
NRC-TR-2008-004

File System Support for Low-Bandwidth Thumbnails

Jonathan Ledlie

Nokia Research Center Cambridge, US
http://research.nokia.com

May 6, 2008

Abstract:

Users are frustrated by the current experience of browsing, downloading, and exchanging
files in low-bandwidth networks, such as ad hoc wireless networks. One improvement to this
experience is to let users first locally interact with file thumbnails — graphical summaries
of file contents — and fetch complete files only if necessary. These thumbnails can be
sent quickly over the network and augment traditional metadata, such as file names and
ownership.

To reduce bandwidth consumption, thumbnails must be generated remotely. In prior
work, server-side application programs generate thumbnails in response to users’ requests.
In contrast, we propose extending underlying file system functionality to support direct
generation and storage of thumbnails. Through inode changes or, more simply, through ex-
tended file attributes, we envision embedding thumbnails within the file system itself, just
as human-readable names and ownership are today. Making thumbnails a first-class object
directly linked to their uncompressed counterpart ensures consistency through modify-on-
write regeneration and guarantees equal thumbnail and file data access control. Through
directly embedding thumbnails within the file system, we can provide assurances and effi-
ciencies beyond what is possible with application-level techniques.

Index Terms:
file systems
thumbnails
remote data access
file metadata



2

1 Problem Scenario

Consider a scenario where users want to collaborate and share their files through a wireless network.
Each device (e.g., laptops, phones) might store different sets of files. Users want to be able to share any
of their files and keep updates in sync in the future. However, due to bandwidth and storage constraints
and due to periodic network partitions, it is neither physically nor theoretically possible to keep all files
available and consistent.

Users need to be able to select which files they want to be actively shared and kept in sync. For
example, they might browse their friend’s device and want to select certain files and directories, activating
them for download and future syncing. A similar situation occurs when a mobile user wants to access
his or her own files that are stored primarily on a non-mobile desktop or server. Current file system
interfaces offer the user two choices: (1) fetch the file metadata only, or (2) fetch both the file metadata
and the file itself.

Because file metadata only includes information such as the name, size, and modification date, this
is generally not sufficient for users to know if they are interested in files (think of video or image files
named 345436566.jpg). Thus option (1) is insufficient.

Option (2) — fetching the full file and then generating a thumbnail — is impractical: files can be
arbitrarily large and fetching full file contents makes little sense without a strong certainty the user needs
local access to the whole file.

In addition to active browsing, users may also want to browse “offline” — when their friend’s set
of files is not actively available. Again, traditional metadata, even if it is cached on the local device,
will generally be inadequate for offline use. In particular, names, ownership, access times, etc. do not
provide sufficient information about a file to help the user know if it should be actively synchronized in
the future.

While these examples refers to a mobile user, they could equally apply to any low-bandwidth envi-
ronment such as a rural network in a developing region.

2 Solution

Instead of fetching whole files, we propose the remote file system itself generates and stores application-
specific thumbnails of each file along with traditional metadata. We envision thumbnails as typically
being graphical, compressed representations of the full file contents, but textual or other representations
are possible. This metadata plus compressed data summary eliminates the problem of saturating the
network with unwanted files (option (2) above), while providing the user with much more information
than simple traditional metadata (option (1) above).

3 Prior Work

Using Apple’s Finder [1] over a remote file system may appear similar (particularly if one is using a high
speed link), but is actually option (2) above. Instead of explicitly sending a thumbnail preview of each
file, Apple’s Finder fetches the full file and then locally generates a thumbnail (for more information
see Apple’s Quick Look Programming Guide). This technique is not feasible on storage and bandwidth
constrained devices.

Figure 1 presents a screen shot of Apple’s Finder summarizing a remote file. The summary includes a
thumbnail image of the file. The thumbnail was generated locally, after the file was fetched. Instead, we
propose that the thumbnails be generated and stored remotely, but fetched along with the file metadata.
This provides the benefit of a thumbnail without the cost of whole file download.

Copernic’s Mobile Search [2] provides an application-level solution to the problem of efficiently brows-
ing remote files in a low-bandwidth environment. In contrast to Apple’s Finder, Copernic uses a server-
side component installed on the user’s primary machine to generate thumbnails in response to client
requests. We compare this approach to ours in Section 5.

