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Abstract—Personal location discovery and navigation within
buildings has become an important research topic in the last
years. One method to determine one’s current position based
on mobile-devices is to compare the set of available WiFi access
points (APs), i.e. the fingerprint of a given space, to a previously
collected database.

In this context, this paper addresses the inherent problem of
such systems that this fingerprint database needs to be established
beforehand. Thus, situations can occur where a building is only
partially represented in the database and localization can only be
provided in a subset of the spaces of the building. This problem
occurs especially in crowd-sourcing (organic) approaches where
users consecutively contribute location-binds. In these situations
an additional system is needed to provide localization.

We present a first study on the fusion of pedestrian dead
reckoning (PDR) from inertial sensors with position estimates
from a WiFi localization system. We outline a possible design of
particle filter and analyze its behavior on experimental data.
We conclude that the outlined method can help to improve
WiFi localization and is especially useful within crowd-sourcing
environments.

I. INTRODUCTION

Personal navigation in cities, airports or large shopping
malls as well as, e.g., the position determination of rescue per-
sonnel at a disaster site require systems capable of discovering
a pedestrian’s location. For outdoor scenarios, the availability
of Global Navigation Satellite Systems (GNSS) like GPS and
their integration in most modern smart-phones has resulted in
a simple and practicable solution to this problem. However,
scenarios in or in between buildings (“urban canyons”) or
seamlessly integrated in- and outdoor application areas where
satellite signals are usually unavailable, still pose a challenge.

One approach to this problem is to make use of the more
or less ubiquitous WiFi networks. Various ways to use WiFi
for this purpose have been proposed [1], [2]. In this context,
systems that rely on user input to collect a fingerprint database
are often referred to as “organic” localization systems [3], [4].

Another approach to this problem is grounded in the re-
cent technological developments and price decline for micro-
electro-mechanical (MEMYS) inertial sensors. The broad avail-
ability of inertial (acceleration and gyro) and magnetic sensors
in low-cost inertial measurement units (IMU) and modern
smart-phones has led to an increase of research interest in
personal inertial navigation and pedestrian dead reckoning
(PDR) techniques [5], [6]. One common problem of these
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Fig. 1. During the growth phase of an organic positioning system, not all
rooms have been surveyed by users, confounding localization in unsurveyed
rooms. Spaces outlined in blue are represented in our fingerprint database.

approaches is, however, that sensor drift and local magnetic
disturbances make long-term accurate localization difficult.

In this paper we present an approach to fuse location esti-
mates from an organic WiFi localization system with heading
estimates and step recognition from an IMU. Especially during
the initial growth phase of an organic WiFi localization system,
such an approach could be useful. Personal location estimates
could then be provided even if the area of interest is yet
only partially represented in the fingerprint database. Also, in
scenarios with a limited number of WiFi access points (AP),
the accuracy could be increased. Our key contribution is to
provide a practical evaluation of this fusion under realistic
conditions. We collect IMU and WiFi localization data in
different runs with different test persons and analyze how a
position estimate can be obtained from a combination of these
two data sources. Figure 1 depicts the floor plan of the building
where we conducted our experiments and the spaces that were
represented in the WiFi database. The considered data inputs
are heading estimates from an attitude and heading reference
system (AHRS) along with acceleration data and occasional
input from a WiFi localization system. The objective of this
paper is to practically evaluate particle filter information fusion
under realistic conditions. In contrast to most previous work
we try to experimentally study the problem in its whole
complexity and not limit the evaluation to a well-defined
subproblem. The use of heading information as a “black-
box” can be motivated under the assumption that future smart-



phones are likely to provide this capability and we don’t go
into further details on this. A study of how to obtain heading
estimates from the fusion of acceleration, gyro and magnetic
sensor data could, e.g., be found in [7]. In this work we
outline a framework and present experimental results of the
system on one floor of a very large building. A subset of the
spaces on this floor is represented in the database of Molé
WiFi Positioning Engine [4].

