
Provenance-Aware Storage Systems

Margo Seltzer

Kiran-Kumar Muniswamy-Reddy
David A. Holland, Uri Braun

and Jonathan Ledlie

TR-18-05

Computer Science Group

Harvard University
Cambridge, Massachusetts

Harvard University Computer Science Technical Report TR-18-05

Provenance-Aware Storage Systems

Margo Seltzer, Kiran-Kumar Muniswamy-Reddy
David A. Holland, Uri Braun, Jonathan Ledlie

Harvard University

pass@eecs.harvard.edu

Abstract
Provenanceis a type of meta-data that describes the history or
ancestry of an object. Although provenance is typically manu-
ally generated and stored in a stand-alone database, we make the
case that it must be managed by the storage system.

In this paper, we describeprovenance-aware storage systems
(PASS), a new class of storage system that automatically tracks
provenance. A PASS takes responsibility for recording prove-
nance meta-data for the objects stored on it and maintaining that
provenance over time. We predict that within the next decade,
all storage systems will be expected to be provenance-aware.

We describe a PASS prototype, demonstrate that tracking
provenance does not incur significant overhead, and present
comments from a prospective user indicating that provenance-
aware storage helps scientists get their jobs done better than is
currently possible.

1 Introduction
Provenance, from the French for “source” or “origin,” refers to
the complete history or lineage of a document. In the scientific
community, provenance refers to the information that describes
data in sufficient detail to facilitate reproduction and enable val-
idation of results [2]. In the archival community, provenance
refers to the chain of ownership and the transformations a doc-
ument has undergone [5]. However, in most computer systems
today, provenance is an after-thought, implemented as an auxil-
iary indexing structure parallel to the actual data [6].

An object’s provenance is, in many cases, nearly as important
as the object’s data. In some well-known instances, provenance
is sufficient to facilitate the recreation of an object. For example,
the software development toolmake [14] could be considered a
provenance management system: in the absence of the object it-
self, aMakefile provides all necessary information formake
to recreate an object from its components.

Provenance is so important that in many domains, practition-
ers have developed domain-specific provenance systems. For
example, in astronomy, the Flexible Image Transport System,
or FITS (a common data format) consists of a primary header
followed by the actual data. This primary header is a set of key-
value pairs recording meta-data necessary to interpret the data
that follows [16]. Provenance frequently appears in this header
underHISTORYkeywords. In chemistry, the Collaboratory for
the Multi-scale Chemical Sciences project [4] supports a flexi-
ble approach to provenance. The Collaboratory uses the Dublin

Core elements [18] to store provenance (and other) meta-data. In
biology, the GenePattern system [8] provides a web-based envi-
ronment in which one can conduct microarray data analysis. The
system maintains a database that contains the provenance of any
output data files created within GenePattern. Finally, the physics
community is heavily invested in Grid technology and uses the
Metadata Catalog Service (MCS), which is a centralized Grid
meta-data management service [6, 20]. The MCS maps attribute
name-value pairs to logical file names. The set of potential at-
tribute names is quite large, but includes provenance attributes;
e.g.,the experiment that produced the data, or the identity of the
input data set.

The fundamental problem with domain-specific approaches
is that, by definition, the provenance and the object itself are be-
ing managed by two entirely separate data management systems.
Usually the data is managed by a file system and the provenance
is managed by a database system (for example, an RDBMS).
This separation means that it is easy for the data and provenance
to get out of sync. It also means that there is no way to guaran-
tee or even “encourage” that provenance is recorded for any par-
ticular object. Total solutions such as GenePattern can enforce
provenance handling, but only so long as analyses are conducted
within the GenePattern environment. As soon as experiments
or analyses are executed outside of the controlled environment,
then provenance is no longer recorded.

In this paper, we suggest that provenance is merely a par-
ticular type of meta-data, that the operating system should be
responsible for the collection of provenance, and that the stor-
age system should be responsible for provenance management.
Integrating provenance with the storage system provides several
benefits:

• By making the system responsible for the collection and
management of provenance, we are able to generate prove-
nance automatically, thereby freeing users from having to
manually track provenance and tool designers from having
to construct application-specific provenance solutions.

• Provenance collection and management happen transpar-
ently. That is, users do not have to take any special ac-
tions or execute special commands to have the provenance
of their data collected and maintained. A corollary to this
is that unless users take extraordinary action, the correct
provenancewill be maintained on all objects residing on
the storage system.

1

Harvard University Computer Science Technical Report TR-18-05

• The tight coupling provided by building provenance man-
agement into the system means that provenance cannot be
lost or modified separately from the data it describes.

• By capturing the complete environment in which a process
runs, we can provide a degree of reproducibility that is dif-
ficult, if not impossible, to achieve with application-level
solutions.

• Properly collected and maintained, provenance can provide
records required by today’s business laws (e.g.,Sarbanes-
Oxley).

• By placing provenance and data together in the storage sys-
tem, we can ensure that provenance is not lost during nor-
mal management procedures such as backup, restoration,
or data migration.

In this paper we define a new class of storage system, called a
provenance-aware storage system (PASS), that supports the au-
tomatic collection and maintenance of provenance including the
features described above. A PASS collects provenance as new
objects are created in the system and maintains that provenance
just as it maintains conventional file system meta-data. In addi-
tion to collecting and maintaining provenance, a PASS must also
support queries upon the provenance.

