The Utility of File Names

Daniel Ellard, Jonathan Ledlie, Margo Seltzer

TR-05-03

Computer Science Group
Harvard University
Cambridge, Massachusetts

The Utility of File Names

Daniel Ellard, Jonathan Ledlie, Margo Seltzer
Harvard University
{ellard,jonathan,margo} @eecs.harvard.edu

Abstract

For typical workloads and file naming conven-
tions, the size, lifespan, read/write ratio, and access
pattern of nearly all files in a file system are accu-
rately predicted by the name given to the file when
it is created. We discuss some name-related prop-
erties observed in three contemporary NFS work-
loads, and present a method for automatically cre-
ating name-based models to predict interesting file
properties of new files, and analyze the accuracy of
these models for our workloads. Finally, we show
how these predictions can be used as hints to opti-
mize the strategies used by the file system to man-
age new files when they are created.

1 Introduction

As CPU and memory bandwidth continue to
grow at a much faster rate than disk access speed,
disk I/0 has become an increasingly important con-
cern to system designers. Although there are con-
stant improvements in disk latency and other aspects
of I/O hardware architectures, it is increasingly the
case that good I/O performance depends on accu-
rate predictions of future operations that allow the
system to anticipate and prepare for requests be-
fore they occur. This is particularly true for read
requests, where there has been extensive work in
prefetching (sometimes called pre-caching), but it
is also true that file systems can benefit from knowl-
edge about the size and future access patterns of a
file when writing.

A long history of benchmarking has shown the
effectiveness of the heuristics made popular by the

Fast File System (FFS) [9], including aggressive
read-ahead and clustering [17]. FFS also employs
the heuristic of grouping files belonging to the same
directory in same area on disk, in the expectation
that files in the same directory are likely to be ac-
cessed together. This idea, along with the concept
of immediate files (files that are short enough that it
makes sense to embed them in the same disk page
as their metadata [11]) has been extended to create
variants of FFS such as C-FFS [5], which co-locates
inode and directory information to improve direc-
tory lookups and uses explicit grouping to allow
groups of small files in the same directory to be ac-
cessed entirely sequentially. These heuristics, while
effective in many cases, are limited because they are
static and do not adapt to variations in workload that
violate the assumptions of their designers.

To overcome this limitation, there has been re-
search in dynamically learning the inter-file access
patterns among groups of files, both for general-
purpose file systems [6, 8] and for highly tuned
special-purpose file systems for applications like
web servers (such as the Hummingbird file system

[18]).

There has also been considerable work in devel-
oping and exploiting predictive models at the disk-
block level, instead of the file system level. These
can be done at the hardware level (i.e., AutoRAID
[20]) or under the control of the operating system
[1] or via a hybrid of block and file level optimiza-
tion [19].

Every widespread heuristic approach suffers
from at least one of the following problems: first,
if the heuristics are wrong, they may cause perfor-
mance to degrade, and second, if the heuristics are
dynamic, they may take considerable time, com-

putation, and storage space to adapt to the current
workload (and if the workload varies over time, the
adaptation might never converge).

One partial solution to the problem of inappro-
priate or incomplete file system heuristics is for the
application using the files to supply hints to the
file system about their anticipated access patterns.
These hints can be extremely successful, especially
when combined with the techniques of prefetching
and selective caching [3, 12]. The drawback with
this approach is that it requires that applications be
modified to provide hints. There has been work in
having the application compiler automatically gen-
erate hints, but success in this area has been largely
confined to scientific workloads with highly regular
access patterns [10].

Based on our analysis of three recent long-term
NES traces, we have discovered that the names of
files are a powerful predictor of several file proper-
ties. In essence, applications (and to a lesser extent,
the users of the applications) already give useful
hints to the file system about each file, in the form
of the file name, and this information is available
immediately at the time the file is created. Further-
more, it is possible to build name-based predictive
models for several file properties that can be used to
augment static heuristics for file layout, or to accel-
erate the process of developing an adaptive model
for the usage patterns of the file.

The rest of this paper is organized as follows. In
Section 2 we describe how predictive models for file
properties can be constructed, and give an analy-
sis of the accuracy of these models for three NFS
traces. In Section 3 we briefly describe the NFS
traces used in our analysis, and the limitations of
our trace-based analysis. An analysis of the rela-
tionship between file name features and some prop-
erties of the files follows in Section 4. In Section
5 we give an example of a file system optimization
for one of our trace workloads, using name-based
information. Section 6 discusses our plans for fu-
ture work and Section 7 concludes.

2 Names-Based Predictions

In an earlier trace study [4], we discovered that
for an email-oriented workload, there is a strong re-
lationship between patterns within the names of files
and the properties of the files.

It is one thing for a human to be able to perceive
patterns in trace data, but it is another thing entirely
to be able to automate the process of discovering
these patterns and building predictive models that
can guide decisions about file system policies. In
this section, we show that it is possible to construct
accurate predictive models for three distinct work-
loads.

One of the constraints of the algorithms we use
to construct and use our predictive models is that
they must be efficient to compute and require low
space overhead (both for computing and storing the
model). If the model is overly cumbersome to com-
pute or represent, the cost of using it may over-
shadow any benefit it provides. Our goal, therefore,
was to develop an efficient algorithm for building
reasonably accurate models, rather than striving to
achieve accuracy at any cost.

