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Human observers can distinguish the albedo of real-world surfaces even when the surfaces are viewed in iso-
lation, contrary to the Gelb effect. We sought to measure this ability and to understand the cues that might
underlie it. We took photographs of complex surfaces such as stucco and asked observers to judge their diffuse
reflectance by comparing them to a physical Munsell scale. Their judgments, while imperfect, were highly cor-
related with the true reflectance. The judgments were also highly correlated with certain image statistics, such
as moment and percentile statistics of the luminance and subband histograms. When we digitally manipulated
these statistics in an image, human judgments were correspondingly altered. Moreover, linear combinations of
such statistics allow a machine vision system (operating within the constrained world of single surfaces) to
estimate albedo with an accuracy similar to that of human observers. Taken together, these results indicate
that some simple image statistics have a strong influence on the judgment of surface reflectance. © 2008 Op-

tical Society of America

OCIS codes: 330.0330, 330.4060, 330.5000, 330.5510, 330.7310.

1. INTRODUCTION

The albedo of a surface is a measure of its diffuse reflec-
tivity. Perceived albedo is known as “lightness,” and the
ability to judge albedo with some accuracy, despite chang-
ing viewing conditions, is known as “lightness constancy.”
Lightness constancy is not perfect, especially in extreme
conditions such as those arranged by Gelb [1]. When an
ideal matte, planar surface is viewed in isolation, one can-
not determine its albedo. A black surface may be seen as
white, an illusion known as the Gelb effect. Here surface
luminance is the only relevant stimulus parameter, since
illumination and albedo are confounded (they multiply to-
gether to produce the observed luminance). Therefore,
lightness constancy is poor due to the lack of any disam-
biguating information from the context.

With nonideal surfaces, the Gelb demonstration fails. It
fails badly for complex surfaces such as stucco [2], as
shown in Fig. 1. The two stucco images have the same
mean luminance and are surrounded by the same dark
background, yet one looks darker and glossier than the
other. The interreflections and specularities in these sur-
faces seem to provide extra information, and observers
are evidently able to utilize some of this information to
achieve lightness constancy. Gilchrist and Jacobsen built
boxes containing miniature rooms and painted them with
either black or white matte paint [3,4]. Observers viewed
the rooms, one at a time, through a small aperture, so
they were immersed in a field of uniform reflectance. Ob-
servers could tell which room was which, presumably be-
cause of differences in interreflections.

Most research in surface perception has been domi-
nated by the case of smooth, Lambertian patches and pla-
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nar 3-D configurations, such as those shown in Figs. 2(a)
and 2(b) [1,5-14]. Existing theories of lightness percep-
tion have no way of predicting the effects that occur with
real-world surfaces such as stucco. However, several re-
cent studies, including ours, have examined stimuli that
incorporate some of the complexity of real-world condi-
tions [Figs. 2(c) and 2(d)] [2—4,15-23].

In the fields of computer graphics and computer vision,
there has been an interest in characterizing the bidirec-
tional reflectance distribution function (BRDF), which is a
full description of the reflectance properties of an opaque
surface [24]. Estimating BRDF of surfaces from photo-
graphs is a challenging machine vision problem. Work in
these fields has mainly followed the inverse optics ap-
proach, aiming to recover such a full model of 3-D layout
and illumination of the scene as being consistent with a
given 2-D image. This is an impossibly difficult problem
given the many-to-one mapping from 3-D scenes to a 2-D
image. Therefore, existing algorithms require additional
constraints or assumptions that go far beyond those in-
cluded in a single picture such as Fig. 1 [25-35]. The
mechanism of human perception must be different.

We have taken up the lightness perception problem
from several points of view. First, we ask how well human
observers can judge albedo when viewing isolated sur-
faces using materials such as stucco. Second, we propose
that simple statistics of the 2-D image of a surface can be
used in a cue-based approach to lightness perception. Fi-
nally, we show that manipulating these candidate statis-
tics in an image alters human judgments in a predictable
manner. Our approach is to be contrasted with inverse op-
tics approaches, which depend on the estimation of the

© 2008 Optical Society of America
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Fig. 1. (a) In the Gelb demonstration a smooth Lambertian black surface can look the same as a smooth Lambertian white surface. (b)
Gelb effect fails for complex surfaces. The stucco samples have the same mean luminance, yet it is easy to tell the white stucco from the

black.

parameters of an internal model that can explain the im-
age data in detail. There is evidence that inverse optics
models can be useful in understanding some human judg-
ments. However, in real-world scenes, the surface geom-
etry, illumination distribution, and BRDF are too complex
and too uncertain for inverse optics to have much success.
Therefore, it is reasonable that the visual system will use
heuristics based on statistical cues when these cues are
informative. The importance of image statistics was sug-
gested in a study by Nishida and Shinya [15], which
found that reflectance perception of non-Lambertian and
nonsmooth surfaces was critically dependent on the lumi-
nance histogram of the 2-D image of a surface. Dror et al.
[16,17] studied the appearance of spheres in real-world il-
lumination and found that simple image statistics were
useful in characterizing the reflectance properties of syn-
thetic and natural spheres.

We consider lightness perception for photographs of
opaque surfaces viewed in isolation, with the mean lumi-
nance scaled to a constant value for all surfaces. Our sur-
faces have significant mesostructure so that shading, in-

(a) ()
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Fig. 2. Stimuli used for studying reflectance perception: (a)
Wallach’s disc annulus displays, (b) Mondrian-like displays with
flat Lambertian surfaces, (¢) Fleming et al.’s simulated spheres
in complex real-world illumination [18], (d) simulated locally
smooth bumpy surfaces used by Nishida and Shinya [15].

terreflection, and specular highlights become significant
components of the appearance. In our previous work [2]
we reported that the skewness of the luminance histo-
gram is correlated with the albedo and gloss of real-world
surfaces. Human judgments of lightness and glossiness
were also correlated with luminance skewness. We sug-
gested that this statistic can be easily computed by early
neural mechanisms and found an aftereffect that sup-
ports this hypothesis.

In the present work, we took a more computational ap-
proach to the problem, focusing in detail on the statistics
that are associated with lightness. We evaluated the ab-
solute effectiveness of a variety of image statistics and
their combinations in estimating the physical albedo not
only from correlations, but also from how well machine
learning algorithms can tell light and dark surfaces based
on those statistics. The results suggest that moment and
percentile statistics of the luminance histogram and sub-
band histograms are informative. Although learning algo-
rithms cannot predict lightness perfectly, their perfor-
mance is similar to that of human observers. In addition,
the pattern of errors made by the algorithms was very
similar to that of human errors. On changing these sta-
tistics of images, human judgments were affected accord-
ingly. These findings suggest that human observers use
histogram statistics for lightness estimation. Finally, in
order to manipulate the subband histograms in addition
to the luminance histogram [2] without introducing image
artifacts, we developed a modification to the Heeger—
Bergen texture synthesis algorithm.

