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Abstract

We have exanined the tradedfs in applying reguar and
ComprassedBloom filters to the namequeryproblem in
distributedfile systemsanddevelopedandtesteda novel
mecharsmfor scalinggueriesasthenetwork growslarge.
Filtersgreatlyredu@d quely messagewhenusingFan’s
“Summay Cache”in web cachehierarches|[§, a similar
albeitsmaller searchig prodem. We have implemened
atestbedhatmodelsa distributedfile systemandrun ex-
perimerts thattestvarious corfiguratiors of the systento
seeif Bloom filters could provide the samekind of im-
provements.In arealisticsystem,wherethe charce that
arandanly quered nodeholdsthefile beingsearchedor
is low, we shaw thatfilters always provide lower band-
width/searchandfastertime/searchaslong asthe rates
of changeof thefiles storedat the nodesis not extremely
high relative to the number of searchesln otherwords,
we confim theintuition thatkeepingsomestateabaut the
conterts of therestof the systemwill aidin searchig as
longasacquiringthis stateis notoverly costlyandit does
notexpire too quicKy.

The growping topolagy we have developeddivides n
nodes into log(n) grows, eachof which hasa repre-
sentatve nodethat aggrejatesa composite filter for the
grow. All nodesnotin thatgroup usethis low-precision
filter to weed out whole collectiors of nodesby prob-
ing thesefilters, only sendinga searchto be proxied by
a memter of the grow if the probe of the grouwp filter
returrs positively. Proxied searchesrethen carriedout
within a group wheremore precise(more bits per file)
filters are kept and exchangedbetweenthe % noces
in a group. Experimentalresultsshowv that both band-
width/searctandtime/searclareimprovedwith thisnovel

groyingtopdogy.

1 Introduction

Centralizedargescalefile systemdike AFS, its succes-
sor CODA, and NFS have proliferatedfor two decaes
[8, 9, 19]. AFS systemsat universities have scaledto

50,0 nodesor more. More recently a drive to elim-

inate the bottleneks imposed by centralizedbodkeep-

ing, lookup, andcomputation,hasled to the development
of decentrlized systemshat aim to scaleto millions of
noces. The stapleexanples of this decetralization are
Gnuella and Freenet,but more recentlytwo other sys-
tems,CFSandPAST, have directly addressedcalingfile

distribution basedon replicationand intelligent hashimy

scheme [4, 5]. The prime dravbackin thesedecental-

ized systemss thatthey lack a central,reliable sourceof
information,eitherfor accesgontol, versiaing,orname
lookup. In this paper we addessseveral appro&hesto

thenamelookup prodemin large-scaledecentalizedfile

systems.

Several studiegnotivateredicing bandvidth usagedue
to file namelookupsin large-scaledistributed systems.
Two early studies,oneaptly titled “Why GnutellaCant
Scale”[18, 20|, uncerscorehedifficulty andinheentin-
feasibility in searcheén a network wherea nodehases-
sentially no residualknowledge aboutits neaby nodes
or the restof the network. Thesepapersand Ripeanus
emprical measuremant of Gnutella[17] portraysystems
where nodes with low-bandwidth accessnot only are
themselesswampedwith queries but actasanchas on
therestof the network aswell. Gnutella,the mostwidely
useddistributed network currerily in use,blindly floods
thenetwork with searchgueres,which gofive or six hops
away from the originator andthenfollow the samepath
back Ritter and Sripandkulchai shov that networks on
the order of thousads of nodesare enogh to swampa
56kmodem. Tensor hundedsof thousandsvould exceel
the capacityof muchwider conrections.

Thenewer distributedfile systemsCFSandPAST, fo-
cuson dataaccessnot on datalookup. Both view their
systemsascollectionsof multiple readonly file systems,
whele few authos are the only modfiers of data. The
searctprobdem existentin Gnutella,andotherhighly dis-
parde distributed file systemsof the samegeneation,
mays entirelyontothesenew systemstherearestill large
nunbersof nodes and no goad mechanisnfor themto
locateinformationbasedon file nameswithout a central-
izedrepositoy of information.In bothSOSP200L papers
on CFSandPAST, theauthas lease searchingasanopen
problemfor future work.

We proposeapgying Bloom filters[2] to the prodem
of searchig in a large-scaledistributedfile system.One



mechaism would distribute a filter from every nodeto

every noce, and would leadto redwced bandvidth con-
sumptioncompredto queling everyone and to more
pinpanted (andtherefae faster)searchesthis would be
atthecostof storageof thefilters ateachnode thatwould
scalelinearly in the number of nodes. At the price of

more storageusedat eachnode, even fewer query mes-
sageswould be necessarnyf this mectanismemploed
ComprassedBloom Filters insteadof regular ones[12].

A secondnectanismwoulddevelopahierarcly of filters,

whereeachnodewould only storea summaryfilter from

eachsubgoupof the systemandthenonly directquefies
to nodesin this subgrap if its filter provided a match.
Onecouldimaginethis hierarcly extendng severd levels
asthe numter of nodesincreasedOtherfiltering mecha-
nismsandtopolagiesclearlyexist.

We have developedatestbedhatemulates distributed
file systemin both fully-connectedand groyped topdo-
gies. We have expaimentedon this systemwith a vari-
ety of filter sizesandwith different flavors of compes-
sion. We have found thatalmostary filtering mechanism
is superi@ in termsof bandwidh per searchand speed
of resultsto naively queryng all nodes when the con-
tentsof the nodes are not unrealisticallydynamic. Fur
ther, we shav thatgroupng, evenwhenthesubgraipsare
randamly corstructedbeatdully-conrectedfiltering. We
alsodemastratethatthe time for compresioncanmale
usingCompessedloom Filterssignificantlysloverthan
non-compessedilters andis highly depenéntontheun-
derlying compressor

Theremaindcrof thispaperproceedsasfollows: in sec-
tion 2, we look at distributedfile systemsandat otherre-
centusesof Bloom filters; in section3, we go into more
detailinto the theorybehird thetradeofs in usingdiffer-
enttypesof Bloom FiltersandCompessedloomFilters
andwe discusshow group filters work; in section4, we
describeheimplementationof ourtestbedsystemandthe
protacol usedfor growing; sections examinesour exper
imental results;section6 discusseduture directians for
the projectandconclues.

2 Background
2.1 Didtributed File Systems

Gnutellaand Freenetare successfulworking distributed
file systemghatdo not suffer from the constraits of cen-
tralization, like Napstey NFS, andAFS [7, 3]. Both use
a “hop-based”appoachto hardle queries,wherea node
directly queaiesits neighborswhich thenforward the re-
guestto their neigtbors,andsoon. If oneof theseneigh-
borsis slow or congestedthenthe searchis slow. If no
nodeon a particdar path away from the originator has
a matchfor the query thenall of the nodeson this path

have beenunneessarilyinterruptedfrom handlirg other
queiesor perfaming otheractuvities.
Freengéhastwo mainenhareementdeyond Gnutella:

1. It giveseachobjed a uniqueidentifier

2. It cachessearchresultson their way back to the
searcts originator.

Whatit does not provide — andis exactly the sameprob-
lemthatmapson to the newer distributedfiles systemsf
CFSandPAST —is a goodmechanisirto locateunique
idertifiers in the network. All threesystemsessentially
hashnamesto uniqueidentifiersbut noneprovidesarapid
low-bandwidthsearch.