2.1 File Name Features

The features we use to build our predictive mod-
els for file properties are based entirely on file
names. We have also considered using some of the
additional information that is readily available to the
file system when the file is created, including the ef-
fective user ID of the user creating the file, the flags
used by open (or creat) when the file is created,
properties of the directory within which the file is
created, and the time of day, but we have not dis-
covered a way to exploit this information without
constructing a substantially larger and more com-
putationally complex model.

The feature used by our algorithm for classify-
ing file names is the set of components of the file
names. The components are used to construct sim-
ple regular expressions that are tested against future
file names. Our initial procedure for discovering the
components of a file name was very simple:

Training Period Online

File name
at create time

Predicates

"This file will live less
than 15 seconds.”
"This file will have
a length of zero."

#pico

FSActivity | Model |1 "o
(NFS, Local) Generator

1

I

I

! T Short-lived?
! F Zero-length?
I

I

I

I

Predictions

Figure 1: Generating and using a model. The
model generator takes user-generated predicates and
traces of fi le system activity as input and creates a model.
Models take the names of fi les at creation time and pre-
dict whether each of the predicates will be satisfi ed by
the corresponding files. Currently the training is done
offine. Example predicates are shown in italics.

1. Let S be the file name. Let E(s) be a function to
“escape” a string s, protecting any characters in
the string that would be interpreted as regular
expression operators.

2. Add E(S) with a " prepended and $ appended
to the set of components.

3. Prepend " and append $ to S, and then split the
resulting string at each period, giving so---s,.
For each s;, add E (s;) to the set of components.

This extremely simple partitioning worked quite
well for predicting the properties of many kinds
of files, because many applications construct file
names by pasting together components with peri-
ods. Unfortunately, some applications do not use
periods, but instead build file names by concatenat-
ing a random (or opaque) string to a fixed template.
For example, the Netscape browser names all of its
cached files cacheX.suf (where X is an opaque
identifier, and suf is the suffix of the original file),
and the pine composer pico creates temporary files
that begin with the string #pico. For the cacheX
files, we can still learn useful information from the
suffix, but we do not benefit from learning that they
are part of a browser cache, and hence tend to have
much different lifetime characteristics than “ordi-

nary” files with the same suffix. The #pico files
have distinct and interesting properties of their own,
but models constructed from these components en-
tirely overlook them. To address this limitation, we
add the following step to our component-generating
procedure:

e If the file name S contains at least 5 characters,
let p be the first 5 characters of S. Add E(p),
with a * prepended to the set of components.

For example, the file name “prediction.tex”
has the components ““prediction\.texs$”,
“"prediction”, “tex$”, and “"predi”.

A diagram of our system is given in Figure 1, and
our algorithm for building the predictive model used
in the model generator is given in Figure 2. This
algorithm produces a model that uses a file name to
classify a file as matching one of a set of predicates
such as “this file will have a length of zero” or “this
file will have a length of more than zero bytes, but
less than one megabyte.”

Note that this algorithm only properly handles
sets of logically disjoint predicates. If more than
one predicate is true for a particular file instance,
the resulting model will be weakened. For example,
the predicates “this file will have a length of zero”
and “this file will have a length of less than 8k™ are
not logically disjoint, because any file that satisfies
the first will also satisfy the second. Similarly, the
predicates “this file will have a length of zero” and
“this file will live for less than 15 seconds” are not
logically disjoint, because it is possible for a file to
satisfy both of them. If the set of predicates is not
logically disjoint, then it is better to partition the set
into logically disjoint subsets and construct separate
models for each subset.

Also note that the predicates are chosen statically.
We envision that file system designers will choose
predicates based on properties of the file system to
help them to identify files with properties that they
can exploit. For example, different block layout
strategies might be used for files that are predicted
to be very large and accessed sequentially, or very
short and rewritten many times.

Figure 2: An algorithm for building a predictive name-based model.

e Let C={cp---c,} be a set of disjoint predicates about file attributes.

e Let B be a set of tuples (c,s,n), where ¢ € C, s is a pattern, and n is a count. B is initially empty. B is
used to store the number of times a file with a name matching pattern s has satisfied the predicate c.

e Let N be a set of tuples (s,n), where s is a string, and n is a count. N is initially empty. N is used to
store the number of times each string has been observed.

1. For each file observed during the training period:

(a) Let S = {so---sn} be the set of components of the file name (as defined in Section 2.1).
(b) Let M = {c; € C} be the subset of predicates in C that are satisfied by the file. (If the predicates

are logically disjoint, then |M| < 1.)

(c) For each s € S,m € M: if there exists a tuple (m,s,n) € B, then replace it with (m,s,n+ 1).

Otherwise, add (m, s, 1) to B.

2. For each tuple t = (c,s,n) € B, if n < mincount then discard ¢.

The default mincount is 5.

3. Foreacht = (c;,s:,n;) € B, find the corresponding (ss,ngs) € S. If n; /ng < minfrac, then discard ¢.

The default minfrac is 0.8.

The final set B defines the predictive model. For each new file name, if there exists any (c,s,n) € B such
that the s matches the file name, then we predict that ¢ is true for the corresponding file. Note that it is
possible for the model to predict that more than one ¢ will be true. In this case we predict that the rule with

the highest 7 is most likely.

2.2 Computation Costs

Our model generator has two modes. In the first
mode, it collects data about every file accessed dur-
ing the training file. In the second mode, it only col-
lects information about files that are created during
the training period.

Our algorithm is quite simple, both in terms of
implementation and computational complexity.

