
Proxy Network Coordinates

Jonathan Ledlie
Nokia Research

jonathan.ledlie@nokia.com

Margo Seltzer
Harvard University

margo@eecs.harvard.edu

Peter Pietzuch
Imperial College London

prp@doc.ic.ac.uk

January 2008

Abstract
Network coordinates can be used in large-scale over-

lay applications to reduce the cost of latency estimation.
Previous proposals assumed that all nodes for which la-
tencies were to be estimated actively participated in mea-
surement and computation of network coordinates. In
this paper, we introduce proxy network coordinates, a
method that enables an overlay network to calculate net-
work coordinates for external nodes without their direct
involvement. We describe an algorithm for maintain-
ing proxy network coordinates and show that their accu-
racy and stability properties are comparable to directly-
maintained network coordinates.

1 Introduction
Network coordinates are a powerful, new tool for

efficient latency estimation in networks with millions
of nodes [3, 10]. By embedding a small set of la-
tency measurements between Internet nodes into a met-
ric space, they enable overlay applications to estimate
missing measurements and reason geometrically about
distributed systems problems such as routing and service
discovery [6, 8, 13].

Previous work on network coordinates has assumed
that the nodes to which coordinates were assigned are
members of an overlay network. That is, they are hosts
that run specialized application-level software (such as
the Pyxida network coordinate implementation [15]) en-
abling them to cooperate in ways beyond what the oper-
ating system and standard network protocols provide. In
this paper, we describe proxy network coordinates, which
provide the same power of estimation in large networks,
but free of the requirement that all nodes run the soft-
ware for maintaining network coordinates. Instead, some
overlay nodes maintain proxy coordinates for other Inter-
net hosts without their involvement by managing latency
measurements and recomputing coordinates.

This paper describes an algorithm for creating and
maintaining proxy network coordinates and examines
their convergence and accuracy empirically. We show
that, in an on-going coordinate system (1) proxy net-

work coordinates converge faster than standard coordi-
nates undergoing system-wide start-up and (2) accuracy
is comparable to standard ones. For an overview on net-
work coordinates, the reader should refer to Chapter 2 of
Ledlie’s thesis [6].

The rest of the paper is organized as follows. In Sec-
tion 2, we describe two application scenarios that benefit
from proxy network coordinates. We introduce our algo-
rithm for maintaining proxy coordinates in Section 3. In
Section 4, we evaluate the performance of proxy coordi-
nates on PlanetLab. Section 5 describes related work and
Section 6 concludes.

2 Application Scenarios
The reader can imagine numerous contexts where

legacy, non-participant, or, equally, oblivious hosts
should be added to a set of network coordinates. In this
section, we describe two examples of large-scale overlay
network applications that benefit from using proxy net-
work coordinates.

The first example from our work on a Stream-Based
Overlay Network (SBON) [14] is incorporating data
sources that are not running the SBON software. An
SBON provides an Internet-scale stream-processing ser-
vice that allows users to execute continuous streaming
queries across a large number of data sources. It intelli-
gently places in-network services “close” to where data
is produced, much like selection operators are pushed
down the operator stack in standard database optimiza-
tion. For example, legacy web sites, collections of sen-
sors, and other stream-based web services and feeds may
be operated by third-party service providers that are not
participating in, nor even aware of, the overlay. Nev-
ertheless, the optimizer must take the network locality
of these data sources into account, for example, in or-
der to push query operators closer to data sources. For
the SBON to place services based on oblivious hosts, it
must compute network coordinates for them. By gener-
ating proxy network coordinates for these sites, we can
extend the SBON’s network-aware query optimization to
include these oblivious hosts.

Crawler #1

Crawler #2

Figure 1: Locality-aware Crawler Mapping. This fig-
ures illustrates how web servers hosting RSS feeds are
assigned to near-by crawlers. The assignment can be
done by maintaining proxy network coordinates for the
web servers without their direct involvement.

