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Abstract

Most current algorithms for distributed hash tables
(DHTSs) implicitly assume that all nodes participating
in the DHT are homogeneous. However, empirical ev-
idence indicates that participants are not: widely used
traces show that the participants’ network bandwidth
varies by several orders of magnitude and that the aver-
age session length varies by as much as an order of mag-
nitude. The mismatch between model and reality leads
to inefficiencies and limits to scalability.

This paper makes two primary contributions in the
pursuit of improving the scalability of DHTs. First, we
show that selecting entries in routing tables according to
their available uptime can decrease the number of main-
tenance messages by 42% when compared to the de-
fault proximity metric using a trace-driven simulation.
Second, we demonstrate that when entering participants
select their logical identifier so that the fraction of the
ID space for which they are responsible more closely
matches their fraction of the total system bandwidth,
low-bandwidth nodes obtain a 35% improvement in pro-
ductivity when nodes perform random block downloads
on a 256-node network.

1 Introduction

Original distributed hash table (DHT) designs gen-
erally assumed that all nodes were created equal, in
terms of their capacity, reliability, and network position.
Systems built with this underlying assumption exhibited
poor stretch, the ratio of overlay distance to Internet dis-
tance. To address the issue of stretch, researchers added
proximity to the basic algorithms, either explicitly, as in
Pastry [6, 30], or optionally, as in Chord [18, 32, 37].
Proximity-based lookup and routing address the hetero-
geneity that exists in network position, but do nothing to
address the heterogeneity that exists in node reliability,
the amount of time a node is participating in the system,
or capacity, the amount of network bandwidth available
to the node.

Because some nodes have significantly shorter session
times than others, they are responsible for a proportion-
ally greater number of maintenance messages. When all
nodes’ uptimes are assumed to be uniform, the entire sys-
tem becomes limited by the session lengths of the least
reliable nodes and scalability suffers. If, instead, we fa-

vor long-lived nodes in routing tables, we reduce the to-
tal number of maintenance messages and improve scal-
ability. In a similar manner, when some nodes partici-
pate over low-bandwidth links, the performance of these
nodes limits system efficiency when other nodes wait on
these overly-busy, low-bandwidth nodes. We address this
problem by relaxing logical identifier selection, allowing
lower bandwidth nodes to service a smaller fraction of
the total 1D space.

Our research divides into two main sections, each of
which addresses one of the limitations described above.
First, we show that current uptime is an effective predic-
tor of future uptime. We then incorporate the advertised
uptime of a node into our routing table selection algo-
rithm by having nodes use the node most likely to remain
up instead of the most proximate. Because routing table
entries stay in the system longer, maintenance messages
decrease by 42% when compared with the default prox-
imity metric in our experiments.

Next, we examine an alternative to proximity-based
logical identifier selection [26] that strives to distribute
load in a manner proportional to each participant’s band-
width. Each entering node estimates the fraction of the
system bandwidth that it contributes and then selects its
ID from among a small number to position itself so that
it is responsible for a similar percentage of the system’s
resources. In our experiments, this results in a 35% in-
crease in the amount of work low-bandwidth nodes can
accomplish and a 20% increase in system throughput.

Table 1 summarizes how our reliability- and capacity-
based techniques fit into the current set of DHT design
criteria.

The rest of this paper is organized as follows. In the re-
mainder of the introduction, we present the DHT model
used throughout this study. Section 2 examines select-
ing routing table entries by incorporating an uptime met-
ric. Section 3 examines selecting logical identifiers to
better match a node’s responsibility to its capacity. We
then present results from a FreePastry implementation
[13] that has been modified to perform this ID selection
running on a 256-node NetBed network [35]. Section 4
places these results in context, discussing related work
and Section 5 concludes.



| DHT construction | Description

Proximity Neighbor Selection

Choose entries in routing table based on proximity (e.g., latency).
Has largest effect on reducing stretch. Abbreviated PNS.

Proximity Route Selection

Select route “on the fly” for a given key and static routing tables.
Requires that multiple routes exist to a target.
Has minimal stretch improvement beyond PNS.

Proximity Identifier Selection

Select logical identifier based on physical location, attempting to

make physical neighbors logical neighbors.

Problems: complicates load balancing and placement of redundant copies
of blocks because neighbors have correlated failures.

Reliability Neighbor Selection

Choose entries in routing table based on reliability (e.g., uptime).
Can provide proximate and reliable neighbors when used with PNS.

Capacity Identifier Selection

Select logical identifiers based on bandwidth capacity, giving nodes
domains (i.e., workloads) commensurate with capacity.

Table 1: Previous work has shown how to do routing, neighbor selection, and ID selection on the basis of proximity.
We propose using other metrics, like reliability and capacity, which we analyze in this paper. Other metrics could include trust,
anti-proximity (for 1D selection, making correlated failures of redundancy sets less likely), and topical similarity. The default Chord
algorithm does not use Proximity Neighbor Selection, but it has been applied to Chord and evaluated by Gummadi [18] and Zhang
[37]. Hildrum evaluated several proximity metrics for Tapestry [19]. Ratnasamy explored proximity-based ID selection in CAN

[26].