If only considering the files for files created dur-
ing the training period, the algorithm requires less
than 25 seconds on a PIII-800MHz to do the pro-
cessing for a full day of trace data from our busi-
est system (approximately 60,000 files created per
day). Building a model for all of the files observed
during the training period requires approximately

40 seconds on a PIII-800MHz for the same day. In
both of the cases, most of the time is spent parsing
the log files (which are stored as text and could be
represented in a more efficient manner); after pars-
ing the files, the additional cost is approximately
five seconds per predicate, depending on the com-
plexity of the predicate.

The drawback of this algorithm is that it requires
a noticeable amount of space to store the infor-
mation observed during the training period; for a
busy day on our busiest server, the log can consume
nearly 40 megabytes.

The largest inefficiency of our current implemen-
tation is that it gathers all of its information about
each file directly from our NFS traces, which in an
uncompressed form can exceed 15G per server per

day. Simply scanning through this volume of data
to extract the appropriate 40MB of relevant infor-
mation is a time-consuming process, but one that
is not inherent in our algorithm. We believe, that
gathering this information at the file system inter-
face (or from reduced NFS traces that only include
the information we need, and not a full transcript of
every NFS call and response) would greatly reduce
this overhead, both in terms of storage space needed
and computational overhead.

2.3 The Accuracy of the Models

To test the effectiveness of our algorithm, we gen-
erated and tested models for a variety of predicates
from three NFS different workloads. (The three
workloads are described in Section 3.) In Table 1
we show the accuracy of the models produced for
each of the three systems for four simple predicates.
The models were generated during the first day of
each test, and then used to predict the properties of
the files created during the next seven days.

The d-err columns of this table are the most in-
teresting, because they express the accuracy of the
model in comparison to simple guessing based on
overall probabilities. For example, on a typical day
we can achieve 95% accuracy by simply guessing
that all of the files created on CAMPUS will be
zero-length (or by guessing that none of the files
created on EECS will be zero-length). This estimate
is accurate enough to be useful by itself, but by con-
sidering names we can trim the error rate even fur-
ther (to nearly perfect for typical days on CAMPUS,
and a respectable 98% on EECS). For other predi-
cates, such as Small File on EECS, we can typically
increase the accuracy from approximately 50% to
more than 80% by considering names.

Our models appear to be accurate as long as
the workload remains similar. For workloads like
CAMPUS, they converge after only a few hours
of training data. We have run our models for as
long as 12 consecutive days with no perceptible loss
in overall accuracy. However, there are situations
where the models are no better (and sometimes con-
siderably worse) than simple guessing. For exam-
ple, the Small File and Write-Only predictions are

much worse for CAMPUS on 10/29/01. From our
examination of the traces and the output of our test-
ing system (which records the file names for which
the predictions were incorrect, for future training),
the reason is quite clear: on that day, one user un-
tar’d the source code for a large software package
(but did not compile the package), thus creating sev-
eral thousand small files that were written but never
read. Small write-only files are rare on CAMPUS,
and the naming convention used for the source files
for this particular package did not match any files
seen during the training day.

Our models suffer from the same flaw as any
other predictive model: they can only be as good
as their training. If behavior of the system changes
rapidly, then our model will degrade in accuracy.

2.4 Discussion

Our primary focus has been on predicting the be-
havior of future files (especially short-lived files)
based on the properties of files created during the
training period (‘“‘active” files), and not on proper-
ties of files that were created before the training pe-
riod. On CAMPUS, for example, nearly all of the
read and write traffic is to mailbox files, and these
files are essentially immortal [4]. By default, our
model generator do not attempt to “learn” anything
about files like mailboxes, because it is primarily
interested in the properties of newly-created files.
We have experimented with extending our training
to make note of the properties of the older files in
the system as well, but this requires more process-
ing and slightly decreases the accuracy of the short-
term predictions. We do not believe that this is an
critical problem, however, since the problem of dy-
namically adapting to the access patterns of long-
lived files is relatively well-studied. We feel it is
more important to fine-tune our name-based predic-
tions for the behavior of a file while it is young (and
use other methods to deal with the file as it ages), if
a trade-off must be made.