2. IMAGE STATISTICS AS CUES TO
LIGHTNESS

In this section, from the viewpoint of ecological optics, we
analyze how simple statistics of the 2-D image of a sur-
face tell us about surface reflectance properties. Our ap-
proach is similar to that of Dror et al. [16,17], who consid-
ered images of smooth, shiny spheres rendered or
photographed under complex, real-world illumination
conditions. They measured moment (2nd, 3rd, and 4th)
and percentile (10th, 50th, and 90th) statistics of pixel in-
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Fig. 3. Examples of surfaces in our data set. All surfaces shown here were photographed under an overhead fluorescent light.

tensities and wavelet coefficients on the surface of the
spheres via a cylindrical projection of the 2-D image.
These statistical measurements were found to be useful
for classifying the spheres into shiny, matte, white, gray,
chrome, etc.

Like Dror et al., we are interested in identifying image
statistics that are diagnostic of surface reflectance prop-
erties. However, we operate under a set of assumptions
different from theirs. We do not assume a known surface
geometry; rather we allow our surfaces to possess 3-D
medium-scale structure. We consider surfaces in simple,
artificial illumination conditions, and while some of our
surfaces are glossy (non-Lambertian), we focus on statis-
tics that are predictive of albedo, i.e., the diffuse reflec-
tance component.

A. Image Data

We gathered high-dynamic-range color photographs of
several real-world surfaces, such as paper, candies, cloth,
stucco, etc. (Fig. 3). Opaque surfaces with spatially uni-
form reflectance properties were selected so that each sur-
face is associated with a unique albedo value. We used
planar surface samples with medium-scale surface struc-
ture or surface mesostructure [36]. While we allowed the
surfaces to be specular, we studied only the diffuse com-
ponent. Surfaces were photographed under three indoor
lighting conditions [see Figs. 4(a)—4(c)]. The specifics of
the camera and lighting setup are provided in Fig. 4(d).
All images were acquired in RAW 12-bit format by a
Canon EOS 10D camera. The RAW images were linear-
ized using “dcraw” software [37]. The linearization pro-
cess converts the pixel intensities in a RAW image to the
measured luminance up to a multiplicative scaling factor.
Appendix C contains details of the linearization proce-
dure.

Our surfaces were orange, yellow, red, white, or black
(Fig. 3). We used 30 surfaces of various shapes and reflec-
tance properties. As we are interested in lightness, all
color photographs were converted to gray scale by sepa-
rating the color channels. For colored surfaces, individual
color channels were treated as distinct gray-scale images.
Figures 4(e) and 4(f) show an example of the color compo-

nents of an orange surface. The blue channel looks like a
black surface, while the red channel looks like a white
surface. This happens because, for orange colored materi-
als, the different colors of light are reflected in different
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Fig. 4. Image data acquisition. Three indoor lighting conditions
were used: (a) light 1, overhead fluorescent light source; (b) light
2, focused halogen spotlight; (c) light 3, diffuse tungsten halogen
lamp. (d) Schematic layout of the setup. Two views, one from the
side and one from front, are shown. (e), (f) Red and blue color
components of an orange surface look like white and black sur-
faces, respectively. (g) Ground truth is acquired using a uni-
formly illuminated flat material sample and a standard white
surface. A user clicks on two regions, one on the sample and one
on the standard. The ratio of mean luminance of the two regions
is used to calculate the albedo for each color channel.
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ways. Thus, we can acquire photographs of surfaces that
share identical geometry and illumination conditions but
vary in their reflective properties.

Many of our materials exhibit a strong specular reflec-
tion component. One example is the crumpled black paper
in Fig. 3. In order to capture such materials with a lim-
ited dynamic range camera, we used the technique of
multiple exposure imaging. Multiple exposure photo-
graphs of the same scene were combined using HDRShop
software to produce a single high-dynamic-range image
[38]. As a final step, all images were multiplicatively nor-
malized to have the same mean image luminance. This
step is essential, because we want to know which statis-
tics of an image, other than mean luminance, are useful
for reflectance perception. In total, we had 30 materials
X3 lighting conditions X3 color channels=270 images.

For all the surfaces in our data set, we acquired the
ground truth for diffuse reflectance. A smooth, flat sample
of each surface, devoid of any mesostructure, was selected
and placed next to a standard white surface [see Fig.
4(g)]. For handmade surfaces, we prepared a flat sample
by hand. For other surfaces, we used the flattest samples
available. Both the standard and the sample were photo-
graphed under uniform illumination conditions. The dif-
fuse reflectance of the sample was calculated by using the
ratio of the linearized intensity in a region containing the
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sample to that of a region containing the standard. The
regions in the photograph were selected carefully to avoid
shadows and highlights.

B. Statistics of the Luminance Histogram
We studied the luminance histograms for the images in
our data set and found that histograms of light (high-
albedo) and dark (low-albedo) materials (most materials
are non-Lambertian and nonsmooth) display characteris-
tic differences. The luminance histograms for dark sur-
faces tend to have higher Michelson contrast (standard
deviation divided by the mean) and have longer, positive
tails. For lighter surfaces, the histograms have lower
Michelson contrast and are usually symmetric (Fig. 5).
These differences can be attributed to ways in which light
and dark surfaces interact with light. Light surfaces have
higher diffuse reflectance; therefore light bounces around
filling up the shadows, leading to a lower contrast than
dark surfaces. If a light and a dark surface have the same
amount of specular reflection, the specular highlights are
more visible in the darker surface owing to higher con-
trast. Therefore, contributions from interreflections and
highlights lead to different shapes for the luminance his-
tograms of light and dark surfaces.

These systematic differences in the luminance histo-
grams can be captured by a host of statistical measures—
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Fig. 5. Luminance histograms of light and dark materials exhibit systematic differences. (a) Light modeling clay; (d) dark stucco; and
(b), (c) the respective luminance histograms. (c), (f) Standard deviation and skewness of the log-luminance histogram is plotted against
the ground truth for albedo for all the surfaces in our data set. All plots pertain to the overhead fluorescent lighting condition.
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moment (standard deviation or skewness) or percentile
statistics (10th, 50th, or 90th). In our companion paper
[2], we had focused on one statistic, skewness or the third
standardized moment of the luminance histogram, and
we showed that skewness is correlated with albedo as
well as gloss. In the present study, from the viewpoint of
ecological optics, we consider a wide range of statistics
that are correlated with albedo, such as standard devia-
tion and percentiles of the original and filtered images.
We compute these statistics either directly on the lumi-
nance values or on the log of luminance values. We found
that statistics of the log-luminance histogram are distinct
for light and dark surfaces, just as for the luminance his-
togram.

In the rest of this paper, we will discuss the results of
log-luminance analysis. In our experience, the conclu-
sions remain the same for luminance and log-luminance
statistics. This is trivially true for order statistics that are
unchanged by a log transformation.