II. RELATED WORK
A. Inertial assisted WiFi Localization

Most fingerprinting WiFi localization systems base their
location estimation on availability of APs and their respective
received signal strength (RSS) values [1]. Various approaches
exist to match a measurement (a scan) of the available APs
with a location in the database [3], [4]. One possibility to
include knowledge about the considered system, i.e., pedes-
trians, is to make use of accelerometers to detect whether a
person is moving or not (step recognition). This information
can be used to assign the same spatial position to several scans.
By this, a smoothing over time and a higher accuracy can be
achieved [4], [8].

B. Inertial Pedestrian Dead Reckoning

Another approach to indoor localization is to make use of
IMU data. Classic inertial navigation, i.e., the integration of
acceleration and gyro signals is a difficult task due to the
inherent drift of state of the art low-cost MEMS sensors. The
inclusion of additional system knowledge, e.g., by placing
the IMU on the foot of a pedestrian leads to very good
results with errors on the order of a few percent of the
traveled distance [9]. However, in the majority of applications,
placing an IMU on the foot of a pedestrian can be considered
unpractical. Approaches with a hip-mounted IMU usually rely
on pedestrian dead-reckoning (PDR) techniques. Detecting
steps and estimating the step direction with different methods
has been shown to lead to accuracies on the order of about 5 to
8% of traveled distance [6], [10]. One of the reasons to prefer
this IMU position is to assume an IMU contained in a future
smart-phone and carried in the pocket or in a belt-bag [5].
However, the fundamental problem remains, that such systems
are unable to provide long-term stability without additional
external input.

C. Information Fusion for Person Localization

An approach to combine and improve methods from both
areas is the fusion of information of multiple data sources
or additional system knowledge. One important technique in
this context is the inclusion of map knowledge if available.
By limiting the estimated path to accessible spaces (e.g. by
preventing the crossing of walls), the localization accuracy can
be increased. One way to do this is by means of a particle filter,
i.e., a sample based probabilistic representation of the current
position [11]. Different approaches to evaluate the potential of
these methods for the fusion of WiFi locations with inertial
data and map knowledge have been proposed [8], [12], [13].

However, most previous work in this area is limited to fairly
easy and possibly unrealistic instances of the problem, i.e.,
single or small numbers of straight corridors, very small office
spaces or only simulations.

III. PARTICLE FILTER-BASED LOCATION DISCOVERY

In Bayesian state estimation, a state estimate Z; and the
associated uncertainty at time k are derived from the poste-
rior probability density function (pdf). This pdf P(xg|z1.x)
includes all available data from all measurements zj.; up
to time k. Under the assumption that measurements and
state transitions are independent of preceding events (Markov
assumption), its computation can be done recursively based on
a prior state estimate 71 and the measurements z, = hy ()
occurring during the last time step. The Kalman filter provides
an optimal solution if the system state can be represented with
a Gaussian probability distribution and both the system and
the measurement model are linear with zero-mean Gaussian
noise terms. However if either is nonlinear or if the system or
measurement noise cannot be sufficiently approximated with a
Gaussian, it becomes more difficult to calculate the posterior.

If different information sources like maps, inertial data and
WiFi fingerprints are to be fused, one opportunity is to make
use of a sample based representation of the state such as the
particle filter.

The particle filter approximates the state pdf with a number
N of discrete samples (particles) with states x% and associated
weights w! for 1 <i < N.

N
P(xgl21:1) ~ Zw,i5(:ck —ab). (1)
i=1

Herein, the particle weights are normalized such that
> wy® = 1. One possible state estimate is then &5 = Y wixi.
In the considered real-time location discovery application
in this paper, the state of a particle simply consists of its
2D-position zi, = [k, z7?]. Note that in order to achieve a
meaningful representation of the pdf, /V has to be high enough.
The system model is now incorporated in the prediction step

in assigning each particle a new position according to:
Thyr = f(uk, 2} ()

wherein uy, represents the system input and z, 41 1s a realiza-
tion of the proposal distribution f(-) for each particle.