Zero-Length Lock File Small File Write Only
DEAS DEAS DEAS DEAS
p=63.50% p=63.08% p=30.62% p=2771%
Date Correct|| d—err| |Correct| 0—err||Correct 0—err| | Correct o—err
10/21/02 | 98.79% ||96.68% | | 98.95% ||97.16% | | 82.54% || 42.98% || 85.70% | 48.51%
10/22/02 | 96.75% ||91.10% | | 98.44% ||95.77% | | 83.80% || 47.09% || 85.91%| 49.26%
10/23/02 | 95.66% ||88.11% | | 95.76% ||88.52% | | 80.42% || 36.05% || 80.62%| 30.21%
10/24/02 | 97.24% (|92.44% | | 97.41% ||92.98% | | 81.87% || 40.79% | | 83.41% | 40.26%
10/25/02 | 97.68% {|93.64% | | 98.01% ||94.61% | | 82.86% || 44.02% | | 83.33% | 39.97%
10/26/02| 97.74% {|93.81% | | 98.66% |196.37% | | 77.18% || 25.47% || 77.71% 19.73%
10/27/02 | 98.72% {|96.49% | | 98.90% ||97.02% | | 81.41% || 39.29% | | 82.06% | 35.40%
10/28/02| 97.71% ||93.73% | | 97.78% ||93.99% | | 77.99% || 28.12% || 78.71% | 23.33%
CAMPUS CAMPUS CAMPUS CAMPUS
»=95.19% p=T7817% p=439% p=024%
Date Correct|| d—err| |Correct|| d—err ||Correct d—err | | Correct d—err
10/22/01 | 99.84% (|96.67% | | 94.95% ||76.87% | | 99.49% 88.38% | | 99.76% 0.00%
10/23/01| 99.71% ||93.97% | | 95.04% ||77.28% | | 98.98% || 76.77% || 99.76% 0.00%
10/24/01 | 99.80% ||95.84% | | 94.92% ||76.73%| | 99.02% || 77.68% || 99.77% 4.17%
10/25/01 | 99.83% ||96.47% | | 95.21% ||78.06% | | 99.27% || 83.37% || 99.75%| -4.17%
10/26/01 | 99.87% ||97.30% | | 95.81% |[80.81% | | 98.78% || 72.21% || 99.86% | 41.67%
10/27/01| 99.93% (|98.54% | | 98.34% |192.40% | | 99.54% 89.52% | | 99.94% | 75.00%
10/28/01| 99.90% (|97.92% | | 97.73% |189.60% | | 99.27% 83.37% || 99.89% | 54.17%
10/29/01 | 98.46% ||67.98% | | 95.04% ||77.28% | | 89.29% ||-143.96% | | 99.13% || -262.50%
EECS EECS EECS EECS
p=5.04% p=4.59% p=49.95% p=5775%
Date Correct|| d—err| |Correct| d—err||Correct d—err | | Correct d—err
10/22/01 | 98.86% || 77.38% | | 99.29% ||84.53% | | 89.30% || 78.58% || 74.58% | 39.83%
10/23/01| 99.37% || 87.50% | | 99.65% |192.37% | | 91.78% 83.54% | | 67.85%| 23.91%
10/24/01 | 98.11% ||62.50% | | 98.80% ||73.86% | | 81.29% || 62.54% || 81.06% || 55.17%
10/25/01| 97.77% || 55.75% | | 98.67% ||71.02% | | 81.68% || 63.32%| | 80.73% || 54.39%
10/26/01 | 98.70% || 74.21% | | 99.11% ||80.61% | | 85.46% | 70.89% || 77.12% | 45.85%
10/27/01 | 99.04% | 80.95% | | 99.45% ||88.02% | | 65.23% || 30.39% || 72.42% || 34.72%
10/28/01 | 97.23% (|45.04% | | 98.27% |162.31% | | 65.70% || 31.33% || 77.84% | 47.55%
10/29/01 | 97.97% ||59.72% | | 98.68% ||71.24% | | 83.87% || 67.71% || 91.11%| 78.96%

Table 1: Accuracy of several predicates for each of the files created on each day. The “Zero-Length”
predicate is that the file will never contain any data. The “Lock File” predicate is “this file will be zero-
length and also live less than 5 seconds.” The “Small File” predicate is “this file will be written to, but will
not grow to more than 16k.” The “Write Only” predicate is that data will be written to the file but the file
will never be read (at least during the 24-hour testing period). The predictive model is created by using data
from the first day only, and then held fixed for the rest of the test. The &-err is the improvement in accuracy
provided by the model, compared with simply guessing the value of each predicate for each file based on
the observed probability for that predicate across all files created on the day that the model was built (given

as the p for each model).

3 Workloads

To investigate the accuracy of name-based pre-
dictions, we analyzed traces from three systems,
which are referred to in this paper as CAMPUS,
EECS, and DEAS. The CAMPUS and EECS
traces have been described and analyzed extensively
in previous work [4], but the DEAS traces are new!.

CAMPUS The CAMPUS system is the primary
email system for the Harvard College cam-
pus and the Harvard Graduate School of Arts
and Sciences (GSAS). At the time the trace
was taken, user accounts for the entire college
and GSAS (including students and administra-
tion) were spread over 14 NFS file systems.
The traces analyzed here are taken from one
of these file systems.

EECS The EECS system is a Network Appliance
filer that hosts the home directories for several
research groups in the departments of electrical
engineering and computer science at Harvard
University.

This file server sees a predominantly engineer-
ing workload without email or WWW server
traffic. The mail spool for EECS users and
the main EECS web site are stored on different
servers (for which we do not have traces). We
do observe traffic caused by users filing their
mail in archives in their home directories, and
caused by the department web server accessing
the home pages of individual users, but this is
a relatively small fraction of the workload.

DEAS The DEAS system is a Network Appliance
filer that hosts the home directories for mem-
bers of the Division of Engineering and Ap-
plied Sciences (DEAS) at Harvard. This sys-
tem also serves the mail spool for DEAS users
and the web pages for the central DEAS web
site.

The workload of this system can be described
as a combination of the CAMPUS and EECS

! Anonymized forms of all of all three traces are freely avail-
able. Contactellard@eecs.harvard.edu for more informa-
tion.

DEAS | CAMPUS | EECS
10/21-10/27| 10/22-10/28 | 10/22-10/28

(2002) (2001) (2001)
Total ops | 211308494| 187974468] 29550778
getattr 41.09% 2.18%] 2191%
lookup 3.40% 570%| 41.52%
access 18.24% 2.81% 6.16%
read 24.63%] 64.82% 9.83%
write 987%| 2149%| 15.43%
Read (MB) | 833135.01] 845123.07] 3249844
Write (MB) | 242376.70| 313987.75| 61488.73
[R/W Ratio | 3.43] 2.69] 0.53]

Table 2: Aggregate statistics for the analysis pe-
riod

workloads, since it contains elements of both
research and development workloads and the
email-oriented workloads. It also sees some
traffic due to web service.