1.1 Modd

We assume a generic ring- or tree-based DHT model,
a generalization of Pastry [30], Tapestry [38], and Chord
[32]. We expect that the reader is familiar with the ba-
sic properties of DHTs and common implementations;
please refer to the references just mentioned for an
overview. We limit ourselves here to a discussion of the
characteristics of DHTs that are most important to this
work.

e Several, usually many, nodes are available for most
entries in each node’s routing table, i.e., neighbor
selection is possible. Note that CAN’s hypercube
design does not permit neighbor selection [25].

e Routing tables are not symmetric; that is, if node B
is in node A’s routing table, node A is not necessar-
ily in B’s.

e Data objects are divided into equal-sized blocks
(e.g., using erasure codes [34]) and blocks are the
unit of storage and transfer: no node is storing un-
usually large files.

e Node IDs and block keys are generated uniformly
at random on a continuous integer namespace (e.g.,
(0. ..2%07) using a hash function.

e Each block has a redundancy set of identical copies
that are stored on [ logical neighbors of a block’s
authority node or root.

e The set of blocks for which a given node is root is
that node’s domain. We are concerned with two do-
main types:

counterclockwise Domain ranges counterclock-
wise from the node’s ID to its predecessor’s
ID (Chord-like).

nearest node Nodes are the root for all blocks
where theirs is the closest 1D, extending both
clockwise and counterclockwise (Pastry-like).

e Each node knows its own bandwidth and has an ap-
proximate value for the total system bandwidth.

e We do not consider caching of blocks within the
DHT, path convergence, or higher, application-level
caching.

2 Reliability Neighbor Selection

Neighbor Selection refers to the process by which
nodes are entered into routing tables. Pastry, Tapestry,
and Chord can use neighbor selection since most rout-
ing table entries can be occupied by any one of a number
of possible entries. For example, the furthest finger in
Chord can select from about half of the nodes, the penul-
timate from one quarter, and so on. Selecting any node
in the range provides the same hop count guarantees. In
a large system, these ranges will include many nodes,
so, generally, a subset of the nodes is selected before a
particular node is singled out to be placed in the routing
table. Previous work examined what happens if the most



proximate node is chosen from the sample [6, 18, 37]. In
this work, we examine selecting a node based on a com-
bination of its proximity and the likelihood that the node
will remain responsive for a long period of time.

For the purposes of this paper, we equate uptime with
reliability. Reliability is a general term that could incor-
porate uptime, link quality (drop rate), number of peers
that already linked to that node (in-degree), gross uplink
bandwidth, and other measures on a utility curve. While
we are examining the contribution of these other com-
ponents as part of our ongoing work, in this section, we
limit ourselves to the analysis of uptime. Before evaluat-
ing Reliability Neighbor Selection in trace driven simula-
tions in Section 2.1, we make several observations about
Internet node behavior.

1. Choosing routing nodes based solely on proxim-
ity can actually lead to meaningfully slower routing,
depending on the application and node lifetime char-
acteristics.

In networks where a significant portion of nodes have
short lifetimes, the insertion of these nodes into rout-
ing tables leads to increased message delays and in-
creased maintenance message overhead (especially in a
self-tuning system [20]). The effect of increased mes-
sage delays occurs when an application attempts to route
to a dead node; the message will be lost and after a
timeout, typically on the order of a few seconds, re-
transmitted. Increased maintenance overhead is due to
detection and removal of dead routing nodes. If the mes-
sage overhead is significant, the capacity of the system is
reduced.

Selecting slightly less proximate, but more stable,
nodes for entry into a routing table may be appropri-
ate for systems with high churn or interactive user ap-
plications on networks where the time saved avoiding
timeouts and re-transmissions dominates the additional
stretch. The intuition behind this statement is that al-
though a packet may travel a longer distance, it does so
on more reliable nodes, so the longer stretch is dominated
by savings in timeouts and re-transmissions.

2. Itis possible to predict node stability based on pre-
vious performance.

In order to take advantage of uptime, we need to be
able to predict which nodes are likely to remain respon-
sive for a long time in the future. It has been shown that
periods of inactivity are good predictors of future inac-
tivity [2, 17] and that a file’s current lifetime is a good
predictor of its total lifetime [14]. We hypothesize that
current uptime should be a good predictor of future up-
time. In order to validate this hypothesis, we examined
a Gnutella trace® collected by Saroiu et al. in May 2001

1A discussion of how we analyzed the Gnutella trace and an oddity
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Figure 1: Example of how current uptime is a good pre-
dictor for future uptime. For all sessions that had been up
for at least current uptime hours, we computed the percentage
that continued to be up for another three hours. A node just
entering the system at time 0 has only a 30% chance of being
up for three more hours, whereas a node that has been in the
system for three hours tends to remain up for three more hours
73% of the time. To avoid measurement bias, nine hours is the
most we can show on the x-axis and remain accurate.

[31]. We confirmed that current uptime is, in fact, a good
predictor of future uptime and demonstrate one exam-
ple of this correlation in Figure 1 drawn from the data.
Assuming that these data are representative, the way to
select long-lived nodes for inclusion in a routing table
is to select those nodes that have already been up for a
long time. Also note that this correlation means an ex-
ponential, memoryless distribution (a common model in
existing research) is not appropriate to model expected
lifetime in a p2p system, at least one that exhibits behav-
ior similar to that seen in Gnutella.

