Crowd Translator: On Building Localized Speech Recognizers through Micropayments Nokia Research Center, Cambridge US

Jonathan Ledlie, Billy Odero, Einat Minkov, Imre Kiss, Joseph Polifroni October 2009

© 2009 Nokia 2009-10-10/JTL

Scenario: mobile money transfer

- MPESA in Kenya
- Current UI is text based
 - Literacy is major barrier
 - Voice-based UI had much higher task completion rates (Medhi, CHI '09)

Scenario: mobile money transfer

- MPESA in Kenya
- Current UI is text based
 - Literacy is major barrier
 - Voice-based UI had much higher task completion rates (Medhi, CHI '09)

Purchase speech recognizer?

- "Rich country" languages only
 - Gaelic (0.5m), Welsh (1m)
- Out of luck
 - Luo (3.5m), Swahili (5m 1st, 80m 2nd)

Scenario: mobile money transfer

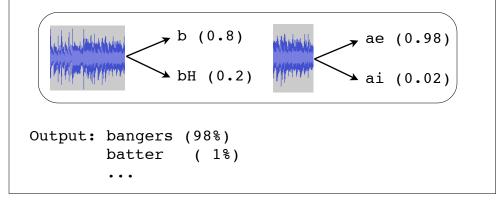
- MPESA in Kenya
- Current UI is text based
 - Literacy is major barrier
 - Voice-based UI had much higher task completion rates (Medhi, CHI '09)

Purchase speech recognizer?

- "Rich country" languages only
 - Gaelic (0.5m), Welsh (1m)
- Out of luck
 - Luo (3.5m), Swahili (5m 1st, 80m 2nd)

Our Approach: Crowd Translator

Cheaply create recognizer for local, low-corpus languages



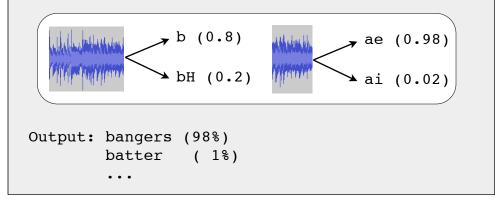
Type 1: PHONEME

1. Expert creates dictionary

bangers b-ae-N-s@r-z batter b-ae-t-s@r ...