In the measurement step, each particle’s weight is updated
according to all obtained measurements by using the likelihood
function of each measurement:

Wiy = Wi P(2k41 |Ths1) 3)

In the resampling step, the problem of weight accumulation
in only a few particles (sample degeneracy) is prevented by
generating a new particle set. Essentially, strong particles
are reproduced whereas particles with negligible weight are
deleted. It is possible to include a resampling step in every iter-
ation which might however result in a worse representation of



the distribution (sample impoverishment). Alternatively, the re-
sampling step can be dependent on a quality measure, e.g., the
so-called effective sample size Nojr = 1/30 | (wi)? [11].

After normalization of the weights a new state estimate can
be obtained from these particles.

The main advantage of this Sequential Importance Re-
sampling (SIR) particle filter is that both prediction and
measurement allow the incorporation of nonlinear functions
which makes it very suited for the considered application.

IV. DESIGN AND IMPLEMENTATION

For the given application scenario, we propose to use step
recognition, step length and direction estimation from an IMU
with an included AHRS as input into the system model (2).
Position estimates from the WiFi localization system are
used to update the weights in the measurement model (3).
Additionally, a subset of these position estimates are also used
in the system model (2). The building maps are incorporated in
the measurement model (3). A resampling procedure is applied
to prevent degeneracy of the filter. In the following, this
design is outlined in greater detail by analyzing the available
information sources in our scenario.

A. Step Recognition, Step Length and Direction Estimation

For step recognition and step length and direction estima-
tion, we consider data from a hip-mounted Xsens MTi-G IMU,
i.e., carried in a belt-bag or in a person’s pocket. Our approach
for this is based on the method outlined in [10] as summarized:

« Step recognition: detect peaks in total acceleration en-
ergy, apply additional thresholding and windowing

o Step direction ¢: use heading information as provided
by the IMU’s AHRS, estimate IMU alignment versus test
person’s body and corresponding linear transformation
matrix by applying a principal component analysis to
accelerations in forwards/sidewards direction [6]

o Step length SL: assume proportionality of step length
to occurring z-axis accelerations during one step, SL ~
Vmaz(a,) —min(a,) [14]

However, especially if a calibration-free solution for differ-
ent persons is intended, these step recognition and length
estimation methods will provide only limited accuracy. Also,
albeit being able to provide a good enough long-term stable
estimation (due to the inclusion of magnetic sensors), the
heading provided by the IMU’s AHRS is very sensitive to
magnetic disturbances. Thus, to include these data in the
system model, a rather high noise input has to be assumed.

As the particle filter allows the use of a nonlinear function
for this, we use Gaussian error distributions (with correspond-
ing dimensionality) for the direction b ~ A(0|vy) and the
length of a step [ ~ N(0|v;). Thus, upon detection of a
step, the spatial propagation of a particle can be calculated
by drawing samples b’ and [¢ from these distributions:

filupa,zy) = o(1+b) - SL(1+1) (4)

and updating the system. An example of the resulting particle
distribution is depicted in Figure 2.
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Fig. 2. Representation of particle distribution if one step with length SL =

.7 m and direction ¢ = [—0.5,0.5] is detected starting at [0, 0] .

This PDR method is prone to error, e.g., caused by local
magnetic disturbances. These disturbances result in very in-
deterministic behavior of the AHRS for short periods of time
and strong direction estimation errors. To cope with these, the
obvious method would be to chose larger v;, and v;. However,
increasing these parameters also results in a reduced estimation
quality for the underlying probability distribution of the system
state as the number of particles per area decreases. This could
be avoided by either increasing the total number of particles
or by taking into account that certain errors cannot be caught.
This can result in a loss of track. We propose using a smaller
number of particles to improve computability at the cost of
losing track from time to time and having to recapture the
position estimation from a WiFi position update.