3. Long-lived nodes tend to have higher bandwidth
capacity to absorb higher in-degree.

Favoring long-lived nodes for inclusion in routing ta-
bles will lead to such nodes having a higher in-degree
than other nodes. In order to determine if this phe-
nomenon might be detrimental to the system, we exam-
ined the Gnutella traces for a possible correlation be-
tween long uptimes and high bandwidth. We sorted
nodes by average uptime and then divided this list into
quartiles. Then, with each quartile, we plotted a cumu-
lative distribution function (CDF) of the bandwidth; this
plot is shown in Figure 2. The figure shows that long-
lived nodes consistently have more bandwidth available
than short-lived nodes. When we split the average up-
time into deciles, the spread was more evident (the re-
sulting graph, however, was too cluttered for inclusion
here). We performed the same analysis on the down-

inthe dataisin Appendix A.
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Figure 2: Correlation between average node uptime and
upstream bandwidth. Nodes have been divided into quartiles
based on their average uptime. The CDF of each quartile’s up-
stream bandwidths have been plotted in kilobits per second.

stream data and found the same correlation. This implies
that these long-lived nodes should be capable of support-
ing the additional message forwarding burden created by
a high in-degree.

2.1 Neighbor Selection Experiments

In order to quantify the potential benefit from select-
ing routing table entries based on uptime, we conducted
a simulation study using a modified SimPastry incorpo-
rating self-tuning routing table probes as described by
Mahajan [20]. Our version of the simulator uses node
uptime as the routing table entry selection metric. When
considering a node for insertion, it is queried with a load
probe to determine its current in-degree. If the node re-
ports its current in-degree to be too high, the node is
added as a stopgap in the routing table until a suitable
replacement can be found via a passive replacement pro-
cess. Load snapshots are cached by each node and expire
after 30 minutes. One drawback of the SimPastry simu-
lator is that message losses due to network overload are
not modeled; only losses due to node failure are captured
in our work and that of previous research whose results
we use as a comparison [7, 20]. Part of our on-going
work is to add message loss to our neighbor selection
experiments.

We selected the Gnutella trace workload [31] for our
experiments because it allows for a comparison with pre-
vious research, and because it is a real workload. The
trace characteristics that make the uptime metric perform
favorably are those where many nodes enter and leave
rapidly, while some set of long-lived nodes also exists.
The uptime metric is less useful when nodes are gener-
ally long-lived and stable. The node failure rate of the
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Figure 3: Gnutella trace failure rate. Node failure rate is
the number of deaths per the number of alive nodes measured
in ten minute intervals.

Gnutella trace? is shown in Figure 3.

The Gnutella workload does not include topology in-
formation. We used a topology of 600 routers created by
the Georgia Tech transit-stub topology generator [36], as
has been used in previous research [7, 20]. Each node in
our simulation was assigned to a router at random. The
simulator sends 140 messages per minute from random
nodes to random keys. As in Mahajan et al., the simula-
tor self-tuned to achieve a loss rate of 1%.

2.1.1 The Benefit

In Figure 4, we show the performance through the main-
tenance cost necessary to retain approximately a 1% loss
rate. We plot messages/second/node at ten minute inter-
vals for each routing table determinant: proximity and
uptime. For this workload, the uptime-based selection
yields a 42% improvement. Note that at the start of the
trace, the uptime metric is uninformed and is temporarily
bested since uptime data is meaningless at the beginning
of the simulation.

2.1.2 The Cost

There are two possible “costs” to achieving this improve-
ment in message overhead: a high in-degree for long-
lived nodes, and a longer per-message routing time since
we no longer select the most proximate neighbor.

2For simulation tractability reasons, we culled the starting set of
the Gnutella trace at random so that the number of nodes in the sys-
tem ranged from 400 — 1800, instead of 1300 — 2700. We are cur-
rently running our experiments on the whole trace for consistency with
previous research though our initia results indicate our graphs will re-
main largely the same. All graphs in the section are generated with the
smaller dataset.
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Figure 4: Rate of maintanence messages/second/node
over the trace period (lower is better). The uptime met-
ric exhibits an average improvement of 42% over proximity.

| Metric | Stretch |

Uptime | 2.74
Distance | 1.83

Table 2: Mean stretch, the ratio between overlay distance
traveled and network distance, for the two experiments
shown.

Note that if every participant could select the most sta-
ble node for entry in their routing table, the in-degree on
stable nodes could be very high. As described above,
we have implemented a back-off mechanism using load
probes, similar to the idea proposed by Castro et al. [7].
This additional overhead, included in the data of Fig-
ure 4, is negligible. For the experiments in this section,
we set the maximum attempted in-degree to 100. As
the system runs, nodes will detect overloaded nodes and
back off. This behavior is visible in Figure 5. Figure 5
also shows that this uptime metric with capped in-degree
produces similar results to the in-degree produced by the
existing Pastry algorithm. As the back-off technique can
be made more aggressive, we conclude that imbalance of
in-degree does not appear to be a significant problem.

Longer per-message routing time is also a concern.
However, Table 2 shows that the mean distance ratio for
the uptime metric is probably acceptable for most ap-
plications, and indeed, cannot be any worse than Pas-
try without proximity information. In general, we might
equate distance with transmission time. However, Table
2 and SimPastry both fail to capture the time lost in re-
transmitting lost packets. Instead of trying to save main-
tenance message overhead as shown earlier in this sec-
tion, we could have kept the same level of maintenance
and reduced the message loss rate, thus leading to even
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Figure 5: CDF of node in-degrees recorded over the trace
period. Both distibutions show that some nodes have very high
in-degrees. The spike in uptime metric in-degrees after 100 is
from new nodes that have not found a replacement for the node
they are pointing to yet.

better results for the uptime metric. As mentioned earlier,
including delays due to message loss is ongoing work.

3 Capacity Identifier Selection

“From each according to his ability, to each ac-
cording to his needs.” [21]

As in most systems consisting of unequal parts, over-
allocating work to under-provisioned nodes in DHTSs
yields unfairness and low throughput. We begin by
showing what happens in today’s systems when there
is no attempt made to limit a node’s work to its capac-
ity. We then show the benefit of using capacity-based 1D
selection as a mechanism to reduce a system’s ratio of
workload to ability, increasing both fairness and through-
put.

