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Abstract

Network coordinates provide a scalable way to estimate
latencies among large numbers of hosts. While there are
several algorithms for producing coordinates, none account
for the fact that nodes observe a stream of distinct ob-
servations that may vary by as much as three orders-of-
magnitude. With such variable data, coordinate systems
are prone to high error and instability in live deployments.
In addition, dynamics such as triangle violations can lead
to coordinate oscillations, producing further instability and
making it difficult for applications to know when their co-
ordinates have truly changed. Because simulation results
demonstrate that network coordinates are capable of pro-
viding low cost and sufficiently accurate answers to com-
mon queries, it is vital that we develop the ability to ob-
tain similar results in practice. We introduce latency fil-
ters, which turn streams of latency observations into a sin-
gle approximation, and update filters, which summarize un-
derlying coordinate change and squelch false application
updates. We show how a compact, non-linear, low-pass fil-
ter can extract a clear underlying signal from each link:
these latency filters improve accuracy. We evaluate a set of
change-detection heuristics that allow coordinates to evolve
at the system-level and initiate an application-level update
only after a coordinate has undergone a significant change:
these update filters boost coordinate stability without dimin-
ishing accuracy. These two filters combined to improve net-
work coordinate accuracy by 54% and coordinate stability
by 96% when run on a real, large-scale network.

1 Introduction

Decentralized network coordinate algorithms take inter-
node latencies and embed them in a relative coordinate
space [5, 7, 14, 15, 17, 24, 25, 27]. With appropriate in-
put, they enable latency prediction among nodes that have
never communicated and allow complex distributed systems
problems to be solved geometrically. They are useful in a
wide range of contexts, including large-scale content distri-

bution, routing, and storage. In particular, network coor-
dinates (NCs) are an essential component of our work on
distributed database query optimization [19] and of Abra-
ham’s Compact Routing [1] and are also starting to be used
by one of the most popular BitTorrent clients [2].

Network coordinates are a powerful abstraction with at-
tractive properties: they have low overhead because they
can interpolate non-existing measurements; their embed-
ding error is sufficiently low for practical applications; and
the trade-off between measurement overhead and accuracy
is explicit by adjusting their observation frequency. Their
main power is that they provide a rich array of geometric
primitives for solving distributed systems problems, such
as nearest web cache selection, content distribution, and ef-
ficient placement of resources [18]. For example, a web
cache can be placed at the centroid of all of the clients’ coor-
dinates accessing the cache. The low dimensionality of NCs
makes a wide range of algorithms from computational ge-
ometry applicable to networking problems. Their geometric
interpretation also helps unify wired and wireless networks,
making similar algorithms applicable to both domains and
thus simplifying the design of heterogeneous systems.

Network coordinate schemes have, as yet, only per-
formed well in simulation. When run on a live system,
the basic algorithms do not produce stable, accurate coor-
dinates. The discrepancies are primarily a result of (a) the
orders-of-magnitude variation in latency measurements be-
tween the same pairs of nodes that occur when running NCs
on a real network and (b) the inherent impossibility of laten-
cies to be perfectly embedded when triangle inequality vi-
olations exist, causing oscillations. The simulation studies
have used a derived latency matrix, typically containing the
median values for links measured over hours or days. In this
paper, we describe how the addition of two types of filters
produces coordinates that are stable, accurate, and adaptive
to changing network conditions. As a result, our techniques
yield high-quality NCs under “real world” conditions.

In the next section, we introduce algorithms for comput-
ing NCs and show how to measure their quality, emphasiz-
ing a new metric called stability and its importance for ap-
plications. In Section 3, we examine a latency distribution
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that exemplifies a typical input and discuss why NC algo-
rithms experience difficulty when used without a static la-
tency matrix. In Section 4, we present a simple method for
stabilizing coordinates by keeping a small history of sam-
ples associated with each link. These latency filters improve
both coordinate stability and accuracy; however, coordinate
stability remains at a level unacceptable to most applica-
tions. In Section 5, we differentiate between application-
and system-level coordinates and compare four heuristics
for improving application-level stability while maintaining
accuracy. We find that using a sliding window for change
detection as an update filter allows an application’s view of
its network coordinates to become significantly more sta-
ble. In Section 6, we build histories and application-level
coordinates into an implementation that we run on a large
network, resulting in a 54% improvement in accuracy and
a 96% improvement coordinate stability. As Figure 1 illus-
trates, this paper examines (a) what kinds of latency filters
turn latency observations into useful network coordinates
and (b) what kinds of update filters notify applications only
with significant coordinate changes. In Section 7, we dis-
cuss related work; we conclude in Section 8.

2 Network Coordinate Algorithms

All NC algorithms embed a characteristic of a network,
typically latency, into a metric space, but the methods used
differ along several axes. There are two fundamental dif-
ferentiating characteristics and two that are somewhat sec-
ondary. The geometry used for the metric space is funda-
mental: while most work uses low dimensional Euclidean
spaces, Shavitt and Tankel propose a hyperbolic embed-
ding [25], and Tang and Crovella examine Lipschitz coordi-
nates [27]. A second fundamental characteristic is whether
all nodes are treated equally: whether there is a set of land-
marks that serve as reference points (and generally perform
an intensive set of measurements a priori). Two secondary
characteristics are periodicity and the existence of a decen-
tralized implementation. Costa’s PIC is described as solv-
ing once for a node’s coordinate, but its coordinates could
be recomputed periodically. Finally, while the existence of

a public decentralized implementation has helped the pop-
ularity of Vivaldi, for example, such an implementation is
possible for most NC algorithms.

