feedback Search

The search procedure is illustrated in Fig 7. We start the search
by computing the initial estimate as the range-compressed version
of the original image. This initial estimate is then quantized and
passed through the RE (range expansion) box. We feed the recon-
struction error back into the loop and improve our estimate. We
compute the difference between the expanded image and the orig-
inal image, run this error image through RC (range compression),
and add this compressed error back to the previous quantized es-
timate. The resulting image is then quantized to get the updated
estimate. This process is repeated. In our experience we reach sat-
isfactory results after 8-12 runs. The choice of parameters (γ in
Eq.(3) and α’s in Eq.(4)) in our experience doesn’t affect the pro-
cess much, but RE and RC will have to use the same set of param-
eters, which means the parameters should be sent as header infor-
mation with the LDR image.

We find the 8 bit image iteratively, but the procedure for expand-
ing it to 12 bits is a one-shot multiscale procedure.

Note that the RC and RE boxes in the above iterations don’t in-
clude taking the log of the image intensities. For high dynamic
range images the companding is assumed to be applied in the log
domain, i.e., the original image has gone through a log transforma-
tion before going into the loop.

5.3 Experimental Results on Companding

For companding color images we first convert RGB to the HSV
space. The value (V) is then run through the companding loop and
a compressed V is obtained when the iterations stop. This com-
pressed V is combined with the original hue (H) and the original
saturation divided by a factor of rs (rs is set between 1.0 and 2.0),
and converted back to RGB to get the compressed color image. This
is the same as what we did for color HDR image compression. Sim-
ilarly when we’re going to expand a compressed color image up to
12 bits, the one-step range expansion is done on its V channel. The
saturation is multiplied by the same rs, the hue is kept the same,
and they are combined with the expanded V to get the HDR color
image back.

Since it is impossible to display a true HDR image in this paper,
we will demonstrate an example in which the “HDR image” is 8
bits, and the “LDR image” is 3 bits. That is, we will compress an
8 bit image to a 3 bit image - dropping its bit depth by 5 bits – and
then expand it back to 8 bits.

Fig 8(a) shows an ordinary picture of a baby at 8 bits (256 levels).
The dynamic range of the displayed image is appropriate for an 8
bit image. Fig 8(b) shows the same image after it was scaled down

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Baby companding. (a-f) In monochrome: (a) the original.
(b) The original quantized to 3 bits, viewed at low contrast. (c)
The 3-bit image in (b) scaled up to fill the range. (d) Compressed
image at 3 bits. (e) The 3-bit compressed image in (d) viewed at low
contrast. (f) The 8-bit image reconstructed from the 3-bit image (d)
using our expansion technique. (g-i) In color: (g) the original, 8
bits/channel. (h) Compressed, 3 bits/channel. (i) Expanded from
(h).

to a smaller range and linearly quantized to 3 bits (8 levels). This
image is shown with lower contrast and brightness, to suggest a
low dynamic range device. (Since the image has 5 fewer bits, we
might in principle show it at 1/32 the dynamic range of the original
image, but here we show it at about 1/3.) Fig 8(c) shows the same
3-bit image with the brightness scaled up to fill the full range of the
display. The quantization artifacts are quite visible as contouring. It
is possible to improve this result using nonlinear quantization, but
only slightly.

Fig 8(d) shows an image that has been compressed and quan-
tized to 3 bits. Fig 8(e) shows this image as it would appear on our
hypothetical LDR display. Fig 8(f) shows the same image after ex-
pansion using our subband technique. This picture appears nearly
identical to the original picture and it has no visible contouring ar-
tifacts.

This companding scheme provides us with an image that can be
displayed directly on a low dynamic range device, or can be dis-
played after range expansion on a high dynamic range device. Fig
8(g) shows the baby image in color, at 8 bits per color channel (i.e.
a normal RGB image). Fig 8(h) shows the image having been com-
pressed to a 3-bit/channel image. Fig 8(i) shows the 8 bit image that
is reconstructed by the expansion technique. The expanded picture
is not identical to the original, but the errors are almost invisible.