A second application scenario is a global system for
content-based filtering of RSS feeds, such as our Cobra
system [16]. Such a system must delegate hosts to crawl
a large number of web servers, fetching updated articles
from RSS feeds. A question in this setting is how to map
RSS feeds to web crawlers. Figure 1 shows how two RSS
feeds can be assigned to two crawlers based on locality,
i.e., the latency distance between the crawler and the web
server hosting the RSS feed. This assignment has the ad-
vantage of providing low update latency, high bandwidth,
and good crawling reliability. Using network coordinates
for latency estimation reduces the cost of latency mea-
surements. However, for this application, we cannot as-
sume that web servers hosting RSS feeds are part of our
system and thus calculate their own network coordinates.
Instead, the crawler nodes can maintain proxy network
coordinates on behalf of the web servers and use these
coordinates to map web servers to crawlers.

3 Algorithm
In our approach for constructing a proxy network co-

ordinate for an oblivious node, a host within the overlay
network initiates a series of latency measurements from
different viewpoints in the overlay and combines these
measurements into the oblivious node’s coordinate. We
identify the overlay network host as the proxy host, and
the oblivious node as the target. This network coordinate
for the target will be refined over time as additional mea-
surements are taken. The proxy host is then responsible
for reporting the network coordinate for the correspond-
ing target node.

(-25,-17)

(-50,4)

Proxy Host

(-22,25)

Estimator

Target

“Measure RTT
to Target”

RTT?

Figure 2: Computing a Proxy Coordinate. The proxy
host contacts log(n) estimators. Estimators measure
their round trip time to the target node. They return this
measurement and their current coordinate to the proxy
host. The proxy host then computes a coordinate for
the target node. This process continues over time, keep-
ing the target’s coordinate accurate as network conditions
change

Proxy coordinates are computed as follows. Periodi-
cally, the proxy host asks other nodes in the overlay net-
work to compute their latency to the target node. We
call these other nodes estimators. Upon receiving such
a request, the estimator measures the round-trip latency
to the target and returns this information, along with its
own network coordinate and its confidence in its coor-
dinate, to the proxy. The proxy collects this information
and uses it to compute the network coordinate for the tar-
get. Figure 2 illustrates this process.

With a new latency observation lij , the estimator j’s
coordinate −→xj , and j’s confidence wj , the proxy coordi-
nate host is able to update the coordinate using the stan-
dard Vivaldi algorithm [3]. The update first determines
the error of the observation,

ε =
| ‖−→xi −−→xj‖ − lij |

lij
(1)

where −→xi is the proxy coordinate. Next, the update finds
how much to weigh the observation based on the confi-
dence of the proxy coordinate and of the estimator. Con-
fidence ranges from (0 . . . 1) and summarizes the accu-
racy of a coordinate over time using an exponentially-
weighted moving average. For example, if the proxy co-
ordinate has low confidence, as it does when it is first
created, and the update uses an estimator with high con-
fidence, the measurement will exert a strong “pull” on
the proxy coordinate. Finally, the proxy node updates
the proxy coordinate’s confidence wi and its position:
−→xi = −→xi + δ × (‖−→xi −−→xj‖ − lij)× u(−→xi −−→xj) (2)

where δ is the “pull” of the sample and u is the unit vector
function.

The main distinction between a standard coordinate
and a proxy coordinate is that the measurement occurs
only in one direction: from estimators to targets. Of
course, this makes the overly-simplistic assumption that
links are symmetric; however, we find that in practice,
proxy coordinate accuracy is almost as high as that of
standard coordinates.

Within the overlay network, application-level UDP
ping packets are used to measure internode latencies.
This means that coordinates can often be computed even
when hosts are situated behind firewalls that block ICMP
pings. Of course, such application-level measurements
cannot be used with oblivious hosts. Instead, proxy co-
ordinate calculation uses two methods to obtain latency
measurements: (1) Scriptroute, Spring’s tool for remote
ping measurement [19] and (2) King, Gummadi’s et al.
DNS-based latency measurement tool [4]. Both of these
tools run on the proxy host. Scriptroute has the ad-
vantage that it is more accurate because it measures di-
rectly to the endpoint but has the disadvantage that its
pings are blocked by many ISPs. King is less accu-
rate because it measures distances between local DNS
servers, not the endpoints themselves, but works even
when pings are blocked. For our evaluations, we rely
on the King method to generate latency measurements
because it scales well with a larger set of hosts.