With a working distributed implementation, these dif-
ferent types of NCs offer, to varying degrees, three main
benefits. First, two nodes do not need to have communi-
cated previously for the latency between them to be esti-
mated. Because all-to-all communication is not necessary,
NCs scale to thousands or millions of nodes. Second, NCs
can continue to refine coordinates as the true network condi-
tions change over time. For example, if the latency of a link
changes due to a BGP route change, coordinates can adjust
and restabilize quickly. Lastly, NCs provide distributed sys-
tems with the ability to solve problems geometrically. For
example, a node can learn of its approximate nearest neigh-
bor without ever communicating with it, using background
gossip of coordinates instead. Of course, NCs are not a
panacea: any embedding of network latencies that includes
triangle violations – and almost all non-trivial networks do
– must induce a level of error. However, for the broad col-
lection of applications that can use good approximations to
their distributed problems, NCs are a worthy solution.

For purposes of presentation and evaluation, we use
Vivaldi as the canonical example of a NC update algo-
rithm. Because it has a simple, public, distributed algo-
rithm, it is used in several projects including Bamboo [22],
SBON [19], and Azureus [2]. However, these three projects
have all experienced difficulties with coordinate accuracy
and stability when run on real networks. Because all em-
bedding methods require latency estimates as inputs and
produce coordinates as outputs, our techniques should be
directly applicable to them as well.

2.1 Vivaldi

Vivaldi models the network as a collection of springs that
pull on each node’s coordinate. Each node retains its coor-
dinate −→xi and its confidence in this coordinate wi ∈ (0, 1).
All coordinates are the same low dimension, which is fixed
a priori. Nodes adjust their coordinates and confidences
through observations of their latencies to other nodes in the
system. These observations can be explicit pings or may be
gleaned from existing traffic. Through successive samples,
each node refines its coordinates and increases its confi-
dence. Like a network of springs, coordinates become more
accurate and stable with each successive adjustment.

Each node updates its coordinate and confidence with
each new latency observation based on the pseudocode
shown in Figure 2. An observation consists of the remote
node’s coordinate −→xj , its confidence wj , and a new mea-
surement of the latency between the two nodes, i and j,
lij . First, a weight ws is assigned to this observation based
on how confident nodes i and j are relative to one another



VIVALDI(lij ,−→xj , wj)
1 ws = wi

wi+wj

2 ε = |‖−→xi−
−→xj‖−lij |
lij

3 α = ce × ws

4 wi = (α× ε) + ((1− α)× wi)
5 δ = cc × ws

6 −→xi = −→xi + δ × (‖−→xi −−→xj‖ − lij)× u(−→xi −−→xj)

Figure 2. Vivaldi update algorithm

(Line 1). In essence, this allows more confident nodes to
tug harder than less confident ones. Second, they find how
far off the observation was from what was expected based
on the coordinates; this is the relative error ε of this mea-
surement (Line 2). Third, node i updates its confidence wi

with an exponentially-weighted moving average (EWMA).
Unlike most EWMAs, however, the α, or weight given to
the current observation, is not fixed. Instead it is weighted
according to the trustworthiness of the current observation
(Lines 3-4). If this causes node i’s confidence to go above
one or below zero, it is forced to remain in bounds (not
shown). Confidence is greatest when wi = 0. Lines 5-6
update the coordinate. First, we compute this observation’s
pull on the coordinate, δ, based on i and j’s confidence.
Then, in line 6, δ dampens the magnitude and direction
(normalized with u, the unit vector function) of the change
applied to the coordinate. Constants ce and cc affect the
maximum change an observation can exert on confidence
and coordinates, respectively. They have the same effect
as the tuning parameter in a standard EWMA: a low value
of 0.05, for example, limits the weight given to any new
observation and a high value of 0.25, for example, causes
faster adjustments to new observations. Larger values for α
may weigh outliers too heavily. We found any setting of cc

and ce in this range to have minimal impact on large scale
behavior.

Bootstrapping the algorithm is simple. We set all coordi-
nates to the origin. Each node stores a list of neighbors, i.e.,
nodes that it samples. We assume that a node knows at least
one other node when it enters the system. In our implemen-
tation, nodes learn new neighbors by attaching the address
of one other node to each sampling message, i.e., through
gossip, and sample their neighbors in round-robin order.

Vivaldi can be modified to include a height h, which
changes the distance between nodes i, j to ‖−→xi − −→xj‖ +
hi + hj . The purpose of height is to capture the latency
of the access link, while the coordinates themselves capture
the long-haul links. Because the growing body of projects
using Vivaldi has not used height, we did not include it, al-
though the techniques we present would allow for its use.
We present results using three dimensions.

2.2 Measuring Coordinate Systems

Comparing the difference between the expected and ac-
tual latencies for an observation measures accuracy. The
error of a link for a particular observation lij is:

e =| ‖−→xi −−→xj‖ − lij |

Depending on context, the accuracy for the system is the
sum of these quantities for all nodes, the sum of the error
squared (the mean squared error), or the median for each
node. Accuracy can also be normalized by dividing by lij ;
this relative error is ε in Figure 2. We use relative error as
the accuracy metric because it facilitates comparison of a
wide range of latencies.