- 2. Collect corpus from native speakers
- 3. Build phoneme matcher

Type 2: PHRASE

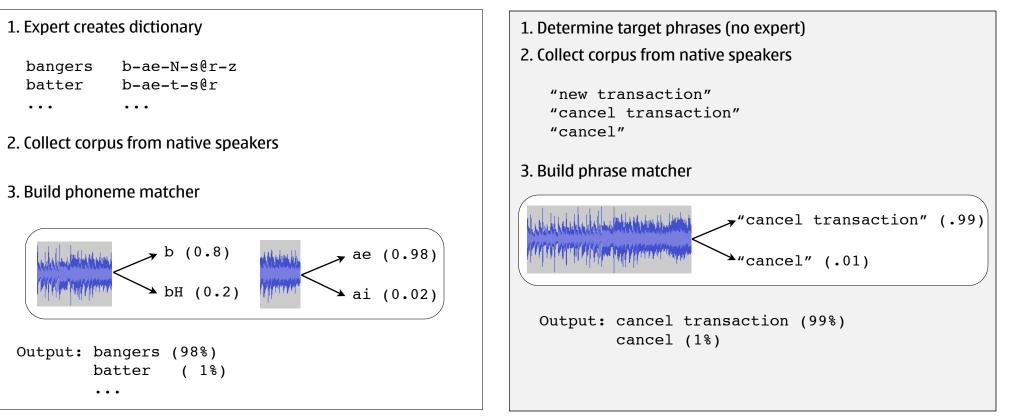


Type 1: PHONEME

1. Expert creates dictionary

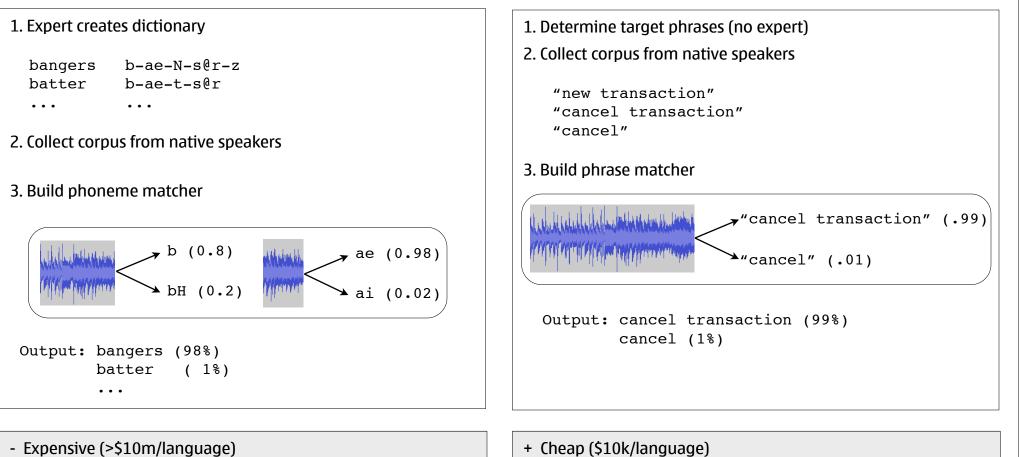
bangers b-ae-N-s@r-z batter b-ae-t-s@r

- 2. Collect corpus from native speakers
- 3. Build phoneme matcher



Type 2: PHRASE

Type 1: PHONEME


Type 2: PHRASE

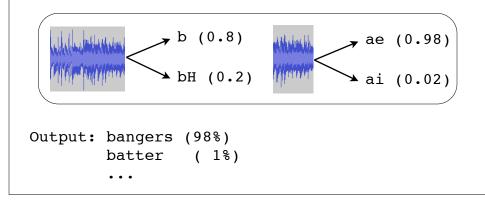
Type 1: PHONEME

Type 2: PHRASE

- + Grammar expandable
- + Memory: |phonemes|

Memory: |vocabulary|
 Good enough for C&C on devices w/small vocab

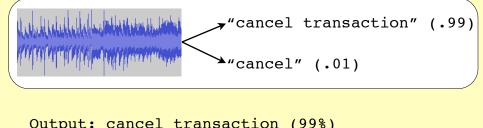
Corpus not expandable without more collection



Type 1: PHONEME

bangers b-ae-N-s@r-z batter b-ae-t-s@r

- 2. Collect corpus from native speakers
- 3. Build phoneme matcher


- Expensive (>\$10m/language)
- + Grammar expandable
- + Memory: |phonemes|

Type 2: PHRASE

- 1. Determine target phrases (no expert)
- 2. Collect corpus from native speakers

"new transaction" "cancel transaction" "cancel"

3. Build phrase matcher

Output: cancel transaction (99%) cancel (1%)

- + Cheap (\$10k/language)- Corpus not expandable without more collection
- Memory: |vocabulary| Good enough for C&C on devices w/small vocab

CX Design Goals

- Gather large corpus from native speakers
- Establish user trust
- Keep total costs low

(a) have canomical recordings		
English	Swahili	Gold Std. Utterance
car	gari	"gari"
boat	mashua	"mashua"
plane	ndege	"ndege"
•••		

(a) Make Canonical Recordings

(c) Verify Input

(b) Gather User Input

(a) Make Canonical Recordings

English	Swahili	Gold Std. Utterance
car	gari	"gari"
boat	mashua	"mashua"
plane	ndege	"ndege"
000		// // ···

(c) Verify Input

(b) Gather User Input

garig	$gari_1$
ndegeg	ndege1
mashuag	$mashua_1$
••••g	•••1
garig	gari ₁ '
••••g	1
mashuag	mashua ₁ '

(a) Make Canonical Recordings

English	Swahili	Gold Std. Utterance
car	gari	"gari"
boat	mashua	"mashua"
plane	ndege	"ndege"
		// // ····

(c) Verify Input

Intra-session Agreement?