PAST and CFS differ primaily in their replicatin
schemebothto allow quick accesso datathroudh local-
ity andto grart reliability as nodes enterand leave the
network [5, 4]. Analogausto the primary differencebe-
tweenAFS andNFS, PAST copieswhole files and CFS
distributesblock-by-bock. CFShastheadwartageof par
allel downloadof differentpartsof the samefile from dif-
feren nocdes. As notedabove, bothleave namesearchig
asanopen problem.

2.2 Reated Work

Databasebave usedBloomfiltersto make searcheaster
sincetheearly198)s; R* s distributedjoin algoiithm uses
them, for exampe [11]. More recerly, they have been
usedin two researchsystemsprojects,one of which is
currentlyin real-world use.

Fan's “Summary Cache”is a methodfor reducirg the
nunber of searchqueriesin hierarties of HTTP web
cachestora@ seners [6]. Without summay caches,
seners would query all nodesin their hierarcly andwait
for arespoisefrom each.Sinceary numier or evenall of
theserespmsescouldbe negative (thefile in questiorhad
notpreviously beenstoredn thehierarcly), hierarctesof
cachedid notscalewell. Summay cache areBloomfil-
tersummarie®f thecontens of eachmembe of thecache
hierachy. Becaus@loomfilters never generatéalseneg-
atives,thereis noneedto quely cachesvhosefilters shov
thatthey do not containthe file. With summarycaches,
Fanwasableto rediwce the number of intercacle protol
messageby anorder of magritudeandreducstheband
width consunption by over 50%. Summay Cacheshave
becanea partof the SquidWeb Proxy cachethatis used
atmary university andcorpaategatevays.

Like CFSandPAST, OceanStre is anotter widely dis-
tributedfile system[10]. It focusseson dataprotection
and availability through redunndang and cryptographc
technques, aiming to provide thesethrowh pro-active
movemen andcachirg of databefae network prodems
occu. OceanStre uses‘attenuatedloomFilters”to per
form local (searche®f neaby nodes) quickdy andthen
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Figurel: Fully conrectedsearchnetwork Squaregepre-
sentindepenlentnodes. Dashedines represehnode-sizedil-
ters(filters basedon a function of thenumker of files storedata
node),which aretransmittedn both directionsalongeachline
(e.g.B — D andD — B).

falls backto a slow but reliablehierarclical methodif this
fails to produceresults. Similar to our growping method
which perfams a logical OR on a distinct subgraip of
its neighloring nodes, the attenuatedBloom filter de-
scribeseachdirectededgein the network. OceanStore
doesnot have the coneptof hierarches of filters with in-
creasingreliabilities or of represetative nodesthat con-
tain their subgraipsfilters; all nodesare representatves
in OceanStore.

Other schemesbeing devdloped seek to optimize
searchedor peersthat exhibit locality of interests[21].
Usingtheiridea,a quey would be cateyorized andthen
sentto a part of the network that had a high concerra-
tion of nodes that were also interestedn this category.
Sripanidkulchai’s propesedsolutionworks on top of ex-
isting protccols like Gnutella,Chord,andPastry andas-
sociatedists of peerswho sharethe sameinterests.Like
us,they amguethatfor scalability it is impossibleto main-
tain up-to-datestatefor all peers.Their projectis still in
devdopmert andit did not have publishedresultsat the
currert date.Ourfilters andparticularlyour groying and
subgoupingwouldinterfacewell with theirlocality in in-
terestadea.

3 Query Mechanisms

Our modelof a distributedfile systemallows every node
directcommunicationwith every othernocke. Thismockls
the ervironmentsuppliedby both CFSandPAST, where
every node can “mount” the file systemof every pub-
lisherandthenquey it directly. Of coursetheunderlying
network, usually IP, doesnot supgy direct conrections
amory all nocks.

Becausehenodesarefully conrectedthey candirectly
probe eachotherwith queresandeachnodk cansendev-
ery othera summaryof its contens. Figure3 shavs the
patts for queriesandfilters in a compete gragh with six
nockes. Becauseahe numter of edgesatary given time is
@, whichis quadrgic in thenumter of nodes, trying
to propagatemessaget all nodes(or evena smallfrac-
tion) asthenumter of nodesgetslarge leadsto difficulties
like routerbuffer overflows andlow responsdimes.

In our analysis of using Bloom filters to improve
gueiesin distributedsystemswe have first compaedthe
berefits of whenfilters are distributedto all nodes and
whenqueies canpassamorg all nodes.After comparing
thenaive appoachof sendinga queryto all noceswe are
comectedo (whichin ourimplemenation,wasall of the
nocesin the system)with usingtwo filtered appoaches,
nomalandCompresse&8loom Filter, we examire anap-
plication of composite filters that describesoudhly the
cortentsof a group of noces.

3.1 NaiveFiltering

Thesimplestto implemen andvisualize,“naive’ filtering
mears nofiltering atall: whenanoce performsasearchit
cortactseverynodeit can.While thisapprachmaywork
for extremdy dynamic systemswhereary summay in-
formationthatwould assistin improving searchaccurag
would expire immedidely, it hasthe dravbad of being
bothhighin bandvidth consumption(mary messageare
sentper searchlandslow. If files are evenly distributed
andif the file a nodeis searchig for actually exists in
the systema searchwill yield a positive resultonly after
cortactinghalf of thenodes, on average.

3.2 Bloom Filters

A Bloomfilter is aquickandspace-dfcient datastructue
for representinga setof n elementso supmrt membe-
shipqueres. To represenaisetS = {s1, s2,...,5p} Of
n elementsa Bloom filter usesanarray X of m bits and
k indepenenthashfundions, k1, hs, - - - , by With range
{0,1,...,m—1}. Initially, all thebits of thearrayaresetto
0. An elements of S isincludedin theBloomfilter by set-
ting eachof thebitsh; (s) to 1for 1 < i < k. To verify if
anitemz is in S thebitswith indicesh; () for1 <i <k
in thearrayX arechecled. Clearly; if atleastoneof them
is 0, z canrot beamemter of S. If all of themaresetto
1,z is assumedo belongto S. However, thisassumptia
is incorrect with a certainprobability sincethe samebit
coud besetto 1 for multiple items. Thatis, a Bloom fil-
termaygeneratdalsepositives, wherit indicateshatan
elemenis in theseteventhoudhit is not.



