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Abstract

We have examined the tradeoffs in applying regular and
CompressedBloom filters to thenamequeryproblem in
distributedfile systemsanddevelopedandtesteda novel
mechanismfor scalingqueriesasthenetwork growslarge.
Filtersgreatlyreducedquery messageswhenusingFan’s
“Summary Cache”in webcachehierarchies[6], a similar
albeitsmaller, searching problem. We have implemented
a testbedthatmodelsa distributedfile systemandrunex-
periments thattestvariousconfigurationsof thesystemto
seeif Bloom filters could provide the samekind of im-
provements.In a realisticsystem,wherethe chance that
a randomly queriednodeholdsthefile beingsearchedfor
is low, we show that filters alwaysprovide lower band-
width/searchandfastertime/search,as long as the rates
of changeof thefiles storedat thenodesis not extremely
high relative to the number of searches.In otherwords,
weconfirm theintuition thatkeepingsomestateabout the
contents of therestof thesystemwill aid in searching as
longasacquiringthisstateis notoverly costlyandit does
notexpire tooquickly.

The grouping topology we have developeddivides �
nodes into

������� �	� groups, eachof which has a repre-
sentative nodethat aggregatesa compositefilter for the
group. All nodesnot in thatgroup usethis low-precision
filter to weedout whole collections of nodesby prob-
ing thesefilters, only sendinga searchto be proxied by
a member of the group if the probe of the group filter
returns positively. Proxied searchesarethencarriedout
within a group, wheremoreprecise(more bits per file)
filters arekept andexchangedbetweenthe 
�
����� 
�� nodes
in a group. Experimentalresultsshow that both band-
width/searchandtime/searchareimprovedwith thisnovel
grouping topology.

1 Introduction

Centralizedlarge-scalefile systemslike AFS, its succes-
sor CODA, and NFS have proliferatedfor two decades
[8, 9, 19]. AFS systemsat universities have scaledto
50,000 nodesor more. More recently, a drive to elim-
inate the bottlenecks imposedby centralizedbookkeep-

ing, lookup,andcomputation,hasled to thedevelopment
of decentralized systemsthat aim to scaleto millions of
nodes. The stapleexamples of this decentralizationare
Gnutella and Freenet,but more recentlytwo other sys-
tems,CFSandPAST, have directly addressedscalingfile
distribution basedon replicationand intelligent hashing
schemes [4, 5]. The prime drawbackin thesedecentral-
izedsystemsis thatthey lack a central,reliablesourceof
information,eitherfor accesscontrol, versioning,orname
lookup. In this paper, we addressseveral approachesto
thenamelookup problem in large-scaledecentralizedfile
systems.

Several studiesmotivatereducingbandwidth usagedue
to file namelookups in large-scaledistributed systems.
Two early studies,oneaptly titled “Why GnutellaCan’t
Scale”[18, 20], underscorethedifficulty andinherent in-
feasibility in searchesin a network wherea nodehases-
sentially no residualknowledge about its nearby nodes
or the restof the network. ThesepapersandRipeanu’s
empirical measurement of Gnutella[17] portraysystems
where nodes with low-bandwidth accessnot only are
themselvesswampedwith queries,but act asanchors on
therestof thenetwork aswell. Gnutella,themostwidely
useddistributednetwork currently in use,blindly floods
thenetwork with searchqueries,whichgofiveor six hops
away from the originator andthenfollow the samepath
back. Ritter andSripanidkulchai show that networks on
the order of thousands of nodesareenough to swampa
56kmodem.Tensor hundredsof thousandswouldexceed
thecapacityof muchwiderconnections.

Thenewer distributedfile systems,CFSandPAST, fo-
cuson dataaccess,not on datalookup. Both view their
systemsascollectionsof multiple read-only file systems,
where few authors are the only modifiers of data. The
searchproblemexistentin Gnutella,andotherhighly dis-
parate distributed file systemsof the samegeneration,
mapsentirelyontothesenew systems:therearestill large
numbersof nodes and no good mechanismfor themto
locateinformationbasedon file nameswithout a central-
izedrepository of information.In bothSOSP2001 papers
onCFSandPAST, theauthors leavesearchingasanopen
problemfor future work.

We proposeapplying Bloom filters[2] to the problem
of searching in a large-scaledistributedfile system.One
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mechanism would distribute a filter from every nodeto
every node, andwould lead to reduced bandwidth con-
sumptioncompared to querying everyone and to more
pinpointed (andtherefore faster)searches;this would be
at thecostof storageof thefiltersateachnode thatwould
scalelinearly in the number of nodes. At the price of
morestorageusedat eachnode,even fewer querymes-
sageswould be necessaryif this mechanism employed
CompressedBloom Filters insteadof regular ones[12].
A secondmechanismwoulddevelopahierarchy of filters,
whereeachnodewould only storea summaryfilter from
eachsubgroupof thesystem,andthenonly directqueries
to nodesin this subgroup if its filter provided a match.
Onecouldimaginethishierarchy extending several levels
asthenumber of nodesincreased. Otherfiltering mecha-
nismsandtopologiesclearlyexist.

Wehavedevelopedatestbedthatemulatesadistributed
file systemin both fully-connectedandgrouped topolo-
gies. We have experimentedon this systemwith a vari-
ety of filter sizesandwith different flavors of compres-
sion. We have found thatalmostany filtering mechanism
is superior in termsof bandwidth per searchandspeed
of resultsto naively querying all nodes when the con-
tentsof the nodesarenot unrealisticallydynamic. Fur-
ther, weshow thatgrouping,evenwhenthesubgroupsare
randomly constructed,beatsfully-connectedfiltering. We
alsodemonstratethatthetime for compressioncanmake
usingCompressedBloomFilterssignificantlyslowerthan
non-compressedfiltersandis highly dependentontheun-
derlying compressor.

Theremainderof thispaperproceedsasfollows: in sec-
tion 2, we look at distributedfile systemsandat otherre-
centusesof Bloom filters; in section3, we go into more
detail into thetheorybehind thetradeoffs in usingdiffer-
enttypesof BloomFiltersandCompressedBloomFilters
andwe discusshow group filters work; in section4, we
describetheimplementationof ourtestbedsystemandthe
protocol usedfor grouping;section5 examinesourexper-
imental results;section6 discussesfuture directions for
theprojectandconcludes.

2 Background

2.1 Distributed File Systems

GnutellaandFreenetaresuccessful,working distributed
file systemsthatdonotsuffer from theconstraintsof cen-
tralization,like Napster, NFS,andAFS [7, 3]. Both use
a “hop-based”approachto handle queries,wherea node
directly queries its neighborswhich thenforward the re-
questto their neighbors,andsoon. If oneof theseneigh-
borsis slow or congested, thenthe searchis slow. If no
nodeon a particular path away from the originator has
a matchfor the query, thenall of the nodeson this path

have beenunnecessarilyinterruptedfrom handling other
queriesor performingotheractivities.