In Figs. 5(c) and 5(f), the standard deviation and skew-
ness of the log-luminance histogram is plotted against the
true albedo of a surface. The dependence of the moment
statistics on the physical property can be seen in these
plots. Receiver operating characteristic (ROC) analysis of-
fers another way of visualizing this correlation. The ROC
is a plot of the true positive rate versus the false alarm
rate of a binary classifier. A perfect classifier achieves
100% classification accuracy with a 0% false alarm rate,
and the area under the ROC curve (AUC) is 1.0. For the
worst classifier (unbiased coin flip), the true positive rate
equals the false alarm rate (AUC=0.5). In our case, if any
of the statistics—90th percentile, standard deviation, or
skewness of log-luminance—is used to classify surfaces as
light (physical albedo <0.5) or dark (albedo >0.5), the
ROC curves lie somewhere in between the ideal and the
worst classifier curves (AUC ranges from 0.73 to 0.77)
[Fig. 6(a)l. The performance of moment statistics is sig-
nificantly above chance, implying that both statistics
yield useful information about albedo. Other percentile
statistics (10th and 50th) also have similar ROC curves
(AUC=0.69 and 0.77, respectively).

While ROC analysis considers the utility of a statistic
for binary reflectance classification, we can use regression
analyses to see how well the statistics estimate reflec-
tance. Figure 6(b) shows that a linear regression fit is an
inadequate model for the relationship between skewness
of log-luminance and albedo. Similar plots were obtained
for other moment and percentile statistics of log-
luminance. We also conducted nonlinear regression
analyses in order to model the data in Fig. 6(b) better. We
found that applying a log transformation to the axes of
Fig. 6(b) leads to a somewhat improved linear fit [Fig.
6(c)]. As skewness and albedo are dimensionless quanti-
ties, applying a log transformation does not change the
physical significance of our results. Figure 6(d) shows the
log—log plot for the 90th percentile of log-luminance his-
togram and albedo. Visualizing the relationship between
our statistics and albedo is easier after applying the log
transformations. However, as the r? statistic in Figs. 6(c)
and 6(d) indicates, these nonlinear transformations do
not capture the dependence of statistics on albedo en-
tirely. We did not use more complex models to nail down
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the behavior of our data because of the danger of overfit-
ting. We have only 30 materials in our data set. While the
linear fits in Figs. 6(b)-6(d) are not perfect, they are still
statistically significant. Therefore, our statistics contain
useful information, although the relationship between
statistics and diffuse reflectance is not entirely straight-
forward.

It is important to emphasize that the statistics de-
scribed thus far are predictive of albedo as long as the im-
ages on which they are computed look like surfaces. The
same statistics are of no use when measured on arbitrary
images that are not associated with a value of albedo [2].
Indeed if we pixel scramble our images, thereby destroy-
ing the perception of a surface, the luminance statistics
just described remain unchanged.

C. Statistics of Subband Histograms

As luminance (or log-luminance) statistics are insensitive
to spatial structure, we examined the statistics of filter
outputs next. This is a reasonable thing to do because the
visual system is more likely to have access to filtered val-
ues than to raw luminance values. We used center—
surround and oriented edge detection filters in a multi-
scale decomposition [39,40]. In Fig. 7, one observes that
pixel histograms of filtered images look different for light
and dark surfaces. For dark surfaces, filter output histo-
grams have heavier tails and, in the case of center—
surround filtering, the outputs are also skewed.

The filters amplify the local contrast differences be-
tween white and black surfaces. The skewness of the
center—surround filter outputs is presumably related to
the asymmetry in the distribution of shadows and high-
lights in natural images. Unlike shadows, which tend to
be spread over a larger image region, specular highlights
tend to be small and concentrated. It is likely that filter
output statistics are affected by these characteristic
asymmetries. Figures 8(a) and 8(b) plot ROC curves for
subband statistics—standard deviation and 90th percen-
tile. Individual statistics fare much better than chance
and hence are predictive of albedo. Figures 8(c) and 8(d)
plot the log of the 90th percentile of filter outputs against
the log of albedo. The linear regression fits in Figs. 8(c)
and 8(d) demonstrate that the filter statistics are highly
correlated with albedo.

In our experiments, we also found that the skewness
statistic is sensitive to the choice of filters and filter pa-
rameters. Center—surround filters are somewhat better
than oriented filters at the task of skewness detection.
However, in terms of albedo prediction, all statistics, both
of log-luminance and the two kinds of filters, perform
about equally well.

D. Combining Statistics

Given that individual statistics can predict albedo fairly
well, it is interesting to ask how the statistics perform
relative to one another. In Figs. 6 and 8 we observe that
all statistics—moments and percentiles derived from lu-
minance or filter outputs—perform about equally well in
ROC tests and regression analyses. Not only do all the
statistics predict albedo with the same degree of success,
but we found that they are also correlated with one an-
other. Consider Fig. 9(a): At first glance, it is not clear



Sharan et al.

1 + -
0.9}
0.8p
0Tk
o 0.6f
o3
& os} &
o 0.4F
0.3}
0.2} —{— 90th percentile (AUC = 0.73)
Skewness (AUC =0.77)
0.1}F A Std. Dev. (AUC =0.76)
— Chance (AUC =0.5)
i " A A ]
] T
0 02 04 06 08 1
False Alarm Rate
(a)
35
3[ - .
" -
25 : =
a\ -
-A& 2
g 15
-
m.
;gﬁ 05
0
05
R a a a a a - -, a
45 4 35 3 25 2 15 1 05 [v]
log(Diffuse reflectance)

©

Vol. 25, No. 4/April 2008/J. Opt. Soc. Am. A 851

7
6F + L
.
5 .
.
4F e
g o2
3 -
§ .
R
v

Diffuse reflectance

(b)

log(90th Percentile)

5.5 -:l -3?5 -3 -2t5 -é -1?5 -‘.I -0:5 0
log(Daffuse reflectance)

(d)

Fig. 6. (a) ROC curves for the 90th percentile, standard deviation, and skewness of log-luminance values. These statistics perform well
above chance at the task of classifying surfaces as light or dark. (b) Skewness of the log-luminance histogram is plotted against the
physical diffuse reflectance. A linear regression model is a poor fit (p <0.05, r2=0.27). (c) Applying a log transformation to both axes of (b)
improves the fit of the linear regression model (p <0.05, r2=0.34). (c) Log of 90th percentile of the log-luminance histogram is plotted
against the log of the diffuse reflectance. The linear fit is still not very good (p <0.05, r2=0.29). Statistics were pooled across all lighting

conditions for all plots in this figure.

why the standard deviation of log-luminance and the 90th
percentile statistic of the center—surround filter outputs
should covary. We performed chi-square independence
tests and mutual information values to confirm these em-
pirical correlations. In our previous work [2], we had ob-
served that the skewness of filter outputs is highly,
though not completely, correlated with the skewness of
the luminance histogram for images like those in Fig. 3.
In a sense, it is not surprising that the statistics are de-
pendent on one another. We noted earlier that shapes of
the histograms of log-luminance and filter outputs have
distinctly different shapes for light and dark surfaces.
These characteristic differences can be captured in vari-
ous ways by various statistics. The surfaces with lower al-
bedo have higher local contrast as well as more structure

at higher frequencies. Therefore, the statistics that mea-
sure contrast (e.g., standard deviation) covary with the
statistics that measure energy in higher frequency (e.g.,
90th percentiles) for each surface.