A summary of the average hourly activity for all
of the hours during the test week as well as just the
peak usage hours (9:00am-6:00pm Monday through
Friday) is given in Table 3. As in our previous trace
study [4], we give the statistics for the peak usage
hours as well as the entire analysis period, because
this gives a more accurate representation of the way
the systems behave when they are under load. Note
that we are using slightly different subsets of the
data for EECS and CAMPUS than the ones ana-
lyzed in our earlier work, because for our analyses it
makes more sense to use a week starting and ending
on Monday (rather than Sunday).

3.1 Discussion

From the aggregate and hourly statistics, it is
clear that these workloads differ. The DEAS
and CAMPUS workloads are heavily read-oriented,
(with a read/write ratio of almost 3) although the
DEAS workload also includes many requests for
metadata (getattr and access). On EECS, in con-
trast, the most frequent operation is lookup, and
writes outnumber reads by reads by almost 2 to 1.

All Hours

DEAS CAMPUS EECS
Total Ops (thousands) | 1258 (81%) |1119 (49%)| 176 (92%)
Data Read (MB) 4959 (62%) |5030 (44%)| 193 (182%)
Read Ops (thousands) | 310 (60%)| 725 (48%)|17.3 (122%)
Data Written (MB) 1443 (90%) | 1869 (57%) | 366 (254%)
Write Ops (thousands) | 1241 (103%) | 240 (57%)|27.1 (211%)

Peak Hours Only

DEAS CAMPUS EECS
Total Ops (thousands) | 1477 (34%) 1699 (8%)| 267 (69%)
Data Read (MB) 7559 (26%)|7153 (7%)| 268 (146%)
Read Ops (thousands) | 467 (27%)|1088 (7%)|29.2 (77%)
Data Written (MB) 2533 (32%) (2934 (12%) | 438 (228%)
Write Ops (thousands) | 210 (44%)| 377 (12%) |34.1 (159%)

Table 3: Average Hourly Activity. The All Hours columns are for the entire week of 10/21-10/27/2002 for DEAS
and 10/22-10/28/2001 for EECS and CAMPUS. The peak hours are the hours 9:00am - 6:00pm, Monday through
Friday of these respective weeks. The numbers in parentheses are the standard deviations of the hourly averages,

expressed as a percentage of the mean.

4 Name-Based Analysis

4.1 CAMPUS and DEAS

On CAMPUS we can predict the size, lifespan,
and access patterns of most files extremely well sim-
ply by examining the last component of the path-
name. Nearly all of the files accessed on CAM-
PUS fall into one of the four categories: lock files,
dot files (application configuration files, which on
UNIX are typically located in the user’s home di-
rectory, and prefixed with a period), temporary files
created by the editors used to create mail messages,
and mailboxes. The size, lifespan, and access pat-
terns are predicted strongly for each of these cate-
gories.

In our earlier study, we observed that zero-length
lock files used by mail programs make up approx-
imately 96% of the files that were both created
and deleted, and 99.9% of these lock files lived
less than 0.40 seconds. Temporary files created by
the mail composer accounted for 2.5% of the files
created each day; 45% of these live less than 1
minute, and 98% are less than 8K in length, and
99.9% are smaller than 40K. The dot files are also
small, although there are some multi-block dot files

(for example, the primary mail client configuration
file, .pinerc, that varies in size between 11K and
26K). The mailbox files (including both the primary
inbox and files used to archive mail) are consider-
ably larger than any other commonly-accessed file
and are rarely deleted. Because the CAMPUS work-
load is entirely dominated by email, it is not surpris-
ing that the workload can be characterized in terms
of file names.

Table 4 shows the distributions of file access
count, I/O cost, and boxplots for the size and lifes-
pan of the common suffixes or prefixes of file names
observed on CAMPUS during a single day, sorted
by I/O cost. Our metric for estimating the total cost
of the operations on a file is the number of accesses
to the file, plus 0.125x the number of 8k blocks read
or written. The scale factor of 0.125 is intended to
be an approximation of the additional 1/O that each
block requires (assuming a reasonably contiguous
disk layout). This is a very crude metric, but it does
give some feel for the amount of file system activity
associated with the file.

Table 4 also shows the same information for
DEAS.

DEAS CAMPUS

String | Count| Cost|Size Lifespan | | String Count Cost | Size Lifespan
* lock 35315|35315 |- — *.inbox 12222011892 [——R+ | (NA)

* HOST | 31900|31924 |Fe— — * lock 76027| 76029 |¢- e
sent-mail 5721481 e |(NA) * HOST 65383| 65383 |¢— p—
mbox 3718396 HH [(NA) sent-mail 553| 22651 e |(NA)

*.80 450(17144 HeH o (¢ Sent Items 37 14046 e [(NA)

* pac 11]15912 4 |(NA) #pico* 2746|4987 |8+ [l———
.0db 9512907 et | 3+—— | | SENT-MAIL- 592 2068 |+ |F———
* gif 9008 | 11771 |+—1e— o+ INBOX 12 1731 ¢ |(NA)