4 Evaluation
In this section we describe our evaluation of proxy

network coordinates. We report our experience in main-
taining a large number of proxy coordinates for Internet
web servers and analyze the convergence and accuracy
of proxy coordinates for PlanetLab hosts. Our results
indicate that proxy coordinates only incur a small ac-
curacy penalty compared to regular network coordinates
and have favorable convergence properties.

4.1 Proxy Coordinates for Web Servers
As described in Section 2, overlay applications often

need to estimate latencies to Internet web servers to make
locality-aware decisions. Proxy coordinates are impor-
tant for such applications because the involved overlay
nodes cannot expect any cooperation from the probed
web servers.

In our first experiment we analyze the computation of
proxy coordinates for a large number of web servers on
the Internet. For this, we deployed our overlay middle-
ware on 200 PlanetLab nodes. We then used the imple-
mentation to calculate proxy coordinates for 1591 web
servers hosting RSS feeds. We plot the proxy coordinates
in a three-dimensional metric space after convergence in
Figure 3. As one would expect, the plots shows that, at a
coarse granularity, there are clusters with web logs from
Asia, North America, and Europe. This is because con-

-100 -80 -60 -40 -20
0 20 -40

-20

0

 20
 40

 60

 0
 20
 40
 60
 80

 100
 120
 140

Proxy Coordinate

ms

ms

ms Asia

North
America

Europe

Figure 3: Proxy Coordinates for Web Servers. This
plot shows the proxy coordinates of 1591 web servers
hosting weblogs on the Internet. The clustering of coor-
dinates according to geographic location is clearly visi-
ble.

nections of latencies between web servers on the same
continent tend to be lower than connections spanning
continents, which have to use high-latency, long-distance
links. A locality-aware overlay application accessing
these web servers could use such a clustering to ensure
that web servers are only accessed from overlay nodes
belonging to the same cluster. This would keep access
latencies low and is also likely to improve reliability due
to the short connections paths.

4.2 Convergence and Accuracy
When generating proxy coordinates for oblivious

hosts, we are concerned with two metrics: convergence
time and accuracy. Convergence time is the time until a
stable estimate of a node’s “true” network coordinate can
be determined. Ideally, convergence time should be low
(on the order of minutes). Accuracy is a measure of abil-
ity of the network coordinate to predict latencies to other
network nodes. In contrast to previous work [17], our
goal is to obtain accurate and stable network coordinates
over long period of time instead of rapid, instantaneous
measurements with potentially low accuracy.

As an examination of how both of these properties
hold, we show the convergence of a single coordinate
and overall accuracy in Figure 4. To test convergence,
we created a proxy coordinate for an overlay node (i.e., a
node capable of calculating its own coordinate) and mea-
sured the coordinate’s accuracy at one minute intervals.
We used 190 PlanetLab nodes and started the proxy co-
ordinate after the overlay coordinates had stabilized. In
Figure 4, the data shows that not only does the proxy co-
ordinate stabilize quickly (under a few minutes), but it
does so in less time than the standard coordinate. This is

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 0 10 20 30 40 50 60

R
el

at
iv

e
E

rr
or

 (
95

th
 P

er
ce

nt
ile

)

Time (minutes)

Proxy
Standard

Figure 4: Proxy Coordinate Convergence Time. When
an proxy coordinate is instantiated in an existing coordi-
nate system, it quickly converges to a low error position.
The data show that the convergence time for a proxy co-
ordinate added to an existing coordinate system is negli-
gible compared to the initial convergence time of a non-
proxy coordinate for the same node. The figure shows
the convergence time of two coordinates, one proxy and
one non-proxy, for a PlanetLab node hosted at the Uni-
versity of Michigan.

because the overlay nodes already had high confidence
in their own coordinates when the proxy coordinate was
created, which leads to quick convergence of new coor-
dinates. This quick convergence would still be the case
when new coordinates were created as part of an existing
large system.