NRC-TR-2008-004 Copyright c© 2008 Nokia



3

Figure 1: Apple’s Finder generates previews of files, including videos, images, and documents. To create
these thumbnails when files are stored remotely, it transfers the entire file and creates the preview on the
local device. In low-bandwidth environments, such as inter-mobile device exchange and server-to-device
download, this method can swamp the network.

4 Implementation

Two orthogonal issues are central to implementing file system support for thumbnails: (1) storage location
and (2) triggering thumbnail (re-)creation.

Most major network file protocols and file systems (e.g., NFS, NTFS, ext2, ext3, HFS+, WAFL)
already support extended attributes: data associated with a file, but not interpreted by the file system
or operating system. Thus, using this extended attribute mechanism is the most straightforward place
to store the thumbnail, and is preferable to inode modification.

There exist several options for triggering thumbnail creation and re-creation: (1) on file save or update
(i.e., modify-on-write), (2) on remote file fetch, or (3) in the background via a daemon. (1) and (2) have
the disadvantage that, if implemented poorly, they could affect the user’s experience — the user would
wait while the thumbnail was generated. (3) has the severe disadvantage that it is nondeterministic.
Because thumbnail generation will be quick with the file open and already in memory and because
thumbnails will typically not change even when the underlying file changes (e.g., they will show only the
first frame of a video), updating the thumbnail on file save is arguably the best approach.

The operating system is aware of writes to each file and can trigger thumbnail generation on each
such event. Similar to the association of mime-types to viewers, we propose each mime-type have an
associated thumbnail generator. These generators can be installed and altered by an administrative user.
In order to limit spurious thumbnail re-generation, generators can keep state associated with each file.
The implementation for these generators already exists in what are now client-side thumbnail generators.

This model of extended attribute storage and action-on-write is inspired by the work of Muniswamy-
Reddy et al., on Provenance-Aware Storage Systems [3]. In this work, provenance, i.e., the complete
history of a file, is stored in extended attributes and changes are triggered on writes to the file. For
example, the provenance of a compiled object file includes references to the specific compiler and all input
files. Tracking provenance is significantly more complex than thumbnail generation because provenance
must transfer across machines (including those without extended attributes) and because file histories
can be inter-dependent. Their work, however, demonstrates that triggered actions on write can effectively
save newly-generated information into extended attributes without diminishing the user’s experience.

5 Advantages and Disadvantages

Apple’s approach to client-side thumbnail generation has certain advantages. The primary advantage is
that it is agnostic to the remote file system type. That is, no changes are required for the server data
store in terms of application software or file system internals. The primary disadvantage, as noted above,

NRC-TR-2008-004 Copyright c© 2008 Nokia



4

is bandwidth consumption. Because much or all of each files’ contents must be sent over the network
in order to generate a thumbnail, locally-generated thumbnails are not appropriate when clients receive
bandwidth is limited, when the sender’s bandwidth is limited, or when a large number of clients are
sharing the wireless medium. The same issues occur in limited or oversubscribed wired networks.

Copernic’s solution shares advantages and disadvantages with other designs that choose to function
above the operating system interface. Its main advantage is that it requires no change to the file system
and can immediately function on top of an existing one. This design parallels work on application-level
provenance trackers (e.g., [4]). These systems maintain file provenance in distinct database systems,
tracking changes through application-level triggers. As with provenance data, this introduces problems
such as: “ensuring consistency between provenance and the data, enforcing provenance maintenance,
and preserving provenance during backup, restoration, and copying” [3]. In addition, security and access
controls to the two sets of data must be kept in sync. As with other attributes that are available through
the file system, incorporating thumbnails directly makes them available to all applications through a
common and well-understood interface. As is typically the case with attributes that would benefit a
broad class of applications, embedding the service directly into the operating system — in this case, the
file system — outweighs the short-term cost of operating system modification.

References

[1] Apple finder. http://www.apple.com/macosx/features/finder.html.

[2] Copernic mobile search. http://www.copernic.com.

[3] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer. Provenance-Aware Storage
Systems. In Proc. of USENIX Annual Technical Conference, Boston, MA, June 2006.

[4] G. Singh, S. Bharathi, A. L. Chervenak, E. Deelman, C. Kesselman, M. Manohar, S. Patil, and
L. Pearlman. A Metadata Catalog Service for Data Intensive Applications. In Proc. of High Perfor-
mance Networking and Computing (Supercomputing), Phoenix, AZ, Nov. 2003.

NRC-TR-2008-004 Copyright c© 2008 Nokia