Sincein our designeachnodemaintairs alocal Bloom
filter to represenits own file system,changs of the set
S mustbe suppated [6]. This is achieved by maintain-
ing for eachlocationbit in the Bloom filter a count of
how mary timesthatbit wassetto 1 (i.e., the numbe of
elementsof S that hashedto that bit positionunderthe
collectionof hashfundions used). This arrayis conven-
tionally saidto containthebit's phase All the countsare
initializedto zero.Wheneer afile z is addedor removed
from the file systemof a node, k couwnts corresponihg
to the bits with indicesh, (), ha () ,- - -, h (x)arein-
cremerted or decremeted, respectiely. Whena court
changsfrom 1 to O, its correspading bit is turnedoff
since all the files that hashedto that bit had beenre-
moved. In addition we maintaina saturatiorvariabe to
keeptrack of the total number of bits thataresetto 1 in
theBloomfilter. If thenumker of filesatanoceincreases,
we exped the saturationcourt to apprachthe lengthof
thefilter in bits. Whenthefilter becanessaturatedi.e.,a
majority of thebits arel, thefalsepositive rateincreases,
andthe filter mustbe re-createdto acconmodatethe in-
creasein the number of files at the noce. In our simu-
lation, Bloom filters areregereratedwhenthe saturation
variable exceedsagivenpercentagof thefilter'scapaday.

It is usefulto noticethatin the Bloom filter datastruc-
ture thereis a cleartradedf betweenm, the amouwt of
memoy usedto represetithesetS, andtheprobaility of
afalsepositive, f. Assumingthatthe hashfuncionsused
arerandbm, afterinsertingn keysinto atableof sizem,
theprokability thata particularbit is still 0 is exactly:

( 1)’“” i
1—— rem
m

Lettingp = e, the prabability of afalsepositive in
this situationis

(1— (1— %)lmy ~ (1—e_Tk")lc =(1-p)

Accordng to theanalysisin [14] and[16], the optimd
numter of hashfunctiors thatminimizesthefalsepositive
rateabove for a given sizem of the Bloom filter is given

by

k = (in2) (%)

In this casetheresultingminimumfalsepositive ratef
equals

m
n

f= (%)k — (0.6185)

Pictorially, the falsepositive rate follows an exponen-
tial curve of theform in Figure?2.
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Figure 2: Theoetical False Positive ratesfor increasiig
bits perfile, 7+

Clearly, if Bloom filters can be efficiently distributed
and stored, their use will preempt mary unnecssary
gueay messagesom ever leaving theorigin of thesearch.

3.3 Compressed Bloom Filters

As Mitzenmaher suggestsn [12], Compressedloom
filters maybe more apprariatein situationswhenthefil-
ter is not only a datastructureusedto summaize infor-
mation at the nockes, but also a messagehat is passed
betweenthe nodes in orde to suppot upddesin a dy-
narmic system By usingCompessedloomfilters, nodes
canredwcethenunberof bits broadcastthefalsepositive
rate,and/orthe amoun of compuation perlook-up. The
main costof filter compessionis the increasednemoy
requrementsattheendnodeghatmustprocesshelarger
uncoompressedersion of thefilter. Additiondly, theend
points mustcompessanddecompessthetransmittedil-
ter, thusensuringadditioral proesssingequiements.

Theoptimizationprodemfor CompresedBloomfiters
canbe castin two ways. First, in parallelto the reguar
filters optimizaion prablem, in the caseof Compessed
Bloomfilters, onecanalsooptimizefor thefalsepositive
rate given a constrainton size, i.e., the number of trans-
missionbits. Thatis, m andk canbe choserto minimize
the false positive rate subjectto a constrainton the size
of thecompessed/transmittdfilter, z. If p dendesasbe-
fore the prabability that after n insertionsa particularbit
is still 0, theexpectedsizeof theCompresse8loomfilter
ismH (p), whereH (p) = —plog, (p) — (1 — p) log; (p)
is theentrqoy function

According to the analysisin [12] the nunber of hash
functionsthatminimizesthe falsepositive ratefor anun-
conpressedloomfilter maximizeghefalsepositive rate
when the filter is compessed. More technically sub-



ject to the constrint m x H (p) < z the expression

—k
(1 —expm )
—km

(1 —p)"lnp)(i), wherep = e—= , achievesa globd
maximum for p = 1, or equi/alentlyfor k= (In2) (2).
It canbe showvn that given a number of transmittedbits
per entry = andthe contraint m = ﬁ, minimizing
f is equi/alent to minimizing the expressiona (p)
ln(l p) + ln(” Thederivative of a (p) become® when

p = 3, is negativefor p < andposn'we othewise. That
p < < 1 impliesk < In2(Z ) indicatirg that Compressed
Bloom filters achieve a smallerprobalbility of falsepos-
itives by emplg/ing a smallernuntber of hashfunctiors
than the optimal numter of hashfundions for regular
Bloomfiltersthatusesamenunberof transmittedits per
entry.

Alternatively, for a given false positive rate one can
optimize for the compessedsize z. Asymptdic analy-
sis shavs that the theoreticalsize of a compresedfilter
achiering the samefalsepositive rateasa regular Bloom
filter appr@aches: = m1In 2, wherem is the of the sizeof
thestandardilter.

In brief, theordical resultssuggst that compession
canbe usedto improve perfomancein a distributedsys-
tem by reducirg the false positive rate for a given com-
pressedsize and by reducirg the transmissiorsize for a
givenfalsepositive rate. In addition Compresse@loom
filters usesmallernunberof hashfunctions, which could
poterially decreasehe amoun of processingper look-
up.

As suggestedh [12], arithmeic codinghasbeenused
to compessfilters. Thechoiceof arithmeticcodng is nat-
ural sincethis schemeachieres “nearoptimal compess-
sion with low varability” in fitting with the theoretich
analysiswhich assumeshat optimal compeessionis fea-
sible. We useda publicly available adaptive arithmeic
compessolimplemeanedby Carpindli, Moffat, Neal,and
Witten[13]. Thecompessomwasrunwith defadt param-
etersandthebits optionon.

Similar highly compessediltering mechaisms exist
and would be interestingto try on the sameproldem.
LossyDictionaries,for examge, weigh eachmemler of
the setS, andusesa greeq algorithm to build a dictio-
nary of maximum weightgiven constraiis on space[1h
Thedictionaly consistof two tablesof equal length The
keysin the setS arehashedo a cell valuein oneof the
tables,anda union-find datastructures usecdto solve col-
lions in an optimal manrer. To verify if anelementbe-
longsto thesetS, atmosttwo cellsof thedictionarymust
be checled. Sincethe datastrcturerequiresat mosttwo
memoy accesseper query, Lossy Dictionaiies may be
moretime efficientthanBloom filters. However, the con-
structionandupdatirg of this datastructurearenottrivial,

definingthe falsepositive rate f =

Figure 3: Groupbasedsearchnetwork Squaresrepresent
independat nodes. Dashedlines represennode-sizedfilters.
Thick lines are groupfilters and travel in the direction of the
arrov. Ovalsrepresengroups.A is therepresetative of group
0; D of group1.

and may imposeadditinal time requiements. In addi-
tion, LossyDictionariesimply a smallrateof falsenega
tives(i.e., negativeresponséor anentryin theset),which
maynotbea desirabldeaturefor somesystems.

3.4 AggregateFilters

Whenwe began looking at having every nodehave a fil-
ter from every other noce, we immedately recogiized
the prodem thatin order for filtering to truly scaleit had
to requie lessthanquadatic commuicationamory the
nocks. By growping nocesandthensendinglessprecise
filters which describeall of the files in thesegrous, we
believedthatlessoverall bandwidh andpernode storage
would be usedat the experse of somecompexity. What
we describeand what we have testedare two-tiered ag-
gregatefilters, but thereadercanextrapolatethata similar
groupingsystemwould work recursvely.

