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Image statistics for surface reflectance perception
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Human observers can distinguish the albedo of real-world surfaces even when the surfaces are viewed in iso-
lation, contrary to the Gelb effect. We sought to measure this ability and to understand the cues that might
underlie it. We took photographs of complex surfaces such as stucco and asked observers to judge their diffuse
reflectance by comparing them to a physical Munsell scale. Their judgments, while imperfect, were highly cor-
related with the true reflectance. The judgments were also highly correlated with certain image statistics, such
as moment and percentile statistics of the luminance and subband histograms. When we digitally manipulated
these statistics in an image, human judgments were correspondingly altered. Moreover, linear combinations of
such statistics allow a machine vision system (operating within the constrained world of single surfaces) to
estimate albedo with an accuracy similar to that of human observers. Taken together, these results indicate
that some simple image statistics have a strong influence on the judgment of surface reflectance. © 2008 Op-
tical Society of America

OCIS codes: 330.0330, 330.4060, 330.5000, 330.5510, 330.7310.
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. INTRODUCTION
he albedo of a surface is a measure of its diffuse reflec-
ivity. Perceived albedo is known as “lightness,” and the
bility to judge albedo with some accuracy, despite chang-
ng viewing conditions, is known as “lightness constancy.”
ightness constancy is not perfect, especially in extreme
onditions such as those arranged by Gelb [1]. When an
deal matte, planar surface is viewed in isolation, one can-
ot determine its albedo. A black surface may be seen as
hite, an illusion known as the Gelb effect. Here surface

uminance is the only relevant stimulus parameter, since
llumination and albedo are confounded (they multiply to-
ether to produce the observed luminance). Therefore,
ightness constancy is poor due to the lack of any disam-
iguating information from the context.
With nonideal surfaces, the Gelb demonstration fails. It

ails badly for complex surfaces such as stucco [2], as
hown in Fig. 1. The two stucco images have the same
ean luminance and are surrounded by the same dark

ackground, yet one looks darker and glossier than the
ther. The interreflections and specularities in these sur-
aces seem to provide extra information, and observers
re evidently able to utilize some of this information to
chieve lightness constancy. Gilchrist and Jacobsen built
oxes containing miniature rooms and painted them with
ither black or white matte paint [3,4]. Observers viewed
he rooms, one at a time, through a small aperture, so
hey were immersed in a field of uniform reflectance. Ob-
ervers could tell which room was which, presumably be-
ause of differences in interreflections.

Most research in surface perception has been domi-
ated by the case of smooth, Lambertian patches and pla-
1084-7529/08/040846-20/$15.00 © 2
ar 3-D configurations, such as those shown in Figs. 2(a)
nd 2(b) [1,5–14]. Existing theories of lightness percep-
ion have no way of predicting the effects that occur with
eal-world surfaces such as stucco. However, several re-
ent studies, including ours, have examined stimuli that
ncorporate some of the complexity of real-world condi-
ions [Figs. 2(c) and 2(d)] [2–4,15–23].

In the fields of computer graphics and computer vision,
here has been an interest in characterizing the bidirec-
ional reflectance distribution function (BRDF), which is a
ull description of the reflectance properties of an opaque
urface [24]. Estimating BRDF of surfaces from photo-
raphs is a challenging machine vision problem. Work in
hese fields has mainly followed the inverse optics ap-
roach, aiming to recover such a full model of 3-D layout
nd illumination of the scene as being consistent with a
iven 2-D image. This is an impossibly difficult problem
iven the many-to-one mapping from 3-D scenes to a 2-D
mage. Therefore, existing algorithms require additional
onstraints or assumptions that go far beyond those in-
luded in a single picture such as Fig. 1 [25–35]. The
echanism of human perception must be different.
We have taken up the lightness perception problem

rom several points of view. First, we ask how well human
bservers can judge albedo when viewing isolated sur-
aces using materials such as stucco. Second, we propose
hat simple statistics of the 2-D image of a surface can be
sed in a cue-based approach to lightness perception. Fi-
ally, we show that manipulating these candidate statis-
ics in an image alters human judgments in a predictable
anner. Our approach is to be contrasted with inverse op-

ics approaches, which depend on the estimation of the
008 Optical Society of America
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arameters of an internal model that can explain the im-
ge data in detail. There is evidence that inverse optics
odels can be useful in understanding some human judg-
ents. However, in real-world scenes, the surface geom-

try, illumination distribution, and BRDF are too complex
nd too uncertain for inverse optics to have much success.
herefore, it is reasonable that the visual system will use
euristics based on statistical cues when these cues are

nformative. The importance of image statistics was sug-
ested in a study by Nishida and Shinya [15], which
ound that reflectance perception of non-Lambertian and
onsmooth surfaces was critically dependent on the lumi-
ance histogram of the 2-D image of a surface. Dror et al.
16,17] studied the appearance of spheres in real-world il-
umination and found that simple image statistics were
seful in characterizing the reflectance properties of syn-
hetic and natural spheres.

We consider lightness perception for photographs of
paque surfaces viewed in isolation, with the mean lumi-
ance scaled to a constant value for all surfaces. Our sur-
aces have significant mesostructure so that shading, in-

ig. 1. (a) In the Gelb demonstration a smooth Lambertian blac
elb effect fails for complex surfaces. The stucco samples have th
lack.

ig. 2. Stimuli used for studying reflectance perception: (a)
allach’s disc annulus displays, (b) Mondrian-like displays with

at Lambertian surfaces, (c) Fleming et al.’s simulated spheres
n complex real-world illumination [18], (d) simulated locally
mooth bumpy surfaces used by Nishida and Shinya [15].
erreflection, and specular highlights become significant
omponents of the appearance. In our previous work [2]
e reported that the skewness of the luminance histo-
ram is correlated with the albedo and gloss of real-world
urfaces. Human judgments of lightness and glossiness
ere also correlated with luminance skewness. We sug-
ested that this statistic can be easily computed by early
eural mechanisms and found an aftereffect that sup-
orts this hypothesis.
In the present work, we took a more computational ap-

roach to the problem, focusing in detail on the statistics
hat are associated with lightness. We evaluated the ab-
olute effectiveness of a variety of image statistics and
heir combinations in estimating the physical albedo not
nly from correlations, but also from how well machine
earning algorithms can tell light and dark surfaces based
n those statistics. The results suggest that moment and
ercentile statistics of the luminance histogram and sub-
and histograms are informative. Although learning algo-
ithms cannot predict lightness perfectly, their perfor-
ance is similar to that of human observers. In addition,

he pattern of errors made by the algorithms was very
imilar to that of human errors. On changing these sta-
istics of images, human judgments were affected accord-
ngly. These findings suggest that human observers use
istogram statistics for lightness estimation. Finally, in
rder to manipulate the subband histograms in addition
o the luminance histogram [2] without introducing image
rtifacts, we developed a modification to the Heeger–
ergen texture synthesis algorithm.