3.1 Capacity Ratio

We define capacity ratio as the ratio between a node’s
assignment of work (its logical domain size) and its abil-
ity to do work (its bandwidth). Note that while we use
bandwidth as the one-dimensional metric for ability to
do work, this analysis can be extended to include other
node attributes that affect its ability to do work, such as
its processing power, available memory, etc. A node’s
capacity ratio p is:

_ % namespace _d, b
7 system bandwidth D' B

where d is the size of the node’s logical domain, D is
the size of the entire logical namespace, b is the node’s
bandwidth and B is the bandwidth of the entire system.
Blake has shown that the primary bottleneck in DHTS is



Node A B C D E

BW (MBI/s) 5 20 20 20 20
Example #1: Max. Throughput 25MB/s
Domain Size | .2 2 2 2 2
Cap. ratio 340 | .85 | .85 | .85 | .85
Usage (MB/s) | 5 5 5 5 5
Usage (%) 100% | 25% | 25% | 25% | 25%

Example #2: Max. Throughput 53MB/s
Domain Size | .094 | .226 | .226 | .226 | .226

Cap. ratio 1.60 | 0.96 | 0.96 | 0.96 | 0.96
Usage (MB/s) | 5 12 12 12 12
Usage (%) 100% | 60% | 60% | 60% | 60%

Table 3: Example #1 shows the maximum throughput
with uniform IDs. Example #2 shows how the through-
put doubles if node A’s capacity ratio is cut by 3/4 using
ID selection. This is the change in capacity ratio we see
in the simulations in Section 3.3. Both examples assume
a random workload.

likely to be bandwidth, so eliminating other factors like
CPU or disk size is a reasonable simplification [3]. As p
approaches one, the node’s work assignment approaches
the fraction of the domain size for which it is respon-
sible. When p > 1, the node is most likely a bottle-
neck, and if p < 1, the node is being under-utilized. Not
only will overburdened nodes respond sluggishly: due to
timeouts, they may also appear to flit in and out of exis-
tence to other nodes, necessitating changes in their rout-
ing tables, redundancy sets, and logical domains. Giving
nodes work proportional to their capacity makes the sys-
tem more stable.

As a metric, capacity ratio helps to isolate which nodes
will be the first to overload as system utilization in-
creases. Conversely, decreasing the capacity ratio of
these nodes allows greater system utilization. Table 3
contains an example.

The key question to be addressed is whether work-
load is directly proportional to domain size. A node’s
resources are devoted to four tasks: (1) servicing lookup
requests when the node appears in some nodes’ routing
tables, (2) servicing requests for data for which it is the
root, (3) servicing requests for data when it is a replica
and the data’s authority is unavailable, and (4) perform-
ing non-DHT related work. The first three of these quan-
tities correspond directly to domain size in the general
case, when random key lookups originate from random
nodes. For Chord, a strong correlation exists between
a node’s logical domain size and its in-degree. We cre-
ated a simple Chord simulator that assigned nodes ids
(0...1] at random, and then for each node found its do-
main size and computed how many nodes’ fingers refer
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Figure 6: Correlation between logical domain in-degree
in the counterclockwise domain type (Chord-like). The
simulation consisted of 4k nodes; nodes used 12 fingers each.
Intuitively, large domains result in large in-degrees because
nodes tend to point somewhat uniformly around the ring, and a
node with a large domain size is absorbing more of these point-
ers.

to it, that is, computed its in-degree. Figure 6 shows the
results for a 4096 node topology. If, in addition, we as-
sume a random proximity distribution, the same high de-
gree of correlation exists between domain size and in-
degree in Pastry: the exact distribution depends on the
actual proximity distribution and on what neighbor se-
lection metric is used. For both domain types, if a node
is the lookup’s root, it will be at least somewhat involved
in the download of the data item: if the item is cached,
it must originally be fetched from the root; if a load bal-
ancing scheme like Roussopoulos and Baker’s is used,
communication with the root is still required to find the
redundancy set [29]. The number of blocks copied as
part of updating nodes in the redundancy set is similarly
proportional to domain size. The larger the domain size
for which a node is responsible, the more messages the
node will be expected to handle, whether as an interme-
diate or final destination.

It might appear that the distribution of capacity ra-
tios for a system with randomly chosen IDs should cor-
respond fairly closely to the distribution of bandwidths.
Because the average domain size is 1/N, one might ex-
pect that most nodes would have a “% namespace” nu-
merator close to 1/N. However, this is not the case. Fig-
ure 7 shows a CDF of the counterclockwise distance be-
tween nodes when their IDs are chosen at random. This
illustrates the distribution of counterclockwise (Chord-
like) domains; nearest-node (Pastry-like) domains follow
the same pattern. This is one of the reasons that the con-
cept of virtual servers was introduced in earlier work on
Chord [10, 33].
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Figure 7: Domain Size generated by random identifiers
when 1000 identifiers between 0 and 1 are chosen. The
figure aggregates five trials for clarity. The largest value is
0.0074, i.e,7.4 x 1/N.
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Figure 8: Capacity ratios if nodes following a Gnutella
bandwidth distribution were to join a DHT. Due to the
non-uniformity of domain sizes, capacity ratios exhibit an even
broader spread than the base bandwidth distribution.