Recently, Lua et al. proposed NC error metrics that bet-
ter capture application impact [12]. Relative rank loss (rrl)
determines how well a network coordinate scheme respects
the relative ordering of all pairs of neighbors. Thus, for each
node x, if (dxi > dxj ∧ lxi < lxj) or (dxi < dxj ∧ lxi > lxj),

then the distances d between coordinates led to an incor-
rect prediction of the relative latencies l. This metric is im-
portant for applications that make decisions dependent on
the relative ordering of nodes, for example, when updat-
ing routing table entries. In related work [20], we extended
rrl to capture the magnitude of each rank misordering as
well: swapping the rank of two nodes that are 1ms apart
is less severe than reordering nodes that are 100ms apart.
This weighted rrl (wrrl) is computed by taking the sum of
the latency penalties lij of node pairs ranked incorrectly,
normalized over the worst case latency penalty. Finally, the
relative application latency penalty (ralp) expresses the per-
centage of additional latency that an application will notice
when using network coordinates for rank ordering. It is ap-
proximated by summing the relative penalty lij/lxi for all
pairs that are incorrectly ranked. In Section 4.1, we eval-
uate our filtering techniques with these application metrics
and show that the results are consistent with the behavior
exhibited by the relative error.

Note that the link latency lij is a time dependent quan-
tity because inter-node latencies are not fixed nor does the
same link provide the same result with each observation.
Instead of being a single quantity, Lij is actually a distri-
bution that depends on the characteristics of the link. One
can consider the distribution Lij the true latency. Most NC
evaluations assume that links returned the same measure-
ment each time; in other words, that all lij’s were equal for
a given link.

We measure per-node relative error instead of per-link
relative error. The distribution of per-node relative error is
the collection of errors for each node for all of its observa-
tions. Measuring per-link error assumes that a static, scalar
latency matrix exists against which we could compare coor-
dinates after a number of iterations. Because our underly-
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Figure 3. Unfiltered latencies (all nodes)
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ing network is changing, this matrix, and hence this metric,
cannot be computed.

Stable coordinates are particularly important when an
application uses network coordinates and a coordinate
change triggers application activity. A stable coordinate
system is one in which coordinates are not changing over
time, assuming that the network itself is unchanging. Thus,
links may produce some distribution of observations, but as
long as this distribution does not change, neither should sta-
bilized coordinates. We use the rate of coordinate change

s =
∑

∆−→xi

t

to quantify stability. In our metric space, the numerator is
in milliseconds and we measure change in this space in sec-
onds; thus, stability is in ms/sec unless otherwise noted.

3 Latency Measurements

When we first implemented NCs, we found that lone
samples, orders-of-magnitude greater than expected, peri-
odically distorted the entire coordinate system. These insta-
bilities appeared when the algorithm used raw latency data.

Raw latency data show rare but persistent samples
orders-of-magnitude larger than the common case. We col-
lected a set of latency data from 269 PlanetLab [16] nodes
over three days starting May 2, 2005, producing 43 million
samples. PlanetLab is a collection of approximately 500
machines spread around the world, located primarily at uni-
versities and research labs. To gather the trace, each node
measured the latency to another node with an application-
level UDP ping once per second.

We summarize the total distribution of measurements in
Figure 3. The data show that 0.4% of the measurements are
greater than one second, which is longer than the common
case even for inter-continental links. Instead of a steady
stream of measurements, the fact that many measurements
are above the largest expected latency suggests that many
links may be experiencing serious delays that NCs must au-
tomatically incorporate. The broad range of measurements
severely curtails accuracy and stability.

We examined individual links to confirm that they too
exhibited similar behavior. Not only did the entire distribu-
tion have a long tail, with most links below several hundred
milliseconds, but individual links had as well. Figure 4 il-
lustrates one representative link. It shows that some obser-
vations extend beyond the median and that these infrequent
order-of-magnitude delays are spread over time.

Because of the long tail, the mean of the raw values
would not be a good predictor for future observations. In-
stead, the expected latency appeared to be predictable by
taking a low percentile of some portion of the previous ob-
servations. This expected latency is a better measure of
what NCs should use as its approximation of the link la-
tency, not the raw values. By giving NCs a steadier input
that is able to predict subsequent values with high accuracy,
each link should experience lower relative error and greater
stability by exhibiting less coordinate change over time.

4 Filtering with Histories

Based on our analysis of link latencies, a percentile of
some window of previous observations appeared to be a
good predictor of future values. Statistically, this is known
as a Moving Percentile (MP) filter, a variant on the Moving
Median filter, and has been used to filter out heavy-tailed er-
ror in other disciplines [8, 13]. It is a non-linear filter, which
removes non-Gaussian noise and lets through low frequen-
cies. MP filters exhibit edge preservation and are robust
against noise impulses. A MP filter has two parameters: (1)
the size h of the history window and (2) the percentile p
returned as the prediction for the next observation.

To examine the predictive effectiveness of the MP filter
with different parameters, we examined how the filter per-
formed on each link from the PlanetLab trace. Each link
consists of a series of observations; the relative error is the
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difference between the filter’s prediction and the next ob-
servation divided by the next observation.

We ran an experiment in which we varied the size of the
window and the percentile used to predict the next value.
Using the three day trace, we applied different filters to pre-
dict what the next observation would be and calculated the
relative error between each prediction and the true obser-
vation. Figure 5 shows filters’ abilities to predict the next
latency for each link as we vary the history size h and keep
p = 25. The results show that short histories, e.g., only four
observations, achieve the best performance (lowest error)
with the fewest outliers. Using p = 25 resulted in slightly
lower error than p = 50 for the MP filter.

Although long histories do not perform substantially
worse, intuitively it makes sense that longer histories do not
perform better: they are slow to adjust to any changes in net-
work conditions. That short histories perform well is good
for three reasons: (1) they can be acquired through fewer
rounds of observations, (2) they require less state, and (3)
they will be quickest to adjust to any latency shifts.

In the previous experiment, we made the assumption that
the magnitude of the long tail behavior of latency measure-
ments remains unchanged over time. In practice, this may
not be the case because the long tail is caused by artifacts,
such as security policies implemented by routers and tem-
porary route changes due to unstable BGP routing policies,
which are themselves dynamic in nature. These changes
may affect the efficiency of the chosen p and h parame-
ters over time. However, changes to the magnitude of the
long tail occur at larger timescales, which we have not seen
during our experiments so far. An adaptive solution would
revisit the choice of p and h periodically to ensure that the
filter remains a good predictor for future measurements.