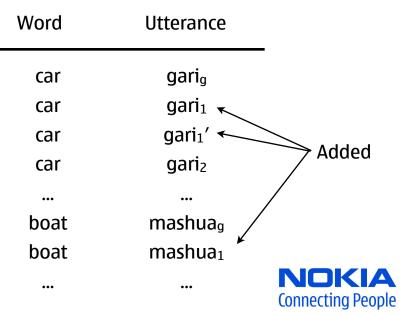
 $gari_1 \approx gari_1'$ mashua₁ ≈ mashua₁'

(b) Gather User Input

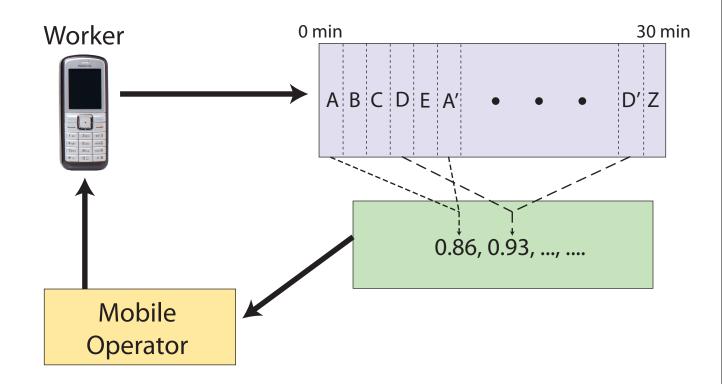
garig	$gari_1$
ndegeg	ndege ₁
mashuag	$mashua_1$
••••Q	1
garig	gari ₁ '
••••Q	1
mashuag	$mashua_1'$

(a) Make Canonical Recordings

English	Swahili	Gold Std. Utterance
car	gari	"gari"
boat	mashua	"mashua"
plane	ndege	"ndege"
		// // •••

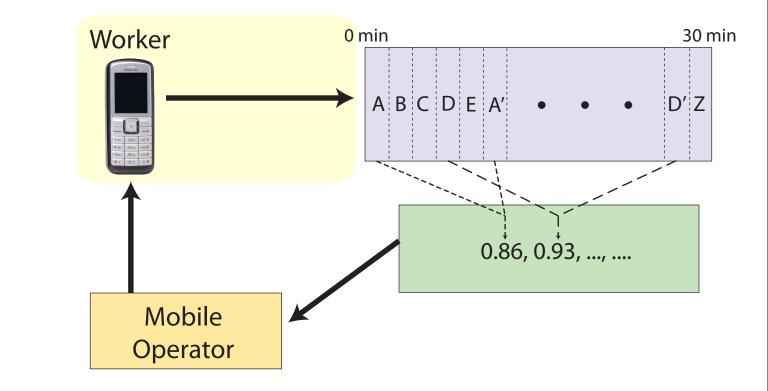

(c) Verify Input

Intra-session Agreement?


 $gari_1 \approx gari_1'$ mashua₁ \approx mashua₁'

(b) Gather User Input

garig	gari ₁
ndegeg	ndege1
mashuag	$mashua_1$
•••• g	1
garig	gari ₁ '
••••Q	1
mashuag	$mashua_1'$

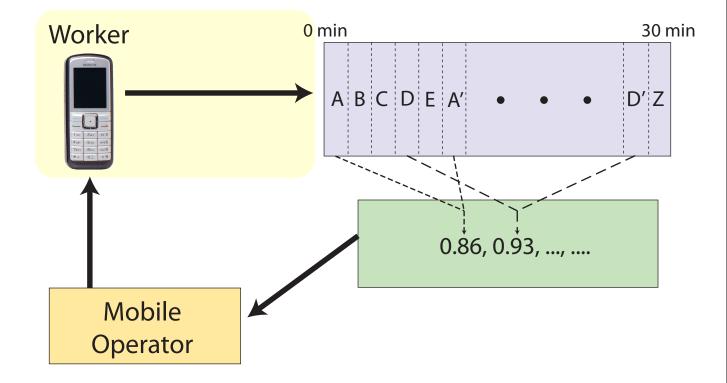


Like Mechanical Turk: pay users for validated work (i.e. speech contributions)