Aggregatefilters arethe “logical or” of all of thefilters
in agrow. A probe agairst an aggrgratefilter shavs a
matchin the groyp with high prabability, but, obviously,
it canna alsotell whichmemler of thegroupcontainghe
realmatch. The growp sizewe usein our expaimentsis
log(n) of thenodes.

If groy filters are lesspreciseor if a contert-based
groupingschemas usedasdescribedaterin this section,
eachnoce will uselessstoragewith group filters thanif it
storedafilter for everyone,evenif it storesprecisefilters
of its immedate neightors. Figure 3 portrays the topd-
ogy of aggreatedfilters. In it, A andD arerepresentative
nocesthatreceve inter-group sizedfilters from thenodes



in theirgroy. Thesizeof intergroupfilters depenl onthe
total numter of filesin thegroup x thegroup bits perfile
rate, which canbe lessthatthe intragioup size, in order
to geneatesmaller lessprecisentergroupfilters. For ex-
ample,A, B, andC all containsomenumter of files and
commuicateamongthemselesabouthow largeto make
theirintergroupfilter. B andC sendA aBloomfilter (pos-
sibly compessedasit will bemostlyempty),A thenORs
thesdfilterswith its own of thesamesizeandsendit to ary
requestorsthatwould like a summay of the groups con-
tents.A, B, andC all exchangefilters likein amicrocosm
of Figure3. Becausehe cardindity of the subgraipsare
substantiallyessthanthetotalnumkerof nodesfarfewer
filters needto be exchanged. Wherewe had @ filter
messagebefore, with log(n) groypsthereare:

(log(n)(l02g(") - 1)> +

log(n)

log(n)(n —log(n)) + (n — log(n))(log(n))
wherethefirst termis thenumber of aggrejateintergroup
messagesthe secondis the nunber of intragoup mes-
sagesandthethird is the costof groupmemlerssending
therepresetativestheir to-beaggreatedfilters. Looking
athow this grows with the numter of noces,we see:

| Nodes [ Fully ConnetedEdges| Groupng Edges |
1,00 49%600 1972
10,00 49095000 3321392
1,00,0® | 5 x 101t 3982362

Furthersubgouping throudh recusion would reducethe
numter of messagesvenmore

4 System Design and Implementa-
tion

Eachnodein the systemis an independentlava process
consistingof four threads Becausehey areseparatgro-
cessesthey canrun on separatenachinesideally letting

thetestsscaleto mary (i.e. 100) nodes.Thecompnen

thread of the systemare:

Query This threadwaits for a randan number of mil-
lisecondsbasedon an entry in the configuration
andthenchocesa randm file from the domain of
all possiblefiles (also part of the configuration)to
searchfor. Describedn moredetailin Section4.1,
thethreadprobesthelocal cacheof neighbor's nodces
for matche. If ary arefound, it createsa Searchob-
jectandassociatesvith it any neighbors(or groyps)
whosefilters saidthey matched.For “naive” filter-
ing, all filters match. The Querythrea theniniti-
atesthe searchby sendingout a Verify messagédo

the first neigtbor or group that matched If nore

matched, it choosesanotter file (which is doesnot
alrea@y have within its local file system)andbegins
probingagain.TheSearclobjed is thenaddedo the
list of ongping searchesandthethreadgoesbackto

sleep. Note that becausehe Querythreadonly ini-

tiatessearchegndthesearethencompletedby the
Protaol thread therecanbe multiple searchesnd
praxied searchesccuring concurently at the same
nock. In theexperiments,we sav mary searchetak-
ing overonesecondo complée, althoudy they were
beiinggeneatedat a constantrateof appraximately
onepersecond.

File system changer This threadwaits for a (different)
rancdbm nurmberof millisecona specifiedn thecon-
figuration andthenupddes (addsor removes)a file
from the nock’s “shared files. It reluilds the copy
of the nodk’s filter (basedon the bits changd and
phase)andaddsanew entryto thelist of filter deltas,
noting the (possiblyzero)bits chargedanda times-
tampfor the action. This timestampis usedin the
filter deltas,describedn Sectiord.2.

Protocol Server This threadfunctionsasa UDP sener,
listeningfor protacol messagesgespouing to them,
andthenresumindistening. Theactionsit takesare
outlinedin Section4.3 It senesto sendneigtbors
ary of this nodes filters, to ACK or NACK query
velify requests,andto proxy intergroup searcheso
othernodesin thesamegroup, usingits moreprecise
intragoupfilters.

Cache Refresh Thisthreadlooksatthe cacheof neigh
bor, growp, andpossiblyrepresentatie filters and, if
ary are significantly out of date(null in our case),
sendshe nodea requestfor its filter. It is primaily
usedto bootstraphe systemandsleepswvhenall the
nocesareup andthefilters have beendistributed

The systemalso consistsof two extra processes:.one
boastrappingConfigirator and one Logger. The Con-
figurator suppliesa stablebasefrom which ary node can
discover the paranetersfor a particularexperiment(e.g.
whetler to usecompreseddeltas). It is identifiedby its
IP addressandport, asareall the noces. The Logger sits
waiting for Log messageabou the everts in the system
to arrive from thenodesandaggreatesthem.

The cock is appoximately5700lines of Java split up
into 35 classes.

4.1 Filter Implementation

Theimplementationof the Bloom filters is basedon the
analsisin [16]. Ramakrisha suggstsusing Universal



hashfundions of theform:
he,a(z) = ((cx + d) mod p)mod m, and

Hy = hoa(l0<c<p0<d<p

Herem is the size of the filter, which we calculated
asthe numter of files storedat the noce z the bits per
file, which is part of the corfigurationfor eachexperi-
ment.Valuesfor c andd wererandanly geneatedby the
Configuator at the beginning of eachexpetiment. p was
choserto bealarge primenumkerlessthanthemaxinum
valueof anintegeronthemachire we wereusing.Empir
ically we found thatindiceswerewell distributedoverthe
sizeof thefilter.

For bodkkeepiry, eachnodeassociated saturatiorand
a phasewith its local filter. This information was not
passedamongnocks. The saturationkept track of the
numier of changs to a filter, and the phasenotedthe
exactnumter of timesa bit hadbeensetto 1. With the
phasewe wereableto unsetits (andinclude removalsin
deltas).

4.2 Filter Ddtas

In orde to reducethe sizeof themessagebeingsentbe-
tweennodesweimplemenedasystenof timestampsnd
filter deltas. Insteadof only including new bits to “turn
on” (or their indices),we senda bit string which is the
sizeof theoriginal filter with thebitstherecevverneedgo
invert setto one.Becausehis arrayis sparseit actslikea
ComprasedBloom filter, andis highly compessible.In
additionto keepingtrackof afilter to associatevith each
node nodesmustassociatéimestampsvith eachfilter in
their cache. They sendthis timestampwith every filter
request andthentherespoulerdecidesvhetherto senda
new filter or afilter delta.