4.1 NCs with the Latency Filter

In order to compare NCs with and without the MP fil-
ter, we built a simulator that accepted our raw ping trace
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as input and mimicked the distributed behavior of Vivaldi.
Through a comparison of running NCs on a real network
and in our simulator, we found the simulator provided a
high degree of verisimilitude.

Using the MP filter substantially improves both the accu-
racy and stability metrics. With the parameters that showed
the best ability to predict subsequent samples — taking the
25th percentile of the previous four observations (i.e., the
minimum) — we compared NCs with and without MP fil-
tering. We ran NCs on a four hour section of the trace and
show cumulative distributions for the second half of the run,
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eliminating start-up effects (we examine the rate of start-up
in Section 5). We measured per-node accuracy and system-
wide stability and summarize the results in Figures 6 and
7. The data show that the MP filter at least doubles accu-
racy and stability for most nodes. Its primary benefit, how-
ever, is that it eliminates the periodic distortion of the en-
tire coordinate space that occurs with no filtering. This is
shown through the reduction of the long tail of instability
by three orders-of-magnitude. In the application we devel-
oped, these distortions cause a cascade of other updates to
occur; using the MP filter ameliorated this problem substan-
tially.

We also evaluated the efficiency of the MP filter in terms
of the application metrics capturing rank loss described in
Section 2.2. We calculated the rrl, wrrl, and ralp metrics
for all the nodes in our set. The results show that the MP
filter improves the 80th percentile of rrl by 70%, of wrrl by
44%, and of ralp by 67% [20]. We conclude from this that
applications using NCs to order nodes according to latency
directly benefit from the MP filter.

4.2 Other Filtering Methods

Before turning to the non-linear MP filter, we considered
two methods that are commonly used to smooth out mea-
surement error, thresholds and exponential averaging, and
a confidence building method specific to Vivaldi. Contrary
to our initial expectations, these methods had negligible im-
pact on accuracy or stability, and made conditions worse in
some circumstances.

Thresholds. Prior to examining the latency distribution,
we first considered using fixed threshold to discard extreme
values. Dropping all values above a threshold is a simple
method, with the added benefit that it requires no state.
Given the distribution of the entire trace (shown in Fig-
ure 3), this method also removes the most extreme outliers,
smoothing the process slightly. However, each link tended
to show its own set of outliers: most links exhibited long
tails, but the centering and length of the tail was different.
For example, a cut-off that might work for the general dis-
tribution would do nothing for outliers in the link shown in
Figure 4, where the common case is less than 100ms. Early
in our exploration, we tried several thresholds before mov-
ing to more complex techniques; we found only minimal
stability and accuracy improvement when used in isolation.

EWMA. A commonly used filter to smooth jittery data
is the exponentially-weighted moving average. It captures a
distribution’s general trend by including all previous obser-
vations and giving them an exponentially-declining weight.
We added a per-link EWMA to our simulator with the goal
that it would capture changes in network conditions and
dampen the outliers we had seen. Table 1 shows the median
value of the distribution of median relative error and stabil-

Table 1. Exponentially-weighted Histories
Filter Median Relative Instability

Error
MP Filter 0.07 (−42%) 415 (−47%)
No Filter 0.12 (0%) 783 (0%)
α = 0.02 0.27 (+125%) 490 (−37%)
α = 0.10 2.48 (+1960%) 1907 (+143%)
α = 0.20 5.70 (+4650%) 3783 (+383%)

ity when nodes use an EWMA filter with differing values
of α, as compared to using no filter and using the MP fil-
ter. The data show that even when an unconventionally low
value for α is used, 0.02, smoothing with an EWMA still
results in lower accuracy than using no filter at all. The out-
liers are not signifying a trend an EWMA should capture,
but instead should simply be discarded.

5 Updating Application-level Coordinates

Violations of the triangle inequality with respect to RTT
measurements have been shown to be a common occur-
rence on the Internet due to Internet routing policies. A
recent study found around 18% triangle violations between
399 PlanetLab nodes [33]. Because of triangle violations,
any NC algorithm that refines its coordinate periodically,
especially with every observation, will produce coordinates
that oscillate in a region – decreasing stability – with the
size of that region dependent on the size of the violation.

Using a latency filter greatly improved stability and ac-
curacy for a set of network coordinates. As Figure 7
showed, use of the filter clipped the heavy tail of instabil-
ity. However, the system’s coordinates are still changing
at about 500ms/sec. For an application using network co-
ordinates, is all this movement necessary? Instead of be-
ing notified about slight changes in coordinates with every
observation, most applications would prefer to be notified
only when a significant change occurs. By designing the
coordinate subsystem as a black box that only signals when
there is significant change, we can limit application updates
that, in turn, limit unnecessary application-level work. In
our distributed database optimizer, for example, a coordi-
nate change could initiate a cascade of events, culminating
in one or more heavyweight process migrations. If the sys-
tems’ coordinates have not changed significantly, there is no
reason to begin this process. Of course, some applications
would prefer a constant update: the subsystem should out-
put both a system-level coordinate, −→cs , and an application-
level one, −→ca .

Before considering how and when to update −→ca , we must
ask: is it necessary to update −→ca at all? That is, after some
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time, do coordinates cease to change relative to one another,
merely rotating about an axis, oscillating, or otherwise re-
maining stationary? The answer is no: coordinates do
change, reflecting changes in the underlying network even
over relatively short time-scales. We illustrate this change
in Figure 9 by showing how four nodes’ coordinates vary
over time. The nodes are from four distinct regions. Their
coordinates move in a consistent direction over a three hour
period, neither rotating nor remaining within one area. In-
stead, this example portrays that −→ca should be updated over
time to sustain accuracy.