. IMAGE STATISTICS AS CUES TO
IGHTNESS

n this section, from the viewpoint of ecological optics, we
nalyze how simple statistics of the 2-D image of a sur-
ace tell us about surface reflectance properties. Our ap-
roach is similar to that of Dror et al. [16,17], who consid-
red images of smooth, shiny spheres rendered or
hotographed under complex, real-world illumination
onditions. They measured moment (2nd, 3rd, and 4th)
nd percentile (10th, 50th, and 90th) statistics of pixel in-

ce can look the same as a smooth Lambertian white surface. (b)
e mean luminance, yet it is easy to tell the white stucco from the
k surfa
e sam
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ensities and wavelet coefficients on the surface of the
pheres via a cylindrical projection of the 2-D image.
hese statistical measurements were found to be useful

or classifying the spheres into shiny, matte, white, gray,
hrome, etc.

Like Dror et al., we are interested in identifying image
tatistics that are diagnostic of surface reflectance prop-
rties. However, we operate under a set of assumptions
ifferent from theirs. We do not assume a known surface
eometry; rather we allow our surfaces to possess 3-D
edium-scale structure. We consider surfaces in simple,

rtificial illumination conditions, and while some of our
urfaces are glossy (non-Lambertian), we focus on statis-
ics that are predictive of albedo, i.e., the diffuse reflec-
ance component.

. Image Data
e gathered high-dynamic-range color photographs of

everal real-world surfaces, such as paper, candies, cloth,
tucco, etc. (Fig. 3). Opaque surfaces with spatially uni-
orm reflectance properties were selected so that each sur-
ace is associated with a unique albedo value. We used
lanar surface samples with medium-scale surface struc-
ure or surface mesostructure [36]. While we allowed the
urfaces to be specular, we studied only the diffuse com-
onent. Surfaces were photographed under three indoor
ighting conditions [see Figs. 4(a)–4(c)]. The specifics of
he camera and lighting setup are provided in Fig. 4(d).
ll images were acquired in RAW 12-bit format by a
anon EOS 10D camera. The RAW images were linear-

zed using “dcraw” software [37]. The linearization pro-
ess converts the pixel intensities in a RAW image to the
easured luminance up to a multiplicative scaling factor.
ppendix C contains details of the linearization proce-
ure.
Our surfaces were orange, yellow, red, white, or black

Fig. 3). We used 30 surfaces of various shapes and reflec-
ance properties. As we are interested in lightness, all
olor photographs were converted to gray scale by sepa-
ating the color channels. For colored surfaces, individual
olor channels were treated as distinct gray-scale images.
igures 4(e) and 4(f) show an example of the color compo-

Fig. 3. Examples of surfaces in our data set. All surfaces sh
ents of an orange surface. The blue channel looks like a
lack surface, while the red channel looks like a white
urface. This happens because, for orange colored materi-
ls, the different colors of light are reflected in different

ere were photographed under an overhead fluorescent light.

ig. 4. Image data acquisition. Three indoor lighting conditions
ere used: (a) light 1, overhead fluorescent light source; (b) light
, focused halogen spotlight; (c) light 3, diffuse tungsten halogen
amp. (d) Schematic layout of the setup. Two views, one from the
ide and one from front, are shown. (e), (f) Red and blue color
omponents of an orange surface look like white and black sur-
aces, respectively. (g) Ground truth is acquired using a uni-
ormly illuminated flat material sample and a standard white
urface. A user clicks on two regions, one on the sample and one
n the standard. The ratio of mean luminance of the two regions
s used to calculate the albedo for each color channel.
own h
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ays. Thus, we can acquire photographs of surfaces that
hare identical geometry and illumination conditions but
ary in their reflective properties.

Many of our materials exhibit a strong specular reflec-
ion component. One example is the crumpled black paper
n Fig. 3. In order to capture such materials with a lim-
ted dynamic range camera, we used the technique of

ultiple exposure imaging. Multiple exposure photo-
raphs of the same scene were combined using HDRShop
oftware to produce a single high-dynamic-range image
38]. As a final step, all images were multiplicatively nor-
alized to have the same mean image luminance. This

tep is essential, because we want to know which statis-
ics of an image, other than mean luminance, are useful
or reflectance perception. In total, we had 30 materials
3 lighting conditions �3 color channels�270 images.
For all the surfaces in our data set, we acquired the

round truth for diffuse reflectance. A smooth, flat sample
f each surface, devoid of any mesostructure, was selected
nd placed next to a standard white surface [see Fig.
(g)]. For handmade surfaces, we prepared a flat sample
y hand. For other surfaces, we used the flattest samples
vailable. Both the standard and the sample were photo-
raphed under uniform illumination conditions. The dif-
use reflectance of the sample was calculated by using the
atio of the linearized intensity in a region containing the

ig. 5. Luminance histograms of light and dark materials exhib
b), (c) the respective luminance histograms. (c), (f) Standard dev
he ground truth for albedo for all the surfaces in our data set. A
ample to that of a region containing the standard. The
egions in the photograph were selected carefully to avoid
hadows and highlights.

. Statistics of the Luminance Histogram
e studied the luminance histograms for the images in

ur data set and found that histograms of light (high-
lbedo) and dark (low-albedo) materials (most materials
re non-Lambertian and nonsmooth) display characteris-
ic differences. The luminance histograms for dark sur-
aces tend to have higher Michelson contrast (standard
eviation divided by the mean) and have longer, positive
ails. For lighter surfaces, the histograms have lower
ichelson contrast and are usually symmetric (Fig. 5).
hese differences can be attributed to ways in which light
nd dark surfaces interact with light. Light surfaces have
igher diffuse reflectance; therefore light bounces around
lling up the shadows, leading to a lower contrast than
ark surfaces. If a light and a dark surface have the same
mount of specular reflection, the specular highlights are
ore visible in the darker surface owing to higher con-

rast. Therefore, contributions from interreflections and
ighlights lead to different shapes for the luminance his-
ograms of light and dark surfaces.

These systematic differences in the luminance histo-
rams can be captured by a host of statistical measures—

ematic differences. (a) Light modeling clay; (d) dark stucco; and
and skewness of the log-luminance histogram is plotted against
s pertain to the overhead fluorescent lighting condition.
it syst
iation
ll plot
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oment (standard deviation or skewness) or percentile
tatistics (10th, 50th, or 90th). In our companion paper
2], we had focused on one statistic, skewness or the third
tandardized moment of the luminance histogram, and
e showed that skewness is correlated with albedo as
ell as gloss. In the present study, from the viewpoint of
cological optics, we consider a wide range of statistics
hat are correlated with albedo, such as standard devia-
ion and percentiles of the original and filtered images.
e compute these statistics either directly on the lumi-

ance values or on the log of luminance values. We found
hat statistics of the log-luminance histogram are distinct
or light and dark surfaces, just as for the luminance his-
ogram.