Becauseheresponér keepsa list of which bits were
turnedon with a file addor off with a file removal, it
cangererateexactly which bits needto be setin there-
questessfilter, given thetimestampof therequestes cur-
rentfilter. Which bits to flip is deteminedby the follow-
ing algoiithm:

1. Createan emptyinteger arraythe size of thefilter,
initializing all slotsto zero.

2. Eachtimethebit is setto one,incremeimthe counter
atthatslot. Decremat whenthebit is unset(e.gthe
removal atts).

3. Any bit thatis nonzero,setthis bit to onein the bit
setsentto therequesterof thefilter.

11 [0] (0] 0] 0
10 [0| 0| 0| o]
9 (0| Add'a® [1] Remove'd [7] Add'c’ [7]
8 1 (1,2,8,9) 0 (2,4,6,8) 7] (1,3,6,8) T
7 [0 0| B o]
6 [1] 1] 0| 1]
5 [1] 1] R 1
4|1 1] [0 [0
3 |9 0 0] 1]
2 [1] 1] 1] 1]
1 (0] 1] R 1]
0 [0 o B B
Time t, Time ty Time t, Time t5

Figure 4: Filter Deltas. At time to, thefilter is created;at
timet, file a, which hashedo (1,2,8,9)is added.Becausebits
2 and8 arealreadyset,only bits 1 and9 (in bold) arechangel
(althoughthe phaseat all four locationsis updated. A timet,,
file bisremoved;2 and8 is notswitchedoff becaus¢heirphases
aregreaterthanzero. At timets, file cis addal. If arequestes
timestampis ¢1, the counterwould put -1s at indices4 and 6,
andthenaddoneatlocations3 and6, giving index 6 anetvalue
of zero. Thedeltabit arraysentbackto therequestewould then
have bits 3 and4 set. Therequestewould flip thesebits, setting
index 3to “on” andindex 4 to “off,” giving it the correctcurrent
filter.

Obviously, if therequester’s timestamps earlierthanthe
origin of thefilter (i.e. to), therequestemustbe sentthe
entirefilter.

4.3 Protocol

The protacol usedto comnunicateamory the noces be-
cormres significantly more comple as it move from the
world where every noce is a neighbor to the world of
groups, representaties, and praxied queries. The proto
col for afully-conneted systemworksasfollows:

VERIFY Verify thatthe receier actuallyhasa file and
that the senderdid not have a falsebloom hit. Re-
spordswith eitheran ACK or aNACK.

ACK Nodeackrowledges thatit hasthefile requested

NACK Nodesaysthatit doesnothave thefile requested.
In our original implementation, NACKs would then
alwaystrigger afilter request from the recever, be-
causeit assumedhatits filter was out of date. To
eliminatethesetwo messagegshe timestampof the
nock’sfilter accompaiesevery VERIFY reqiestand
thena filter delta(or a whole filter) canpiggyback
ontheNACK. ACKs alsohave the ability to pott fil-
ters,and coud do so if the timestampshaoved the
requesters copy of the filter was very out of date,



Proxy request

[ |
[ | \j Proxy response
(opt. wifilter)

D (representative)

Intergroup

Intergroyp
Searcl

Intergroup

Intergroup
filter response

Figure5: Groupirg comrunicationprotccol.  (A,B,C),

(D,E,B, and(G,H,l) aregroups E andF sendtheir group-sized
comporentsof group (D,E,R’s integroupfilter. D, the repre-
sentate of this group ORs thesefilters with its own group

sizedcompaentand sendsit to C, which hasrequestedt. B

is performing a searchand its cacheof intergroup filters has
suggestedhat group (G,H,l) hasthe file it is looking for. It

randomlychoosesH to proxy this requestto the restof group
(G,H,1). H looks at its more preciseintragroupfilters andat its

locally sharedfiles and determineghat| might have thefile B

is looking for. | respondso H with a NACK, which thenin

turn responddo B with the same.B will thenaskG, (G,H,I)’s
representate for anew intergroupfilter.

but this wasnot used.The Searctobjectfor this file
is contactedandit initiatesanew VERIFY requesif
therearemorepossiblenodesto contactor it signals
thatthe searcthascompetedunsuccessfully

FILTER REQUEST Node requeststhat the recever
sendst therecever sfilter andtimestamp.

FILTER RESPONSE Noderecevesfilter fromaneigh-
borandaddsit to its cacheof filters, possiblyby ap-
plying deltas.

Currently the initial bodstrappingof network discovery
is partof the configuation receved from the Configua-
tor, but the ability to discover the network existedin the
protccol of anearlyimplemenation.

The growping topdogy and communication is more
compicatedbut basedon the sameprotccol. The groyo-
ing topolagy, seenpictoridly in Figure5, consistsof the
samemessagessin the fully-conneted case,followed
by aflagwhichfurtherdescribstheactionto take. These
flagsshav whethertheactionis: (1) within thegrou (in-
tragraup), (2) amonggrows (intergroup), (3) betweena

group andits represetative (represetative), (4) for anin-
tergroup proxed search(proxy).

VERIFY Intragoupfollows the sameform asabove, in
the fully-conrectedprotccol. Betweengroups, this
initiates a proxy search,wherea randanly chosen
nock in agroupusesits filters to searchor anextra-
group noce. A proxy verify messagsignalsthatthe
requesteris performinga proxied search.

ACK IntragoupACKswork asabove. IntergroupACKs
signal the end of a successfullyproxied search.
Proxy ACKs comefrom within the samegroupand
causeanintergroupACK to besentbackto thequely
originator.

NACK Intragoup NACKs work as above. Intergroup
NACKs signala negative group proxied lookup and
may initiate anotter intra- or intergroup VERIFY
reguest if more filters match; othewise there has
beenno matchfor the search.Proxy NACKs come
from within the samegroup andinitiate a lookup in
thelist of ongang proxied searchesif more possi-
ble nocesfrom within the grouparefound, anotter
praxy VERIFY messagés sent,otherwiseaninter-
group NACK is sentto the originata. Filters can
pigagyback on both intragroup NACKs and proxied
NACKSs, asthey areboth alwaysto memtersof the
samegrowp.

FILTER REQUEST Intragoup filter requestswork as
aborve. Intergroup requestsare only directedto the
group’s representatie, as only this node holds all
of the compositefilter conponerts. Representate
reqestscomefrom the grouprepresentatve andin-
structtherecever to respoml with its intergroup filter
commnen.

FILTER RESPONSE Intragioup this works as above,
but more oftentheseare piggybacked on intragioup
andproxy NACKs. Intergroupfilter resposessend
the extragroup noce the logical OR of the con-
stituentsof this group; theseonly comefrom therep-
resentatie.