The fact that −→ca must be updated suggests a trade-off be-
tween the drawback of changing−→ca , which induces (perhaps
unnecessary) application-level work and−→ca’s accuracy. Our
goal is to shift the line in Figure 7 to the left, increasing
stability, without moving the line in Figure 6 to the right,
increasing error.

Examining the correlation between triangle violations
and stability suggests that coordinate movement, when it
is not due to an underlying network change, is due to these
violations. This makes sense because the violations mean
that the coordinate cannot have an exact location. We found
the average extent of a node’s triangle violations correlate
strongly with its average stability, measured in ms per up-
date using an EWMA (r2 = .71). We show this correlation
in Figure 10. This suggests that much coordinate change –
but not all, as Figure 9 illustrates – is unnecessary and can
be suppressed.

We examined four heuristics that each attempt to up-
date−→ca at appropriate times, dampening application updates
while retaining the MP filter’s low relative error. Two are
based on simple thresholds and two on sliding windows of
previous cs coordinates.
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5.1 Application Update Heuristics

We present four heuristics that each attempt to increase
stability in application-level coordinates without decreasing
their accuracy.
SYSTEM. If the change in −→cs from one observation to the
next is greater than a threshold τ , update −→ca . Thus, if

‖−−→cs(t) −−−−−→cs(t−1)‖ > τ,

let −→ca = −→cs . This heuristic is simple but suffers from a
pathological case: many changes just under the threshold
might occur, leading to high error.
APPLICATION. If the application’s idea of the coordinate
has strayed too far from the system’s, notify the application.
More precisely, if

‖−→ca −−→cs‖ > τ,

let −→ca = −→cs . This heuristic is a simple way to express that
an update should occur when a drift in one direction occurs;
it permits oscillations beneath τ .
RELATIVE. This is the first of the two window-based heuris-
tics. RELATIVE measures the local relative distance com-
pared with our nearest known neighbor r and updates the
application if the change is larger than an error εr. RELA-
TIVE averages each of its sets of coordinates by taking their
centroid C(W ). It computes, if

‖C(Ws)− C(Wc)‖
‖C(Ws)−−→r ‖

> εr,

let −→cs = C(Wc). This heuristic exhibits three good prop-
erties: updates are relative to the node’s locale, computing
the centroid is inexpensive, and C(Ws) can be cached. The
approximate nearest neighbor is learned through a compari-
son with each latency sample, where the node learns −→xj and
a new neighbor through gossip.
ENERGY. The last heuristic uses a statistical test that
specifically measures the Euclidean distance between two



multi-dimensional distributions [26]. It is based on the
energy distance e(A,B) between two finite sets A =
{−→a1, . . . ,−→an1}, B = {−→b1 , . . . ,

−→
bn2}:

e(A,B) =
n1n2

n1 + n2

 2
n1n2

n1∑
i=1

n2∑
j=1

‖−→ai −
−→
bj ‖

− 1
n2

1

n1∑
i=1

n1∑
j=1

‖−→ai −−→aj‖ −
1
n2

2

n2∑
i=1

n2∑
j=1

‖−→bi −
−→
bj ‖


Using this statistic, we can determine the divergence of

the two windows. If

e(Ws,Wc) > τ,

let −→ca = C(Wc). Computing this heuristic is more com-
putationally intensive than RELATIVE, but the difference is
negligible for the small windows we used.

5.2 Detecting Change with Windows

Ben-David, Gehrke, and Kifer propose an algorithm to
detect when a stream of samples entering a database has
changed [9]; their algorithm is similar to one proposed by
Kleinberg for detecting word bursts in text streams [10].
The kernel of their idea is to divide a single data stream
S = {s0, s1, . . . , sn} into two sets (or windows), Ws =
{s0, . . . , sk} and Wc = {sn−k, . . . , sn}, that can be com-
pared for statistically significant change using one of a
handful of standard techniques (such as rank-sum).

The start window Ws holds the initial values seen and
the current window Wc slides to include only the most re-
cent values. By creating two distributions out of the single
stream, a change in the underlying stream can be detected.
Initially, both windows are empty. As each element si ar-
rives, it is added to Ws and Wc until they are both of size
k. When this size is reached, no more elements are added
to Ws, and Wc slides to add si and drop si−k−1. With each
new element, the sets are tested for difference. When the
statistical test declares the two windows to be different, a
change point is said to have occurred. At this point, both
windows Ws and Wc are cleared and the process begins
again. The tests Ben-David et al. examine in their work,
however, are all for one-dimensional data. ENERGY and
RELATIVE use tests for multi-dimensional data.

There are a few differences between the original algo-
rithm and what we adopted. First, the window sizes of
Ws and Wc can be different; we set them to be the same
size. Second, one can keep several sets of windows to detect
change at different timescales; we used a single pair of win-
dows. Finally, the tests they considered were for univariate
data; because our data is multi-dimensional, we needed to
use different tests than they evaluated.

5.3 Summary of Application-Update Re-
sults

To examine how these four heuristics affected applica-
tion stability and accuracy, we implemented them in our
simulator and observed their behavior with different win-
dow size and threshold parameters. First, as expected, in-
creasing the threshold required for application update in-
creases stability but decreases accuracy. However, the
window-based heuristics succeed in substantially increas-
ing stability before any significant decline in accuracy be-
gins. Second, large windows between 32 and 512 samples
improve both stability and accuracy. Very large windows,
however, cause too few updates to occur, decreasing accu-
racy. Third, the heuristics that do not use windows increase
stability only at the expense of accuracy and are not robust
to minor parameter changes.