In the rest of this paper, we will discuss the results of
og-luminance analysis. In our experience, the conclu-
ions remain the same for luminance and log-luminance
tatistics. This is trivially true for order statistics that are
nchanged by a log transformation.
In Figs. 5(c) and 5(f), the standard deviation and skew-

ess of the log-luminance histogram is plotted against the
rue albedo of a surface. The dependence of the moment
tatistics on the physical property can be seen in these
lots. Receiver operating characteristic (ROC) analysis of-
ers another way of visualizing this correlation. The ROC
s a plot of the true positive rate versus the false alarm
ate of a binary classifier. A perfect classifier achieves
00% classification accuracy with a 0% false alarm rate,
nd the area under the ROC curve (AUC) is 1.0. For the
orst classifier (unbiased coin flip), the true positive rate
quals the false alarm rate (AUC�0.5). In our case, if any
f the statistics—90th percentile, standard deviation, or
kewness of log-luminance—is used to classify surfaces as
ight (physical albedo �0.5) or dark (albedo �0.5), the
OC curves lie somewhere in between the ideal and the
orst classifier curves (AUC ranges from 0.73 to 0.77)

Fig. 6(a)]. The performance of moment statistics is sig-
ificantly above chance, implying that both statistics
ield useful information about albedo. Other percentile
tatistics (10th and 50th) also have similar ROC curves
AUC�0.69 and 0.77, respectively).

While ROC analysis considers the utility of a statistic
or binary reflectance classification, we can use regression
nalyses to see how well the statistics estimate reflec-
ance. Figure 6(b) shows that a linear regression fit is an
nadequate model for the relationship between skewness
f log-luminance and albedo. Similar plots were obtained
or other moment and percentile statistics of log-
uminance. We also conducted nonlinear regression
nalyses in order to model the data in Fig. 6(b) better. We
ound that applying a log transformation to the axes of
ig. 6(b) leads to a somewhat improved linear fit [Fig.
(c)]. As skewness and albedo are dimensionless quanti-
ies, applying a log transformation does not change the
hysical significance of our results. Figure 6(d) shows the
og–log plot for the 90th percentile of log-luminance his-
ogram and albedo. Visualizing the relationship between
ur statistics and albedo is easier after applying the log
ransformations. However, as the r2 statistic in Figs. 6(c)
nd 6(d) indicates, these nonlinear transformations do
ot capture the dependence of statistics on albedo en-
irely. We did not use more complex models to nail down
he behavior of our data because of the danger of overfit-
ing. We have only 30 materials in our data set. While the
inear fits in Figs. 6(b)–6(d) are not perfect, they are still
tatistically significant. Therefore, our statistics contain
seful information, although the relationship between
tatistics and diffuse reflectance is not entirely straight-
orward.

It is important to emphasize that the statistics de-
cribed thus far are predictive of albedo as long as the im-
ges on which they are computed look like surfaces. The
ame statistics are of no use when measured on arbitrary
mages that are not associated with a value of albedo [2].
ndeed if we pixel scramble our images, thereby destroy-
ng the perception of a surface, the luminance statistics
ust described remain unchanged.

. Statistics of Subband Histograms
s luminance (or log-luminance) statistics are insensitive

o spatial structure, we examined the statistics of filter
utputs next. This is a reasonable thing to do because the
isual system is more likely to have access to filtered val-
es than to raw luminance values. We used center–
urround and oriented edge detection filters in a multi-
cale decomposition [39,40]. In Fig. 7, one observes that
ixel histograms of filtered images look different for light
nd dark surfaces. For dark surfaces, filter output histo-
rams have heavier tails and, in the case of center–
urround filtering, the outputs are also skewed.

The filters amplify the local contrast differences be-
ween white and black surfaces. The skewness of the
enter–surround filter outputs is presumably related to
he asymmetry in the distribution of shadows and high-
ights in natural images. Unlike shadows, which tend to
e spread over a larger image region, specular highlights
end to be small and concentrated. It is likely that filter
utput statistics are affected by these characteristic
symmetries. Figures 8(a) and 8(b) plot ROC curves for
ubband statistics—standard deviation and 90th percen-
ile. Individual statistics fare much better than chance
nd hence are predictive of albedo. Figures 8(c) and 8(d)
lot the log of the 90th percentile of filter outputs against
he log of albedo. The linear regression fits in Figs. 8(c)
nd 8(d) demonstrate that the filter statistics are highly
orrelated with albedo.

In our experiments, we also found that the skewness
tatistic is sensitive to the choice of filters and filter pa-
ameters. Center–surround filters are somewhat better
han oriented filters at the task of skewness detection.
owever, in terms of albedo prediction, all statistics, both

f log-luminance and the two kinds of filters, perform
bout equally well.

. Combining Statistics
iven that individual statistics can predict albedo fairly
ell, it is interesting to ask how the statistics perform

elative to one another. In Figs. 6 and 8 we observe that
ll statistics—moments and percentiles derived from lu-
inance or filter outputs—perform about equally well in
OC tests and regression analyses. Not only do all the
tatistics predict albedo with the same degree of success,
ut we found that they are also correlated with one an-
ther. Consider Fig. 9(a): At first glance, it is not clear
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hy the standard deviation of log-luminance and the 90th
ercentile statistic of the center–surround filter outputs
hould covary. We performed chi-square independence
ests and mutual information values to confirm these em-
irical correlations. In our previous work [2], we had ob-
erved that the skewness of filter outputs is highly,
hough not completely, correlated with the skewness of
he luminance histogram for images like those in Fig. 3.

In a sense, it is not surprising that the statistics are de-
endent on one another. We noted earlier that shapes of
he histograms of log-luminance and filter outputs have
istinctly different shapes for light and dark surfaces.
hese characteristic differences can be captured in vari-
us ways by various statistics. The surfaces with lower al-
edo have higher local contrast as well as more structure

ig. 6. (a) ROC curves for the 90th percentile, standard deviatio
bove chance at the task of classifying surfaces as light or dark
hysical diffuse reflectance. A linear regression model is a poor fit
mproves the fit of the linear regression model (p�0.05, r2=0.34
gainst the log of the diffuse reflectance. The linear fit is still not
onditions for all plots in this figure.
t higher frequencies. Therefore, the statistics that mea-
ure contrast (e.g., standard deviation) covary with the
tatistics that measure energy in higher frequency (e.g.,
0th percentiles) for each surface.
In spite of the high degree of correlation, we found that

or purposes of albedo estimation, combining a few statis-
ics is better than using just one. We used a support vec-
or regression technique with a linear kernel to combine
tatistics [41]. The image data set was divided into three
roups, one of which was chosen as the training set. The
egression technique learned a linear relationship be-
ween a chosen set of statistics (features) measured on
he training set and the ground truth values for albedo. A
inear kernel was chosen for simplicity. The � parameter
f the regression was set to 0.1, and the penalty param-

skewness of log-luminance values. These statistics perform well
kewness of the log-luminance histogram is plotted against the
05, r2=0.27). (c) Applying a log transformation to both axes of (b)
og of 90th percentile of the log-luminance histogram is plotted
ood (p�0.05, r2=0.29). Statistics were pooled across all lighting
n, and
. (b) S
(p�0.
). (c) L
very g