In spite of the high degree of correlation, we found that
for purposes of albedo estimation, combining a few statis-
tics is better than using just one. We used a support vec-
tor regression technique with a linear kernel to combine
statistics [41]. The image data set was divided into three
groups, one of which was chosen as the training set. The
regression technique learned a linear relationship be-
tween a chosen set of statistics (features) measured on
the training set and the ground truth values for albedo. A
linear kernel was chosen for simplicity. The & parameter
of the regression was set to 0.1, and the penalty param-
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(f) LoG and Sobel filter outputs; (g) pixel histograms of images in (b) and (e); (h) pixel histograms of images in (c) and (f). All plots pertain

to the overhead fluorescent lighting condition.

eter C was chosen by fivefold cross validation on the
training set. Once the regression parameters are learned,
the technique can provide an estimate of the albedo for
any new image of a surface. It is important to clarify that
the regression technique fits a linear model to our statis-
tics to predict the albedo. Even though we noted earlier
(Figs. 6 and 8) that a linear model can predict “log(al-
bedo)” from “log(statistic)” somewhat better than albedo
from statistic, we did not use log transformations in our
regression model. This is because the increase in predic-
tion performance is not enough to justify the added com-
plexity of the regression model.

Figures 9(b)-9(d) show the outputs of three linear mod-
els that differ in the number and type of statistics they
use to predict albedo. In these figures we see that the per-
formance of a linear model improves by using two statis-
tics instead of one. However, on adding any more statis-
tics, the gains to be made are not significant. As we tried

to incorporate more than two or three statistics as fea-
tures in our models, the correlation among the statistics
led to saturation in performance. We found that the pre-
cise choice of features (moments or percentiles, luminance
or filter statistics) or the exact number of features (two,
three, or four) is not too critical. So, for the rest of this
work, we will use a fixed linear model (henceforth re-
ferred to as the “model” or “regression technique”). The
model uses three statistics—standard deviation, 10th per-
centile, and 90th percentile of the center—surround filter
output.

In Fig. 10, the output of the model is compared to the
ground truth for albedo. We see that the regression tech-
nique is not perfect at estimating the physical albedo, but
it does a fairly good job. Interestingly, we found that the
technique makes larger errors on surfaces that are flat
and nearly Lambertian than those with more complex ge-
ometry and reflectance properties. This performance is
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Fig. 8. ROC curves for statistics of filter outputs: (a) 90th percentile, skewness, and standard deviation of LoG filter output; (b) 90th
percentile and standard deviation for Sobel filter output are significantly above chance; (c), (d) plot the log of the 90th percentile of the
LoG and Sobel filter outputs, respectively, against the log of physical diffuse reflectance. The linear regression fits are shown as black
lines (p <0.05); r? values are 0.63 and 0.62 for (c) and (d), respectively.

similar to human observers (Fig. 1). To study the correla-
tion between statistics and perception better, we con-
ducted psychophysical experiments to measure human
performance on our images.

3. EXPERIMENT I

We asked human observers to rate the lightness for all
the photographs in our data set in a context similar to the
Gelb conditions of Fig. 1. From our informal “anti-Gelb”
observations in Fig. 2, we know that such a task is mean-
ingful. It is easy to judge the lightness of rough non-
Lambertian surfaces in isolation.

A. Stimuli

The image data of the previous section were used as
stimuli for this experiment. The mean luminance equal-
ized images were displayed on a gamma-corrected LCD
monitor. The images were displayed at a resolution of
512X 512 pixels against a middle gray background. The

intensity of the background was set to the mean image lu-
minance; thus both variables do not change throughout
the experiment.

B. Apparatus

The three indoor light sources [see Figs. 4(a)-4(d)] that
were used to photograph our surfaces were an overhead
fluorescent lamp (Kino Flo Diva Lite 200) placed 60 cm
above the sample surface, a halogen spotlight (LTM Pep-
per 300 W Quartz-Fresnel) placed 175cm away and
120 cm above, and finally a light box (Lowel Rifa 66,
750 W tungsten halogen lamp) that produced diffuse, soft
lighting 120 cm away from the surface. The LCD monitor
was a Dell 20.1in. flat panel (1in.=2.54cm) at 1280
X 1024 resolution, 75 Hz frame rate, and 70 cd/m? mean
luminance. To obtain the ground truth [see Fig. 4(g)] the
standard white surface was chosen from the Gretag Mac-
beth Color Checker chart. Light meters Sekonic L-608
and Minolta CS-100 were used to ensure uniform illumi-
nation.
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Fig. 9. (a) Standard deviation of log-luminance and the 90th
percentile of LoG filter output are correlated (r=0.6237, p
<0.05). (b), (¢), (d) Outputs of three linear models are plotted
against the true diffuse reflectance for a subset of our surfaces.
Model A uses one statistic, the standard deviation of LoG filter
outputs to predict the albedo of a surface. Model B uses two
statistics—standard deviation and 10th percentile of LoG filter
outputs. Model C uses three statistics—standard deviation and
the 10th and 90th percentiles of LoG filter outputs. For all three
cases, the model ratings were averaged over all three lighting
conditions. The error bars indicate the minimum and maximum
ratings. If the models were perfect at predicting physical albedo,
all points would lie along the black line with slope=1. The slopes
of the best fit lines are indicated in each plot. The asterisk de-
notes statistical significance (p <0.05). The r? statistic is similar
for all plots—0.42 for (b), 0.38 for (c), and 0.40 for (d).

Observers viewed the LCD monitor in a dark room. A
box enclosing the two light sources and a Munsell chart
with standard surface patches served as the reference
(see Fig. 11). The box was constructed from white foam

1
0.8
- x
2 06 :
3 * = t
3 i
c 04
=
0.2
() e
0 0.2 0.4 0.6 0.8 |
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Fig. 10. Output of the regression technique is plotted versus
ground truth for diffuse reflectance (albedo). Bars indicate maxi-
mum and minimum ratings. If the technique were perfect, all
points would lie along the diagonal.
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board panels and covered with dark gray craft paper on
the outside. One side of the box was left open to allow ob-
servers to view the Munsell chart. Compact fluorescent
light bulbs of color temperature 5500 K (SunWave full
spectrum CFL bulbs) were used to uniformly illuminate
the chart. The Munsell chart comprised eight gray
squares, numbered 1 to 8, on a random noise background
[see Fig. 11(b)]. The gray squares were matched by eye to
the Munsell standard reflectance, N2 through N9 (Gretag
Macbeth 31-step neutral value scale) under the SunWave
bulbs. The squares as well as the random noise back-
ground were printed on Epson enhanced matte paper us-
ing an Epson Stylus Photo R800 printer.