Figure 5 shows overall coordinate accuracy of the
166 PlanetLab nodes, which we use as the overlay, and
the same 1591 web servers from Section 4.1. We plot
the cumulative distribution of the 80th percentile of the
relative error of all links. The data indicates that the la-
tency embedding provides a good estimate (< 50% rel-
ative error) for most links (> 80%). The data also show
that the accuracy of the proxy coordinates is as high as
standard coordinates. This makes sense because the net-
work round trip time from one node to another will be
the same regardless of which host initiates the measure-
ment (exclusive of end-point load and events). Thus,
the same data is being used for coordinate computation
even though, with proxy coordinates, only one side is do-
ing the measuring. The experiment illustrates that proxy
coordinates provide a quick and accurate method to in-
clude non-overlay data producers into network-aware op-
timizations.

5 Related Work
Shanahan and Freedman examine the efficacy of net-

work embeddings for finding nearby servers for unmod-
ified clients [17]. They envision a scenario where an
oblivious client attempts to find the closest of many ser-

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

C
D

F

Relative Error (80th Percentile)

Standard Coordinates (PlanetLab)
Proxy Coordinates (Web Servers)

Figure 5: Proxy Coordinate Accuracy matches Stan-
dard Coordinate Accuracy. The data show the over-
all accuracy distribution for proxy coordinates for 1591
web servers and standard coordinates for 166 PlanetLab
nodes. Each data point is the 80th percentile of the accu-
racy distribution for that coordinate.

vice replicas, which are part of an overlay: the replicas
have network coordinates at the time of the query and the
client does not. They assume the client knows one mem-
ber of the overlay, the ingress node; this node attempts to
determine a coordinate for the client and find it a nearby
replica. There are several interesting aspects to Shanahan
and Freedman’s approach. Because they aim to generate
a proxy coordinate extremely quickly, they do not add
the oblivious node to a continuous measurement process.
Instead, nodes are measured once from a variety of view-
points. As we have shown in previous work, this scarcity
of measurements can lead to anomalous measurements
being included in the computed coordinate, resulting in
artificially high error [9]. Further producing low qual-
ity coordinates, they choose to use coordinates of only
two dimensions, which can experience higher error than
those with more dimensions [7]. Their core result is that
selecting a direct neighbor of the ingress node with the
minimum round trip time is strictly superior (in terms
of latency) to selecting its neighbor with the coordinate
closest to the oblivious node.

Since Ng and Zhang provided the first examination of
how to embed inter-node latencies in a metric space [10],
a series of different approaches have emerged. In their
initial work, called Global Network Positioning, a coor-
dinate space was built in two stages: first, a collection
of well-known landmarks placed themselves in a vector
space through all-pairs ping measurements; second, each
joining node measured its distance to all of the landmarks
and picked a coordinate that minimized the error to all of
them. This approach does not allow for a smooth evolu-
tion of the space over time, nor is it decentralized. How-
ever, it did establish that, even with the error induced by
triangle inequality violations, a high-quality space was

possible. Lighthouses [12] Mithos [20], and NPS [11]
extended the landmark approach by using multiple lo-
cal coordinate systems, by building the space through
preferring to measure nearby neighbors, and through a
hierarchical architecture, respectively. More recently,
Costa et al. developed PIC, another landmark scheme,
which runs a Simplex solver on each node to minimize
error [1]. PIC readjusts coordinates through periodically
re-running this solver process and includes a test to de-
fend its coordinate system against malicious participants.
Cox et al. initially proposed Vivaldi [2] and Dabek et
al. later improved its accuracy in two-dimensions with
height, which was intended to explicitly capture the la-
tency to a high speed link [3]. Shavitt and Tankel’s Big-
Bang Simulations is an embedding technique similar to
Vivaldi, although it models a potential force field instead
of a mass-spring system [18]. Kleinberg has developed a
theoretical grounding for network embeddings, analyz-
ing how to embed coordinates with arbitrarily low er-
rors [5].

6 Conclusions
We described proxy network coordinates, a mecha-

nism for overlay network nodes to maintain network co-
ordinates for external nodes, such as clients and web
servers, without their direct involvement. To calculate
proxy coordinates, latency measurements to target nodes
are assigned to different overlay nodes acting as latency
estimators. Proxy hosts then combine the results and
compute the proxy coordinates. Our evaluation shows
that this approach leads to proxy coordinates having the
same level of accuracy as standard ones and that proxy
coordinates have good convergence properties.