5 Experiments

We exanined network usagefrom two perspecties: (1)
a more idealized, evenly distributed network where all
nocks start off with the samenumbe of files and add
andremove files at the samerate and (2) an empirically
derived mockl basedon studieson the actual usageof
file sharingnetworks like Gnutella[1]. (1) is actually
not asidealizedasit may seembecause collectinn of
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Figure6: Bandwidthconsuned per searchin an “unbal-
anced’network, wherevery few nodesstorealmostall of
thefiles.

distributed file systems,like CFS and PAST, may fol-

low a morebalaned andcontrdled modé of usagethan
the highly decentrized Gnutella. Adar andHubemans’s

study on Gnutellausageshavs how very few nodesare
the sharersof the vastmajority of files andthat > 70%

of nodessharenone. They referto this disparityas“free

riding.” In adistributedfile system puHlishersmay seek
to loadbalane their own multiple publicatiors andsucha
disparitymay not materializeasthesesystemsomeinto

fruition. Most of our experimentsfollow the moreideal-
izedsystemof (1), althoudn we do look at anunbalamced
systemin Figure6. The unbdancedsystemfollows the
samebehaior asseenin Section5.5.

Becausehe testedsystemis fairly comple, with nu-
merots variablesto charge,we mainlytried varying those
whichwe postulatedvould have thelargestaffect. For ex-
ample,we did not expeimentwith mary differenttypes
of hashfundions. Insteadwe vaied the numter of
nodes, the * rate,andthenumberof hashfunctionsused,
the rate of search(the amoun of time the Querythread
wouldsleepfor betweennitiating new searches)hether
deltaswereusedandwhetherthey werecompessedand
whetherthe filters themseles, whenpropagtedin their
entirety werecompressed.

5.1 Experimental Setup

All of theexperimentspresentedhave datacollectedon a
systemrunning with 32 nodesandeachnodegeneating
a searchrequestevery second. The distributedfile sys-
tem has4000distinct files and eachnode generate400
out of those4000files at systemstartup. All the nodes
arethreadsunring onthe samemachire andhave a (pott
numter, IP) pairthatuniguelyidentifiesthemandenaltes
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Figure 7: Bandwidth/searh andtime/searcltonsunption
whenperfaming naive file queries

the commnunicationamongthem. At startup,eachnode
receves a list of all the neighborsin the group Also
at startupeachnoce contactsthe Configirator process
for a derived configuation file in which we specify dif-
feren paraméers suchas run time, nunber of distinct
files in the distributed file system,valuesfor ¢ andd,
whetter the nodeis a Repesentativewho arethe mem-
bersof the groups(if the expeimentis usinggrouping)
time betweenwo consecutie searcheghetypeof search
methal used(Naive, regular Bloom filters, Compressed)
etc. In the casewhenthe configuationfile specifiesghat
Bloom filters areused,the threadgenerges a Bloom fil-
ter for thefilesin its file system pasedon the paraneters
in its configurationfile. Eachprocesghenstartsits four
threals,asdescribedn Sectiord, thatsendfilter requests
to othernodesandthatbegin gereratingfile queies.

The expeliments were run on machineswith Linux
2.216 kernels,800 Mhz Pentiumlll processorsand1G
RAM. The exterral compessionprocessforked to per
form delta compgessionand CompessedBloom filters
usedtmp ontherootdisk.

VERIFY, ACK, andNACK paclet sizeswere20 bytes
each.Filter messagsizesdepaededon thebits perfile of
agivenexpeliment. A NACK coud alsobelargeif afilter
waspiggybacledontoit.

5.2 Naive (Broadcast) Queries

In the naive apprach, eachnode doesa searchby se-
quentially quering every nock on the systemuntil it gets
a positive response.Thus the bandwidh corsumedper
searchis depenént on the numter of requestsandre-
sporsessentper search— no filters exist to add band
width. The nurmber of messagesxcharmgedbetweenthe
requestorandthe rest of the nodes is depedenton the



percem chancehattherequestedile is atthe node being
querial. Sinceevely file from the distributedfile system
hasan equalchanceof beingat the pingednode(in the

testresultsfor this expeiiment), the percat chanceof a
nodehaving the file asthe requestorsearchedor is the
sameastheratio betweerthe numbe of files at thenode
andthetotal numter of files in thedistributedfile system.
Whenanode hasalarge percentag of thefilesin thesys-
tem, the charce of thatnodebeingableto senda positive

resposeis higher. In our expeimentswe vaiied theratio

betweerthe nunber of files at a node andthe total num-
berof distinctfilesin thesystem.Theresultsareshavnin

Figure7 ontheleft y-axis. As canbeseenthebandvidth

per searchgrows almostexponentially asthe number of

filesatthenodesdecrases.n the casewhenanode con-
tains30% of thefilesin thefile systemthefalsepositive
rateis 0.7 on average andthebandvidth is appoximately
50 bytes per search.As the numter of files ata noce de-
creaseghefalsepositiverategronvsand,in thecasewhen
anode has2% of thefiles, thefalsepositiveis abou 98%.

Figure7’sright y-axis shavs thetime spentpersearch.
Notethatthistimeis alittle bit higherthanin reality since
we donotaccounfor searchsthatdid notcompleteatthe
time whenthetestsranfor the specifiedperiod Thetime
spentalso grows exponentially asthe numter of files at
the nodesdecreaes. It startswith about0.8 sec/search
when a noce has 30% of the files and goes up to 120
sec/searclivhena nodehasonly 2% of the files. Note
thatourimplemenationof naive queiessequetially asks
neighbors;i.e. it first waits for the neigtbor’s respose
befoe askingthe next neightor. Thereobviously could
be a time improvemen at a higher bandwidh costif a
nodesentall requestsn parallelto all neigtbors. In this
case,searchindor a givenfile, the time would take just
the round trip time to a noce on the network, if the net-
work could sustainthis usage. However, the bandvidth
expersewill ben x (bandwdth for arequet+ aresponse)
wheren is thenunmberof nodes onthenetwork. Theband-
width usagepersearctwill alwaysbethesameandwill be
equalto whatthe bandwidh perrequestis in the sequen-
tial naive caseghatweimplemenedwith nodes having 2%
of thefiles of thefile system(notethatin thecasewhena
nodehasonly 2% of thefileswe arelikely to queryall the
nodes).

In condusion, for file systemsn which thenodeshave
30 or more percent of thefiles in the system,sequetial
searchwill be better In the casewhena nodehasless
than 10% of the files, sendingsimultaneas reqeststo
everyonewill work better
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Figure8: Time perSearch

5.3 Search Time

In Figure 8, we conparethe averag amaunt of time re-
quired to completea file searchin our systemfor two
searchmecharsms: standarcandCompessedloomfil-
ters. Groupng times,becasethey aremuchsmallerare
givenin thefollowing table:

| GroupCombinatia | MillisecondsperSearch|

5 bpf/3hf, 8 gbpd/5hf 35.4
8 bpf/5hf, 12gbpfishf | 39.4
12 bpf/éhf, 16 gbp/11hf | 1821
5 bpfi3hf, 16 gbpfllhf | 62.4

The groyps usenoncompessedBloom filters. The ex-
perimentswererunfor 15 minutesin asystemwith arate
of 800searchegperfile changeatanode.

Searcltimeis definedastheelapsedime from themo-
men a quey is submitteduntil the moment either the
first positive acknavledgemaet is recevedor thelastcon-
tactedneighbor repliednegatively. Note thatin the case
of filters, our definition accounts for the amotized time
requred by updatesandinitial set-upphaseaswell asthe
time necessaryor hashingandsequentiafilter checkirg
atthenodethatgeneatedthe quey.