C. Procedure

Observers viewed the photographs, one after another, and
provided ratings between 1 and 8 to indicate the standard
Munsell patch that was closest in reflectance to the
stimuli. Fractional ratings such as 4.5 were permitted to
allow observers to express their answers at a finer reso-
lution than the Munsell scale provided to them. However,
most observers did not use fractional ratings. For the few
who did, the fractional ratings were converted to the
equivalent albedo value. Observers were divided into
three groups. Each group viewed a different set of sur-
faces. The experiment was self-paced. For each surface,
three repetitions were run for each lighting condition. The
order of the images was randomized. The experiment
lasted 30 min.

D. Observers

Twelve observers with normal or corrected-to-normal vi-
sion participated in the experiment. All observers were
naive to the purpose of the experiment.

E. Results

We found that observers can, to some extent, estimate the
albedo or diffuse surface reflectance under our experimen-
tal conditions. Figure 12 plots the perceived diffuse reflec-
tance versus the ground truth for observers in one group.
Observers are not perfect at estimating ground truth, but
they perform reasonably well. In Fig. 12, we reject the
null hypothesis (p <0.05) that there is no linear relation-
ship between observer data and ground truth. Therefore,
contrary to the predictions made by classical lightness
theories, human observers can judge lightness in the ab-
sence of mean luminance information and context. Our
observers tend to agree with one another (see Fig. 13). We
analyzed the deviation of observer ratings from ground
truth, i.e., the errors observers made. We found that the
size of the error does not seem to be related to the physi-
cal reflectance of the surface. In other words, black mate-
rials, are not harder to judge than white materials, for ex-
ample. Instead, it seems that the closer a surface is to the
flat, smooth, purely matte ideal of Fig. 1(a), the harder it
is to judge its diffuse reflectance (see Fig. 14).

In our data, the effect of lighting was not significant. In
Fig. 15 we see that changing the illumination does not af-
fect the perceived reflectance of a surface too much. This
observation is consistent with the work of Fleming et al.
because our illumination conditions did not vary as dras-
tically as theirs [18]. Fleming et al. showed that reflec-
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Fig. 11. Observers viewed stimuli on the LCD panel and matched reflectance properties of the surface on the screen to one of the stan-
dard surfaces on the Munsell chart. (a) Dimensions of experimental layout, (b) photograph of the reference box, (¢) dimensions of the box.

tance perception is significantly poorer under atypical il-
lumination (e.g., Gaussian noise) than under real-world
illumination. Our lighting conditions fall in the real-world
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Fig. 12. Results of experiment I. Perceived albedo versus
ground truth for four observers. Responses were pooled across all
lighting conditions. Error bars indicate 95% confidence intervals.
The responses of a veridical observer would lie along the black
line with slope=1. The gray line is the linear regression fit to
each observer’s data. The slope of the best fit line is indicated in
each plot. The asterisk denotes significance (p-value <0.05).

category and are all indoor laboratory setups. Therefore,
it is not surprising that observer performance did not
vary with illumination. It is important to note that in our
data set, we used a fixed viewpoint and probed three illu-
mination directions. Unlike databases acquired for BRDF
measurements, such as the CURET database, we did not
explore the space of lighting directions and viewpoints ex-
tensively [42]. One may ask, What effect do variations in
lighting direction and camera viewpoint have on our re-
sults? In Appendix B we have addressed this issue in de-
tail.

Finally, as a consequence of using colored surfaces, we
could study how observers rated the different color chan-
nels. Figure 16 displays observer ratings for the R, G, and
B channels of a colored surface. The color channels differ
only in the diffuse and specular reflectance properties; the
illumination conditions and surface geometry remain the
same. Observers rate each color channel differently,
thereby establishing that interreflections and surface
gloss influence lightness perception greatly.

Figure 17 allows a comparison of observer performance
with that of diagnostic image statistics. We note that both
observers and statistics cannot predict the ground truth
perfectly, but both of them make similar mistakes. The
correlation coefficient r2 ranges from 0.6 to 0.78. This
agreement is surprising since the statistics have no clue
as to how observers estimate reflectance properties. The
learning technique that employs statistics as features
was trained to predict the physical diffuse reflectance, not
human performance. These findings suggest that image
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Fig. 14. Surfaces in (a) and (b) have similar diffuse reflectance values (0.085 and 0.092), respectively but dissimilar specular compo-
nents and surface shapes. (¢), (d) Errors in human judgments for the two surfaces seem to vary with the change in specular reflectance
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statistics of the kind we have considered must capture following question: How do changes in the histogram sta-
perceptually relevant information. tistics of an image affect reflectance perception? We know
that as the physical reflectance of a surface changes, the
histogram statistics change accordingly. If instead we ma-
4. EXPERIMENT II nipulate the statistics of a given image, what happens? As
Given the strong correlation between perceived reflec- discussed earlier, most of our statistics, moments, and
tance and the informative image statistics, we posed the percentiles of luminance and filtered outputs are corre-
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Fig. 16. Observers do not rate individual color channels in the
same way. (a) Red channel, (b) green channel, and (¢) B channel
of an orange surface and the respective averaged observer rat-
ings. (d) Even with the same mean image luminance, illumina-
tion conditions, and surface geometry, observers can extract use-
ful information from the image to discern diffuse reflectance.

lated with one another in our data set. It is difficult to ma-
nipulate the statistics independently of one another by
applying monotonic transformations on the images. In
our previous study, we manipulated only the luminance
histogram [2]. In the present work, we manipulate the
histogram statistics all at once. As the luminance and
subband statistics are correlated, an iterative technique
such as the Heeger—Bergen texture synthesis algorithm,
is required to simultaneously constrain both kinds of sta-
tistics [43]. The Heeger-Bergen algorithm iteratively
matches the pixel histogram and the histogram of wavelet
coefficients of a source image texture to a target image
texture.

The algorithm converges in a few iterations to an image
that has nearly the same pixel and wavelet coefficient his-
tograms as the target image. The Heeger—Bergen algo-
rithm may be applied in our case in the following manner:
Let an image of a black surface be the source, and an im-
age of a white surface be the target. The result of running
the Heeger—Bergen algorithm on the black surface will be
an image of a surface that has the same histogram statis-
tics as the white surface. If histogram statistics capture
anything of perceptual relevance, the resulting image
should look lighter than the original black surface. We
found that applying the Heeger—Bergen technique di-
rectly to our images in the way just described resulted in
visible image artifacts.