In this simple case we can derive some basic theoret-
ical results. For a Chord-like domain, where IDs are
chosen uniformly at random on a circle of circumfer-
ence 1, the maximum domain size is at least InN/N
with constant probability, and the minimum domain size
is at most 2/N? with constant probability. More gen-
erally, the expected number of domains of size a/N is
N(1—-a/N)N ~ Ne~¢, and standard techniques (such
as martingales) can be used to show that the number of
domains of size a/N is sharply concentrated around its
expectation. For more related results, see [4]. These re-
sults demonstrate the large variety in domain extent when
IDs are chosen at random.

This distribution of domain sizes affects capacity ra-
tio. It implies that low bandwidth nodes that fall on
the steep section of the curve in Figure 7 (above 80%)
will have enormous ratios: they will be extremely under-
provisioned. To illustrate the spread of capacity ratios,
we took the uplink bandwidth data from the Gnutella
trace and assigned each node an ID, as if it were par-
ticipating in a DHT. We then computed its capacity ratio.
The results are shown in Figure 8. While the specific dis-
tribution depends on the run, this figure portrays a repre-
sentative set of results. The largest capacity ratio in the
figure is more than 70,000.

3.2 |D Selection Mechanism

We use logical ID selection to achieve good capacity
ratios. The identifier selection mechanism allows each
node to choose its logical ID, &, from a set, K, of possi-
ble choices, where | K| is a well-known, constant. If z is
the original, node-specific input into a collision-resistant
hash function used to create a node’s ID, we simply add
the integers 0, ...,| K| — 1 to « to produce |K| unique

IDs:
K ={ko=h(z+0),...,kx-1 =h(z+|K|-1)} (1)

where K is the logical ID set for a given node, k; is its
ith ID possibility, and & is a collision-resistant hash func-
tion such as SHA-1. Each node therefore has a pseudo-
random, easily-verifiable set, K, of possible IDs. We as-
sume that A works like a random number generator and is
capable of producing pseudo-random numbers in a large
space, e.g., 2190, and hence is responsible for the pseudo-
randomness of K. To verify that a node is using a valid
ID, k, another node simply has to check that there ex-
ists some ¢ < |K| such that & = h(z + %), since z is
well-known.

After generating the set of IDs, a node must choose
one from among them. Our mechanism for deciding is
a cost function that depends on the domain type. For
counterclockwise, Chord-like domains:

c = |bs_d5f|+|ba_da|_lbs_dsn| 2

For nearest-node, Pastry-like domains:

C =

by — dpg| + [ba — da| + [bs — dsg| +
|bp - dpn| - |bs - dsn| (3)

where ¢ is the cost, a is the node joining, p and s are
its potential successor and predecessor, respectively, b,
is the percentage of node z’s bandwidth compared to the
total system bandwidth, d,,; is the potential fraction of
the domain node y would have in the future if a per-
formed the join, and d,,, is its fraction now. Each cost
is an evaluation of the potential future minus the current
situation. To discover these values, a joining node a con-
tacts its potential predecessor and successor at each 1D



k € K. Itis assumed that an approximation for the sys-
tem bandwidth is a well-known quantity, one that could
be aggregated and transmitted using an epidemic proto-
col [23]. Once these values needed for the cost function
are discovered, the node computes the cost of each ID
and joins at the one with minimal cost.

3.3 Analysisand Simulations

Before evaluating ID selection experimentally, we
simulate how it would alter the domain distribution when
applied to the Gnutella trace. Without loss of generality,
we assume a counterclockwise domain. Nodes joined se-
rially and online, that is, in a decentralized manner with-
out sharing information about each of their sets of po-
tential 1Ds. The first node joined at position 0 and the
remaining nodes selected | K| 1Ds at random, evaluated
their cost using Equation 2, and joined at the location
with the lowest cost. The results of are plotted in Fig-
ure 9. The figure shows a decrease in the 95th percentile
from ~ 750 to ~ 200 by | K| = 16 and then more grad-
ual decreases for larger values for |K|. This behavior
is expected because the Gnutella bandwidth distribution
spans six orders-of-magnitude (set Figure 2) and ID se-
lection cannot produce a perfect alignment of IDs in the
online case. However, as shown in Table 3, a decrease of
3/4 in capacity ratio can lead to a significant increase in
potential system throughput.

We are in the process of analyzing the general theoreti-
cal case as part of our on-going work. In the general case,
the free parameters are the distribution of bandwidths, or
weights w € W, and the number of IDs, or hash func-
tions, | K| allowed. The result is the distribution of w/d,
where d is the logical domain. With an infinite number
of hash functions, it can be easily proven that all capac-
ity ratios become one in the offline, non-distributed case.
The on-going analysis is examining how close the distri-
bution can be with an infinite number of 1Ds when de-
cisions are made online, how domain size changes with
fewer and fewer IDs, and what effect churn has on the
distribution.

3.4 Experiments

To examine how identifier selection performed in an
actual networked scenario, we created a version of Pas-
try that was capable of selecting its ID during the join
process and ran it on the NetBed experimentation envi-
ronment [35]. Our primary goal was to measure changes
in fairness and throughput with several values of | K| us-
ing a large topology.

Improvement in Gnutella Capacity ratio with more IDs
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Figure 9: Mean 95" percentile of distribution of capac-
ity ratios as nodes are allowed to sample more 1Ds. When
the number of IDs,| K|, equals 1, this is the default ID selection
mechanism: there is only one choice. Each result is an average
of 50 trials. Error bars denote the standard deviation.