We believe that proxy network coordinates will in-
crease the applicability of network coordinates to new
application domains. As future work, we are investi-
gating a distributed content distribution system that uses
proxy coordinates to map clients to content servers in a
locality-aware fashion.

References
[1] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC:

Practical Internet Coordinates for Distance Estimation. In
Proc. of International Conference on Distributed Com-
puting Systems, Tokyo, Japan, March 2004.

[2] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris.
Practical distributed network coordinates. In Proc. of
Workshop on Hot Topics in Networks, Cambridge, MA,
November 2003.

[3] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi:
A Decentralized Network Coordinate System. In Proc. of
SIGCOMM, Portland, OR, Aug. 2004.

[4] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating
Latency between Arbitrary Internet End Hosts. In Proc. of
Internet Measurement Workshop, Marseille, France, Nov.
2002.

[5] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation
and embedding using small sets of beacons. In 45th
Symposium on Foundations of Computer Science, Rome,
Italy, October 2004.

[6] J. Ledlie. A Locality-Aware Approach to Distributed Sys-
tems. PhD thesis, Harvard School of Engineering and Ap-
plied Sciences, Cambridge, MA, 2007.

[7] J. Ledlie, P. Gardner, and M. Seltzer. Network Co-
ordinates in the Wild. In Proc. of the Symposium on
Networked Systems Design and Implementation, Boston,
MA, Apr. 2007.

[8] J. Ledlie, P. Pietzuch, M. Mitzenmacher, and M. Seltzer.
Wired Geometric Routing. In Proc. of International
Workshop on Peer-to-Peer Systems, Bellevue, WA, Feb.
2007.

[9] J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and Accurate
Network Coordinates. In Proc. of International Confer-
ence on Distributed Computing Systems, Lisbon, Portu-
gal, July 2006.

[10] E. Ng and H. Zhang. Predicting Internet Network Dis-
tance with Coordinates-Based Approaches. In Proc. of
INFOCOM, New York, NY, June 2002.

[11] E. Ng and H. Zhang. A Network Positioning System for
the Internet. In Proc. of USENIX Annual Technical Con-
ference, Boston, MA, June 2004.

[12] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for Scalable Distributed Location. In Proc. of
International Workshop on Peer-to-Peer Systems, Berke-
ley, CA, February 2003.

[13] P. Pietzuch, J. Ledlie, M. Mitzenmacher, and M. Seltzer.
Network-Aware Overlays with Network Coordinates. In
Proc. of International Workshop on Dynamic Distributed
Systems, Lisbon, Portugal, July 2006.

[14] P. Pietzuch, J. Ledlie, J. Shneidman, M. Welsh,
M. Seltzer, and M. Roussopoulos. Network-Aware Oper-
ator Placement for Stream-Processing Systems. In Proc.
of International Conference on Data Engineering, At-
lanta, GA, April 2006.

[15] Pyxida: An Open Source Network Coordinate Library
and Application. http://pyxida.sourceforge.
net/.

[16] I. Rose, R. Murty, P. Pietzuch, J. Ledlie, M. Roussopou-
los, and M. Welsh. Cobra: Content-based Filtering and
Aggregation of Blogs and RSS Feeds. In Proc. of the
Symposium on Networked Systems Design and Implemen-
tation, Boston, MA, Apr. 2007.

[17] K. Shanahan and M. Freedman. Locality Prediction for
Oblivious Clients. In Proc. of International Workshop on
Peer-to-Peer Systems, Ithaca, NY, February 2005.

[18] Y. Shavitt and T. Tankel. Big-Bang Simulation for em-
bedding network distances in Euclidean space. In Proc.
of INFOCOM, San Francisco, CA, June 2003.

[19] N. Spring, D. Wetherall, and T. Anderson. Scriptroute:
A Public Internet Measurement Facility. In Proc. of the
Symposium on Internet Technolgies and Systems, Seattle,
WA, Mar. 2003.

[20] M. Waldvogel and R. Rinaldi. Efficient topology-aware
overlay network. In HotNets-I, Princeton, NJ, Oct. 2002.