To remove the artifacts, we introduce the following
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Fig. 17. Agreement between observers and the regression technique (the model) is fairly high. The r? values here are somewhat lower
than the agreement between observers but are not very different (Fig. 13).

modification to the Heeger—Bergen algorithm: Instead of
matching histograms of the filter subbands directly, we
match histograms of activity maps instead. Activity maps
are obtained by blurring the absolute value of filter sub-
bands. A more detailed discussion of the modified Heeger—
Bergen technique may be found in Appendix A. Figure
18(b) shows the effect of swapping the histogram statis-
tics of a white and a black surface with the activity map
Heeger—Bergen technique. We see that the perception of
the surfaces is remarkably altered. The manipulated
black surface looks much lighter, and the manipulated
white surface looks much darker. To test this observation

(@

more conclusively, we ran an additional experiment with
exactly the same conditions as before (experiment I). The
only change was that we used histogram-manipulated im-
ages along with the original photographs of the surfaces.
The same 12 observers who took part in experiment I also
participated in experiment II. Observers were divided
into three groups as before. Each group viewed a different
set of surfaces. The partitioning of surfaces across groups
was precisely the same as in experiment I. We ensured
that for a given observer, stimuli presented during experi-
ment I were not repeated in experiment II. Figure 19
plots observer data for this experiment. Observers consis-

@

Fig. 18. (a) Light surface and (b) dark surface. (c) Result of matching histogram statistics of (a) to those of (b) and (d) and vice versa.
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Fig. 19. Observer data for histogram-manipulated images (a)
through (d) show four different surfaces in one group. The chan-
nels R and B refer to the red and blue color channels, respec-
tively, of the color photographs of each surface. The R2B channel
is the result of matching the histogram statistics of the R chan-
nel image to that of the B channel. B2R is the result of matching
the histogram statistics of the B channel image to that of the R
channel. The data are pooled across all observers in the group.
All plots here are from the overhead fluorescent lighting condi-
tion. Error bars are 95% confidence intervals. We note that ob-
servers consistently rate R2B similar to B rather than to R and
vice versa.

tently rate the manipulated images as more similar to the
target image than the source image. In other words, im-
ages with similar histogram statistics are rated similarly.
These results establish a two-way relationship between
perceived reflectance and histogram statistics. Changing
statistics affects reflectance perception, and knowing the
statistics lets us predict the perception.

5. DISCUSSION

In this work, we considered a range of real-world sur-
faces. The interaction of light with our surfaces is more
complex than with planar, Lambertian surfaces that have
commonly been considered thus far. We found that human
observers were not perfectly lightness constant, but their
constancy improved as surfaces became more complex. In
the absence of context and mean luminance information,
the visual system relies on other cues present in the im-
age. For the surfaces we considered, diffuse interreflec-
tions and specular highlights offer rich information about
reflectance properties. We proposed quantitative image
measurements that are correlated with the diffuse sur-
face reflectance. Moment and percentile statistics of the
luminance histogram and of filter output histograms were
useful. A linear combination of these statistics was used
to estimate the diffuse reflectance of our surfaces with an
accuracy similar to that of human observers. Not only did
the statistics achieve the same degree of success, they
seemed to make the same mistakes as humans [10].
Moreover, manipulating these candidate statistics in an
image of a surface altered the perception of lightness (ex-
periment II). Therefore, it is conceivable that our diagnos-
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tic statistics are used as cues to lightness by the visual
system, especially when other cues such as mean lumi-
nance or luminance ratios offer no information.

How do our results compare with other studies on light-
ness perception that have used complex real-world
stimuli? Gilchrist and Jacobsen’s black-and-white rooms
were viewed in isolation, without a context with which to
compare [4]. As the rooms were matte and mean lumi-
nance was accounted for, the only useful information
available to the observers was the pattern of diffuse inter-
reflections. It is likely that observers employed cues such
as luminance histogram statistics to distinguish the
rooms. Our findings confirm Nishida and Shinya’s origi-
nal observation that the luminance histogram influences
lightness perception [15]. Rutherford and Brainard’s find-
ing that observers do not explicitly perceive the illumi-
nant appears to favor our approach of using image cues to
estimate lightness over inverse optics approaches [44].
Robilotto and Zaidi asked observers to judge the lightness
of crumpled gray papers, some with patterns on them, in
a 3-D setup under natural viewing conditions [19,20].
They found that observer performance could be explained
in terms of low-level cues such as brightness and contrast.
In their experiments, unlike ours, a surrounding context
was always included. Therefore, cues from the surround
compete with any information available from highlights
and interreflections within the paper stimulus.

Several issues remain unanswered in the present work.
We considered the restricted case of surfaces with spa-
tially homogenous reflectance properties under simple ar-
tificial illumination. We know from our daily visual expe-
rience that we estimate lightness under more challenging
illumination and surface conditions. Therefore, it is con-
ceivable that there exist other cues or informative image
measurements that apply to a less restricted setting than
ours. Another issue that requires resolution is the inter-
dependence of histogram statistics. We found a high de-
gree of correlation in our set of statistics. Does this obser-
vation extend beyond our limited set of surfaces and
illumination conditions? In fact, in the companion study,
we manipulated the standard deviation and skewness of
the luminance histogram independently of each other and
found that skewness was a stronger cue [2]. Such a ma-
nipulation was not possible in the current work, given the
number of dependent statistics we considered.

Our experiments with the application of the Heeger—
Bergen texture synthesis technique to images of surfaces
revealed a potential application—material transforma-
tion. One can imagine a Photoshop plugin that changes
the appearance of a surface in an image region by ma-
nipulating the local image statistics. Our current modifi-
cation to the Heeger—Bergen technique has had modest
success in achieving this goal. Finally, a major question
that remains unanswered is, What image statistics dis-
tinguish an image of a natural surface from an arbitrary
image? Our statistics can predict perception only when
we are given an image of a real-world surface. For any
other image, the statistics and indeed even lightness
judgments are not very meaningful. In our companion
work, we addressed this question to some extent [2]. For
pixel-scrambled images (which look like noise), when ob-
servers are asked to make lightness judgments, they
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judge the overall brightness instead. Since luminance sta-
tistics are unaffected by pixel scrambling, they cannot ex-
plain perception. Clearly, in such cases, other perceptual
mechanisms must be at work [45]. On phase scrambling
our surface images, luminance and subband statistics can
be retained, but spatial structure is lost. For such phase-
scrambled images, lightness perception can be explained
by our set of diagnostic image statistics, but not the per-
ception of surface gloss. Gloss perception seems very sen-
sitive to the interpretation of an image as a plausible real-
world situation [18,23]. Further progress on these
questions is required.

In the current work, as well as in the companion paper,
we suggest a new perspective on natural image statistics.
While variance and kurtosis, both even-order statistics,
have been extensively studied, skewness, an odd statistic,
has been largely neglected. We also demonstrated the
utility of percentile statistics. These findings have impli-
cations for machine vision systems that perform material
recognition as well as for psychophysicists and physiolo-
gists studying midlevel vision mechanisms and represen-
tations [46-48].