Freenet hastwo mainenhancementsbeyondGnutella:

1. It giveseachobject a uniqueidentifier.

2. It cachessearchresultson their way back to the
search’s originator.

What it does not provide – andis exactly thesameprob-
lemthatmapson to thenewerdistributedfiles systemsof
CFSandPAST – is a goodmechanismto locateunique
identifiers in the network. All threesystemsessentially
hashnamestouniqueidentifiersbutnoneprovidesarapid,
low-bandwidthsearch.

PAST and CFS differ primarily in their replication
schemebothto allow quick accessto datathrough local-
ity and to grant reliability as nodes enterand leave the
network [5, 4]. Analogous to the primary differencebe-
tweenAFS andNFS,PAST copieswhole files andCFS
distributesblock-by-block. CFShastheadvantageof par-
allel downloadof differentpartsof thesamefile from dif-
ferent nodes.As notedabove,bothleave namesearching
asanopen problem.

2.2 Related Work

DatabaseshaveusedBloomfiltersto makesearchesfaster
sincetheearly1980s;R*’sdistributedjoin algorithm uses
them, for example [11]. More recently, they have been
usedin two researchsystemsprojects,one of which is
currently in real-world use.

Fan’s “Summary Cache”is a methodfor reducing the
number of searchqueriesin hierarchies of HTTP web
cachestorage servers [6]. Without summary caches,
servers would query all nodesin their hierarchy andwait
for aresponsefrom each.Sinceany numberor evenall of
theseresponsescouldbenegative(thefile in questionhad
notpreviouslybeenstoredin thehierarchy), hierarchiesof
cachesdid notscalewell. Summary cachesareBloomfil-
tersummariesof thecontentsof eachmember of thecache
hierarchy. BecauseBloomfiltersnever generatefalseneg-
atives,thereis noneedto query cacheswhosefiltersshow
that they do not containthe file. With summarycaches,
Fanwasableto reducethenumberof intercache protocol
messagesby anorderof magnitudeandreduces theband-
width consumption by over 50%. Summary Cacheshave
becomea partof theSquidWebProxy cachethat is used
atmany university andcorporategateways.

LikeCFSandPAST, OceanStore is anotherwidely dis-
tributedfile system[10]. It focusseson dataprotection
and availability through redundancy and cryptographic
techniques, aiming to provide thesethrough pro-active
movement andcaching of databefore network problems
occur. OceanStoreuses“attenuatedBloomFilters” to per-
form local (searchesof nearby nodes) quickly and then
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Figure1: Fully connectedsearchnetwork Squaresrepre-
sentindependentnodes.Dashedlines represent node-sizedfil-
ters(filtersbasedon a functionof thenumberof filesstoredata
node),which aretransmittedin both directionsalongeachline
(e.g.B � D andD � B).

fallsbackto aslow but reliablehierarchical methodif this
fails to produceresults. Similar to our grouping method
which performs a logical OR on a distinct subgroup of
its neighboring nodes,the attenuatedBloom filter de-
scribeseachdirectededgein the network. OceanStore
doesnothave theconceptof hierarchiesof filters with in-
creasingreliabilities or of representative nodesthat con-
tain their subgroupsfilters; all nodesarerepresentatives
in OceanStore.

Other schemesbeing developed seek to optimize
searchesfor peersthat exhibit locality of interests[21].
Using their idea,a query would be categorized andthen
sentto a part of the network that hada high concentra-
tion of nodes that were also interestedin this category.
Sripanidkulchai’s proposedsolutionworks on top of ex-
isting protocols like Gnutella,Chord,andPastry, andas-
sociateslists of peerswho sharethesameinterests.Like
us,they arguethatfor scalability, it is impossibleto main-
tain up-to-datestatefor all peers.Their projectis still in
development andit did not have publishedresultsat the
current date.Ourfiltersandparticularlyourgroupingand
subgroupingwouldinterfacewell with their locality in in-
terestsidea.

3 Query Mechanisms

Our modelof a distributedfile systemallows every node
directcommunicationwith every othernode. Thismodels
theenvironmentsuppliedby bothCFSandPAST, where
every node can “mount” the file systemof every pub-
lisherandthenquery it directly. Of course,theunderlying
network, usually IP, doesnot supply direct connections
among all nodes.

Becausethenodesarefully connected,they candirectly
probeeachotherwith queriesandeachnode cansendev-
ery othera summaryof its contents. Figure3 shows the
paths for queriesandfilters in a completegraph with six
nodes. Becausethenumber of edgesat any given time is
 � 
������� , which is quadratic in thenumberof nodes, trying
to propagatemessagesto all nodes(or evena small frac-
tion)asthenumberof nodesgetslargeleadsto difficulties
like routerbuffer overflowsandlow responsetimes.

In our analysis of using Bloom filters to improve
queriesin distributedsystems,wehavefirst comparedthe
benefits of when filters are distributed to all nodes and
whenqueriescanpassamong all nodes.After comparing
thenaiveapproachof sendinga queryto all nodeswe are
connectedto (whichin our implementation,wasall of the
nodesin the system)with usingtwo filtered approaches,
normalandCompressedBloomFilter, weexamineanap-
plication of composite filters that describesroughly the
contentsof a groupof nodes.

3.1 Naive Filtering

Thesimplestto implement andvisualize,“naive” filtering
meansnofilteringatall: whenanodeperformsasearch,it
contactseverynodeit can.While thisapproachmaywork
for extremely dynamic systemswhereany summary in-
formationthatwould assistin improving searchaccuracy
would expire immediately, it hasthe drawback of being
bothhigh in bandwidth consumption(many messagesare
sentper search)andslow. If files areevenly distributed
and if the file a nodeis searching for actuallyexists in
thesystem,a searchwill yield a positive resultonly after
contactinghalf of thenodes,onaverage.

3.2 Bloom Filters

A Bloomfilter is aquickandspace-efficient datastructure
for representinga setof � elementsto support member-
shipqueries. To representa set ���! #" �%$ " � $'&(&'&($ " 
 ) of� elementsa Bloom filter usesanarray * of + bits and,

independenthashfunctions, - �#$ - � $(.'.'.($ -0/ with range %1 $(23$'&4&4&
$ +65 2 ) . Initially, all thebitsof thearrayaresetto
0. An element" of � is includedin theBloomfilter byset-
ting eachof thebits -87 � " � to 1 for 2:9<;=9 , . To verify if
anitem > is in � thebitswith indices-�7 � > � for 2?9@;A9 ,
in thearray * arechecked.Clearly, if at leastoneof them
is 0, > cannot bea member of � . If all of themaresetto
1, > is assumedto belongto � . However, this assumption
is incorrect with a certainprobability sincethe samebit
could besetto 1 for multiple items.That is, a Bloom fil-
termaygeneratefalsepositives,where it indicatesthatan
element is in theseteventhough it is not.
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Sincein ourdesigneachnodemaintains a localBloom
filter to represent its own file system,changesof the set� mustbe supported [6]. This is achieved by maintain-
ing for eachlocation bit in the Bloom filter a count of
how many timesthatbit wassetto 1 (i.e., thenumber of
elementsof S that hashedto that bit positionunderthe
collectionof hashfunctionsused).This arrayis conven-
tionally saidto containthebit’s phase. All thecountsare
initializedto zero.Wheneverafile > is addedor removed
from the file systemof a node,