Like Mechanical Turk: pay users for validated work (i.e. speech contributions)

NOKIA Connecting People

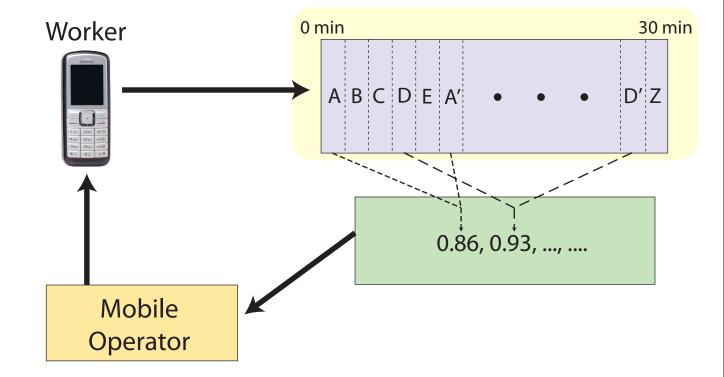
1. User flashes CX


• Gets callback

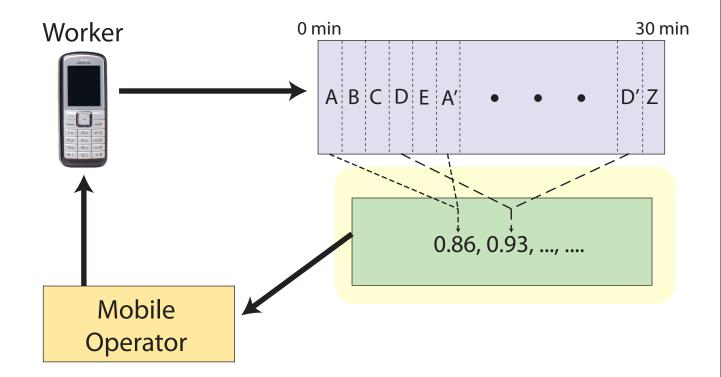
Like Mechanical Turk: pay users for validated work (i.e. speech contributions)

1. User flashes CX

Gets callback

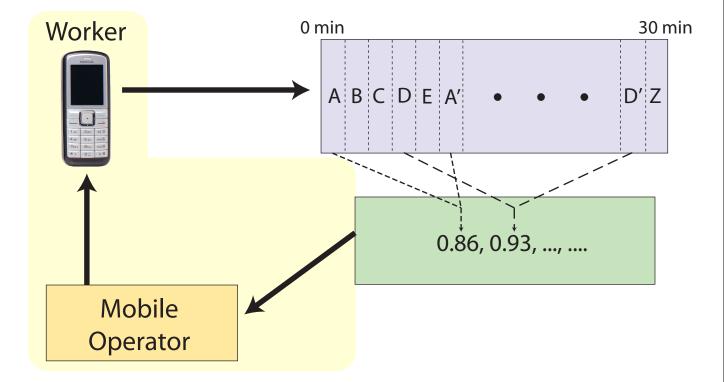

2. Selects his native language

Like Mechanical Turk: pay users for validated work (i.e. speech contributions)


- User flashes CX
 Gets callback
 - Gets callback
- 2. Selects his native language
- 3. Mimics voice prompts
 - "new transaction"

Like Mechanical Turk: pay users for validated work (i.e. speech contributions)

- User flashes CX
 Gets callback
- 2. Selects his native language
- 3. Mimics voice prompts
 - "new transaction"
- 4. Automatic verification


Like Mechanical Turk: pay users for validated work (i.e. speech contributions)

1. User flashes CX

Gets callback

- 2. Selects his native language
- 3. Mimics voice prompts
 - "new transaction"
- 4. Automatic verification

5. Payment

Automatic Verification

Goal:

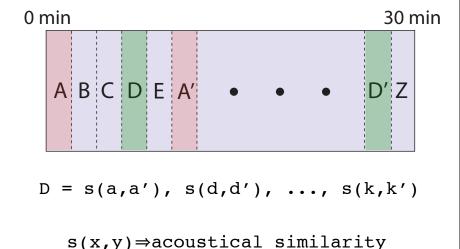
- Discard low quality work
- Tolerate noise to improve trust