3.4.1 NetBed and FreePastry

To create an implementation of Pastry that used ID se-
lection, we started with the FreePastry implementation
from Rice University [13]. This implementation is writ-
ten in Java. It runs in one of three ways: by having all
nodes exist on one machine and communicate over a vir-
tual network, by having Pastry instances exist on differ-
ent physical nodes and communicate via RMI, and by
having distinct instances run on different physical nodes
and communicate via Java’s Nonblocking 1/O interface.
We exclusively used and modified this third method of
communication; thus, all traffic between nodes is via the
network. We added the ID selection process to node join:
each node chose |K| IDs at random, used its bootstrap
node to locate the successor and predecessor of each ID,
and computed the cost for each ID, as in Equation 3. The
lowest cost ID was then selected and the node join pro-
gressed normally from this point on. When |K| = 1,
nodes did not go through these steps at all and joined
exactly as in the original FreePastry implementation.

We created a simple application using the Common
API that FreePastry exports [11]. This application joined
the network using a bootstrap node and then waited at a
barrier until all other nodes had joined the system. This
barrier was necessary because without it there was often
too much cross traffic for low bandwidth nodes to suc-
cessfully join. After passing the barrier, each node began
generating lookups for random keys. The barrier func-
tionality is part of the NetBed framework and does not
cause any network activity on the interfaces we moni-
tored for the experiment. Queries were marked success-
ful after the destination had finished sending the source



[ In | Packets | Octets |
Virtual nodes | 4571 (1382) | 3485k (1075Kk)
Real nodes | 4550 (1478) | 3493k (1135k)

| Out | | |
Virtual nodes | 4674 (1385) | 3546k (1081Kk)
Real nodes | 4779 (1549) | 3623k (1184k)

Table 4: Virtual node validation. Final packet and octet
counts per node over three trials. Averages are given and
standard deviation is in paretheses

an 8KB block, representative of a file block created by
an erasure code.

Networking in FreePastry sends messages via UDP if
they are less than 64KB and contains queues for outgoing
and incoming UDP packets and TCP streams. With the
default settings, which we used, it queues up to six UDP
packets and up to 256 TCP messages. If messages cannot
be sent using UDP, they are moved to the TCP queue. If
both queues are full, the messages are dropped.

NetBed is an extremely flexible experimental environ-
ment. We selected it over PlanetLab [24] because it al-
lowed us to specify the capacity of each link explicitly.

3.4.2 Virtual Node Validation

NetBed typically works by having real PCs configure
themselves according to an NS-like input file. Each node
is its own PC and traffic shaping (e.g., bandwidth lim-
iting, packet loss) is also performed with one PC per
link. The NetBed staff has recently developed virtual
node (vnode) traffic shaping for the purpose of running
large-scale experiments. Virtual nodes (vhodes) run in
FreeBSD jails [16]. Users are still limited to a maximum
4 x 100 MB/s per node because all inter-machine com-
munication is over real links, which currently have this
physical limitation. Our experiments typically used 288
vnodes running on 98 PCs.

Because the technology is new, we cooperated with
NetBed operations to validate the traffic shaping. We ran
duplicate experiments on topologies that differed only in
the respect that one ran entirely on real nodes and the
other entirely on vnodes. The experiment shown was run
on a 24 node topology where 16 nodes had 10Mb/s band-
width and 8 had 1MB/s. Each node ran FreePastry and
joined the network serially. We set | K| = 1 in both cases
because we were not evaluating ID selection behavior.
After every node joined, each node performed lookups
for random keys for 10 minutes, initiating each lookup
immediately after the previous one finished. Using net-
stat, we recorded the network activity on each node. Ta-

ble 4 shows the average and standard deviation seen for
all of the nodes over three runs of each topology. Be-
cause of the similarity of these two sets of nhumbers, we
believe that the topology in our experiments would have
functioned the same if it had been run entirely on real
nodes. Real nodes have been validated previously by the
NetBed staff [35].

3.4.3 Results

We discuss two representative sets of experiments. The
first set, run on a smaller topology, allows us to illus-
trate change in domain sizes on a node-by-node basis.
The second shows the change in fairness and throughput
when ID selection is applied to a large topology.

The first set of experiments exhibit how a small num-
ber of low bandwidth nodes can produce drag on the en-
tire system. The topology consists of 64 nodes total, 56
with bandwidths of 40 MB/s and 8 with 0.4 MB/s. There
was no loss built in to the topology, but nodes did drop
packets due to buffer overflows. As noted above, nodes
joined serially, reached a barrier, and then began queries
once every node has a routing table. Each node initiated
a new query immediately after completing the previous
one. If a query timed out, nodes would initiate a new
query. We set this timeout to be 60 seconds. Because of
buffer overflows, it would frequently appear to low band-
width nodes that members of their routing table were
dead, initiating even more maintenance traffic that they
could not handle. The cummulative effect of low band-
width nodes being extremely busy is shown in Figure 10.
It shows how using ID selection improves capacity ratio
by one order of magnitude, resulting in a dramatic in-
crease in completed lookups for both the low bandwidth
nodes (increased fairness) and for all nodes (increased
throughput). We do not quantify these changes because
it is a small topology and a short workload period.

While nodes did not crash in the 64 node experiment,
when we scaled the experiment up to 256 nodes, they did.
We found that with query rates in the range of .5 second
per node, which the high bandwidth nodes could achieve,
the low bandwidth nodes would occasionally deadlock
(2 — 4 per trial). Instead of setting an arbitrary thresh-
old on query rate, we wanted to have the nodes perform
lookups as fast as they could without extreme overload
occurring. To do so, we added a lookup throttle:

e Each node had its own query rate and a timeout =
query rate +10 seconds.

e If a query was completed before the timeout, the
query rate would decrease by one second.

o If a query did time out, the rate would increase by
one.