,
counts corresponding

to the bits with indices - � � > � $ - � � > � $'.(.'.'$ -B/ � > � arein-
cremented or decremented, respectively. When a count
changes from 1 to 0, its corresponding bit is turnedoff
since all the files that hashedto that bit had beenre-
moved. In addition, we maintaina saturationvariable to
keeptrackof the total numberof bits that aresetto 1 in
theBloomfilter. If thenumberof filesatanodeincreases,
we expect thesaturationcount to approachthe lengthof
thefilter in bits. Whenthefilter becomessaturated,i.e.,a
majorityof thebits are1, thefalsepositiverateincreases,
andthe filter mustbe re-createdto accommodatethe in-
creasein the number of files at the node. In our simu-
lation, Bloom filters areregeneratedwhenthe saturation
variableexceedsagivenpercentageof thefilter’scapacity.

It is usefulto noticethat in theBloom filter datastruc-
ture thereis a clear tradeoff between+ , the amount of
memory usedto represent theset � , andtheprobability of
a falsepositive, C . Assumingthatthehashfunctionsused
arerandom, after inserting � keys into a tableof size + ,
theprobability thataparticularbit is still 0 is exactly:D 2 5 2+@E / 
GFIHKJMLONP

Letting QR� H JML�NP , theprobability of a falsepositive in
this situationisS 2 5 D 2 5 2+TE / 
VU / FXW 2 5 HKJMLONPZY / � � 2 5[Q � /

According to theanalysisin [14] and[16], theoptimal
numberof hashfunctionsthatminimizesthefalsepositive
rateabove for a given size + of theBloom filter is given
by , � ��� �	\3� W + � Y

In this casetheresultingminimumfalsepositive ratef
equals

C]� D 2\ E / � � 1 & ^_2�`Ma � P N
Pictorially, the falsepositive ratefollows an exponen-

tial curve of theform in Figure2.
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Clearly, if Bloom filters canbe efficiently distributed
and stored, their use will preempt many unnecessary
query messagesfrom ever leaving theoriginof thesearch.

3.3 Compressed Bloom Filters

As Mitzenmacher suggestsin [12], CompressedBloom
filters maybemore appropriatein situationswhenthefil-
ter is not only a datastructureusedto summarize infor-
mation at the nodes, but also a messagethat is passed
betweenthe nodes in order to support updates in a dy-
namic system.By usingCompressedBloomfilters,nodes
canreducethenumberof bitsbroadcast,thefalsepositive
rate,and/ortheamount of computationper look-up. The
main costof filter compressionis the increasedmemory
requirementsat theendnodesthatmustprocessthelarger
uncompressedversionof thefilter. Additionally, theend
points mustcompressanddecompressthetransmittedfil-
ter, thusensuringadditional processsingrequirements.

Theoptimizationproblemfor CompressedBloomfiters
canbe castin two ways. First, in parallelto the regular
filters optimization problem, in the caseof Compressed
Bloom filters,onecanalsooptimizefor thefalsepositive
rategiven a constrainton size,i.e., the number of trans-
missionbits. Thatis, + and

,
canbechosento minimize

the falsepositive ratesubjectto a constrainton the size
of thecompressed/transmittedfilter, d . If Q denotesasbe-
fore theprobability thataftern insertionsa particularbit
is still 0, theexpectedsizeof theCompressedBloomfilter
is +]e � Q � , wheree � Q � �f5gQih4j3k � � Q � 5 � 2 5[Q � h4j3k � � Q �
is theentropy function.

According to the analysisin [12] the number of hash
functionsthatminimizesthefalsepositive ratefor anun-
compressedBloomfilter maximizesthefalsepositiverate
when the filter is compressed. More technically, sub-
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ject to the constraint +mlne � Q � 9 d the expression

definingthe falsepositive rate C6� W 2 5po'q�r JMLONP Y � / �� 2 5sQ � � �ut vxw'� � P N � , where Qf� H JML PN , achievesa global
maximum for Qy� �� , or equivalentlyfor

, � � h
z \M�|{ c 
i} .It canbe shown that given a number of transmittedbits
per entry ~
 and the contraint +�� ~��� w'� , minimizing
f is equivalent to minimizing the expression � � Q � �wt v � ���_w'�=� ���_wt v � w'� . Thederivative of � � Q � becomes0 whenQ[� �� , is negative for Q 9 �� andpositiveotherwise.ThatQ 9 �� implies

, 9 h
z \ � c 
 � indicating thatCompressed
Bloom filters achieve a smallerprobability of falsepos-
itivesby employing a smallernumber of hashfunctions
than the optimal number of hashfunctions for regular
Bloomfilters thatusesamenumberof transmittedbitsper
entry.

Alternatively, for a given false positive rate one can
optimize for the compressedsize d . Asymptotic analy-
sis shows that the theoreticalsizeof a compressedfilter
achieving thesamefalsepositive rateasa regular Bloom
filter approachesd��I+�h
z \ , where+ is theof thesizeof
thestandardfilter.

In brief, theoretical resultssuggest that compression
canbeusedto improve performancein a distributedsys-
tem by reducing the falsepositive rate for a given com-
pressedsizeandby reducing the transmissionsize for a
givenfalsepositive rate. In addition, CompressedBloom
filters usesmallernumberof hashfunctions,whichcould
potentially decreasethe amount of processingper look-
up.

As suggestedin [12], arithmetic codinghasbeenused
tocompressfilters. Thechoiceof arithmeticcoding is nat-
ural sincethis schemeachieves “near-optimalcompress-
sion with low variability” in fitting with the theoretical
analysiswhich assumesthatoptimalcompressionis fea-
sible. We useda publicly available adaptive arithmetic
compressorimplemenedby Carpinelli, Moffat,Neal,and
Witten [13]. Thecompressorwasrunwith default param-
etersandthebits optionon.

Similar highly compressedfiltering mechanisms exist
and would be interestingto try on the sameproblem.
LossyDictionaries,for example, weigh eachmember of
the set � , andusesa greedy algorithm to build a dictio-
naryof maximum weightgiven constraints on space[15].
Thedictionary consistsof two tablesof equal length. The
keys in theset � arehashedto a cell valuein oneof the
tables,andaunion-finddatastructureis usedto solvecol-
lions in an optimal manner. To verify if an elementbe-
longsto theset � , atmosttwo cellsof thedictionarymust
be checked. Sincethedatastrcturerequiresat mosttwo
memory accessesper query, LossyDictionaries may be
moretime efficient thanBloomfilters. However, thecon-
structionandupdating of thisdatastructurearenottrivial,

A
�

C
�

B
�

D

F

E
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Figure 3: Group-basedsearchnetwork Squaresrepresent
independent nodes. Dashedlines representnode-sizedfilters.
Thick lines are group filters and travel in the direction of the
arrow. Ovalsrepresentgroups.A is therepresentative of group
0; D of group1.

andmay imposeadditional time requirements. In addi-
tion, LossyDictionariesimply a small rateof falsenega-
tives(i.e.,negativeresponsefor anentryin theset),which
maynotbea desirablefeaturefor somesystems.