Previous work (Turk, txteagle, Sarmenta)

- Give k users same task
 - Slow payment

Automatic Verification

Goal:


- Discard low quality work
- Tolerate noise to improve trust

Previous work (Turk, txteagle, Sarmenta)

- Give k users same task
 - Slow payment

Our approach: Intra-session Agreement

- Make a small fraction of user's queries redundant
- Measure acoustical similarity between each pair
- Examine distribution of similarity scores
 - Like same user saying same word? Accept
 - Else: Reject

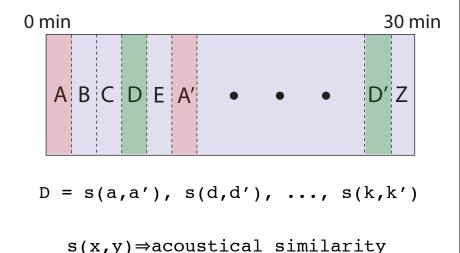
NOKIA Connecting People

Automatic Verification

Goal:

- Discard low quality work
- Tolerate noise to improve trust

Previous work (Turk, txteagle, Sarmenta)


- Give k users same task
 - Slow payment

Our approach: Intra-session Agreement

- Make a small fraction of user's queries redundant
- Measure acoustical similarity between each pair
- Examine distribution of similarity scores
 - Like same user saying same word? Accept
 - Else: Reject

Can be augmented with other methods

vs. Gold Standard, vs. Corpus


```
NOKIA
Connecting People
```


User Study in Kenya

- 15 users; 55 words x2 (to test auto verification)
- Manually annotated: 1229 valid, 421 invalid

User Study in Kenya

- 15 users; 55 words x2 (to test auto verification)
- Manually annotated: 1229 valid, 421 invalid

vs. Gold Standard

Too much valid data had low similarity score (high false negatives)

User Study in Kenya

- 15 users; 55 words x2 (to test auto verification)
- Manually annotated: 1229 valid, 421 invalid

vs. Gold Standard

- Too much valid data had low similarity score (high false negatives)
- vs. Intra-Session Agreement
- Session valid if 80% utterances valid
- <5% false negative; 25% false positive</p>

User Study in Kenya

- 15 users; 55 words x2 (to test auto verification)
- Manually annotated: 1229 valid, 421 invalid

vs. Gold Standard

- Too much valid data had low similarity score (high false negatives)
- vs. Intra-Session Agreement
- Session valid if 80% utterances valid
- <5% false negative; 25% false positive</p>

Take-away

- Intra-Session Agreement plus ...
 (a) immediately vs Corpus
 (b) later with clustering
- Larger validation needed
 - Effect of priming?

© 2009 Nokia 2009-10-10/JTL

Crowd Translator

- Cheaply create phrases-based recognizers for local, low-corpus languages
 - Keep costs low
 - No experts, no lab, existing phones, automated verification
 - User trust
 - Rapid payment for validated work

Crowd Translator

- Cheaply create phrases-based recognizers for local, low-corpus languages
 - Keep costs low
 - No experts, no lab, existing phones, automated verification
 - User trust
 - Rapid payment for validated work

Future Work

- Large-scale corpus in collaboration with Univ. of Nairobi
- New validation algorithms
- Open source: NASI ("with us") on Sourceforge

Crowd Translator

- Cheaply create phrases-based recognizers for local, low-corpus languages
 - Keep costs low
 - No experts, no lab, existing phones, automated verification
 - User trust
 - Rapid payment for validated work

Future Work

- Large-scale corpus in collaboration with Univ. of Nairobi
- New validation algorithms
- Open source: NASI ("with us") on Sourceforge

Demo

+254 711 027 950, +1 617 453 2272

Crowd Translator

- Cheaply create phrases-based recognizers for local, low-corpus languages
 - Keep costs low
 - No experts, no lab, existing phones, automated verification
 - User trust
 - Rapid payment for validated work