B. Molé WiFi Positioning Engine

In the growth phase of an organic WiFi fingerprinting
localization system, the user receives position updates even
when only a subset of a building’s spaces are part of the
system’s database. Under these circumstances, the user will
always receive an incorrect estimate when in a yet-to-be bound
(user-surveyed) area.

Depending on the underlying positioning system, each esti-
mate is typically accompanied by a confidence value or score,
such as a probability from a naive Bayesian approach as,
e.g., in the OIL system [3]. Molé’s score is the output of
its maximum overlap (MAQO) algorithm, which computes a
similarity between the user’s fingerprint and a subset of bound
areas. In Molé, every fingerprint in the database is represented
by a set of mappings from each observed access point to a
data triple AP; = (wj, it;,0;). Here w; is the weight of the
j-th AP for > w; = 1 and p; and o; are parameters for an
(assumed) Gaussian distribution N (p;|o;) of the RSS values
obtained for this AP during calibration. The MAO similarity is
computed by intersecting the observed RSS distributions with
the respective database entries and multiplying the result by
the weight of the AP. Additionally, a punishment for falsely
detected APs is introduced resulting in a similarity value s,
with —1 < s, < 1 for each space S,, in the database of
M spaces (1 < m < M). In the most simple form, the space
with the highest similarity value S,,, is selected as the current
location estimate. Molé also makes use of the smart phone’s



acceleration sensor to combine multiple WiFi scans to a single
RSS distribution which results in a higher accuracy. Further
details on Molé can be found in [4].

We propose to fuse these WiFi position estimates in two
different ways. In the measurement step, every particle’s
weight w} is updated depending on its current position z%
and its distance dj, to the centroid ¢(S,,,) of the MAO space
estimate S,z

W * Spnas if T} is in Sma

i _ 1
Wk.m wy, - (1—s,,,) % otherwise )
k

with s,,, = Sms/2 + .5 to avoid negative values and a
distance weighting factor ¢ that is chosen according to the
number of available WiFi fingerprints in the database. While
this approach is a rather simple approximation of conditional
probability of a measurement, a more elaborate weight update
would require a detailed knowledge of which spaces are
represented in the database and a corresponding calibration
procedure. For the purpose of this proof of concept we choose
to use this simple approximation. Additionally, MAO estimates
are used as system input if s,,, > th (very good estimate):

; ¢(Smz) for mN particles
f2(uk,27xk) = i .
Ty, for (1-m)N particles

On receiving a strong MAO estimate, we inject a randomly
selected fraction m of the particles into the centroid of the
MAO space. The remaining particles are not moved. This
is justified within our model because the particles are an
approximation of the underlying probability density.

If both a step is detected and a strong measurement is
available during one time step, f(-) becomes:

fs(Unau, @}) = fio fa (7

and the particles are propagated based on the detected step
after the injection. This results in an ability to recapture the
track of a person after a possible loss of track.

C. Inclusion of Map Knowledge

The map of the building is used in the measurement step (3)
to update the weight of each particle according to:

®)

; R- w};)(m), if particle crossed a wall
w =
H otherwise

wiic.,(m)a

The obvious choice would be to select R = 0 and to assign
zero weight to particles that have crossed the wall as proposed
in most previous work [8], [12]. However we found that
assigning very small weights R = 0.005..0.02 to particles
although they have crossed a wall can help to reduce the num-
ber of necessary particles. In our organic localization scenario
this inclusion of map knowledge might be the most crucial
step. Low-frequency IMU alignment errors or inconclusively
estimated directions for a few steps (Section IV-A) can be
filtered out.

D. Systematic Resampling

Particularly if using only comparatively small numbers
of particles for better computability, the weights accumulate
rapidly to only few particles. In order to prevent this, we use
systematic resampling. In this procedure, a new particle set
is generated based on the current set. Particles can either be
deleted or reproduced, the higher the particle’s weight, the
higher the probability to be reproduced [11].