Time per searchfor all filter configuationsincreases
with thenumker of bits perfile usedatthenodes. A higher
nurber of hashfunctions andlongertransmissiortimes
account for the almostproportiond increaseof time per
searchasa function of bits perfile in the caseof Bloom
filters. Although thefalsepositive ratedrops, longerpro-
cessingandtransmissiortime for the larger filters com-
persatefor thelower frequeng of upddes.

To compare processingtime at nodes for regular and
conpressedilters we selectedhe parametes of the lat-
ter suchthat bandwidh consuned per searchis appox-

10



0.9 T T T T T T
FP rate
er-node filter size

0.8 -

0.7

0.6

05

04

False Positive Rate

03

0.2 -

01

2 4 6 8 10 12 14 16
Bits per File

Figure9: Obsened falsepositive ratesfor differing bits
perfile. Rateshave beenaveragedoverfive queryfs delta
rates.

imately equalfor the two filter types. Due to the slow

compession/deampressiormechaism, time persearch
in the caseof compessedilters is abou 10 timeslarger
thanfor the correspondig standardfilter with identicd

transmissiorsize. Our experimentsindicatethat, at least
for a small systemlike ours (32 nodes), the compes-
sion/deconpressioroperatimsdomninateprocessingime,

suchthattime savings from fasterhashing(smallernum-
ber of hashfuntions) andsmallerfalsepositive ratesare
insignificart.

Time per searchfor the groying designis more
than 100 times smallerthanthe smallesttime for fully-
conrectedsetupwith reguar Bloom filters. Thisis corre-
lated with smallerbandwvith consunption for groupings,
soit is mainly dueto smalleroverall transmissiorime.

Similar to our obsenations on bandvidth consunp-
tion, the naive quey praocol perfams betterthanreg-
ular Bloom filters timewise whenthe percemageof total
filesin thesystemownedby ary nodeis higherthan10%.
Otherwise time persearchusingthe standadl Bloom fil-
ter mecharsm is smaller Groyps conpetewell with the
naive pratocol even whenthe percentge of files owned
by nodeds fairly large. Onaveraye,time persearchusing
ary of the groying paranetersis lessthan79 ms, while
time persearchor nave queries whennodesown 30%of
all thefiles is about839ms.

5.4 FalsePositive Rates

In Figure9 we plot averageachievedfalsepositivesrates
agairst numter of bits perfile. Thelatteris compuedas
numter of NACK messagegnumter of contactechodes
thatresponéd negaively to a query) over the nunber of
verify messageg@otal nunberof nodescontactedl In ret-
rospect,we believe that we are not recoding the false

positive rate correctly becage we are not recordng the
betavior on a perfilter basis,only on a pernode’s cache
basis.In otherwords, we arenotkeepng trackof thetotal

nunberof NACK messagegereratecdby aparticdar filter

anddividing by thetotalnumkber of VERIFY messagethis

filter hasgeneated. We areconfiden thatthe prablemis

onewith measuementandnotwith implemenation (and
we areunableto extract the information to compue the
ratein this differentway from our current competedex-

periments).

Even with this proviso, the falsepositive rateachieved
in our systemdoes not entirelycomgy with thepredictel
minimum probability of a falsepositive, which decreases
exponentiallywith the nunber of bits perfile. For 4, 6
and8 bits perfile thesystems falsepositive rateis partic-
ularly highhaving avalueof abou 80%. It thendecreases
drasticallyto about5% for 10,12 and16 bits perfile.

5.5 Bandwidth Consumption

As discussedn Section5.2, the bandwdth consunption
in the caseof the naive quening pratocol depadson the
perentageof files in the systemownedby eachnode.In
cortrast, percentagefile ownership at nodesdoesnot af-
fect the perfamanceof Bloom filters since eachmem-
ber of the systemcontairs the Bloom filters of all other
nocks,andtherebrehave equalinformationregading the
differentfiles its neigtborspossessin Figure 10 we ex-
aminethevariationof bardwidth consumptionpersearch
for standardBloom filters asa function of the numter of
searcheperfile systencharge(i.e.,ameasuref thefre-
quency of updatesin the system)for the fully connectd
andgroupng systemdesigns Bandwidthconsumptionis
divided into bandwidh usedby filter updatesand verifi-
cationmessagefVERIFY, ACK andNACK messages).

For the fully-conneted network set-up we ranexpet-
menswith 4, 6, 8, 10and12 bits file andoptimalnumter
of hashfunctions, 3, 4, 6, 7 and8 hashfunctions, respec-
tively. For thegrowing designwe experimentedwith the
following combirationsof bits perfile andhashfunctions
for theintergroupfilters: (5, 3), (8, 5), (12, 8). With these
we associatémore precise’combirationsof bits perfile
andhashfunctionsfor theintragioupfilters: (8,5, (12,8),
and(16,11).

We obsere thatin thefully-connectedsystemthereis
atradeof betweermemoryconsunptionatendnodesand
network traffic. Network traffic for Bloom filters in the
fully-conrectedset-upis highly corrdatedwith the false
positive rates. The false positive rate of our systemre-
mainshigh at about80%for 4, 6 and8 bits, andit drops
steeplybelow 5%for 10,12 and16 bits perfile. Asacon-
sequene,thecombinedaverag bandwidh persearcHor

11
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Figure10: Bandwidthconsumedht differing ratesof searcheperfile systemupdate(e.g. 50 searchesn averageperchang in
anaveragenodesfile system) Bandwidthis splitinto its two compaents verificationmessageéVERFY, ACK, NACK) andfilter
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4, 6 and 8 bits perfile is 21% highe thanthe combired
averag bandwdth persearchfor 10 and12 bits perfile.
Therebre,nodescanrediwcenetwork traffic by decreasing
thefalsepositive rateattheexperseof highermemay re-
quirenentsat the end noces. In contrast,the grouping
setupshaws little variation with the falsepositive rate of
the system.While thefalsepositive ratevariesfrom 75%
to 28%in thethreesituationswe lookedat, the bandvidth
consunption remainsarownd an averageof 63 bytesper
search.

As predcted by our theoretical consideations, the
bandvidth per searchin the caseof groupingis always
significantlylowerthanbandwidh persearctin thefully-
conrected setup, and deceasesonly slightly with the
searctrateperfile chang. In particulartheaverageband-
width corsumptiorfor growingsis abait 50%lowerthan
theaverage bandvidth consumptionfor 10and12 bits per
file in thefully-connectedset-up.

In contrast, the average bandvidth per searchin the
fully-connectedetupdecreaseasthenumterof searches
perfile chang at nodesincreasesThis is expectel since
moresearcheper file chang implies fewer updatesper
searchandtherefae lower bandwidh consunption. This
is confimedby thefactthat,on averagetheratio of filter

to verification bandwidh consunption decreasess the
searchrateperfile chang grows.