e
t
t
a
t
t
(
b
f
r
t
p

e
u
f
t
t

t
t
l
c
o
t
w
f
m
c
o

g
n
i
t
a
o

F
L
(
t

852 J. Opt. Soc. Am. A/Vol. 25, No. 4 /April 2008 Sharan et al.
ter C was chosen by fivefold cross validation on the
raining set. Once the regression parameters are learned,
he technique can provide an estimate of the albedo for
ny new image of a surface. It is important to clarify that
he regression technique fits a linear model to our statis-
ics to predict the albedo. Even though we noted earlier
Figs. 6 and 8) that a linear model can predict “log(al-
edo)” from “log(statistic)” somewhat better than albedo
rom statistic, we did not use log transformations in our
egression model. This is because the increase in predic-
ion performance is not enough to justify the added com-
lexity of the regression model.
Figures 9(b)–9(d) show the outputs of three linear mod-

ls that differ in the number and type of statistics they
se to predict albedo. In these figures we see that the per-
ormance of a linear model improves by using two statis-
ics instead of one. However, on adding any more statis-
ics, the gains to be made are not significant. As we tried

ig. 7. Pixel histograms of filtered images look different for whi
aplacian of Gaussian filter (�=0.5 of size 5�5 pixels); (c) outpu

f) LoG and Sobel filter outputs; (g) pixel histograms of images in
o the overhead fluorescent lighting condition.
o incorporate more than two or three statistics as fea-
ures in our models, the correlation among the statistics
ed to saturation in performance. We found that the pre-
ise choice of features (moments or percentiles, luminance
r filter statistics) or the exact number of features (two,
hree, or four) is not too critical. So, for the rest of this
ork, we will use a fixed linear model (henceforth re-

erred to as the “model” or “regression technique”). The
odel uses three statistics—standard deviation, 10th per-

entile, and 90th percentile of the center–surround filter
utput.

In Fig. 10, the output of the model is compared to the
round truth for albedo. We see that the regression tech-
ique is not perfect at estimating the physical albedo, but

t does a fairly good job. Interestingly, we found that the
echnique makes larger errors on surfaces that are flat
nd nearly Lambertian than those with more complex ge-
metry and reflectance properties. This performance is

black surfaces. (a) Light modeling clay from Fig. 5; (b) output of
rizontal Sobel filter (3�3 pixels); (d) dark stucco from Fig. 5. (e),

(e); (h) pixel histograms of images in (c) and (f). All plots pertain
te and
t of ho
(b) and
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imilar to human observers (Fig. 1). To study the correla-
ion between statistics and perception better, we con-
ucted psychophysical experiments to measure human
erformance on our images.

. EXPERIMENT I
e asked human observers to rate the lightness for all

he photographs in our data set in a context similar to the
elb conditions of Fig. 1. From our informal “anti-Gelb”
bservations in Fig. 2, we know that such a task is mean-
ngful. It is easy to judge the lightness of rough non-
ambertian surfaces in isolation.

. Stimuli
he image data of the previous section were used as
timuli for this experiment. The mean luminance equal-
zed images were displayed on a gamma-corrected LCD

onitor. The images were displayed at a resolution of
12�512 pixels against a middle gray background. The

ig. 8. ROC curves for statistics of filter outputs: (a) 90th perc
ercentile and standard deviation for Sobel filter output are sign
oG and Sobel filter outputs, respectively, against the log of phy

ines �p�0.05�; r2 values are 0.63 and 0.62 for (c) and (d), respec
ntensity of the background was set to the mean image lu-
inance; thus both variables do not change throughout

he experiment.

. Apparatus
he three indoor light sources [see Figs. 4(a)–4(d)] that
ere used to photograph our surfaces were an overhead
uorescent lamp (Kino Flo Diva Lite 200) placed 60 cm
bove the sample surface, a halogen spotlight (LTM Pep-
er 300 W Quartz-Fresnel) placed 175 cm away and
20 cm above, and finally a light box (Lowel Rifa 66,
50 W tungsten halogen lamp) that produced diffuse, soft
ighting 120 cm away from the surface. The LCD monitor
as a Dell 20.1 in. flat panel �1 in.=2.54 cm� at 1280
1024 resolution, 75 Hz frame rate, and 70 cd/m2 mean

uminance. To obtain the ground truth [see Fig. 4(g)] the
tandard white surface was chosen from the Gretag Mac-
eth Color Checker chart. Light meters Sekonic L-608
nd Minolta CS-100 were used to ensure uniform illumi-
ation.

skewness, and standard deviation of LoG filter output; (b) 90th
ly above chance; (c), (d) plot the log of the 90th percentile of the
iffuse reflectance. The linear regression fits are shown as black
entile,
ificant
sical d
tively.
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Observers viewed the LCD monitor in a dark room. A
ox enclosing the two light sources and a Munsell chart
ith standard surface patches served as the reference

see Fig. 11). The box was constructed from white foam

ig. 9. (a) Standard deviation of log-luminance and the 90th
ercentile of LoG filter output are correlated (r=0.6237, p
0.05). (b), (c), (d) Outputs of three linear models are plotted

gainst the true diffuse reflectance for a subset of our surfaces.
odel A uses one statistic, the standard deviation of LoG filter

utputs to predict the albedo of a surface. Model B uses two
tatistics—standard deviation and 10th percentile of LoG filter
utputs. Model C uses three statistics—standard deviation and
he 10th and 90th percentiles of LoG filter outputs. For all three
ases, the model ratings were averaged over all three lighting
onditions. The error bars indicate the minimum and maximum
atings. If the models were perfect at predicting physical albedo,
ll points would lie along the black line with slope�1. The slopes
f the best fit lines are indicated in each plot. The asterisk de-
otes statistical significance �p�0.05�. The r2 statistic is similar
or all plots—0.42 for (b), 0.38 for (c), and 0.40 for (d).

ig. 10. Output of the regression technique is plotted versus
round truth for diffuse reflectance (albedo). Bars indicate maxi-
um and minimum ratings. If the technique were perfect, all

oints would lie along the diagonal.
oard panels and covered with dark gray craft paper on
he outside. One side of the box was left open to allow ob-
ervers to view the Munsell chart. Compact fluorescent
ight bulbs of color temperature 5500 K (SunWave full
pectrum CFL bulbs) were used to uniformly illuminate
he chart. The Munsell chart comprised eight gray
quares, numbered 1 to 8, on a random noise background
see Fig. 11(b)]. The gray squares were matched by eye to
he Munsell standard reflectance, N2 through N9 (Gretag
acbeth 31-step neutral value scale) under the SunWave

ulbs. The squares as well as the random noise back-
round were printed on Epson enhanced matte paper us-
ng an Epson Stylus Photo R800 printer.

