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Overview
Scenario: mobile money transfer
• MPESA in Kenya
• Current UI is text based
‣ Literacy is major barrier
‣ Voice-based UI had much higher task completion rates (Medhi, CHI ’09)

Purchase speech recognizer?
• “Rich country” languages only
‣ Gaelic (0.5m), Welsh (1m)

• Out of luck
‣ Luo (3.5m), Swahili (5m 1st, 80m 2nd)

Our Approach: Crowd Translator
• Cheaply create recognizer for local, low-corpus languages
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How is a speech recognizer built?

1. Expert creates dictionary

  bangers   b-ae-N-s@r-z
  batter    b-ae-t-s@r
  ...       ...

2. Collect corpus from native speakers

3. Build phoneme matcher

 Output: bangers (98%)
         batter   ( 1%)
         ...

Type 1: PHONEME Type 2: PHRASE

b (0.8)

bH (0.2)

ae (0.98)

ai (0.02)
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CX Design Goals
•Gather large corpus from native speakers

•Establish user trust

•Keep total costs low
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Our Approach
(a) Make Canonical Recordings (c) Verify Input

(b) Gather User Input (d) Expand Corpus
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Like Mechanical Turk: pay users for validated work (i.e. speech contributions)

Mobile
Operator

Worker

A B

30 min0 min

C D D’ ZA’E

0.86, 0.93, ..., ....3. Mimics voice prompts
• “new transaction”

4. Automatic verification

2. Selects his native
    language

5. Payment
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Goal:
• Discard low quality work
• Tolerate noise to improve trust

Previous work (Turk, txteagle, Sarmenta)

• Give k users same task
‣ Slow payment

Our approach: Intra-session Agreement
• Make a small fraction of user’s queries redundant
• Measure acoustical similarity between each pair
• Examine distribution of similarity scores

‣ Like same user saying same word?  Accept
‣ Else:  Reject

A B

30 min0 min

C D D’ ZA’E

D = s(a,a′), s(d,d′), ..., s(k,k′)

s(x,y)⇒acoustical similarity
Can be augmented with other methods
• vs. Gold Standard, vs. Corpus
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Prototype Highlights
User Study in Kenya
• 15 users; 55 words x2 (to test auto verification)
• Manually annotated: 1229 valid, 421 invalid

vs. Gold Standard
• Too much valid data had low similarity score (high false negatives)

vs. Intra-Session Agreement
• Session valid if 80% utterances valid
• <5% false negative; 25% false positive

Take-away
• Intra-Session Agreement plus ...

(a) immediately vs Corpus
(b) later with clustering

• Larger validation needed
‣ Effect of priming?
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Future Work
• Large-scale corpus in collaboration with Univ. of Nairobi
• New validation algorithms
• Open source: NASI (“with us”) on Sourceforge

Demo
• +254 711 027 950, +1 617 453 2272

Questions?
jonathan.ledlie@nokia.com

mailto:jonathan.ledlie@nokia.com
mailto:jonathan.ledlie@nokia.com
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Similarity Score Distributions
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NRC/Cambridge Projects
Three server-side services; prototyping in East Africa (Audio/SMS-based)

• Our focus: User-generated content

Tangaza (“announce” in Swahili)

• Send voice messages to friends, family, and groups
‣ e.g., Nairobi taxi drivers, tomato farmers in Uganda

• “Twitter” (social net, status updates) for emerging markets

Crowd Translator
• Apply mechanical turk model to generate input for speech recognizer

‣ Micropayments in exchange for small tasks
• Improve device/service localization through speech in many more local languages

Mosoko (“mobile marketplace” in Swahili)

• Post and query advertisements for jobs, apartments, and goods
• “Craigslist” for the Next Billion