Recallthatin the caseof naive queies bandvith con-
sumpgion increasesexponentially as the percentag of
files owed by a nodedeclinesbelonv 10% of thefilesin
thesystem Namely bandvith increasefrom 50bytes per
searclwhennodesown 10%of thetotalfiles, to 150bytes
whenthey own 5%, andto 350 byteswhenthey own 1%.
In cortrast,the Bloomfilter bandwidh consunption does
notvary with the percetageof files ownedby nodesand
rangesbetweeranaverage 50 bytespersearchfor group-
ingsand175bytespersearchHor Bloom filters with high
falsepositive rates. Therdore, in a systemwherenodes
own lessthan 10% of the total files, Bloom filters area
clearbardwidth savzing searchmeclanisms.

5.6 Compressed Bloom Filters

We compae the bandwidh consunption of standad and
CompessedBloom filters for small and mediumfalse
positive ratesin the system. To tunethe compessedil-

ters’ parametes we picked the theoreticalfalse positive
ratesfor reguar Bloom filters with 8 bits and 16 bits per
file, 0.020.6 and0.049,respectiely. In practice we ob-
tain an averaye false positive rate of 0.270 and0.0020.
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For agivenfalsepositive rate,we run the systemwith the
availablecombinationsof bits perfile at nodesandnum-
berof hashfundionsthatyield atheoeticalfalsepositive
rate closestto the desiredrate and a theoetical nunber
of transmittedbits perfile belov at least90% of the bits
perfile ratio requred by the optimalreguar filters corre-
spondng to thatfalsepositive rate. The following table
shavsthechdcesof bits perfile atnodes,nunberof hash
functionsandexpectedchurmberof transmittedbits perfile

for thesmallandmediumfalsepositive ratesconsidered

| Bits perFile | Hashfunc [ ExpTrans | ExpFP ]
8 6 8 0.0216
9 3 5.36 0.0227
10 3 5.72 0.0174
13 2 5.32 0.003
46 1 4.77 0.025
16 11 11.09 0.0m45
21 5 10.84 0.0042
26 4 10.65 0.0041
38 3 10.20 0.0043
93 2 9.57 0.0045

Figure11: CompessedBloom Filters: Expeded Trans-
missionbits perFile

The experimentswere run for 16.6/ minutesin a
systemwith 32 nodes,where eachnode geneates500
searchegperfile change We noticed thatdueto thelarge
compession/deampressiorime requirengents theinitial
setup period(i.e., the periad betweerthe time whenthe
systemis starteduntil every noce receves and decan-
presseghefilters of its neightors) of the systemis much
longe whencompresedfilters are used. In reality, the
systemwould berunfor asuficiently longtime suchthat
the additioral compressionoverheads amotized across
searches.Sincein our experimentsthe systemwas run
for arelatively shortperiodof time, our analysisignores
thebandwidh consumedduringtheinitial set-upto avoid
distortionof theresults.

From this table we note that, contray to expectations,
bandvidth per searchis on averag 4.47% and 3.126
highe thanin the caseof regular Bloom filters with 8
bits and 16 bits perfile respectiely uncer all paraneter
combhbnations. Several reasonsxplain our results. First,
the size of the uncanpressedloom filters is not suffi-
ciently large to achieve optimal compresionswith arith-
meticencodng. Dueto memoy corstraintswewerepro-
hibitedfrom simulatinglargerfile systemswith morebits

| Bits PerFile | Band/srch] Nackw/filter | FPrate |
8 54 172 0.221
9 59 187 0.33
10 60 187 0.36
13 58 219 0.219
46 50 178 0.22
16 41 303 0.0b6
21 42 406 0.0074
26 42 365 0.0078
38 44 310 0.0159
93 42 285 0.0m@1

Figure 12: Compressedloom Filters: Bandwidh Con-
sumpion per Search Bandwidth and Nack with filter
sizesarein bytes.

to compess. In all our experiments,endnodesown 100
files suchthatthe size of the largest unconpressedilter
in our experimentsis 1163 bytes. To shav that,we com-
putethesizeof a NACK with filter for eachchoice of pa-
ramders. Obsene that for lessthan93 bits perfile, fil-
terscompressto morethanthe sizeof theregularBloom
filter. However, using 93 bits per filter comprasedto
285 bytes,while the correspnding reguiar Bloom filter
is 303 byteslong. In addition, we note that althoudn
the false positive ratesfor standardand compessedfil-
tersshouldbeidentical(theparaméeersof thecompessed
filters werechosersuchthata given falsepositive rateis
maintaned), the falsepositive we obtainfor Compessed
Bloomfiltersis onaverag slightly higherthanthematch-
ing ratefor reguar filters. We believe this resultmightbe
dueto delayedupcatescausedby the lengtly compes-
sion/cecompessionpro@ss. In our implementéon, fil-
ter compressionrequres a forked processandseveralin-
put/autput operatims, which addsignificantoverheadto
theactualcompession.

Our results suggestthat Compresed Bloom filters
would most prokably improve bardwidth in large dis-
tributedfiles systemwherethe numker of files at nodes
aresignificantlymorenumenpusthat10Q

6 Conclusion

Ourinitial planwasto derive someformulawherea par
ticular instanceof a distributedfile systemusingfiltering
to enhaue filenamequeriescould plug in the numter of
nocesit hadandthe rate of charge of its constituenfile
systemsversts the rate of queries,and out would come
theright filter dimensios. We have foundthatthe num
ber of variablesis large and significantlyinterdependat
— initial expeimentswith fewer nodesshaved different
resultsthanwith 32 althowgh patternsvereclearlyemeng-
ing. Evenwith this interde@ndere, we believe thatour
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groyingconstriet providesascalablalternatve to nave
searchingandto hop-basedschemes.

In thefuture, we would lik e to experimenton far more
nodes andincludeanimplementéion of Sripanidkilchai’s
proposal [21], wheredomans with similar interestsare
groyedtogether Although thiswasnottestedwe postu-
late thatthis growping schemewould achiese even better
resultsif combnedwith his schemedescribedn section
2.2.

We would alsolike to periorm a morethorowgh analy-
sis of Compessedloomfilters, in particdar whenthey
areusedwith aggreation anddeltaswhenthe compes-
soritself is notamajorbottleneck In particular we think
thelarge, sparceconstituets of theintergroupfilters, sent
to the group representaties, would compesswell. Be-
causehenodesarewritten asseparatgroesseandget
their configuration remotely running themon mary ma-
chinesmay not be very difficult. We would also like
to analyzethe actualfalse positive ratesbetter; our cur
rentimplementéion doesnot keeppekrfilter statisticsand
thesecouldbeinformative. We areconficentin theunder
lying Bloom filter implemenation, however, aswe ver-
ified it with several separatexpeiments,including run-
ningit againstastandardJNIX dictionar, andtheresults
matchedhetheoreticakxpectatios.

After amorethomughanalysisof thetradedfs in intra-
groy andintergroupfilter sizeandwhento propagatefil-
tersbasedon file systemchangs,we believe thatBloom
filters andthe network topolagy we have constructeaill
beread for alarge-scaleimplemenationontop of anex-
isting distributedfile systemJike CFSor PAST. To twist
anold aphaism, userscanna find whatthey canna see;
we think thiswill letthemsee.
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