Completed lookups
BW(MB/s) | [K[=1] [K[=16
4 4341 5879 (+35%)
1 16672 20217 (+21%)
4 24025 | 29537 (+23%)
40 23331 26224 (+12%)
All 68370 81858 (+20%)

Table 5: Change in fairness (+35%) and throughput
(+20%) on a heterogenenous 256 node topology. The
data show the total number of completed lookups for the 64
nodes of that bandwidth in a one hour period averaged between
two trials. There are 64 nodes of each bandwidth type. Lookups
intervals are throttled to avoid crashes due to extreme overload-

ing.

We placed a lower bound on the rate at one second be-
cause we knew the low bandwidth nodes could not han-
dle a faster rate. Query rates began at five seconds and
increased to 35 — 70 seconds by the end of the trial. We
instituted the throttle for the larger second experiment.
Because we did not observe a clustering of when nodes
initiated queries, we did not further model query rates
around a Poisson distribution.

The large topology experiment consisted of 256 nodes,
64 nodes each of four bandwidths: 40Mb/s, 4Mb/s,
1Mb/s, 0.4Mb/s. The purpose was to see how ID selec-
tion performed in a heterogeneous topology: if it could
both increase the number of blocks low bandwidth nodes
could download and the total number of the system.
Again nodes joined serially and began lookups after all
had a routing table. Nodes used the throttle mechanism
to limit the number of queries they originated to the level
they could successfully process. Table 5 shows the total
number of lookups completed by bandwidth type aver-
aged over two trials that consisted of one hour of lookups
after all of the nodes had joined. All nodes used one of
the 40MBY/s nodes as their bootstrap. As a result, they
were frequently in other node’s routing tables and had
a higher message routing workload. This is why their
completed lookups are fewer than the 4MB/s nodes. As
expected, the average number of hops was a just less than
2, with minimal variance. The main experimental result,
however, is that a 20% improvement in throughput sug-
gests that ID selection is a worthwhile mechanism to add
to future DHT designs.

3.5 Security Issues

Though we have shown logical identifier selection to
be useful in improving fairness and throughput, it does
introduce the possibility of a potential reduction in sys-
tem security. As Castro et al. have shown, a large class of

attacks on peer-to-peer systems involve the abuse of logi-
cal identifiers [8]. Given a sufficient number of identifier
choices, a collection of conspiring nodes can cut target
nodes off from the rest of the system, prevent access to
certain data, or even partition the system.

Such attacks fall into the category of Sybil attacks
[12], a general class that relies on obtaining a large
enough sample of identifiers to allow conspiring nodes to
probabilistically join in a certain security-threatening ar-
rangement. Using logical identifier selection gives con-
spiring nodes |K| times as many identifier choices to
work with. Castro et al. suggest using a certificate au-
thority to prevent faulty nodes from obtaining too many
ID choices. This technique could be used with logi-
cal identifier selection to make it difficult for conspiring
nodes to obtain too many 1D sets, K.

Itis also feasible that identifier selection could be used
to combat faulty nodes. By giving each normal node
in the system | K| possible IDs, it is harder for conspir-
ing nodes to “target” a certain node, since that node can
move somewhere else if it senses it is being cut off.

A number of our cost functions rely on nodes calcu-
lating and reporting certain values regarding their own
behavior, such as their bandwidth, their physical loca-
tion, or their average uptime. This poses a trust issue
in a system containing faulty nodes. While left for fu-
ture work, non-malicious, rational nodes could be mo-
tivated to truthfully reveal these characteristics through
distributed algorithmic mechanism design [15].

4 Related Work

Previous work closely related to this paper falls into
two general categories: (1) proximity-based improve-
ments to DHTs and (2) load balancing in DHTs. Al-
though others have suggested considering bandwidth and
other node attributes in identifying desirable neighbors
[6], to the best of our knowledge, this is the first work
to explicitly consider metrics weighted more heavily to-
wards reliability than proximity.

Gummadi provides an elegant taxonomy of proximity-
based improvements to DHTSs, discussing which geome-
tries can support Proximity Neighbor Selection, Proxim-
ity Route Selection, and Proximity 1D Selection [18]. In
particular, they show how a tree design like Pastry and
a ring design like Chord are equivalent when the tree’s
branching factor is one (normally it is 2 or 4, leading
to fewer hops). Because Proximity Neithbor Selection
results in the largest stretch improvement, it has been ap-
plied to Pastry, Tapestry, and Chord. Castro et al. show
that stretch in Pastry can reach as low as 1.4 in certain
topologies [6]. The techniques introduced here achieve
a different goal: Instead of attempting to reduce stretch,
our goal is to improve scalability by ensuring that low-
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Figure 10: Scatterplots illustrating how using ID selection causes all nodes’ capacity ratios to become closer to one,
allowing them to download more blocks. This experiment contained 64 nodes, 48 with a bandwidth of 40MB/s and 8 with
0.4MB/s. Low bandwidth nodes are circled in the plots. Each node initiates a query immediately following the completion of the
previous one with a timeout fo 60 seconds. The experiments ran for ten minutes. When |K| = 1, many low bandwidth nodes
are not able to download one block, frequently throwing the Java Socket exception “No buffer space available” and initiating extra

maintenance traffic, spuriously finding other nodes to be dead.

bandwidth nodes do not become system bottlenecks.