6. CONCLUSION

Humans use a variety of cues in judging the albedo of a
surface. For an ideal planar surface, context is essential,
when the surface is viewed in isolation, there is insuffi-
cient information to estimate albedo. However, surfaces in
the real world are more complex. They have both diffuse
and specular reflection, and they often have significant
mesostructure. The resulting image has a visual texture
that offers some cues about the surface’s albedo. We have
found that a variety of simple image statistics are corre-

Modified subband k

Histogram matching in original

Other modified subbands ———»

Sharan et al.

lated with albedo. Useful statistics, which may be com-
puted on the luminance histogram or on subband histo-
grams, include standard deviation, skewness, and
percentiles. Linear combinations of these statistics allow
a machine vision system, operating within the con-
strained world of single surfaces, to estimate the physical
albedo reasonably well. The machine tends to make the
same mistakes that humans do, suggesting that humans
are using similar statistics in making their judgments. By
manipulating these statistics, we can increase or decrease
the apparent albedo of a given surface in a predictable
way, giving further evidence that these image statistics
play a major role in the surface judgments.

APPENDIX A: MODIFIED HEEGER-BERGEN
ALGORITHM

In the Heeger-Bergen algorithm the luminance histo-
gram as well the wavelet subband histograms of a target
image are iteratively matched to those of a source image
[43]. The histogram-matching procedure in the Heeger—
Bergen algorithm involves applying a nonlinear pointwise
gain; i.e., each pixel value in an image is mapped to a new
value, independent of other pixels. A pointwise gain is not
desirable in the overcomplete filter subbands because if
the value of a pixel is manipulated independently of its
neighbors, local distortions can occur in the final output.
We propose the following solution: Instead of matching
histograms of the source and target subbands directly, we
will modify the target subband histograms via activity
maps. An activity map is defined as the result obtained by
taking the absolute value of a subband and then blurring
it with a Gaussian kernel (Fig. 20).

Synthesized (t + 1)

Heeger-Bergen algorithm

Synthesized (t)
Subband k blur(abs(.))
Subbank k blur(abs(.))
Target Image

Activity maps

Source

Target

Modified source
activity map

Fig. 20. Block diagram of the activity-map-based Heeger—Bergen technique.
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Fig. 21. Comparison of histogram-matching techniques: (a) source image, (b) target image, (¢) luminance histogram matching, (d)

Heeger-Bergen output, (e) activity-map-based Heeger—-Bergen output.

The combination of absolute value and blurring trans-
forms the subband image into a local energy map. When
we match the histograms of the activity maps of the tar-
get and source images, then a pointwise gain is applied to
the source activity map. As the activity map may be
thought of as a local energy map, a pointwise gain on the
source activity map is effectively a locally smooth gain on
the original subband. Let the original source activity map
be Agie and the histogram matched source activity map
be A difiea- Then the gain map G is calculated as

Apodified
A b

orig

where G is multiplied to the original source subband to
obtain the modified subband. Therefore, matching the
histograms of the activity maps allows us to apply a spa-
tially local gain, which results in fewer image artifacts
and smoother-looking pictures. The local gain modifies
the value at a pixel depending on the values of its neigh-
bors; therefore the distortions introduced by histogram
matching are reduced locally. Figure 21 shows the im-
provements obtained by using the modified Heeger—
Bergen technique.

APPENDIX B: EFFECTS OF VARYING
ILLUMINATION AND VIEWPOINT
ON IMAGE STATISTICS AND PERCEPTION

In our image data, we used a fixed viewpoint and sampled
three illumination directions with different light sources
(Figs. 3 and 4). In our psychophysical experiments, we
found that the perceived reflectance of a surface was not
significantly affected by these changes in illumination
conditions (Fig. 15). It may be argued that since we did
not explore the space of viewing and illumination direc-
tions extensively, the results of Fig. 15 are somewhat pre-
liminary. In order to address this concern, we performed
some additional computational and psychophysical ex-
periments.

Image data that are acquired for BRDF measurement
are sampled densely along viewpoint and illumination di-
rections. For example, the Columbia—Utrecht (CURET)
database contains photographs of 61 real-world surfaces
[42]. Each surface has been captured from 205 distinct
combinations of viewing and illumination angles. Such a
database would be useful for studying the effect of illumi-
nation and viewpoint variation on reflectance perception.
However, there are two reasons why the CURET database
is not ideal for our purposes. First, the resolution of all

CURET images is 640 X 480 pixels, which includes pixels
belonging to the dark background and the mounting
equipment. So the effective pixel resolution of the mate-
rial samples is much lower. It can be as low as 50 X 50 pix-
els at oblique viewing angles. Second, while the materials
in the CURET database have wide-ranging reflectance
properties, some of them have spatially varying reflec-
tance functions (e.g., straw, peacock feather, and corn
husk) or possess shallow mesostructure (e.g., leather,
frosted glass, and corduroy). In the present study, we fo-
cused on materials with significant mesostructure that
can be associated with a unique value of albedo. Thus, we
are limited to only a quarter of the 61 CURET materials.

In spite of the concerns just outlined, the CURET im-
ages are very useful because they span a broad spectrum
of illumination and viewing directions. We chose nine ma-
terials from the database (materials 10-12 and 16-21)
that matched our criteria of spatially uniform albedo and
nontrivial mesostructure. For each material, we selected
159 of the 205 photographs and cropped out the material
sample to obtain 100X 100 pixel patches. In the CURET
images, there is an inherent trade-off between desired
pixel resolution of a material and the number of view-
points that can be used. In order to accommodate as many
oblique views as possible without sacrificing too much res-
olution, we decided on 100X 100 pixels [see Fig. 22(a)].
The CURET image data come calibrated to ensure linear-
ity between pixels and radiance. For CURET materials,
the ground truth for reflectance is known in terms of
BRDF tables and Oren—Nayar model parameters [49]. We
used the Oren—Nayar model parameterization, since the
parameter p corresponds to albedo.

In addition to the CURET images, we acquired more
image data for our own materials. The time and resource
costs of reproducing something like the CURET database
with our materials are immense. Therefore, we consid-
ered only two viewpoints and three illumination direc-
tions. The images were 512 X 512 pixel resolution [see Fig.
22(b)]. We chose nine materials from our collection (Fig.
3). Our selection included materials such as handmade
stucco, modeling clay, and Tic Tacs. The images were ac-
quired and linearized in the same manner as described
before. The ground truth for albedo for these materials
has already been measured earlier.