3.4 Aggregate Filters

Whenwe began looking at having every nodehave a fil-
ter from every other node, we immediately recognized
theproblem that in order for filtering to truly scaleit had
to require lessthanquadratic communicationamong the
nodes. By grouping nodesandthensendinglessprecise
filters which describeall of the files in thesegroups, we
believedthatlessoverall bandwidth andper-nodestorage
would beusedat theexpenseof somecomplexity. What
we describeandwhat we have testedare two-tiered ag-
gregatefilters,but thereadercanextrapolatethatasimilar
groupingsystemwouldwork recursively.

Aggregatefilters arethe“logical or” of all of thefilters
in a group. A probe against an aggregratefilter shows a
matchin thegroup with high probability, but, obviously,
it cannot alsotell whichmemberof thegroupcontainsthe
realmatch. Thegroup sizewe usein our experimentsis������� �	� of thenodes.

If group filters are less preciseor if a content-based
groupingschemeis usedasdescribedlaterin thissection,
eachnodewill uselessstoragewith group filters thanif it
storeda filter for everyone,evenif it storesprecisefilters
of its immediate neighbors. Figure3 portrays the topol-
ogyof aggregatedfilters. In it, A andD arerepresentative
nodesthatreceive inter-groupsizedfilters from thenodes
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in theirgroup. Thesizeof intergroupfiltersdepend onthe
totalnumberof files in thegroup l thegroup bits perfile
rate,which canbe lessthat the intragroup size, in order
to generatesmaller, lesspreciseintergroupfilters. For ex-
ample,A, B, andC all containsomenumber of files and
communicateamongthemselvesabouthow largeto make
their intergroupfilter. B andC sendA aBloomfilter (pos-
sibly compressed,asit will bemostlyempty),A thenORs
thesefilterswith itsownof thesamesizeandsendit toany
requestorsthatwould like a summary of thegroupscon-
tents.A, B, andC all exchangefilters like in amicrocosm
of Figure3. Becausethecardinality of thesubgroupsare
substantiallylessthanthetotalnumberof nodes,farfewer
filters needto beexchanged.Wherewe had 
 � 
V������ filter
messagesbefore,with log(n) groupsthereare:�������� �	� D ������� �	� ��������� �	� 5 2 �\ E �������� �	� � � 5 ������� �	��� � � � 5 ������� �	��� ��������� �	���
wherethefirst termis thenumberof aggregateintergroup
messages,the secondis the number of intragroup mes-
sages,andthethird is thecostof groupmemberssending
therepresentativestheir to-be-aggregatedfilters. Looking
at how this growswith thenumber of nodes,wesee:

Nodes Fully ConnectedEdges Grouping Edges

1,000 499500 19742
10,000 4999950000 3321392
1,000,000 a l 2 1 ��� 39862362

Furthersubgrouping through recursionwould reducethe
numberof messagesevenmore.

4 System Design and Implementa-
tion

Eachnodein the systemis an independentJava process
consistingof four threads.Becausethey areseparatepro-
cesses,they canrun on separatemachines,ideally letting
thetestsscaleto many (i.e. 1000) nodes.Thecomponent
threads of thesystemare:

Query This threadwaits for a random number of mil-
lisecondsbasedon an entry in the configuration
andthenchoosesa random file from the domain of
all possiblefiles (also part of the configuration) to
searchfor. Describedin moredetail in Section4.1,
thethreadprobesthelocalcacheof neighbor’snodes
for matches. If any arefound, it createsa Searchob-
ject andassociateswith it any neighbors(or groups)
whosefilters saidthey matched.For “naive” filter-
ing, all filters match. The Query thread then initi-
atesthe searchby sendingout a Verify messageto

the first neighbor or group that matched. If none
matched, it choosesanother file (which is doesnot
already have within its local file system),andbegins
probingagain.TheSearchobject is thenaddedto the
list of ongoingsearches,andthethreadgoesbackto
sleep.Note thatbecausetheQuerythreadonly ini-
tiatessearchesandthesearethencompletedby the
Protocol thread, therecanbe multiple searchesand
proxied searchesoccurring concurrently at thesame
node. In theexperiments,wesaw many searchestak-
ing overonesecondto complete,although they were
beiinggeneratedat a constantrateof approximately
onepersecond.

File system changer This threadwaits for a (different)
randomnumberof millisecondsspecifiedin thecon-
figurationandthenupdates(addsor removes)a file
from the node’s “shared” files. It rebuilds the copy
of the node’s filter (basedon the bits changed and
phase)andaddsanew entryto thelist of filter deltas,
noting the(possiblyzero)bits changedanda times-
tampfor the action. This timestampis usedin the
filter deltas,describedin Section4.2.

Protocol Server This threadfunctionsasa UDP server,
listeningfor protocol messages,responding to them,
andthenresuminglistening.Theactionsit takesare
outlined in Section4.3. It servesto sendneighbors
any of this node’s filters, to ACK or NACK query
verify requests,andto proxy intergroup searchesto
othernodesin thesamegroup,usingits moreprecise
intragroupfilters.

Cache Refresh This threadlooksat thecachesof neigh-
bor, group, andpossiblyrepresentative filters and,if
any aresignificantlyout of date(null in our case),
sendsthenodea requestfor its filter. It is primarily
usedto bootstrapthesystemandsleepswhenall the
nodesareupandthefilters havebeendistributed.

The systemalsoconsistsof two extra processes:one
bootstrappingConfigurator and one Logger. The Con-
figuratorsuppliesa stablebasefrom which any node can
discover the parametersfor a particularexperiment(e.g.
whether to usecompresseddeltas). It is identifiedby its
IP addressandport,asareall thenodes. TheLoggersits
waiting for Log messagesabout theevents in thesystem
to arrive from thenodesandaggregatesthem.

The code is approximately5700lines of Java split up
into 35classes.

4.1 Filter Implementation

The implementationof the Bloom filters is basedon the
analysis in [16]. Ramakrishna suggestsusingUniversal
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hashfunctionsof theform:-0��� � � > � � ����� > �<� ��� jV�?Q ��� jV��+ $�� � �e � �n-B��� � � �(� 1�� � �pQ $ 1 9 � ��Q
Here + is the size of the filter, which we calculated

as the number of files storedat the node > the bits per
file, which is part of the configuration for eachexperi-
ment.Valuesfor c andd wererandomly generatedby the
Configuratorat thebeginning of eachexperiment. Q was
chosento bealargeprimenumber lessthanthemaximum
valueof anintegeronthemachinewewereusing.Empir-
ically wefound thatindiceswerewell distributedoverthe
sizeof thefilter.