* stt 150 9791 fre— 0=+ | *.doc 1459 1693 |[—b— |—d+—+
*.abq 11| 8755 ¢ |(NA) * history 789 1572 |—4 (NA)
INBOX 12| 5138 —¢ | = | | *pinerc 704 1365 ¢ H—ofl
*.dat 340| 4794| +—H— |do—— || *.login 767 1148| (NA)
*inp 97| 4656 H—@ |-&3+——| | *.cshrc 765 1141 +# (NA)
*.res 106| 4492 Hi-e— | Oo—+——| | * aliases 745 1117 +- (NA)

* pdf 472| 3232 |—p~ |—=h * logout 633 907| ¢ (NA)
*.ipg 1563 | 2876 Hp~ |+ postponed-msgs| 259 710 e~ |+
* html 1492 | 2124 |—tp—~ |d+——| | saved-messages | 160 608 = | (NA)
*db 97] 2037| @ | (NA) *jpg 306 575| 1 |foo—
*.ps 352 1761 e I L me n * letter 500 541 |—te— Hoo—+
*X 16| 1755[—== |(NA) *.addressbook 413 482 |C—fo+ HoH—
*.0 448 | 1567 4 — *.mp3 18 436 M [(NA)
*.prt 95| 1550| e |Oo+—||*1u 253 360 |—b Hd+—
*m 1287| 1351 [+t~ o+ friends 15 284| +Cm | (NA)
*mp3 29| 1164 H1 [(NA) * pdf 198 257 e —ofH—
* sel 11| 1150 ¢ |(NA) * newsrc 134 206| g

Table 4: Per-file statistics for simple file name prefix/suffix strings on DEAS and CAMPUS, sorted by
file cost, for files accessed on 10/21/2002 (on DEAS) and 10/22/2001 (for CAMPUS).

In this table, the String is either a prefix or suffix of a file name. The special string HOST is substituted when
the file prefix or suffix is the name of the originating host. The Count is the number of times a file name with
a matching prefix or suffix was accessed during a 24-hour period. The Cost is an estimate of the amount of
I/O activity actually generated by these accesses. The Size column shows the file size distribution, shown as
a log-scale boxplot (ranging from 0 to 232 bytes). The Lifespan column shows a linear-scale boxplot of the
lifespan for the files created within this 24-hour period (ranging from 0 to 24 hours). If fewer than 10 files
with the same prefix/suffix were created during the sample period, a (NA) is shown instead of a boxplot.
For our boxplots, the horizontal lines extend to the minimum and maximum values in the sample. The
vertical lines of the box plot represent, from left to right, 5%, 25% (lower quartile), 50% (median), 75%
(upper quartile), and 95% boundaries. The mean value is shown with a small circle. Thus, for a uniform
distribution, the boxplot would look like:

5% 25% 50% T5%95%
miH—{__ ¢ —+max
mean

EECS

String |Count| Cost|Size Lifespan
* 3DIG 712(153219 |[—pei |b—
perfdb0 73| 39235 ¢ |
perfdbl 73| 18477 =
RMAIL 38| 7804 Lt
core 17| 7288 @ | (NA)
*.g7 4976 6126| He— |(NA)

* gif 5045| 5459 |+ or—
mbox 11| 5333 |——= |(NA)
*ps 1145| 5224 |—t»— |+
Applet B| 5009| 5129 |—4 —
Applet_.C| 4087| 4130| +b —
3DIG 2820 4118| He— —4

* pdf 343| 4092 |—+ o+

* html 2104 | 3002 |—T— o+
*jpg 1909 | 2824 |—to~ |+
*.0 1537| 2625|—# o —+
Applet A| 2489| 2491 & —
* HOST | 2230| 2326|k— b

* lock 2223|2304 |k (NA)
10 21 1769 —o- el

* save 21| 1525 +—4& |¢

* prev 12| 1515 ¢ ¢

*c 1363| 1459 o —
*.db 66| 1421 +— (NA)
*.50 106| 1404 e+ |

Table 5: Per-file statistics for simple file name
prefix/suffix strings on EECS, sorted by file cost,
for files accessed on 10/22/2001. Please refer to
Table 4 for a description of each column.

4.2 EECS

User activity on EECS is a union of several kinds
of activities, and the observed workload is more
complex than CAMPUS although less rich than
DEAS. However, our preliminary analyses show
that for most files on EECS, the pathname of a file
is also a strong predictor of file properties.

Table 5 illustrates the distributions of file access
count, cost, size and lifespan by file name.

S Using the Predictions

In order to test our theory that name-based in-
formation can enhance file system performance, we
have constructed an experiment that shows how this
might be accomplished.

We speculate that it is possible to improve the
performance of an email workload by treating the
lock files and short-lived files differently than ordi-
nary files. Using our named-based predictive mod-
els, we have shown that we can do an excellent job
of identifying these files at the time they are created,
but it remains to be seen whether this information is
actually useful. To test the assumption that there
is some benefit to handling small, short-lived files
differently from other files, we have devised an ex-
periment where we can perfectly predict which files
will be small and short-lived.

We modified Postmark, a mail-oriented bench-
mark [7], to differentiate between lock files, small
mail composer files, and mailboxes. Mailboxes are
always treated as ordinary files, but our modified
benchmark allows us to treat the lock files and com-
poser files differently. In this section, we discuss
how the benchmark was modified and provide a dis-
cussion of how a file system could perform if it were
aware a priori of the characteristics of files at the
times of their creation. The experiment shows what
could be gained through an accurate name-based
predictor for lock files and message files.