5.4 Window-based Heuristics

Because the window-based heuristics, RELATIVE and EN-
ERGY, are more complex, we examined their behavior first.
We hypothesized that as the threshold for update increased,
fewer updates of−→ca would occur, leading to greater stability
and perhaps reduced accuracy.

To examine how the thresholds τ and εr affect ENERGY

and RELATIVE, respectively, we ran an experiment where we
varied the value of the threshold and kept window size con-
stant at 32. We recorded accuracy and stability; Figure 13
shows the median for both the distribution of median rela-
tive error per node and of instability. The results summarize
the last two hours of the four hour trace.

The data establish that RELATIVE exhibits a near-linear
increase in stability with increasing threshold. Thus, as
RELATIVE requires more movement relative to the distance
to the nearest neighbor, updates steadily decline. The in-
crease in ENERGY’s stability is curved but has no knee: it
too exhibits a measured decline in coordinate change as
the threshold to update increases. Both heuristics fall in
the same range of relative error, with ENERGY exhibiting a
more gradual decline as thresholds increase. Accuracy be-
gins to decline for ENERGY after τ = 8 and for RELATIVE

after εr = 0.3. These are the most conservative parameters
that still grant an increase in stability, with 8% for RELATIVE

and 34% for ENERGY.
Our second experiment with the window-based heuris-

tics establishes boundaries for window size. Unlike the
per-link MP filter, a large window is acceptable because
windows grow with every observation, not with every link.
However, very large windows are slow to react to true
changes in underlying network conditions.

We ran an experiment in which we kept the threshold
for application-update constant while we varied window



size exponentially. We monitored accuracy and stability
as before, and observed the frequency of application up-
dates. This last number — that is, the number of times −→ca is
changed per unit time — is interesting because even though
stability might be increased, it might not necessarily cor-
relate with a decline in application notifications. Instead,
stability could be increasing due to smaller updates occur-
ring at the same frequency. We wanted to ensure that both
instability and update frequency were decreasing because
there is a cost for application notification. In Figure 11, we
show the percent of the 269 nodes that changed their val-
ues −→ca each second. The data show that not only do large
windows (≈ 25 − 29) modestly improve accuracy, but they
also result in a steady increase in stability and decline in
update frequency. Across a wide range of window sizes,
updates are both less frequent and cause less movement in
aggregate, achieving two of the goals of the application-
update heuristics. At a window size of 128 for example,
RELATIVE’s median relative error is 7% and its instability is
5ms/sec, while causing only 1% of the nodes to be updated
per second. This is a 42% increase in accuracy and a two
orders-of-magnitude improvement in stability compared to
the original algorithm. Because all large window sizes af-
forded a substantial improvement in the metrics, we chose
the smallest of these, 32, to make a conservative compari-
son with the window-less heuristics and to use in our Planet-
Lab implementation. We used the threshold values gathered
from the previous experiment.

5.5 Windowless Heuristics

The window-based heuristics have the disadvantage that
they are slightly more complex than the windowless ones,
SYSTEM and APPLICATION, and that they require more state.
Using the parameters we established for window size from
the previous experiment, we compared all four heuristics
as we varied the update threshold and show the results in
Figure 13.

Unlike ENERGY and RELATIVE the windowless heuristics
could only directly trade off accuracy for stability and had
a limited “sweet spot,” that might change with a different
trace. At low thresholds, when −→ca is updated after only
a small movement from its previous value, SYSTEM’s and
APPLICATION’s performance remain similar to the raw MP
filter. With a large threshold, −→ca is rarely updated, lead-
ing to high error. Only at τ = 16 do the two heuristics
perform in the same range as the window-based ones. We
conclude the added complexity and state of using one of the
window-based heuristics is worthwhile because tipping in
either direction results in poor performance on one of the
metrics.
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Figure 11. Varying window size

5.6 Discussion

Our primary goal in introducing the application-level
heuristics was to further improve stability while maintain-
ing accuracy. While we omit figures of traced-based simu-
lation due to space constraints, the data from the PlanetLab
experiment confirm that the two window-based heuristics
achieve this goal (see Figure 16). Using the parameters es-
tablished above, accuracy remains unchanged while RELA-
TIVE and ENERGY shift the entire distribution of coordinate
updates into a more stable regime.

Application-level accuracy and stability depend on both
knowing when to update −→ca and to what to set it. A sub-
stantial component of the success of the two window-based
heuristics is their setting −→ca = C(Wc). One could argue
that a simple threshold scheme might achieve similar per-
formance if it too used the centroid of a collection of recent
system-level coordinates. However, while it is true that all
RELATIVE and ENERGY do is set −→ca to the centroid of recent
values for cs, achieving the proper rate for these updates —
knowing when to change — is a property simple thresholds
have difficultly performing.

To test this claim, we modified APPLICATION to set −→ca

to be the centroid of a window of the past 32 coordinates
(the same size that ENERGY and RELATIVE use above). In
our experiment, we varied the threshold at which updates
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were made and again monitored accuracy and stability.
As the data in Figure 14 portray, this combined APPLICA-
TION/CENTROID is more stable than APPLICATION and SYS-
TEM but, like the two window-less heuristics, it is not robust
against slight changes in parameters and has high stability
only at the expense of good accuracy.