For bookkeeping,eachnodeassociatedasaturationand
a phasewith its local filter. This information was not
passedamongnodes. The saturationkept track of the
number of changes to a filter, and the phasenotedthe
exact number of timesa bit hadbeenset to 1. With the
phase,wewereableto unsetbits (andincluderemovalsin
deltas).

4.2 Filter Deltas

In order to reducethesizeof themessagesbeingsentbe-
tweennodes,weimplementedasystemof timestampsand
filter deltas. Insteadof only including new bits to “turn
on” (or their indices),we senda bit string which is the
sizeof theoriginal filter with thebits thereceiverneedsto
invert setto one.Becausethisarrayis sparse,it actslikea
CompressedBloom filter, andis highly compressible.In
additionto keepingtrackof a filter to associatewith each
node, nodesmustassociatetimestampswith eachfilter in
their cache. They sendthis timestampwith every filter
request andthentheresponderdecideswhetherto senda
new filter or a filter delta.

Becausethe responder keepsa list of which bits were
turnedon with a file add or off with a file removal, it
cangenerateexactly which bits needto be set in the re-
quester’sfilter, given thetimestampof therequester’scur-
rentfilter. Which bits to flip is determinedby thefollow-
ing algorithm:

1. Createan empty integer arraythe sizeof the filter,
initializing all slotsto zero.

2. Eachtime thebit is setto one,increment thecounter
at thatslot. Decrement whenthebit is unset(e.gthe
removal at � � ).

3. Any bit that is non-zero,setthis bit to onein thebit
setsentto therequesterof thefilter.
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Figure 4: Filter Deltas. At time £�¤ , the filter is created;at
time £¦¥ , file a, which hashesto (1,2,8,9)is added.Becausebits
2 and8 arealreadyset,only bits 1 and9 (in bold) arechanged
(althoughthephaseat all four locationsis updated). A time £¨§ ,
file b is removed;2 and8 is notswitchedoff becausetheirphases
aregreaterthanzero.At time £ª© , file c is added. If a requester’s
timestampis £�¥ , the counterwould put -1s at indices4 and6,
andthenaddoneat locations3 and6, giving index 6 anetvalue
of zero.Thedeltabit arraysentbackto therequesterwould then
havebits3 and4 set.Therequesterwould flip thesebits,setting
index 3 to “on” andindex 4 to “off,” giving it thecorrectcurrent
filter.

Obviously, if therequester’s timestampis earlierthanthe
origin of thefilter (i.e. �¬« ), therequestermustbesentthe
entirefilter.

4.3 Protocol

Theprotocol usedto communicateamong the nodesbe-
comes significantly more complex as it move from the
world whereevery node is a neighbor to the world of
groups,representatives,andproxied queries.The proto-
col for a fully-connectedsystemworksasfollows:

VERIFY Verify that the receiver actuallyhasa file and
that the senderdid not have a falsebloom hit. Re-
spondswith eitheranACK or aNACK.

ACK Nodeacknowledges thatit hasthefile requested.

NACK Nodesaysthatit doesnothavethefile requested.
In our original implementation,NACKs would then
alwaystriggera filter request from the receiver, be-
causeit assumedthat its filter wasout of date. To
eliminatethesetwo messages,the timestampof the
node’sfilter accompaniesevery VERIFY requestand
thena filter delta(or a whole filter) canpiggyback
ontheNACK. ACKs alsohavetheability to port fil-
ters, and could do so if the timestampshowed the
requester’s copy of the filter was very out of date,
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Figure5: Grouping communicationprotocol. (A,B,C),
(D,E,F), and(G,H,I) aregroups. E andF sendtheir group-sized
componentsof group (D,E,F)’s intergroupfilter. D, the repre-
sentative of this group, ORs thesefilters with its own group-
sizedcomponentandsendsit to C, which hasrequestedit. B
is performing a searchand its cacheof intergroup filters has
suggestedthat group (G,H,I) has the file it is looking for. It
randomlychoosesH to proxy this requestto the restof group
(G,H,I). H looks at its morepreciseintragroupfilters andat its
locally sharedfiles anddeterminesthat I might have the file B
is looking for. I respondsto H with a NACK, which then in
turn respondsto B with the same.B will thenaskG, (G,H,I)’s
representative for anew intergroupfilter.

but this wasnot used.TheSearchobjectfor this file
is contactedandit initiatesanew VERIFY requestif
therearemorepossiblenodesto contactor it signals
thatthesearchhascompletedunsuccessfully.

FILTER REQUEST Node requeststhat the receiver
sendsit thereceiver’s filter andtimestamp.

FILTER RESPONSE Nodereceivesfilter fromaneigh-
borandadds it to its cacheof filters,possiblyby ap-
plying deltas.

Currently, the initial bootstrappingof network discovery
is partof the configuration received from the Configura-
tor, but the ability to discover thenetwork existedin the
protocol of anearlyimplementation.

The grouping topology and communication is more
complicatedbut basedon thesameprotocol. Thegroup-
ing topology, seenpictorially in Figure5, consistsof the
samemessagesas in the fully-connectedcase,followed
by aflagwhichfurtherdescribes theactionto take. These
flagsshow whethertheactionis: (1) within thegroup (in-
tragroup), (2) amonggroups (intergroup), (3) betweena

groupandits representative(representative),(4) for anin-
tergroupproxiedsearch(proxy).

VERIFY Intragroupfollows thesameform asabove, in
the fully-connectedprotocol. Betweengroups, this
initiates a proxy search,wherea randomly chosen
node in agroupusesits filters to searchfor anextra-
group node. A proxy verify messagesignalsthatthe
requesteris performinga proxiedsearch.

ACK IntragroupACKswork asabove. IntergroupACKs
signal the end of a successfullyproxied search.
Proxy ACKs comefrom within thesamegroupand
causeanintergroupACK to besentbackto thequery
originator.

NACK Intragroup NACKs work as above. Intergroup
NACKs signala negative group proxied lookup and
may initiate another intra- or intergroup VERIFY
request if more filters match; otherwise there has
beenno matchfor the search.ProxyNACKs come
from within thesamegroup andinitiate a lookup in
the list of ongoing proxied searches;if morepossi-
ble nodesfrom within the grouparefound, another
proxy VERIFY messageis sent,otherwisean inter-
group NACK is sent to the originator. Filters can
piggybackon both intragroup NACKs andproxied
NACKs, asthey arebothalwaysto membersof the
samegroup.

FILTER REQUEST Intragroup filter requestswork as
above. Intergroup requestsareonly directedto the
group’s representative, as only this nodeholds all
of the compositefilter components. Representative
requestscomefrom thegrouprepresentative andin-
structthereceiver to respond with its intergroup filter
component.

FILTER RESPONSE Intragroup this works as above,
but more oftenthesearepiggybackedon intragroup
andproxy NACKs. Intergroupfilter responsessend
the extragroup node the logical OR of the con-
stituentsof thisgroup; theseonly comefrom therep-
resentative.