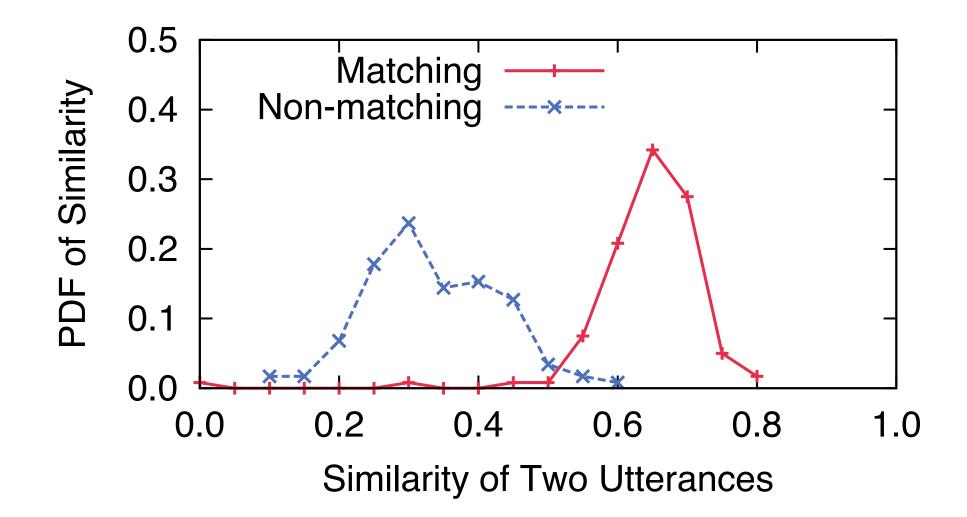
Future Work

- Large-scale corpus in collaboration with Univ. of Nairobi
- New validation algorithms
- Open source: NASI ("with us") on Sourceforge