. Procedure
bservers viewed the photographs, one after another, and
rovided ratings between 1 and 8 to indicate the standard
unsell patch that was closest in reflectance to the

timuli. Fractional ratings such as 4.5 were permitted to
llow observers to express their answers at a finer reso-
ution than the Munsell scale provided to them. However,

ost observers did not use fractional ratings. For the few
ho did, the fractional ratings were converted to the
quivalent albedo value. Observers were divided into
hree groups. Each group viewed a different set of sur-
aces. The experiment was self-paced. For each surface,
hree repetitions were run for each lighting condition. The
rder of the images was randomized. The experiment
asted 30 min.

. Observers
welve observers with normal or corrected-to-normal vi-
ion participated in the experiment. All observers were
aive to the purpose of the experiment.

. Results
e found that observers can, to some extent, estimate the

lbedo or diffuse surface reflectance under our experimen-
al conditions. Figure 12 plots the perceived diffuse reflec-
ance versus the ground truth for observers in one group.
bservers are not perfect at estimating ground truth, but

hey perform reasonably well. In Fig. 12, we reject the
ull hypothesis �p�0.05� that there is no linear relation-
hip between observer data and ground truth. Therefore,
ontrary to the predictions made by classical lightness
heories, human observers can judge lightness in the ab-
ence of mean luminance information and context. Our
bservers tend to agree with one another (see Fig. 13). We
nalyzed the deviation of observer ratings from ground
ruth, i.e., the errors observers made. We found that the
ize of the error does not seem to be related to the physi-
al reflectance of the surface. In other words, black mate-
ials, are not harder to judge than white materials, for ex-
mple. Instead, it seems that the closer a surface is to the
at, smooth, purely matte ideal of Fig. 1(a), the harder it

s to judge its diffuse reflectance (see Fig. 14).
In our data, the effect of lighting was not significant. In

ig. 15 we see that changing the illumination does not af-
ect the perceived reflectance of a surface too much. This
bservation is consistent with the work of Fleming et al.
ecause our illumination conditions did not vary as dras-
ically as theirs [18]. Fleming et al. showed that reflec-
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ance perception is significantly poorer under atypical il-
umination (e.g., Gaussian noise) than under real-world
llumination. Our lighting conditions fall in the real-world

ig. 12. Results of experiment I. Perceived albedo versus
round truth for four observers. Responses were pooled across all
ighting conditions. Error bars indicate 95% confidence intervals.
he responses of a veridical observer would lie along the black

ine with slope�1. The gray line is the linear regression fit to
ach observer’s data. The slope of the best fit line is indicated in
ach plot. The asterisk denotes significance (p-value �0.05).

ig. 11. Observers viewed stimuli on the LCD panel and matche
ard surfaces on the Munsell chart. (a) Dimensions of experiment
ategory and are all indoor laboratory setups. Therefore,
t is not surprising that observer performance did not
ary with illumination. It is important to note that in our
ata set, we used a fixed viewpoint and probed three illu-
ination directions. Unlike databases acquired for BRDF
easurements, such as the CURET database, we did not

xplore the space of lighting directions and viewpoints ex-
ensively [42]. One may ask, What effect do variations in
ighting direction and camera viewpoint have on our re-
ults? In Appendix B we have addressed this issue in de-
ail.

Finally, as a consequence of using colored surfaces, we
ould study how observers rated the different color chan-
els. Figure 16 displays observer ratings for the R, G, and
channels of a colored surface. The color channels differ

nly in the diffuse and specular reflectance properties; the
llumination conditions and surface geometry remain the
ame. Observers rate each color channel differently,
hereby establishing that interreflections and surface
loss influence lightness perception greatly.

Figure 17 allows a comparison of observer performance
ith that of diagnostic image statistics. We note that both
bservers and statistics cannot predict the ground truth
erfectly, but both of them make similar mistakes. The
orrelation coefficient r2 ranges from 0.6 to 0.78. This
greement is surprising since the statistics have no clue
s to how observers estimate reflectance properties. The
earning technique that employs statistics as features
as trained to predict the physical diffuse reflectance, not
uman performance. These findings suggest that image

ctance properties of the surface on the screen to one of the stan-
ut, (b) photograph of the reference box, (c) dimensions of the box.
d refle
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tatistics of the kind we have considered must capture
erceptually relevant information.

. EXPERIMENT II
iven the strong correlation between perceived reflec-

ance and the informative image statistics, we posed the

ig. 14. Surfaces in (a) and (b) have similar diffuse reflectance
ents and surface shapes. (c), (d) Errors in human judgments for
nd mesostructure. Error bars indicate maximum and minimum
uorescent lighting condition.

ig. 13. Observers tend to agree with one another. Perceived refl
f all observers behaved in the same way, all data points would lie
eal of agreement among observers.
ollowing question: How do changes in the histogram sta-
istics of an image affect reflectance perception? We know
hat as the physical reflectance of a surface changes, the
istogram statistics change accordingly. If instead we ma-
ipulate the statistics of a given image, what happens? As
iscussed earlier, most of our statistics, moments, and
ercentiles of luminance and filtered outputs are corre-

s (0.085 and 0.092), respectively but dissimilar specular compo-
o surfaces seem to vary with the change in specular reflectance
The data and photographs in this figure pertain to the overhead

e ratings for every pair of observers from Fig. 12 are plotted here.
black lines with slope�1; r2 values indicate that there is a great
value
the tw

errors.
ectanc
on the
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ated with one another in our data set. It is difficult to ma-
ipulate the statistics independently of one another by
pplying monotonic transformations on the images. In
ur previous study, we manipulated only the luminance
istogram [2]. In the present work, we manipulate the
istogram statistics all at once. As the luminance and
ubband statistics are correlated, an iterative technique
uch as the Heeger–Bergen texture synthesis algorithm,
s required to simultaneously constrain both kinds of sta-
istics [43]. The Heeger–Bergen algorithm iteratively
atches the pixel histogram and the histogram of wavelet

oefficients of a source image texture to a target image
exture.

The algorithm converges in a few iterations to an image
hat has nearly the same pixel and wavelet coefficient his-
ograms as the target image. The Heeger–Bergen algo-
ithm may be applied in our case in the following manner:
et an image of a black surface be the source, and an im-
ge of a white surface be the target. The result of running
he Heeger–Bergen algorithm on the black surface will be
n image of a surface that has the same histogram statis-
ics as the white surface. If histogram statistics capture
nything of perceptual relevance, the resulting image
hould look lighter than the original black surface. We
ound that applying the Heeger–Bergen technique di-
ectly to our images in the way just described resulted in
isible image artifacts.