5 Experiments

We examined network usagefrom two perspectives: (1)
a more idealized,evenly distributed network whereall
nodes start off with the samenumber of files and add
andremove files at the samerateand(2) an empirically
derived model basedon studieson the actualusageof
file sharingnetworks like Gnutella [1]. (1) is actually
not as idealizedas it may seembecausea collection of
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Figure6: Bandwidthconsumedpersearchin an “unbal-
anced”network, wherevery few nodesstorealmostall of
thefiles.

distributed file systems,like CFS and PAST, may fol-
low a morebalancedandcontrolled model of usagethan
thehighly decentralized Gnutella.Adar andHuberman’s
studyon Gnutellausageshows how very few nodesare
the sharersof the vastmajority of files andthat ®!¯�1±°
of nodessharenone.They refer to this disparityas“free
riding.” In a distributedfile system,publishersmayseek
to loadbalancetheirown multiple publicationsandsucha
disparitymaynot materializeasthesesystemscomeinto
fruition. Most of our experimentsfollow themoreideal-
izedsystemof (1), although we do look at anunbalanced
systemin Figure6. The unbalancedsystemfollows the
samebehavior asseenin Section5.5.

Becausethe testedsystemis fairly complex, with nu-
merousvariablesto change,wemainlytriedvarying those
whichwepostulatedwouldhavethelargestaffect.Forex-
ample,we did not experiment with many different types
of hash functions. Insteadwe varied the number of
nodes, the c 
 rate,andthenumberof hashfunctionsused,
the rateof search(the amount of time the Query thread
wouldsleepfor betweeninitiatingnew searches),whether
deltaswereusedandwhetherthey werecompressed,and
whetherthe filters themselves,whenpropagatedin their
entirety, werecompressed.

5.1 Experimental Setup

All of theexperimentspresentedhave datacollectedon a
systemrunning with 32 nodesandeachnodegenerating
a searchrequestevery second. The distributedfile sys-
tem has4000distinct files andeachnode generates100
out of those4000files at systemstartup. All the nodes
arethreadsrunning onthesamemachineandhavea(port
number, IP) pair thatuniquely identifiesthemandenables
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Figure7: Bandwidth/searchandtime/searchconsumption
whenperformingnaivefile queries

the communicationamongthem. At startup,eachnode
receives a list of all the neighbors in the group. Also
at startupeachnode contactsthe Configurator process
for a derived configuration file in which we specifydif-
ferent parameters suchas run time, number of distinct
files in the distributed file system,valuesfor

�
and � ,whether thenodeis a Representative, who arethemem-

bersof the groups(if the experiment is usinggrouping),
timebetweentwo consecutivesearches,thetypeof search
method used(Naive, regular Bloom filters,Compressed),
etc. In thecasewhentheconfigurationfile specifiesthat
Bloom filters areused,the threadgeneratesa Bloom fil-
ter for thefiles in its file system,basedon theparameters
in its configurationfile. Eachprocessthenstartsits four
threads,asdescribedin Section4, thatsendfilter requests
to othernodesandthatbegin generatingfile queries.

The experiments were run on machineswith Linux
2.2.16 kernels,800Mhz PentiumIII processors,and1G
RAM. The external compressionprocessforked to per-
form delta compressionand CompressedBloom filters
used/tmpon therootdisk.

VERIFY, ACK, andNACK packet sizeswere20 bytes
each.Filter messagesizesdependedon thebitsperfile of
agivenexperiment.A NACK could alsobelargeif afilter
waspiggybackedontoit.

5.2 Naive (Broadcast) Queries

In the naive approach, eachnodedoesa searchby se-
quentially querying everynode on thesystemuntil it gets
a positive response.Thus the bandwidth consumedper
searchis dependent on the number of requestsand re-
sponsessentper search— no filters exist to addband-
width. The number of messagesexchangedbetweenthe
requestorand the rest of the nodes is dependenton the
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percent chancethattherequestedfile is at thenode being
queried. Sinceevery file from thedistributedfile system
hasan equalchanceof beingat the pingednode(in the
test resultsfor this experiment), the percent chanceof a
nodehaving the file as the requestorsearchesfor is the
sameastheratio betweenthenumber of files at thenode
andthetotalnumberof files in thedistributedfile system.
Whenanodehasa largepercentageof thefiles in thesys-
tem,thechanceof thatnodebeingableto senda positive
responseis higher. In ourexperimentswe varied theratio
betweenthenumberof files at a node andthetotal num-
berof distinctfiles in thesystem.Theresultsareshown in
Figure7 ontheleft y-axis.As canbeseen,thebandwidth
per searchgrows almostexponentially asthe number of
files at thenodesdecreases.In thecasewhena node con-
tains30%of thefiles in thefile system,thefalsepositive
rateis 0.7onaverageandthebandwidth is approximately
50 bytes persearch.As thenumber of files at a node de-
creases,thefalsepositiverategrowsand,in thecasewhen
anodehas2%of thefiles,thefalsepositive is about 98%.

Figure7’s right y-axis shows thetimespentpersearch.
Notethatthis timeis alittle bit higherthanin realitysince
wedonotaccount for searchesthatdidnotcompleteatthe
time whenthetestsranfor thespecifiedperiod. Thetime
spentalsogrows exponentially as the number of files at
the nodesdecreases. It startswith about0.8 sec/search
when a node has30% of the files and goes up to 120
sec/searchwhena nodehasonly 2% of the files. Note
thatourimplementationof naivequeriessequentially asks
neighbors; i.e. it first waits for the neighbor’s response
before askingthe next neighbor. Thereobviously could
be a time improvement at a higher bandwidth cost if a
nodesentall requestsin parallelto all neighbors. In this
case,searchingfor a givenfile, the time would take just
the round trip time to a node on the network, if the net-
work could sustainthis usage.However, the bandwidth
expensewill ben l (bandwidth for arequest+ aresponse)
wheren is thenumberof nodesonthenetwork. Theband-
widthusagepersearchwill alwaysbethesameandwill be
equalto whatthebandwidth perrequest is in thesequen-
tial naivecasethatweimplementedwith nodeshaving 2%
of thefiles of thefile system(notethatin thecasewhena
nodehasonly 2%of thefileswearelikely to queryall the
nodes).

In conclusion,for file systemsin which thenodeshave
30 or morepercent of the files in the system,sequential
searchwill be better. In the casewhena nodehasless
than10% of the files, sendingsimultaneous requeststo
everyonewill work better.
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5.3 Search Time

In Figure8, we comparetheaverage amount of time re-
quired to completea file searchin our systemfor two
searchmechanisms:standardandCompressedBloomfil-
ters. Grouping times,becausethey aremuchsmallerare
given in thefollowing table:

GroupCombination MillisecondsperSearch

5 bpf/3hf, 8 gbpf/5hf 35.4
8 bpf/5hf, 12gbpf/8hf 39.4
12bpf/8hf, 16gbpf/11hf 182.1
5 bpf/3hf, 16gbpf/11hf 62.4

The groups usenon-compressedBloom filters. The ex-
perimentswererunfor 15minutesin asystemwith a rate
of 800searchesperfile changeat anode.