5.1 Experimental Setup: Embedding an LFS

Because zero-length files contain no data blocks,
manipulating them is purely a meta-data problem.
Solving these problems has been addressed by tech-
niques such as soft updates and journaling [16].
However, these techniques require disk head move-
ment and incur a rotational delay. We believe that
a better approach would be to use a purely log-
structured approach, such as LFS [13], to store these
files. For short-lived files in particular, LFS is par-
ticularly advantageous because the overhead of cre-
ating the files is low, and the cleaning process is ef-
ficient because we expect nearly all of the files in a
segment will die before their segment is cleaned.

For a single-spindle solution, the best solution
would be to combine the layout policies of FFS for
ordinary files with a log-based scheme like LFS for
the short-lived files. Building a new file system to
combine these would be a major undertaking, but
we can approximate the behavior of such a system
with a relatively simple experiment.

Our methodology is to use the default FFS for or-
dinary files, and LFS for the files we anticipate will
be short-lived. We construct an ordinary FFS file
system and an LFS file system on a single disk in
such a way that the space used by the FFS and LFS
file systems are interleaved. This is done by initially
partitioning the disk into three partitions: two large
partitions, with a smaller partition between them.
The two large partitions are then glued together to
form one virtual partition, using ccd?, and a FFS is
built on top of this partition. An LFS is built on top
of the middle partition. This arrangement is illus-
trated in Figure 3.

The purpose of embedding the LFS within the
space used by the FFS is to minimize the penalty of
seeking from one file system to the other when we
switch from accessing ordinary files to creating and
deleting lock files. By locating the LFS within the
region of the disk used by the FFS, we more closely
mimic the actual behavior we would observe if the
LFS and FFS actually shared the same cylinders of
the disk.

5.2 Postmark

Postmark is an industry-standard synthetic
benchmark for measuring electronic mail, netnews,
and web-based commerce. It performs create/delete
and read or append transactions on a user-specified
workload. It decides what size to make new files
and how much to append to them by choosing
uniformly at random between smallest and largest
possible file sizes. This simple knob does not accu-
rately depict CAMPUS accesses: while most bytes
accessed do come from files larger than several
kilobytes, the vast majority of accesses in the mail
workload were to small files. Instead, accesses

2ced is the Concatenated Disk Driver, a utility provided
with several UNIX distributions.

FFS
lexp/ffs

LFS
lexp/lfs

A Disk Platter

Figure 3: An FFS and LFS sharing the same disk
drive, with the LFS “embedded” within the FFS.

tended to fall into three categories: zero-length lock
files, generally short dot and composer files, and
large mailboxes.

We modified Postmark in three ways to support
our experiments:

1. Instead of a uniform distribution, we modified
the file creation size to provide a “stepped” dis-
tribution, which follows a simplification of our
observations of CAMPUS: 96% of all files are
0 byte lock files, 3% are between 1 byte and
16 KB, and 1% are between 16 KB byte and 1
MB.

2. Based on an input parameter, we modified
Postmark to put either no files, lock files, or
lock and small files into the LFS partition
(/fexp/lfs). Any files that were not put in LFS
were put into FFS.

3. The lock files and small files were not ap-
pended to once created.

We used Schoder’s NetBSD LFS implementation
[15] and the default FFS. Gerbil’s LFS partition is

2500

2000

1500

1000

Throughput (txns/sec)

500 -

Gerbil —+——
Hamster ”IX”

1 1
Locks in LFS
Files Stored in LFS

Small files and
locks in LFS

Nothing put
in LFS

Figure 4: Modified Postmark. Number of transac-
tions per second shown with no fi les stored in LFS, just
locks, and locks and small fi les. LFS is functioning as a
poor-man’s circular buffer.

160 MB and hamster’s is 128 MB. Both FFS parti-
tions were 6 GB.

The experiment was performed on two machines
with similar configurations: 600Mhz Pentium III
processor, 128MB of RAM, and NetBSD 1.6 OS.
The differences in hardware configuration are that
one machine, gerbil, has an IDE DISK (IBM-
DPTA-372050) whereas the other machine, ham-
ster, here has an older SCSI disk.

We configured Postmark to simulate 50 concur-
rent mail users with the following parameters: 50
subdirectories (one per user), reads/writes occur in
8k blocks, the maximum number of files was 500,
and reads were biased over appends by 7 : 3, similar
to the read/write ratio seen with CAMPUS. Figure
4 shows the average of five runs of 30,000 transac-
tions; variance was less than 10% of the average.

This experiment shows that using LFS to store
the lock files and message files can provide an order
of magnitude increase in the number of transactions
compared to the same configuration using only FFS.
Of course, this only holds when we can accurately
predict the future access patterns of the files, and
avoid putting long-lived files into the LFS partition.
While the particular performance gain and its peak
between 64b and 256b are an artifact of our syn-
thetic workload, the experiment does provide evi-
dence that there is a potential for significant perfor-

mance gains if properties such as file size and lifes-
pan can be correctly predicted and handled accord-

ingly.

6 Future Work

All of our trace data is from NFS-based systems;
it remains an open question whether we can build
useful name-based models to predict the properties
of files on non-UNIX and/or non-NFS workloads.