Zhang et al. portray a piggyback method to find neigh-
bors to choose from in Chord [37]; this same mechanism
could be used to provide input into our neighbor selection
technique. Topologically-sensitive CAN examines us-
ing landmarks to generate logical 1Ds that closely match
the physical topology [26]. The drawbacks of this ap-
proach are correlated leafset failures, if redundant copies
are held on logically adjacent nodes, and a non-random
logical density distribution, as other work has discussed
[6, 9, 18]. None of these earlier works examined metrics
other than proximity.

Several techniques have been developed to improve
load balance in DHTs. Dabek et al. describe “virtual
servers” that allow multiple independent DHT instances
to run on a single machine. The system defines a lowest
common denominator node, and machines that are idle
can start up more independent copies until they are busy.
Each instance uses a “virtual tag” to generate its node id,
but there is no selection process. Byers et al. describe a
load balancing technique that hashes data to be stored us-
ing two distinct hash functions, providing two potential
locations [4, 5]. The less loaded of the two possibilities
is chosen. During data lookup, the query must contact
both possible storage locations, or appropriate forward-
ing pointers must be used. The method of Byers et al.
is an example of “ the power of two choices,” described
more fully in [22]. Our ID selection process is similar
in spirit, in that we also use multiple hash functions, al-
though here we do so to place the servers in a more ap-
propriate fashion.

ID selection bears an interesting relation to work of
Roussopoulos et al. on load balancing in p2p networks
[29]. They develop a cooperative request scheme where
nodes direct requests toward the highest capacity replica.
They assume that the source of each lookup is aware both
of the capacity of each possible replica holder. Sources
of requests learn the replicas by first contacting the au-
thority node (i.e., a key’s primary storage node). Stor-
age nodes can periodically update their capacity through
Controlled Update Propagation [28]. Our two schemes
for load balancing are complementary: ID selection
reduces an overburdened node’s domain, preventing it
from being contacted in the first place, and their prevents
it from being contacted frequently after the replica set is
known.

5 Conclusion

We examined two new ways to incorporate het-
erogeneity into DHT design. In our experiments,
each method, reliability-based neighbor selection and
capacity-based 1D selection, showed promise and appear
worthwhile additions to DHTs in general. As applica-
tions for large scale distributed storage and computation
grow, we foresee a whole design space worth exploring.
For example, banks would use trust as a metric to di-
rect some traffic over trusted nodes and the rest over the
Internet. Just as RONs promoted application-driven met-
rics on small-scale networks [1], DHTs can use proxim-
ity, reliability, and capacity, among other metrics on a
massive scale.
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APPENDIX

A Funerals are only held on Sundays

We used the Gnutella traces to motivate the idea that,
for a given p2p system, one could generate a function
that would predict the future lifetime of a node given its
current uptime. We found an interesting artifact that was
a result of the tracing methodology. It is an important
result because it contradicts the original finding that the
average Gnutella node has a lifetime of 60 minutes [31]:
we find that the average interval of all sessions is at least
80 minutes and that the average interval of a given node
is on the order of at least several hours (a more precise
value cannot be given with a trace of this length).

The tracing methodology began with a set of 17142
nodes that ran the Gnutella protocol. During a 60 hour
session, these nodes were tested once every seven min-
utes to see if they (a) responded to an IP ping and (b)
were listing on the conventional Gnutella port. If a node
had not been responding and then did, a new interval be-
gan, and if an interval was on-going and the node did
not respond, the interval would end. The timeout was
20 seconds. The output of the trace is an anonymized
IP address, the number of intervals, followed by the start
time and end time of each interval. The IP and Gnutella
responses were recorded separately.

We wanted to find the expectations about per node be-
havior and not per session behavior because we were de-
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Figure 11: CDF of per node average “Internet” uptime. 0
missed pings is the original interpretation of the data. The plot
shows how the average node lifetime dramatically increases as
a few missed pings out of the 60 hour trace are permitted.
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Figure 12: CDF of per session uptime when nodes are
allowed to missed 0, 1, or 5 pings in a row. To elimi-
nate deaths only on seven minute intervals, we assigned a node
a death time randomly between its last live response and first
non-response.

veloping a function describing what a node would see:
other, currently up nodes. As a first step, we averaged
each node’s sessions to find the average session length
per node. The result is plotted in Figure 11 as “0 missed
pings.” The steps occur at 30, 20, 15, 12, ... hours, at
intervals that divide 60. This is because all nodes that
were (most likely) up for the entire 60 hour session but
only missed one ping averaged to 30 hours, no matter
when their missed ping was. Two missed pings yields 20
hours, and so on. This begs the question: is it more likely
that a node was up for 60 — x hours, off for seven min-
utes, and then again up for = hours, or did it just miss one
ping? Of course, we will never know, but the most likely
case is the latter. We found that 72% of the trace exhib-
ited at least one instance where the beginning of one trace
followed the end of the previous by about seven minutes.



The next question, then, is: how many pings can you
miss before you are definitively considered down? There
is no right answer: even though there is still a step when
5 gaps x7 min = 35 min gaps are allowed, more than
half an hour seems too much, but others are debatable.
Because allowing for just seven minute gaps had a large
effect and needs the least defense, that is what we chose
for generating the expected uptime function. After per-
forming these merges, we used the create-based method
[27] to sweep through the trace to find actual lifetimes
that were less than our 12 hour window and the residue,
the number that lived beyond this window. The results
are shown in Figure 12.

Because we wanted to compare our results directly
with Mahajan et al. [20] in Section 2.1, we did not use
these revised intervals in our simulation.