Searchtimeis definedastheelapsedtimefrom themo-
ment a query is submitteduntil the moment either the
first positiveacknowledgement is receivedor thelastcon-
tactedneighbor repliednegatively. Note that in the case
of filters, our definition accounts for the amortized time
requiredby updatesandinitial set-upphase,aswell asthe
time necessaryfor hashingandsequentialfilter checking
at thenodethatgeneratedthequery.

Time per searchfor all filter configurationsincreases
with thenumberof bitsperfile usedatthenodes.A higher
number of hashfunctions andlongertransmissiontimes
account for the almostproportional increaseof time per
searchasa function of bits perfile in the caseof Bloom
filters. Although thefalsepositive ratedrops, longerpro-
cessingandtransmissiontime for the larger filters com-
pensatefor thelower frequency of updates.

To compare processingtime at nodes for regular and
compressedfilters we selectedthe parameters of the lat-
ter suchthat bandwidth consumed per searchis approx-
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imately equalfor the two filter types. Due to the slow
compression/decompressionmechanism, time persearch
in thecaseof compressedfilters is about 10 timeslarger
than for the corresponding standardfilter with identical
transmissionsize. Our experimentsindicatethat,at least
for a small systemlike ours (32 nodes), the compres-
sion/decompressionoperationsdominateprocessingtime,
suchthat time savingsfrom fasterhashing(smallernum-
ber of hashfuntions) andsmallerfalsepositive ratesare
insignificant.

Time per search for the grouping design is more
than100 times smallerthan the smallesttime for fully-
connectedsetupwith regular Bloom filters. This is corre-
latedwith smallerbandwith consumption for groupings,
soit is mainlydueto smalleroverall transmissiontime.

Similar to our observations on bandwidth consump-
tion, the naive query protocol performs betterthan reg-
ular Bloom filters timewisewhenthe percentageof total
files in thesystemownedby any nodeis higher than10%.
Otherwise,time persearchusingthestandard Bloom fil-
ter mechanism is smaller. Groupscompetewell with the
naive protocol even whenthe percentage of files owned
by nodesis fairly large. Onaverage,timepersearchusing
any of thegrouping parametersis lessthan79 ms,while
timepersearchfor naivequerieswhennodesown 30%of
all thefiles is about839ms.

5.4 False Positive Rates

In Figure9 we plot averageachievedfalsepositivesrates
against number of bits perfile. Thelatter is computedas
number of NACK messages(number of contactednodes
thatrespondednegatively to a query) over thenumberof
verify messages(totalnumberof nodescontacted). In ret-
rospect,we believe that we are not recording the false

positive ratecorrectlybecause we arenot recording the
behavior on a per-filter basis,only on a per-node’s cache
basis.In otherwords,wearenotkeeping trackof thetotal
numberof NACK messagesgeneratedby aparticular filter
anddividingby thetotalnumberof VERIFY messagesthis
filter hasgenerated.We areconfident that theproblemis
onewith measurementandnot with implementation(and
we areunableto extract the information to compute the
ratein this differentway from our current completedex-
periments).

Even with this proviso, thefalsepositive rateachieved
in oursystemdoes notentirelycomply with thepredicted
minimum probability of a falsepositive,which decreases
exponentiallywith the number of bits per file. For 4, 6
and8 bitsperfile thesystem’s falsepositiverateis partic-
ularly highhaving avalueof about 80%.It thendecreases
drasticallyto about5%for 10,12and16bits perfile.

5.5 Bandwidth Consumption

As discussedin Section5.2, thebandwidth consumption
in thecaseof thenaive querying protocol dependson the
percentageof files in thesystemownedby eachnode.In
contrast,percentagefile ownership at nodesdoesnot af-
fect the performanceof Bloom filters sinceeachmem-
ber of the systemcontains the Bloom filters of all other
nodes,andthereforehaveequalinformationregardingthe
differentfiles its neighborspossess.In Figure10 we ex-
aminethevariationof bandwidthconsumptionpersearch
for standardBloom filters asa function of thenumber of
searchesperfile systemchange(i.e.,ameasureof thefre-
quency of updatesin thesystem)for the fully connected
andgrouping systemdesigns.Bandwidthconsumptionis
divided into bandwidth usedby filter updatesandverifi-
cationmessages(VERIFY, ACK andNACK messages).

For thefully-connectednetwork set-up,we ranexperi-
ments with 4, 6, 8, 10and12bitsfile andoptimalnumber
of hashfunctions,3, 4, 6, 7 and8 hashfunctions,respec-
tively. For thegroupingdesign,weexperimentedwith the
following combinationsof bitsperfile andhashfunctions
for theintergroupfilters: (5, 3), (8, 5), (12, 8). With these
we associate“more precise”combinationsof bits perfile
andhashfunctionsfor theintragroupfilters: (8,5), (12,8),
and(16,11).

We observe thatin thefully-connectedsystem,thereis
atradeoff betweenmemoryconsumptionatendnodesand
network traffic. Network traffic for Bloom filters in the
fully-connectedset-upis highly correlatedwith the false
positive rates. The falsepositive rateof our systemre-
mainshigh at about80%for 4, 6 and8 bits, andit drops
steeplybelow 5%for 10,12and16bitsperfile. As acon-
sequence,thecombinedaveragebandwidth persearchfor
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Figure10: Bandwidthconsumedat differing ratesof searchesperfile systemupdate(e.g. 50 searcheson averageperchange in
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4, 6 and8 bits per file is 21% higher thanthe combined
average bandwidth persearchfor 10 and12 bits perfile.
Therefore,nodescanreducenetwork traffic bydecreasing
thefalsepositiverateat theexpenseof highermemory re-
quirementsat the end nodes. In contrast,the grouping
setupshows little variation with the falsepositive rateof
thesystem.While thefalsepositive ratevariesfrom 75%
to 28%in thethreesituationswelookedat,thebandwidth
consumption remainsaround an averageof 63 bytesper
search.

As predicted by our theoretical considerations, the
bandwidth per searchin the caseof grouping is always
significantlylowerthanbandwidth persearchin thefully-
connected setup, and decreasesonly slightly with the
searchrateperfile change. In particular, theaverageband-
width consumptionfor groupingsis about 50%lowerthan
theaveragebandwidth consumptionfor 10and12bitsper
file in thefully-connectedset-up.

In contrast, the average bandwidth per searchin the
fully-connectedsetupdecreasesasthenumberof searches
perfile change at nodesincreases.This is expected since
moresearchesper file change implies fewer updatesper
search,andtherefore lowerbandwidth consumption. This
is confirmedby thefactthat,onaverage, theratioof filter

to verification bandwidth consumption decreasesas the
searchrateperfile change grows.