6 PlanetLab Experiment

In order both to verify our simulator and to confirm that
our findings were not limited to our latency trace, we imple-
mented a version of NCs that run on a real network. This
version uses application-level UDP pings as input, the same
as our trace. Each node started with a small neighbor set
and gossiped one address with every sample. Nodes sam-
pled from their neighbor set in round-robin order at five
second intervals. We added the MP filter and the ENERGY

application-level update heuristic to our implementation.
We used a window of 32 and τ = 8 as suggested by the
parameter space exploration in simulation.

In order to ensure a valid comparison between running
NCs with our enhancements and without, we ran them on
the same set of PlanetLab nodes at the same time, using
different ports. One set of nodes used the MP filter and one
did not; both used ENERGY. Because each node produced−→cs

and−→ca with each sample, we could monitor the effects of the
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Figure 13. Varying threshold (all heuristics)

filter and the update heuristic separately. We ran this pair of
coordinate systems for four hours on 270 PlanetLab nodes
on June 24, 2005. We have subsequently been using the
live coordinate system for significantly longer experiments
on our work on streaming databases.

The results of the real-world experiment confirm those
of our simulations. We show the relative error and stabil-
ity for the second half of the experiment in Figure 16. The
data show that the MP filter reduces error and instability
and the application-update heuristic further increases sta-
bility. With the MP filter, only 14% of nodes experienced
a 95th percentile relative error greater than one; without it,
62% did. ENERGY dampened the filter’s updates: 91% of the
time it fell below even the minimum instability of the raw
filter. The enhancements combine to reduce the median of
the 95th percentile relative error by 54% and of instability
by 96%. We also examined how latency and update filters
affected these metrics over time; we show median error and
mean instability at ten minute intervals. The data show that
after a half hour convergence period, the MP filter and EN-
ERGY result in a much smoother and more accurate metric
space on a real wide-area network. The data confirm that
both enhancements have distinct effects on the two metrics
and that both are required for a stable and accurate space
from an application perspective.

After a close examination of all coordinate disruptions
during the PlanetLab experiment, we discovered a source of
much of the worst error. Most real-time low-pass filters add
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delay in order to incorporate future values. Our MP filter
outputted a value for every input, regardless of the history
length: it produced the pth percentile of the current state
it was storing. Thus a pathological case occurs when an
extreme outlier is the first observation for a particular link:
even with the filter, this observation is what is used. In fact,
this was the case for the five largest node displacements in
the PlanetLab experiment and the echoes of these disrup-
tions often continued for minutes. To compensate for this,
NCs could wait until a sufficient number of samples are in
the filter.

In simulation, we experimented with waiting until the
second sample on a link to return an observation. This
greatly reduced early instability, but, because our set of
nodes was constant, had only limited impact after start-up.
In a long-running system where nodes periodically enter
and leave, adding a delay to the filter would increase its
robustness against these pathological cases.

7 Related Work

Since Ng and Zhang provided the first examination of
how to embed inter-node latencies in a metric space [14], a
series of different approaches emerged. In their initial work,
called Global Network Positioning, a coordinate space was
built in two stages: first, a collection of well-known land-
marks placed themselves in a vector space through all-pairs
ping measurements; second, each joining node measured
its distance to all of the landmarks and picked a coordi-
nate that minimized the error to all of them. This approach
does not allow for a smooth evolution of the space over
time, nor is it decentralized. However, it did establish that,
even with the error induced by triangle inequality viola-
tions, a high-quality space was possible. Lighthouses [17]
Mithos [28], and NPS [15] extended the landmark approach
by using multiple local coordinate systems, by building
the space through preferring to measure nearby neighbors,
and through a hierarchical architecture, respectively. More
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recently, Costa et al. developed PIC, another landmark
scheme, which runs a Simplex solver on each node to min-
imize error [3]. PIC readjusts coordinates through period-
ically re-running this solver process and includes a test to
defend its coordinate system against malicious participants.
Cox et al. initially proposed Vivaldi [4] and Dabek et al.
later improved its accuracy in two-dimensions with height,
which was intended to explicitly capture the latency to a
high speed link [5]. Shavitt and Tankel’s Big-Bang Simula-
tions is an embedding technique similar to Vivaldi, although
it models a potential force field instead of a mass-spring sys-
tem [24]. Kleinberg has developed a theoretical grounding
for network embeddings, analyzing how to embed coordi-
nates with arbitrarily low errors [11].

Network embeddings were developed partially in re-
sponse to the growing interest in topologically-efficient
overlay routing. CAN’s multi-dimensional space [21], in
particular, motivated work on network-aware overlays and
on using a node’s network coordinates as its logical CAN
coordinate [30, 32]. Other work has tried to solve simi-
lar routing problems without a coordinate space, arguing
that maintenance is a burden or that error is high rela-
tive to a customized mechanism. In essence, this class of
work solves the neighbor and routing problems reactively,
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Figure 16. PlanetLab Stability and Accuracy:
Over Time

through a spike in activity in response to an application-
driven demand, while a long-running coordinate space
solves them pro-actively. Meridian, for example, finds the
nearest overlay node (i.e., one running Meridian) to an ar-
bitrary point in the Internet through a large set of pings in
direct response to an application-level request [29].

7.1 Stabilizing Network Coordinates

We used Szekely and Rizzo’s energy statistics as one
heuristic to find the distance between the start and current
coordinate windows [26]. Rubinfeld and Servedio provide
an alternate algorithm for determining the ε-distance in a
metric space for two distributions [23]. However, their tests
are more focused on high dimensions and reducing the num-
ber of samples required for comparison. In recent work,
Zech and Aslan independently proposed a test statistic, also
called energy, which differs from the statistic we used in its
inclusion of a problem-dependent scaling function embed-
ded within the statistic [31].