Turning now to the more pertinent problem of coding an HDR
image consider the example in Fig 9. The 8 bit range compressed
version of the HDR lamp is shown in Fig 9(a). Fig 9(b)-(d) are a
few “slices” of the reconstructed HDR image simulating increasing
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Figure 9: Lamp companding. (a) The range compressed image,
8 bits/channel. (b)-(d) Three exposure slices of the HDR image
reconstructed from (a). (e) A closeup of the original. (f) A closeup
of our reconstructed HDR image. (g) A closeup of the HDR image
reconstructed with log quantization. HDR image source: Spheron.

exposures. Fig 9(e) shows a closeup of part of an exposure slice
of the original HDR lamp image. Fig 9(f) shows the reconstruction
of this slice achieved by expanding our 8 bit compressed image. It
replicates the visual impression of the original. Fig 9(g) shows the
result of compressing and expanding with 8 bits in the log domain.
This image shows visible contouring due to quantization. In our
experience the reconstruction PSNR (Peak Signal to Noise Ratio)
on a typical image (measured in the log intensity domain) is 60-75
dB. From the standpoint of squared error, the proposed companding
method doesn’t perform quite as well as ordinary LUT (Look-Up
Table) companding, but it is much better visually. The artifacts
do not take the form of visible contours; instead, they are small
errors in local contrast within subbands, and these are not visually
disturbing. Even when there is a visible difference between the
original and the companded image, it is difficult to guess which is
which.

A question is whether we can get the best of both worlds, and
full backward compatibility. Is the 8 bit image that is best for ex-
pansion to 12 bits also the image that looks best when displayed
directly on a standard LDR display? We cannot guarantee it is, due
to the emphasis the high frequencies. But in our experience the im-
ages look similar to those produced by our direct range compression
technique.

5.4 Combining JPEG with Companding

It would be useful to take one more step, and encode the 8 bit image
with JPEG. JPEG compression is lossy and introduces its own arti-

facts. The question is how bad these artifacts will become after the
expansion step. We find it is possible to get good results if the JPEG
encoding is done correctly. Not surprisingly, it is necessary to code
the JPEG at a fairly high bit rate, such as 1.5 to 4 bits per pixel. This
still represents a substantial savings: When a 12 bit/channel image
is converted to a 4 bit/pixel JPEG, the compression is from 36 bits
to 4 bits, for a factor of 9.

The most troublesome artifacts, for our technique, arise when the
chrominance channels (Cr, Cb) are subsampled, as is done in most
off-the-shelf JPEG encoders. We used the IJG (Independent JPEG
Group [IJG ]) encoder with chrominance subsampling turned off.
Fig 10 shows results at a bit rate of 1.8 bpp and 3.8 bpp.

(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Figure 10: Dyrham Church companding with JPEGs. (a,b) The
range compressed images, saved as: (a) a 1.8 bpp JPEG, and (b)
a 3.8 bpp JPEG. (c,d) Two exposure slices of the HDR image re-
constructed from the 1.8 bpp JPEG shown in (a). (e,f) Two expo-
sure slices of the HDR image reconstructed from the 3.8 bpp JPEG
shown in (b). (g) A closeup of (d). (h) A closeup of (f). (i) A
closeup of the original. HDR image source: Greg Ward.



6 Discussion

There are a number of techniques for compressing high dynamic
range images in such a way that they are viewable on ordinary
displays. Multiscale techniques sometimes have the reputation of
being difficult to use without introducing halo artifacts. However,
the implementation we describe here, based on analysis-synthesis
subband architectures and smooth gain control, gives good range
compression without disturbing halos. We describe some simple
implementations of subband range compression, and show that the
results are competitive with the leading techniques such as Durand
and Dorsey [2002], Reinhard et al. [2002], and Fattal et al. [2002].

We have not attempted to write optimized code, and cannot com-
pare our speed with the other techniques. However, the filtering
operations involved are simple to compute, and there is no need to
use large or complex filters. In the future, it is likely that hardware
wavelet processing will be common in image processing systems,
and it will be straightforward to utilize this hardware for range com-
pression.

This compression scheme can be inverted, so that a low dynamic
range image, e.g., an 8 bit image, can be expanded into a high dy-
namic range image, e.g., a 12 bit image. Given an original 12 bit im-
age, we can compute an 8 bit image that offers a good visual rendi-
tion of the HDR image, and which can be expanded to approximate
the original 12 bit image with minimal degradation. This could be
useful, for example, when using a standard video card to drive both
LDR and HDR displays. The ability to represent 12 bit images in 8
bit file formats is also an advantage for backward compatibility in
various systems, and when combined with JPEG compression can
lead to further savings in storage.
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