Recall that in the caseof naive queries bandwith con-
sumption increasesexponentially as the percentage of
files owed by a nodedeclinesbelow 10% of the files in
thesystem.Namely, bandwith increasesfrom50bytesper
searchwhennodesown10%of thetotalfiles,to150bytes
whenthey own 5%,andto 350byteswhenthey own 1%.
In contrast,theBloomfilter bandwidth consumptiondoes
notvarywith thepercentageof files ownedby nodes,and
rangesbetweenanaverage50bytespersearchfor group-
ingsand175bytespersearchfor Bloom filters with high
falsepositive rates. Therefore, in a systemwherenodes
own lessthan10% of the total files, Bloom filters area
clearbandwidthsaving searchmechanisms.

5.6 Compressed Bloom Filters

We compare thebandwidth consumption of standard and
CompressedBloom filters for small and medium false
positive ratesin the system.To tunethe compressedfil-
ters’ parameters we picked the theoreticalfalsepositive
ratesfor regular Bloom filters with 8 bits and16 bits per
file, 0.0216and0.00049,respectively. In practice,weob-
tain an average falsepositive rateof 0.270 and0.00920.
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For agivenfalsepositiverate,werunthesystemwith the
availablecombinationsof bits perfile at nodesandnum-
berof hashfunctionsthatyield a theoreticalfalsepositive
rateclosestto the desiredrateanda theoretical number
of transmittedbits perfile below at least90%of thebits
perfile ratio required by theoptimalregular filters corre-
sponding to that falsepositive rate. The following table
showsthechoicesof bitsperfile atnodes,numberof hash
functionsandexpectednumberof transmittedbitsperfile
for thesmallandmediumfalsepositiveratesconsidered.

Bits perFile Hashfunc ExpTrans ExpFP

8 6 8 0.0216
9 3 5.36 0.0227
10 3 5.72 0.0174
13 2 5.32 0.0203
46 1 4.77 0.0215
16 11 11.09 0.00045
21 5 10.84 0.00042
26 4 10.65 0.00041
38 3 10.20 0.00043
93 2 9.57 0.00045

Figure11: CompressedBloom Filters: Expected Trans-
missionbits perFile

The experiments were run for 16.67 minutes in a
systemwith 32 nodes,whereeachnodegenerates500
searchesperfile change. We noticed thatdueto thelarge
compression/decompressiontimerequirements,theinitial
setup period(i.e., theperiod betweenthe time whenthe
systemis starteduntil every node receives and decom-
pressesthefilters of its neighbors)of thesystemis much
longer whencompressedfilters areused. In reality, the
systemwouldberunfor asufficiently longtimesuchthat
the additional compressionoverheadis amortized across
searches.Sincein our experimentsthe systemwas run
for a relatively shortperiodof time, our analysis ignores
thebandwidth consumedduringtheinitial set-upto avoid
distortionof theresults.

From this table we note that, contrary to expectations,
bandwidth per searchis on average 4.47% and 3.12%
higher than in the caseof regular Bloom filters with 8
bits and16 bits per file respectively under all parameter
combinations. Several reasonsexplain our results.First,
the size of the uncompressedBloom filters is not suffi-
ciently largeto achieve optimalcompressionswith arith-
meticencoding. Duetomemory constraints,wewerepro-
hibitedfromsimulatinglargerfile systems,with morebits

Bits PerFile Band/srch Nackw/filter FPrate

8 54 172 0.221
9 59 187 0.333
10 60 187 0.346
13 58 219 0.219
46 50 178 0.232
16 41 303 0.0056
21 42 406 0.0074
26 42 365 0.0078
38 44 310 0.0159
93 42 285 0.0091

Figure 12: CompressedBloom Filters: Bandwidth Con-
sumption per Search. Bandwidthand Nack with filter
sizesarein bytes.

to compress. In all our experiments,endnodesown 100
files suchthat the sizeof the largest uncompressedfilter
in our experimentsis 1163 bytes.To show that,we com-
putethesizeof a NACK with filter for eachchoice of pa-
rameters. Observe that for lessthan93 bits per file, fil-
terscompressto morethanthesizeof theregularBloom
filter. However, using 93 bits per filter compressedto
285 bytes,while the correspondingregular Bloom filter
is 303 bytes long. In addition, we note that although
the falsepositive ratesfor standardandcompressedfil-
tersshouldbeidentical(theparametersof thecompressed
filters werechosensuchthata given falsepositive rateis
maintained),thefalsepositive we obtainfor Compressed
Bloomfilters is onaverageslightly higherthanthematch-
ing ratefor regular filters. We believethis resultmightbe
due to delayedupdatescausedby the lengthy compres-
sion/decompressionprocess. In our implementation, fil-
ter compressionrequiresa forkedprocessandseveral in-
put/output operations, which addsignificantoverheadto
theactualcompression.

Our results suggestthat Compressed Bloom filters
would most probably improve bandwidth in large dis-
tributedfiles systemwherethe number of files at nodes
aresignificantlymorenumerousthat100.

6 Conclusion

Our initial planwasto derive someformula wherea par-
ticular instanceof a distributedfile systemusingfiltering
to enhancefilenamequeriescouldplug in thenumber of
nodesit hadandthe rateof changeof its constituent file
systemsversus the rateof queries,andout would come
theright filter dimensions. We have foundthat thenum-
ber of variablesis large andsignificantlyinterdependent
— initial experimentswith fewer nodesshoweddifferent
resultsthanwith 32althoughpatternswereclearlyemerg-
ing. Evenwith this interdependence,we believe thatour
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groupingconstruct providesascalablealternativeto naive
searchingandto hop-basedschemes.

In thefuture,we would like to experimenton far more
nodesandincludeanimplementationof Sripanidkulchai’s
proposal [21], wheredomains with similar interestsare
groupedtogether. Although thiswasnot tested,wepostu-
late that this grouping schemewould achieve even better
resultsif combinedwith his scheme, describedin section
2.2.

We would alsolike to perform a morethorough analy-
sis of CompressedBloom filters, in particular whenthey
areusedwith aggregationanddeltaswhenthe compres-
soritself is notamajorbottleneck. In particular, we think
thelarge,sparceconstituentsof theintergroupfilters,sent
to the group representatives,would compresswell. Be-
causethenodesarewritten asseparateprocessesandget
their configuration remotely, running themon many ma-
chinesmay not be very difficult. We would also like
to analyzethe actualfalsepositive ratesbetter;our cur-
rentimplementation doesnot keepper-filter statisticsand
thesecouldbeinformative. Weareconfidentin theunder-
lying Bloom filter implementation, however, aswe ver-
ified it with several separateexperiments,including run-
ningit againstastandardUNIX dictionary, andtheresults
matchedthetheoreticalexpectations.

After amorethoroughanalysisof thetradeoffs in intra-
group andintergroupfilter sizeandwhento propagatefil-
tersbasedon file systemchanges,we believe thatBloom
filters andthenetwork topology wehaveconstructedwill
beready for a large-scaleimplementationontopof anex-
isting distributedfile system,like CFSor PAST. To twist
anold aphorism, userscannot find what they cannot see;
we think this will let themsee.
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