In another effort to stabilize NCs, de Launois et al. mod-
ify Vivaldi to prevent oscillations in the presence of triangle
inequalities [6]. They introduce a factor that asymptotically
dampens the weight given to each new measurement, re-
gardless of its source. While this factor does mitigate oscil-

lations, it prevents the algorithm from adapting to changing
network conditions as the pull of new measurements ap-
proaches zero.

8 Conclusion

In a real-world deployment, no fixed, single-valued la-
tency matrix exists. Instead, nodes see a stream of latency
values along each link. When these raw values are used to
embed hosts into a metric space, the coordinate system they
create is fragile.

Common techniques, such as excluding “large” values
and using exponentially-weighted filters do not create a use-
ful set of latencies. Instead, a short non-linear low-pass
filter both removes extreme values and is agile enough to
allow the output signal to accurately reflect changes in the
underlying network. Additionally, the benefit of using more
precise measurement tools is small relative to eliminating
signal extrema with a low-pass filter.

We introduced update filters to manage triangle viola-
tions and examined the effect of four heuristics that deter-
mine how and when to update the application-level coordi-
nate. The two heuristics, ENERGY and RELATIVE, that used a
change-detection algorithm based on sliding windows best
determined when to make the update. Additionally, using
the centroid of a collection of recent coordinates set the
application-level coordinate to a highly accurate value. We
confirmed the results from our simulations with an imple-
mentation on PlanetLab.

References

[1] I. Abraham and D. Malkhi. Compact routing on euclidian
metrics. In PODC, July 2004.

[2] Azureus BitTorrent Client.
[3] M. Costa, M. Castro, et al. PIC: Practical Internet Coordi-

nates for Distance Estimation. In ICDCS, March 2004.
[4] R. Cox et al. Practical distributed network coordinates. In

HotNets, November 2003.
[5] F. Dabek, R. Cox, et al. Vivaldi: A Decentralized Network

Coordinate System. In SIGCOMM, Aug. 2004.
[6] C. de Launois, S. Uhlig, and O. Bonaventure. A Stable and

Distributed Network Coordinate System. Technical report,
Universite Catholique de Louvain, December 2004.

[7] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: a global internet host distance estima-
tion service. IEEE/ACM Trans. Networking, 9(5), 2001.

[8] S. Husen, R. Taylor, R. Smith, and H. Healser. Changes in
geyser behavior. Geology, 32:537–540, 2004.

[9] D. Kifer, S. Ben-David, and J. Gehrke. Detecting Change in
Data Streams. In VLDB, August 2004.

[10] J. Kleinberg. Bursty and hierarchical structure in streams.
In KDD, July 2002.

[11] J. Kleinberg, A. Slivkins, et al. Triangulation and embedding
using small sets of beacons. In FOCS, October 2004.

[12] E. K. Lua, T. Griffin, et al. On the Accuracy of Embeddings
for Internet Coordinate Systems. In IMC, Oct. 2005.

[13] A. W. Moore et al. Median Filtering for Removal of Low-
Frequency Drift. Analytic Chemistry, 65:188, 1993.

[14] E. Ng et al. Predicting Internet Network Distances with
Coordinate-based Approaches. In INFOCOM, June 2002.



[15] E. Ng and H. Zhang. A Network Positioning System for the
Internet. In USENIX, Boston, MA, June 2004.

[16] L. Peterson et al. A Blueprint for Introducing Disruptive
Technology into the Internet. In HotNets, October 2002.

[17] M. Pias, J. Crowcroft, S. Wilbur, et al. Lighthouses for Scal-
able Distributed Location. In IPTPS, February 2003.

[18] P. Pietzuch et al. Network-Aware Overlays with Network
Coordinates. In IWDDS, July 2006.

[19] P. Pietzuch, J. Ledlie, et al. Network-Aware Operator Place-
ment for Stream-Processing Systems. In ICDE, April 2006.

[20] P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting Network
Coordinates on PlanetLab. In WORLDS, Dec. 2005.

[21] S. Ratnasamy, P. Francis, et al. A Scalable Content-
Addressable Network. In SIGCOMM, August 2001.

[22] S. Rhea and D. Geels. Handling Churn in a DHT. In
USENIX, June 2004.

[23] R. Rubinfeld and R. Servedio. Testing monotone high-
dimensional distributions. In STOC, May 2005.

[24] Y. Shavitt et al. Big-Bang Simulation for embedding net-
work distances in Euclidean space. In INFOCOM, 2003.

[25] Y. Shavitt and T. Tankel. On the Curvature of the Internet
and its usage for Overlay Construction and Distance Esti-
mation. In INFOCOM, 2004.

[26] G. Szekely and M. Rizzo. Testing for Equal Distributions in
High Dimension. InterStat, 5, November 2004.

[27] L. Tang and M. Crovella. Virtual landmarks for the internet.
In Internet Measurement Conference, October 2003.

[28] M. Waldvogel and R. Rinaldi. Efficient topology-aware
overlay network. In HotNets, October 2002.

[29] B. Wong et al. Meridian: A Lightweight Network Location
Service without Virtual Coordinates. In SIGCOMM, 2005.

[30] Z. Xu, C. Tang, and Z. Zhang. Building topology-aware
overlays using global soft-state. In ICDCS 2003, July 2002.

[31] G. Zech and B. Aslan. A multivariate two-sample test based
on the concept of minimum energy. In PHYSTAT, Stanford,
CA, September 2003.

[32] B. Zhao, Y. Duan, L. Huang, et al. Brocade: Landmark
routing on overlay networks. In IPTPS, March 2002.

[33] H. Zheng, E. K. Lua, M. Pias, and T. G. Griffin. Internet
Routing Policies and Round-Trip-Times. In PAM, 2005.

This material is supported by the NSF under Grant No. 0330244.