To remove the artifacts, we introduce the following

t light, light 2 is the halogen spotlight, and light 3 is the diffuse
faces. Error bars indicate 95% confidence intervals.
ig. 16. Observers do not rate individual color channels in the
ame way. (a) Red channel, (b) green channel, and (c) B channel
f an orange surface and the respective averaged observer rat-
ngs. (d) Even with the same mean image luminance, illumina-
ion conditions, and surface geometry, observers can extract use-
ul information from the image to discern diffuse reflectance.
ig. 15. Effect of lighting conditions. Light 1 is the overhead fluorescen
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odification to the Heeger–Bergen algorithm: Instead of
atching histograms of the filter subbands directly, we
atch histograms of activity maps instead. Activity maps

re obtained by blurring the absolute value of filter sub-
ands. A more detailed discussion of the modified Heeger–
ergen technique may be found in Appendix A. Figure
8(b) shows the effect of swapping the histogram statis-
ics of a white and a black surface with the activity map
eeger–Bergen technique. We see that the perception of

he surfaces is remarkably altered. The manipulated
lack surface looks much lighter, and the manipulated
hite surface looks much darker. To test this observation

ig. 17. Agreement between observers and the regression techn
han the agreement between observers but are not very differen

ig. 18. (a) Light surface and (b) dark surface. (c) Result of ma
ore conclusively, we ran an additional experiment with
xactly the same conditions as before (experiment I). The
nly change was that we used histogram-manipulated im-
ges along with the original photographs of the surfaces.
he same 12 observers who took part in experiment I also
articipated in experiment II. Observers were divided
nto three groups as before. Each group viewed a different
et of surfaces. The partitioning of surfaces across groups
as precisely the same as in experiment I. We ensured

hat for a given observer, stimuli presented during experi-
ent I were not repeated in experiment II. Figure 19

lots observer data for this experiment. Observers consis-

he model) is fairly high. The r2 values here are somewhat lower
13).

histogram statistics of (a) to those of (b) and (d) and vice versa.
ique (t
t (Fig.
tching
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ently rate the manipulated images as more similar to the
arget image than the source image. In other words, im-
ges with similar histogram statistics are rated similarly.
hese results establish a two-way relationship between
erceived reflectance and histogram statistics. Changing
tatistics affects reflectance perception, and knowing the
tatistics lets us predict the perception.

. DISCUSSION
n this work, we considered a range of real-world sur-
aces. The interaction of light with our surfaces is more
omplex than with planar, Lambertian surfaces that have
ommonly been considered thus far. We found that human
bservers were not perfectly lightness constant, but their
onstancy improved as surfaces became more complex. In
he absence of context and mean luminance information,
he visual system relies on other cues present in the im-
ge. For the surfaces we considered, diffuse interreflec-
ions and specular highlights offer rich information about
eflectance properties. We proposed quantitative image
easurements that are correlated with the diffuse sur-

ace reflectance. Moment and percentile statistics of the
uminance histogram and of filter output histograms were
seful. A linear combination of these statistics was used
o estimate the diffuse reflectance of our surfaces with an
ccuracy similar to that of human observers. Not only did
he statistics achieve the same degree of success, they
eemed to make the same mistakes as humans [10].
oreover, manipulating these candidate statistics in an

mage of a surface altered the perception of lightness (ex-
eriment II). Therefore, it is conceivable that our diagnos-

ig. 19. Observer data for histogram-manipulated images (a)
hrough (d) show four different surfaces in one group. The chan-
els R and B refer to the red and blue color channels, respec-
ively, of the color photographs of each surface. The R2B channel
s the result of matching the histogram statistics of the R chan-
el image to that of the B channel. B2R is the result of matching
he histogram statistics of the B channel image to that of the R
hannel. The data are pooled across all observers in the group.
ll plots here are from the overhead fluorescent lighting condi-

ion. Error bars are 95% confidence intervals. We note that ob-
ervers consistently rate R2B similar to B rather than to R and
ice versa.
ic statistics are used as cues to lightness by the visual
ystem, especially when other cues such as mean lumi-
ance or luminance ratios offer no information.
How do our results compare with other studies on light-

ess perception that have used complex real-world
timuli? Gilchrist and Jacobsen’s black-and-white rooms
ere viewed in isolation, without a context with which to

ompare [4]. As the rooms were matte and mean lumi-
ance was accounted for, the only useful information
vailable to the observers was the pattern of diffuse inter-
eflections. It is likely that observers employed cues such
s luminance histogram statistics to distinguish the
ooms. Our findings confirm Nishida and Shinya’s origi-
al observation that the luminance histogram influences

ightness perception [15]. Rutherford and Brainard’s find-
ng that observers do not explicitly perceive the illumi-
ant appears to favor our approach of using image cues to
stimate lightness over inverse optics approaches [44].
obilotto and Zaidi asked observers to judge the lightness
f crumpled gray papers, some with patterns on them, in

3-D setup under natural viewing conditions [19,20].
hey found that observer performance could be explained

n terms of low-level cues such as brightness and contrast.
n their experiments, unlike ours, a surrounding context
as always included. Therefore, cues from the surround

ompete with any information available from highlights
nd interreflections within the paper stimulus.
Several issues remain unanswered in the present work.
e considered the restricted case of surfaces with spa-

ially homogenous reflectance properties under simple ar-
ificial illumination. We know from our daily visual expe-
ience that we estimate lightness under more challenging
llumination and surface conditions. Therefore, it is con-
eivable that there exist other cues or informative image
easurements that apply to a less restricted setting than

urs. Another issue that requires resolution is the inter-
ependence of histogram statistics. We found a high de-
ree of correlation in our set of statistics. Does this obser-
ation extend beyond our limited set of surfaces and
llumination conditions? In fact, in the companion study,
e manipulated the standard deviation and skewness of

he luminance histogram independently of each other and
ound that skewness was a stronger cue [2]. Such a ma-
ipulation was not possible in the current work, given the
umber of dependent statistics we considered.
Our experiments with the application of the Heeger–

ergen texture synthesis technique to images of surfaces
evealed a potential application—material transforma-
ion. One can imagine a Photoshop plugin that changes
he appearance of a surface in an image region by ma-
ipulating the local image statistics. Our current modifi-
ation to the Heeger–Bergen technique has had modest
uccess in achieving this goal. Finally, a major question
hat remains unanswered is, What image statistics dis-
inguish an image of a natural surface from an arbitrary
mage? Our statistics can predict perception only when
e are given an image of a real-world surface. For any
ther image, the statistics and indeed even lightness
udgments are not very meaningful. In our companion
ork, we addressed this question to some extent [2]. For
ixel-scrambled images (which look like noise), when ob-
ervers are asked to make lightness judgments, they
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udge the overall brightness instead. Since luminance sta-
istics are unaffected by pixel scrambling, they cannot ex-
lain perception. Clearly, in such cases, other perceptual
echanisms must be at work [45]. On phase scrambling

ur surface images, luminance and subband statistics can
e retained, but spatial structure is lost. For such phase-
crambled images, lightness perception can be explained
y our set of diagnostic image statistics, but not the per-
eption of surface gloss. Gloss perception seems very sen-
itive to the interpretation of an image as a plausible real-
orld situation [18,23]. Further progress on these
uestions is required.
In the current work, as well as in the companion paper,

e suggest a new perspective on natural image statistics.
hile variance and kurtosis, both even-order statistics,

ave been extensively studied, skewness, an odd statistic,
as been largely neglected. We also demonstrated the
tility of percentile statistics. These findings have impli-
ations for machine vision systems that perform material
ecognition as well as for psychophysicists and physiolo-
ists studying midlevel vision mechanisms and represen-
ations [46–48].