E. Algorithm Overview
The proposed particle filter update can thus be summarized:

1) Initialization: distribute N particles with positions x;
for 1 < ¢ < N over whole floor, assign equal weights
Wi initial = 1/N
2) System update Vi € N update according to f(-):
o if step detected then draw from (4)
o if strong MAO input then draw from (6)
o if step and strong MAO input then draw from (7)
3) Measurement update Vi € N:
o if MAO input then assign new weight (5)
o if particle moved due to detected step then assign
new weight (8)

4) Normalize particle weights: w} = w? / vazl wi,

5) Apply systematic resampling algorithm if Ncsr < .5N
In our implementation, the update (steps 2 to 5) is carried
out periodically on a time-triggered basis. Another possibility
would be to update on an event-triggered basis.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

In order to evaluate the proposed approach, 6 experimental
runs were conducted with 3 experimental subjects of different
heights and gender. The subject were told to walk around
randomly and to cover the whole floor. Occasionally they were
to stop, e.g., to open a door or to account for a waiting time
to pick up papers at a printer. A total distance of almost 5 km
was covered in about 1.5 hours. Table I gives an overview of
the conducted runs.

Experiment number 1 2 3 4 5 6

Test person 1 1 2 2 3 3

Distance (m) 666 656 618 571 898 939

Duration (s) 1030 1086 1169 832 1044 1289
TABLE I

DURATION AND COVERED DISTANCE IN THE 6 EXPERIMENTAL RUNS

Heading and acceleration data from an Xsens MTi-G IMU
carried in a belt bag were collected at a data rate of 100 Hz.
Synchronously with these, Molé WiFi location estimates were
collected on a Nokia N90O smart-phone carried in the pocket
of the test-person. To allow for an off-line analysis and evalu-
ation of the proposed method, corresponding ground truth was
established. Walking paths and approximate timestamps were
manually noted down during the experiments. Afterwards all
timestamps (e.g. stops at doors) were fine tuned based on the



raw acceleration sensor readings. Then, a linear interpolation
between those points was performed such that a more or less
accurate ground truth was available for every time step.

The experiment was limited to one floor of a fairly large
office building. WiFi fingerprints for 23 of the total of 158
spaces had been collected for the Molé database as shown
in Figure 1. The MAO position estimates were available at a
rate of 1/5 Hz. This low update rate was chosen deliberately,
as WiFi scanning is energy consuming and very high update
rates are unrealistic for real application scenarios. Also, higher
update rates tend to cause higher fluctuation in the output
estimates due to less smoothing of RSS values over time. It
is worth mentioning, that the considered building has a very
high density of APs making it a very practical surrounding
for any WiFi localization system. As both of these effects are
difficult to quantify we used one possible configuration for the
purpose of this paper.

The goal of this our study was to evaluate the considered
approach for varying persons under realistic conditions.

B. Calibration and Parameter Determination

All presented results were obtained with one parameter
setting for all runs and all test persons. Initially, the particles
were equally distributed on the whole floor. Parameters for
step detection and step length estimation were determined in
advance in a separate experiment (training data set) to prevent
over-fitting. To account for the different heights and walking
pattern of the three test persons rather high noise parameters
were chosen. For the fusion of the Molé MAO estimates,
t = 1 was chosen and 10% of the particles were injected
upon occurence of a strong MAO estimate (S, > .15). These
values strongly dependent on the number and distribution of
the spaces currently represented in the fingerprint database.
Likely, these cannot be transferred to other situations without
preliminary calibration. Further development work would be
needed in order to find an adequate procedure for other
environments. The scope of this paper is to describe initial
results on the presented method.