We leave two aspects of our experimentation for
future work. First, we would like to run a simi-
lar test to our Postmark test on the more tune-able
Fstress synthetic workload generator [2]. It includes
eleven sample workloads, one of which is a mail
workload based on Saito’s analysis of mail file size
as a Zipf distribution with o set to 1.3, an average
message size of 4.7 KB, and a long-tail Pareto dis-
tribution to 1MB [14]. Like the uniform Postmark
distribution, this distribution would need to be aug-
mented with more zero-length lock files than would
appear with a Zipf distribution.

The second additional aspect of our experimen-
tation we would like to add is a “copy” thread that
runs immediately in front of the LFS-cleaner thread.
This thread would examine a block in the circu-
lar buffer (LFS in our experiments) and copy over
to the standard file system (FFS) any files that had
not been deleted and mark the contents in the buffer
deleted. The cleaner would then always see empty
blocks. This would serve the purpose of fixing our
guesses when we were wrong. Anything that lived
longer than one sweep through the buffer should ex-
ist in the standard file system and this mechanism
serves to put it there.

These two steps would provide more information
on the performance of the circular buffer in a mail-
oriented workload. The next logical step is a kernel-
level file system that transparently incorporates a
name-based predictor, a circular buffer, a migration
thread to copy incorrect guesses to long-term stor-
age, and the long-term storage itself.

7 Conclusions

We have shown that there is a strong relationship
between file names and the properties of the files

on three distinct workloads.

We have shown that

models that discover and use these relationships to
predict the properties of new files created on these
systems are efficient to construct and evaluate. We
have also demonstrated that our models are highly
accurate when predicting several properties of inter-
est to file system designers, including file size and
lifespan.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Sedat Akyurek and Kenneth Salem. Adap-
tive block rearrangement. Computer Systems,
13(2):89-121, 1995.

Darrell Anderson and Jeff Chase. Fstress:
A Flexible Network File Service Benchmark.
Technical Report TR-2001-2002, Duke Uni-
versity, May 2002.

Pei Cao, Edward W. Felten, Anna R. Kar-
lin, and Kai Li. Implementation and per-
formance of integrated application-controlled
file caching, prefetching, and disk schedul-
ing. ACM Transactions on Computer Systems,
14(4):311-343, 1996.

Dan Ellard, Jonathan Ledlie, Pia Malkani, and
Margo Seltzer. Passive NFS tracing of an
email and a research workload. In Proceedings
of the 2nd USENIX FAST Conference, 2003.
Gregory R. Ganger and M. Frans Kaashoek.
Embedded inodes and explicit grouping: Ex-
ploiting disk bandwidth for small files. In
USENIX Annual Technical Conference, pages
1-17, 1997.

J. Griffioen and R. Appleton. Improving file
system performance via predictive caching,
September 1995.

J. Katcher. PostMark: A New File System
Benchmark. Technical Report TR-3022, Net-
work Appliance, October 1997.

Thomas M. Kroeger and Darrell Long. The
case for efficient file access pattern modelling.
In Proceedings of the Seventh Workshop on

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Hot Topics in Operating Systems (HotOS-VII),
Rio Rico, AZ, March 1999. IEEE.

Marshall K. McKusick, William N. Joy,
Samuel J. Leffler, and Robert S. Fabry. A
fast file system for UNIX. Computer Systems,
2(3):181-197, 1984.

Todd C. Mowry, Angela K. Demke, and Or-
ran Krieger. Automatic compiler-inserted 1/0
prefetching for out-of-core applications. In
Proceedings of the 1996 Symposium on Op-
erating Systems Design and Implementation,
pages 3—17. USENIX Association, 1996.

S. Mullender and A. Tanenbaum. Immediate
files. In Software — Practice and Experience,
number 4 in 14, Apr 1984.

R. Hugo Patterson, Garth A. Gibson, Eka
Ginting, Daniel Stodolsky, and Jim Zelenka.
Informed prefetching and caching. In ACM
SOSP Proceedings, 1995.

Mendel Rosenblum and John K. Ousterhout.
The design and implementation of a log-
structured file system. ACM Transactions on
Computer Systems, 10(1):26-52, 1992.
Yasushi Saito, Brian N. Bershad, and
Henry M. Levy. Manageability, availability
and performance in porcupine: A highly
scalable, cluster-based mail service. In
Proceedings of the 17th ACM Symposium
on Operating Systems Principles (SOSP-99),
pages 1-15, 1999.

Konrad Schroder. LFS NetBSD implemen-
tation. http://www.hhhh.org/perseant/
1fs.html.

Margo Seltzer, Greg Ganger, M. Kirk McKu-
sick, Keith Smith, Craig Soules, and Christo-
pher Stein. Journaling versus soft updates:
Asynchronous meta-data protection in file sys-
tems. In USENIX Annual Technical Confer-
ence, June 2000.

Margo Seltzer and Keith Smith. File sys-
tem logging versus clustering: A performance
comparison. In USENIX Annual Technical
Conference, June 1995.

Elizabeth Shriver, Eran Gabber, Lan Huang,
and Christopher A. Stein. Storage manage-
ment for web proxies. In USENIX Annual
Technical Conference, pages 203-216, June
2001.

[19]

[20]

Carl Hudson Staelin. High performance file
system design. Technical Report TR-347-91,
Princeton University, 1991.

John Wilkes, Richard Golding, Carl Staelin,
and Tim Sullivan. The HP AutoRAID hier-
archical storage system. In High Performance
Mass Storage and Parallel I/0: Technologies
and Applications, pages 90-106. IEEE Com-
puter Society Press and Wiley, 2001.