. CONCLUSION
umans use a variety of cues in judging the albedo of a

urface. For an ideal planar surface, context is essential;
hen the surface is viewed in isolation, there is insuffi-

ient information to estimate albedo. However, surfaces in
he real world are more complex. They have both diffuse
nd specular reflection, and they often have significant
esostructure. The resulting image has a visual texture

hat offers some cues about the surface’s albedo. We have
ound that a variety of simple image statistics are corre-

Fig. 20. Block diagram of the activ
ated with albedo. Useful statistics, which may be com-
uted on the luminance histogram or on subband histo-
rams, include standard deviation, skewness, and
ercentiles. Linear combinations of these statistics allow

machine vision system, operating within the con-
trained world of single surfaces, to estimate the physical
lbedo reasonably well. The machine tends to make the
ame mistakes that humans do, suggesting that humans
re using similar statistics in making their judgments. By
anipulating these statistics, we can increase or decrease

he apparent albedo of a given surface in a predictable
ay, giving further evidence that these image statistics
lay a major role in the surface judgments.

PPENDIX A: MODIFIED HEEGER–BERGEN
LGORITHM

n the Heeger–Bergen algorithm the luminance histo-
ram as well the wavelet subband histograms of a target
mage are iteratively matched to those of a source image
43]. The histogram-matching procedure in the Heeger–
ergen algorithm involves applying a nonlinear pointwise
ain; i.e., each pixel value in an image is mapped to a new
alue, independent of other pixels. A pointwise gain is not
esirable in the overcomplete filter subbands because if
he value of a pixel is manipulated independently of its
eighbors, local distortions can occur in the final output.
e propose the following solution: Instead of matching

istograms of the source and target subbands directly, we
ill modify the target subband histograms via activity
aps. An activity map is defined as the result obtained by

aking the absolute value of a subband and then blurring
t with a Gaussian kernel (Fig. 20).

p-based Heeger–Bergen technique.
ity-ma
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The combination of absolute value and blurring trans-
orms the subband image into a local energy map. When
e match the histograms of the activity maps of the tar-
et and source images, then a pointwise gain is applied to
he source activity map. As the activity map may be
hought of as a local energy map, a pointwise gain on the
ource activity map is effectively a locally smooth gain on
he original subband. Let the original source activity map
e Aorig and the histogram matched source activity map
e Amodified. Then the gain map G is calculated as

G =
Amodified

Aorig
,

here G is multiplied to the original source subband to
btain the modified subband. Therefore, matching the
istograms of the activity maps allows us to apply a spa-
ially local gain, which results in fewer image artifacts
nd smoother-looking pictures. The local gain modifies
he value at a pixel depending on the values of its neigh-
ors; therefore the distortions introduced by histogram
atching are reduced locally. Figure 21 shows the im-

rovements obtained by using the modified Heeger–
ergen technique.

PPENDIX B: EFFECTS OF VARYING
LLUMINATION AND VIEWPOINT
N IMAGE STATISTICS AND PERCEPTION

n our image data, we used a fixed viewpoint and sampled
hree illumination directions with different light sources
Figs. 3 and 4). In our psychophysical experiments, we
ound that the perceived reflectance of a surface was not
ignificantly affected by these changes in illumination
onditions (Fig. 15). It may be argued that since we did
ot explore the space of viewing and illumination direc-
ions extensively, the results of Fig. 15 are somewhat pre-
iminary. In order to address this concern, we performed
ome additional computational and psychophysical ex-
eriments.
Image data that are acquired for BRDF measurement

re sampled densely along viewpoint and illumination di-
ections. For example, the Columbia–Utrecht (CURET)
atabase contains photographs of 61 real-world surfaces
42]. Each surface has been captured from 205 distinct
ombinations of viewing and illumination angles. Such a
atabase would be useful for studying the effect of illumi-
ation and viewpoint variation on reflectance perception.
owever, there are two reasons why the CURET database

s not ideal for our purposes. First, the resolution of all

ig. 21. Comparison of histogram-matching techniques: (a) so
eeger–Bergen output, (e) activity-map-based Heeger–Bergen ou
URET images is 640�480 pixels, which includes pixels
elonging to the dark background and the mounting
quipment. So the effective pixel resolution of the mate-
ial samples is much lower. It can be as low as 50�50 pix-
ls at oblique viewing angles. Second, while the materials
n the CURET database have wide-ranging reflectance
roperties, some of them have spatially varying reflec-
ance functions (e.g., straw, peacock feather, and corn
usk) or possess shallow mesostructure (e.g., leather,
rosted glass, and corduroy). In the present study, we fo-
used on materials with significant mesostructure that
an be associated with a unique value of albedo. Thus, we
re limited to only a quarter of the 61 CURET materials.
In spite of the concerns just outlined, the CURET im-

ges are very useful because they span a broad spectrum
f illumination and viewing directions. We chose nine ma-
erials from the database (materials 10–12 and 16–21)
hat matched our criteria of spatially uniform albedo and
ontrivial mesostructure. For each material, we selected
59 of the 205 photographs and cropped out the material
ample to obtain 100�100 pixel patches. In the CURET
mages, there is an inherent trade-off between desired
ixel resolution of a material and the number of view-
oints that can be used. In order to accommodate as many
blique views as possible without sacrificing too much res-
lution, we decided on 100�100 pixels [see Fig. 22(a)].
he CURET image data come calibrated to ensure linear-

ty between pixels and radiance. For CURET materials,
he ground truth for reflectance is known in terms of
RDF tables and Oren–Nayar model parameters [49]. We
sed the Oren–Nayar model parameterization, since the
arameter � corresponds to albedo.
In addition to the CURET images, we acquired more

mage data for our own materials. The time and resource
osts of reproducing something like the CURET database
ith our materials are immense. Therefore, we consid-
red only two viewpoints and three illumination direc-
ions. The images were 512�512 pixel resolution [see Fig.
2(b)]. We chose nine materials from our collection (Fig.
). Our selection included materials such as handmade
tucco, modeling clay, and Tic Tacs. The images were ac-
uired and linearized in the same manner as described
efore. The ground truth for albedo for these materials
as already been measured earlier.
We analyzed the image statistics for both sets of

mages—CURET images and ours. Figure 23 plots the
kewness of center–surround filtered images against the
round truth for albedo. Similar results were obtained for
ther moment and percentile statistics, both for lumi-
ance and filter outputs. We observed that the statistics

mage, (b) target image, (c) luminance histogram matching, (d)
urce i
tput.
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aried enormously with viewpoint and illumination varia-
ion in the CURET data set but much less so for our im-
ges. These differences may be attributed to the fact that
ur images do not explore the space of viewpoint and illu-
ination variation as aggressively as the CURET images.
here is another, more subtle, reason for these results.
ur images differ from the CURET images in a funda-
ental way. Our surfaces have deeper mesostructure

han the CURET surfaces (Fig. 22). For shallower sur-
aces, the appearance changes more dramatically as view-
oint and illumination directions are varied. Consider the
hadows in an image of a surface. For a shallow surface,
s the illumination (or viewpoint) becomes grazing, dark
hadows appear in the image. For a 3-D surface with
eeper mesostructure, dark shadows are always present
ecause no matter what the illumination (or viewpoint),
elf-shadowing occurs due to higher surface relief. Indeed,
hen one considers the CURET images of Fig. 22(a), par-

icularly those in the first row, it is hard to believe that

ig. 22. (a) Some of the CURET images we used. The three row
ifferent views are shown for each material. The images were mu
he materials from our data set. The two rows correspond to two
ions. All images were normalized to have the same mean.