C. Results and Discussion

The considered PDR approach alone results in errors of 5
to 8 percent of the traveled distance [10]. However, due to
magnetic disturbances or incorrectly detected step directions,
the actual short term errors are difficult to handle. Figure 3
shows one example of a reconstructed PDR trajectory with
and without the use of map matching and inclusion of MAO
position estimates (center of mass of particles depicted). Most
of the time, the estimated trajectory from PDR is more or less
accurate (left) which would result in high accuracies if map
matching is applied. But, from time to time, unpredictable
errors and inaccurate direction estimates occur and the track
becomes ambiguous (right). Reasons for this could be falsely
detected steps or direction errors caused by magnetic distur-
bances.

On the other hand, tracking by means of WiFi signals alone
is also not sufficient in the considered scenario. The only
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Fig. 4. Comparison of mean error and percentage of correct estimates for
data fusion and Molé only localization.

possible position estimates are the spaces represented in the
fingerprint database (Figure 1). Thus, the output is likely to
be wrong if this area is left. Fusing the two systems helps in
this situation. Short term accuracy is obtained from the inertial
inputs. An occasional loss of track is accepted and the WiFi
system is relied on to recapture the position when the user
returns to the covered area. This results in a smaller position
error compared to using either one of the approaches alone.
As output, we consider two different ways to obtain a loca-
tion from the probability density represented by the particles:

1) 2D coordinates of the center of mass of the particles
2) The space with the highest probability, i.e., containing
the highest particle mass

For the first, we define the mean centroid error as the
mean euclidean distance between the particle centroid and the
reference position. For the second, we evaluate the percentage
of the time during which the obtained space estimate from the
particles is equivalent to the current reference space pcorrect
or within its immediate adjacency padjacency. Although the
establishment of the ground truth data was done with great
care, it has to be noted that the obtained reference positions
might be temporarily inaccurate due to the assumption of a
constant velocity between the noted reference points. Thus, the
presented results have to be interpreted as a mostly qualitative
assessment of the obtainable improvements. Figure 4 shows
both quality metrics for the six runs. To obtain comparable
values for the Molé’s MAO estimates alone, the average
distance of the reference position to the centroid current MAO
estimate is depicted.

It can be seen, that for all 6 runs a mean accuracy on the
order of 4 to 6 m is achieved. Only in run 1, the achieved
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accuracy is a little worse due to an unlucky sequence of MAO
measurements and IMU disturbances. Over all experiments the
output is correct to within one space in about 75% of the time
compared to 50% for WiFi localization alone.

VI. OPEN QUESTIONS AND FUTURE WORK

In spite of the promising first results presented in this
paper some open questions remain. For the near future, we
plan to further experiment on the behavior of state of the art
AHRS in buildings and analyze occurring disturbances. On
the implementation side, portability to state of the art smart-
phones and their integrated sensors is targeted. Also, long-term
experiments, i.e. whole days with a larger user variance would
be needed for a more thorough parameter assessment and
determination. Other important research topics include auto-
parametrization for different users for the considered PDR
and meaningful calibration procedures to obtain parameters
for other environments.

VII. CONCLUSION

The presented results show that reasonable accuracies can
be achieved with the outlined fusion approach under the given
conditions. In the context of organic localization the position
estimation accuracy can be improved especially if the area
of interest is not completely represented in the database. This
could increase user motivation to use the system and contribute
additional location binds from the beginning and thus possibly
allow the system to faster grow to a reasonable coverage.

Fusing inertial data could benefit in scenarios where a WiFi
location system is to be used in areas with a lower AP density.
Also localization in areas with an inherent more difficult
behavior of RSS values, e.g. strong fluctuations caused by
the presence of high number of persons might be improved.
In the context of Molé’s hierarchical name space, situations
could be handled in which the location engine delivers only a
partial estimate, e.g., a correct building and floor but no room
due to a lack of user binds. This work presents first results on
a realistic evaluation of a possible system concept. It can be
concluded that the outlined approach seems promising for the
intended applications.
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