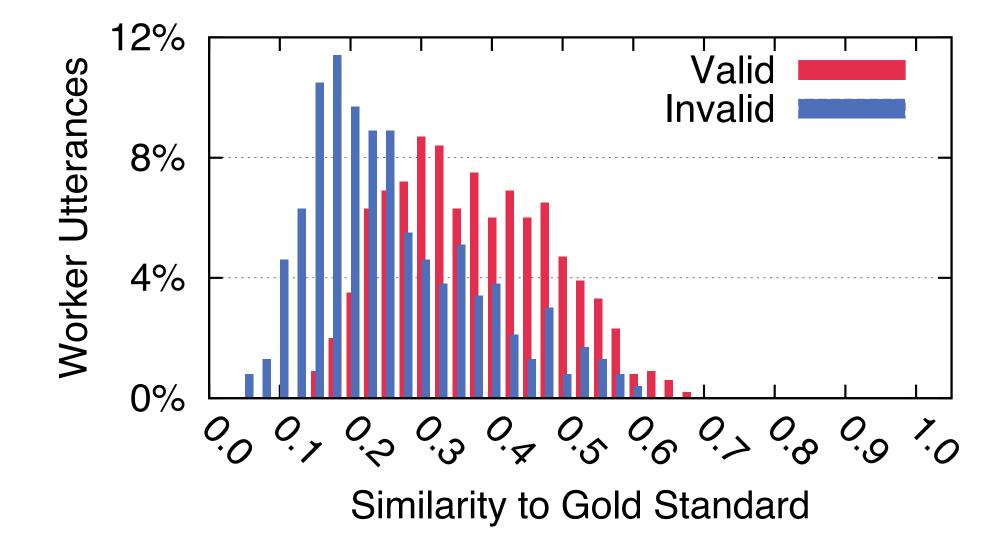
Demo

+254 711 027 950, +1 617 453 2272

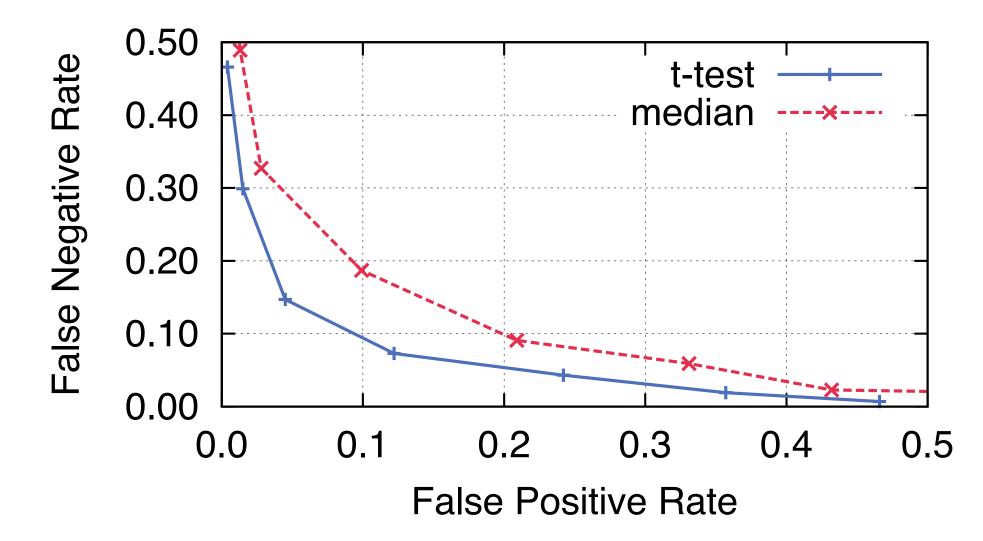
jonathan.ledlie@nokia.com



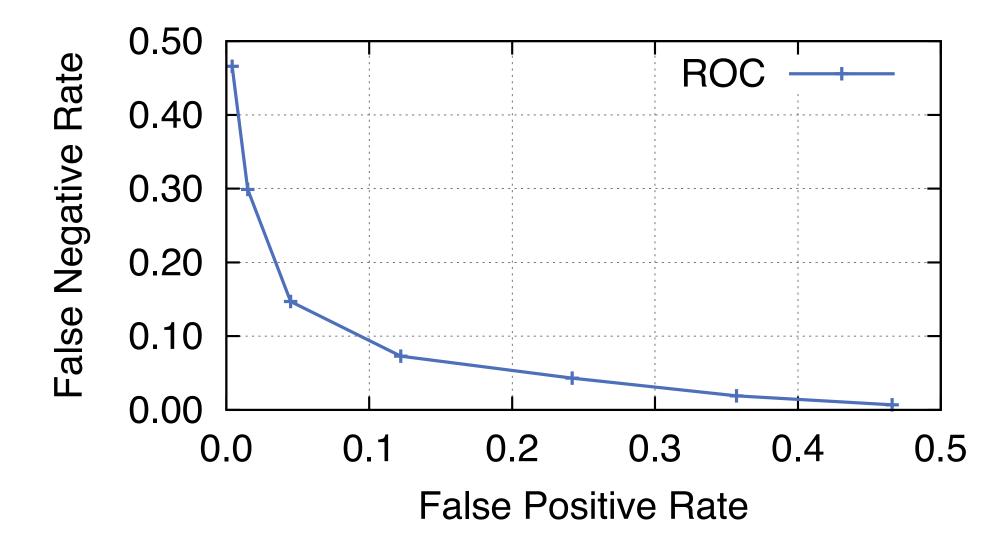
Extra Slides


© 2009 Nokia 2009-10-10/JTL

Similarity Score Distributions



Gold Standard



Intra-session Agreement Results

Intra-session Agreement Results

NRC/Cambridge Projects

Three server-side services; prototyping in East Africa (Audio/SMS-based)

• Our focus: User-generated content

Tangaza ("announce" in Swahili)

- Send voice messages to friends, family, and groups
 - e.g., Nairobi taxi drivers, tomato farmers in Uganda
- "Twitter" (social net, status updates) for emerging markets

Crowd Translator

- Apply mechanical turk model to generate input for speech recognizer
 - Micropayments in exchange for small tasks
- Improve device/service localization through speech in many more local languages

MOSOKO ("mobile marketplace" in Swahili)

- Post and query advertisements for jobs, apartments, and goods
- "Craigslist" for the Next Billion