ig. 23. Effect of varying illumination and viewpoint on image
gainst the ground truth for diffuse reflectance. A Laplacian of a
istics is plotted for all 159 images of the 9 CURET materials a
mear at each value of rho. (b) All six images of the nine materia
eflectance for the materials.
he same surface can be made to look so different by mov-
ng the lights and camera around. We conducted psycho-
hysical experiments to study these effects further.
We asked three observers (two naïve subjects and one

f the authors) to rate the lightness of mean luminance
ormalized images (both CURET and ours) in exactly the
ame experimental setup as before. For each of the nine
URET materials, six representative images were chosen

Fig. 22(a) show three such images for three materials].
or our materials, all six views were used for the nine ma-

erials. Images were viewed against a midgray back-
round, one at a time, and observers indicated the Mun-
ell chip that was closest in reflectance to the sample
mage on screen. Two repetitions were run for each image.
igure 24 plots the perceived diffuse reflectance against

rue reflectance for both sets of images. Observers were
airly accurate in their lightness judgments for our im-
ges but performed poorly on the CURET images. These
esults confirm the informal observations we made earlier

spond to materials 11 (plaster), 18 (rug), and 21 (sponge). Three
atively normalized to have the same mean luminance. (b) One of
oints and the columns to the three different illumination direc-

ics. The skewness of center–surround filtered images is plotted
sian filter was used (�=0.5, size 5�5 pixels). (a) Skewness sta-
the Oren–Nayar model parameter “rho” [49]. Note the vertical

ur data set were used. The x axis is the ground truth for diffuse
s corre
ltiplic
viewp
statist
Gaus

gainst
ls in o
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ertaining to Fig. 22(a). The poorer resolution of the
URET images was an issue. Observers reported that
ome CURET images appeared to have wallpaperlike tex-
ures rather than 3-D surfaces of single albedo. Observers
lso complained about the grazing-angle CURET pictures
hat are formed of alternating stripes of dark shadows
nd bright highlights. Even when these pictures are seen
s 3-D surfaces, it is hard to gauge the true albedo.
How well do image statistics account for these percep-

ual results? Figure 25 plots the perceived reflectance for
he observer of Fig. 24 against the skewness of the image
fter center–surround filtering. Again, observer data for
ur images can be explained reasonably well by our cho-

ig. 24. Perceived reflectance for an observer is plotted against t
ll viewing and illumination directions. Error bars are 95% con
etween perceived and true reflectance �p�0.05�. (b) Our images
imilar trends were obtained for other observers.
en statistics. For the CURET images also, we see evi-
ence for a correlation between perceived reflectance and
ur statistics. This is encouraging, given the dismal cor-
elations in Figs. 23(a) and 24(a).

Taken together, these results lead us to conclude that
he relationship among image statistics, physical reflec-
ance, and reflectance perception holds for the images we
cquired but breaks down for the CURET data set. As
entioned earlier, our images differ from the CURET im-

ges in many ways. It is reasonable to assume that these
ifferences in computational and psychophysical results
re correlated with the nature of the data sets. A more
uantitative investigation of how factors such as surface

nd truth. For each material, observer ratings were pooled across
e intervals. (a) CURET images: There is no linear relationship
rver data can be explained by a linear model (p�0.05, r2=0.85).
ig. 25. Perceived reflectance of an image of a surface is plotted against the skewness of the center–surround filter output. A Laplacian
f a Gaussian filter was used (�=0.5, size 5�5 pixels). (a) CURET images and (b) our images. A linear relationship can be observed in
oth plots. For (c), p�0.05, r2=0.42 and for (d), p�0.05, r2=0.64.
he grou
fidenc
: Obse
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tructure, viewing and illumination conditions, and mate-
ial properties influence image statistics (and reflectance
erception) remains a direction for future research.

PPENDIX C: LINEARIZATION OF PIXEL
ALUES

o ensure a linear relationship between pixel values and
easured luminance, we calibrated our raw image data
sing dcraw software [37]; dcraw is an open-source pro-
ram that decodes the raw images acquired by a camera
n its native, manufacturer-specific format. The advan-
age of taking photographs in the raw format is that raw
mages have the most information and are processed the
east by the camera. Almost all digital cameras can be set
o produce a JPEG output instead of a raw output. Al-
hough the JPEG format is convenient, it is a lossy format
nd valuable data are lost as a result of the JPEG com-
ression.
We acquired our image data in the Canon RAW format

CRW). The CRW images files were then converted by the
craw program to 16-bit PSD (Adobe Photoshop) file for-
at. In order to verify the correctness of the calibration

rocedure, we used the following methodology. Since we
id not take photometric measurements at each point of
ur scenes, the precise luminance measurements that cor-
espond to the pixels in an image are unknown. However,
e did capture multiple exposure shots of the same scene.
e used a fixed-focal-length �50 mm� lens. We applied
anual settings for focus, aperture, and white balance

nd varied the shutter speeds in intervals of 1 / 2 f-stops
nd acquired between 9 and 12 consecutive exposures for
ach scene. We made use of the following principle: If the
hutter is open for twice as long, the amount of light cap-
ured is twice as much. If the dcraw outputs are truly lin-
ar, the pixels values for two images of the same scene
hould be related to each other by exactly the same ratio
s the lengths of their exposure times. Figure 26 illus-
rates this reasoning for a pair of example images. If the
ombination of internal camera processing followed by
craw was perfectly linear, the data in Fig. 26 would fit

ig. 26. Verifying linearity correction. Images A and B are the li
37]. The original exposures were recorded in the Canon RAW fo
amera parameters were the same for A and B. The pixel values
ation of internal camera processing followed by dcraw was per
ctual fit is quite good: slope�2.1055±0.0084 (p�0.05, r2=0.94).
he linear model perfectly with a slope equal to 2. The ac-
ual fit is quite good: slope=2.1055±0.0084 (p�0.05, r2

0.94). We repeated this analysis for other image pairs
or each of our scenes and verified that the accuracy of
craw linearization was similar to Fig. 26.
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