We analyzed the image statistics for both sets of
images—CURET images and ours. Figure 23 plots the
skewness of center—surround filtered images against the
ground truth for albedo. Similar results were obtained for
other moment and percentile statistics, both for lumi-
nance and filter outputs. We observed that the statistics
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Fig. 22. (a) Some of the CURET images we used. The three rows correspond to materials 11 (plaster), 18 (rug), and 21 (sponge). Three
different views are shown for each material. The images were multiplicatively normalized to have the same mean luminance. (b) One of
the materials from our data set. The two rows correspond to two viewpoints and the columns to the three different illumination direc-

tions. All images were normalized to have the same mean.

varied enormously with viewpoint and illumination varia-
tion in the CURET data set but much less so for our im-
ages. These differences may be attributed to the fact that
our images do not explore the space of viewpoint and illu-
mination variation as aggressively as the CURET images.
There is another, more subtle, reason for these results.
Our images differ from the CURET images in a funda-
mental way. Our surfaces have deeper mesostructure
than the CURET surfaces (Fig. 22). For shallower sur-
faces, the appearance changes more dramatically as view-
point and illumination directions are varied. Consider the
shadows in an image of a surface. For a shallow surface,
as the illumination (or viewpoint) becomes grazing, dark
shadows appear in the image. For a 3-D surface with
deeper mesostructure, dark shadows are always present
because no matter what the illumination (or viewpoint),
self-shadowing occurs due to higher surface relief. Indeed,
when one considers the CURET images of Fig. 22(a), par-
ticularly those in the first row, it is hard to believe that
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the same surface can be made to look so different by mov-
ing the lights and camera around. We conducted psycho-
physical experiments to study these effects further.

We asked three observers (two naive subjects and one
of the authors) to rate the lightness of mean luminance
normalized images (both CURET and ours) in exactly the
same experimental setup as before. For each of the nine
CURET materials, six representative images were chosen
[Fig. 22(a) show three such images for three materials].
For our materials, all six views were used for the nine ma-
terials. Images were viewed against a midgray back-
ground, one at a time, and observers indicated the Mun-
sell chip that was closest in reflectance to the sample
image on screen. Two repetitions were run for each image.
Figure 24 plots the perceived diffuse reflectance against
true reflectance for both sets of images. Observers were
fairly accurate in their lightness judgments for our im-
ages but performed poorly on the CURET images. These
results confirm the informal observations we made earlier
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Fig. 23. Effect of varying illumination and viewpoint on image statistics. The skewness of center—surround filtered images is plotted
against the ground truth for diffuse reflectance. A Laplacian of a Gaussian filter was used (0=0.5, size 5 X5 pixels). (a) Skewness sta-
tistics is plotted for all 159 images of the 9 CURET materials against the Oren—Nayar model parameter “rho” [49]. Note the vertical
smear at each value of rho. (b) All six images of the nine materials in our data set were used. The x axis is the ground truth for diffuse

reflectance for the materials.
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Fig. 24. Perceived reflectance for an observer is plotted against the ground truth. For each material, observer ratings were pooled across
all viewing and illumination directions. Error bars are 95% confidence intervals. (a) CURET images: There is no linear relationship
between perceived and true reflectance (p>0.05). (b) Our images: Observer data can be explained by a linear model (p <0.05, 72=0.85).

Similar trends were obtained for other observers.

pertaining to Fig. 22(a). The poorer resolution of the
CURET images was an issue. Observers reported that
some CURET images appeared to have wallpaperlike tex-
tures rather than 3-D surfaces of single albedo. Observers
also complained about the grazing-angle CURET pictures
that are formed of alternating stripes of dark shadows
and bright highlights. Even when these pictures are seen
as 3-D surfaces, it is hard to gauge the true albedo.

How well do image statistics account for these percep-
tual results? Figure 25 plots the perceived reflectance for
the observer of Fig. 24 against the skewness of the image
after center—surround filtering. Again, observer data for
our images can be explained reasonably well by our cho-
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sen statistics. For the CURET images also, we see evi-
dence for a correlation between perceived reflectance and
our statistics. This is encouraging, given the dismal cor-
relations in Figs. 23(a) and 24(a).

Taken together, these results lead us to conclude that
the relationship among image statistics, physical reflec-
tance, and reflectance perception holds for the images we
acquired but breaks down for the CURET data set. As
mentioned earlier, our images differ from the CURET im-
ages in many ways. It is reasonable to assume that these
differences in computational and psychophysical results
are correlated with the nature of the data sets. A more
quantitative investigation of how factors such as surface
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Fig. 25. Perceived reflectance of an image of a surface is plotted against the skewness of the center—surround filter output. A Laplacian
of a Gaussian filter was used (0=0.5, size 5 X5 pixels). (a) CURET images and (b) our images. A linear relationship can be observed in
both plots. For (c), p<0.05, r2=0.42 and for (d), p <0.05, r>=0.64.
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Fig. 26. Verifying linearity correction. Images A and B are the linear outputs of the dcraw program for two exposures of the same scene
[37]. The original exposures were recorded in the Canon Raw format (CRW). The exposure time for B was twice that of A. All other
camera parameters were the same for A and B. The pixel values of the linearized images are plotted against each other. If the combi-
nation of internal camera processing followed by dcraw was perfectly linear, all data points would lie along a line with slope=2. The

actual fit is quite good: slope=2.1055+0.0084 (p <0.05, r2=0.94).

structure, viewing and illumination conditions, and mate-
rial properties influence image statistics (and reflectance
perception) remains a direction for future research.

APPENDIX C: LINEARIZATION OF PIXEL
VALUES

To ensure a linear relationship between pixel values and
measured luminance, we calibrated our raw image data
using dcraw software [37]; dcraw is an open-source pro-
gram that decodes the raw images acquired by a camera
in its native, manufacturer-specific format. The advan-
tage of taking photographs in the raw format is that raw
images have the most information and are processed the
least by the camera. Almost all digital cameras can be set
to produce a JPEG output instead of a raw output. Al-
though the JPEG format is convenient, it is a lossy format
and valuable data are lost as a result of the JPEG com-
pression.

We acquired our image data in the Canon RAW format
(CRW). The CRW images files were then converted by the
dcraw program to 16-bit PSD (Adobe Photoshop) file for-
mat. In order to verify the correctness of the calibration
procedure, we used the following methodology. Since we
did not take photometric measurements at each point of
our scenes, the precise luminance measurements that cor-
respond to the pixels in an image are unknown. However,
we did capture multiple exposure shots of the same scene.
We used a fixed-focal-length (50 mm) lens. We applied
manual settings for focus, aperture, and white balance
and varied the shutter speeds in intervals of 1/2f-stops
and acquired between 9 and 12 consecutive exposures for
each scene. We made use of the following principle: If the
shutter is open for twice as long, the amount of light cap-
tured is twice as much. If the dcraw outputs are truly lin-
ear, the pixels values for two images of the same scene
should be related to each other by exactly the same ratio
as the lengths of their exposure times. Figure 26 illus-
trates this reasoning for a pair of example images. If the
combination of internal camera processing followed by
dcraw was perfectly linear, the data in Fig. 26 would fit

the linear model perfectly with a slope equal to 2. The ac-
tual fit is quite good: slope=2.1055+0.0084 (p <0.05, r2
=0.94). We repeated this analysis for other image pairs
for each of our scenes and verified that the accuracy of
dcraw linearization was similar to Fig. 26.
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