After describing the general problems associated with a
PASS, we introduce our PASS implementation. Our PASS col-
lects provenance automatically and maintains it in a simple in-
dexed data management facility that we have integrated with the
kernel. It introduces reasonable overhead in disk space, mem-
ory usage, and performance. We provide a simple provenance
schema on top of which arbitrarily complicated query or data
management tools can be constructed. Thus, the storage sys-
tem need not include sophisticated data management capabili-
ties (e.g., an RDBMS), but the system is flexible enough that
one could still use such tools on top of it at user-level.

The rest of this paper is organized as follows. In Section 2
we outline the challenges that must be addressed in building a
provenance-aware storage system. In Section 3 we describe our
implementation of a PASS and discuss how it addresses the chal-
lenges discussed in Section 2. In Section 4 we present an evalua-
tion of our system, demonstrating that the provenance collection
and management does not induce unreasonable overhead and re-
porting on how the system is perceived by a computational bi-
ologist. In Section 5 we discuss related work and conclude in
Section 6.

2 Trials and Tribulations of a PASS
Although many domain-specific provenance solutions exist,
provenance is a kind of meta-data, and meta-data has tradition-
ally been handled by the storage system. We consider a storage
system provenance-aware if it:

• assumes responsibility for the maintenance of provenance;

• supports or enables automatic provenance collection; and

• provides provenance query capabilities.

The following sections explore each of these requirements in
more detail.

2.1 Maintaining Provenance in the Storage System

Recall that a primary design goal for a PASS is to avoid the sepa-
ration of provenance and data that accompanies domain-specific
approaches to provenance. Thus in a PASS, provenance must be
stored in such a way that during normal use, data and its prove-
nance are tightly bound. In most systems this suggests that the
provenance must be stored as part of the file system, on the same
logical device, so that the loss of one logical device does not ren-
der data on another logical device unprovenanced.

We state no requirements about the storage structure of prove-
nance in a PASS. For example, a simple architecture would be
to store provenance attributes as extended attributes in a POSIX
file system and use thefind utility as a query mechanism. Such
a query mechanism is likely to be slow asfind neither requires
nor knows how to take advantage of indexing. Other designs
might store provenance in some form of in-kernel indexed stor-
age system to facilitate fast, keyed lookup. At the other extreme,
provenance could be stored in a relational database, so long as
that database was guaranteed to contain the provenance of all
data created on the file system. (Note that we do not suggest that
it is a good idea to embed a full-featured database in a storage
system – just that we consider it an acceptable possibility.)

2.2 Automatic Provenance Collection

In addition to storing provenance and data in a tightly coupled
fashion, a PASS must also facilitate the automatic collection of
provenance.

2.2.1 Different kinds of provenance

Data on a storage system can be divided into two categories:
original dataandderived data. Original data is created directly
by a user or is delivered to a storage system from a monitoring
device (e.g., a telescope, a particle accelerator, a microarray).
Derived data results from processing other data. For example,
in a source code control system, source files are original data
while object files are derived data. A PASS must provide means
for collecting and maintaining provenance for derived data, but
should also provide mechanisms that ease provenance collection
for original data.

We view derived data as the result of a transformation. A
transformation is the result of a computation that takes place in
some particular environment, using some specific hardware and
software configuration. It takes as input one or more objects and
produces one or more new output objects. Note that not all pro-
cesses are transformations; a process that produces no output is
not a transformation as there is no new object created. Similarly,
a process with no inputs is not a transformation as it is creating a
kind of original data. The provenance of a transformation must
include:

• A unique reference to the particular instance of a program
that created it.

• The complete collection of all input objects.

• A complete description of the hardware platform on which
the object was derived.

2

Harvard University Computer Science Technical Report TR-18-05

• A complete description of the operating system and system
libraries running at the time the object was derived.

• The command line.

• The environment.

• Parameters to the process (frequently encapsulated in the
command line or input files)

• The value of any random number generator seeds.

Data that is not the result of a transformation constitutes original
data.

Original data introduces a separate set of challenges, and in
some cases, automatically generating provenance is impossible.
We identify four sources of original data: (1) a human being, (2)
an external computational device (e.g.,a scientific instrument),
(3) a networked source, and (4) application software that ob-
fuscates provenance from the system. Data that truly originates
from the mental output of an individual cannot have its prove-
nance tracked automatically by a system, so we must rely on
manual intervention. Fortunately, because humans generate data
at slower rates than machines, networks, and programs, focusing
on non-human provenance encompasses much of the provenance
collection problem.

Data that arrives at a storage system from a computational
device can be augmented using a device-specific adapter that
provides the data’s provenance with the data. For example, in
astronomy, data from a telescope is typically accompanied by
the position of the telescope (i.e., the region of the sky being
captured), the date, time of day, version of the hardware and
software used to capture the data, and other forms of device-
specific provenance. So long as a PASS provides a mechanism
for these device specific adapters to specify provenance, collect-
ing and tracking provenance for this class of derived data is only
marginally more difficult than tracking it for derived data.

Data that arrives at a storage system over the network (e.g.,
via ftp or http) is somewhat more challenging. If the origi-
nating source is provenance-aware, we might expect the prove-
nance to arrive with the data. However, in today’s world, few
if any systems are provenance-aware. At a minimum, a PASS
must record the source of the data (e.g., a URN), the time at
which the data was obtained, and ideally a hash or other unique
identifier so that future attempts to obtain the same data can be
verified. A PASS might use an approach similar to the device-
specific adapter discussed above. A filter mapped to a network
connection could be used to automatically generate provenance
for networked data.

Finally, applications may hide provenance from the system.
For example, consider a GUI application that permits users to
select analysis algorithms. The identity of each algorithm cho-
sen ought to be part of the provenance of any output, but the
operating system has no way of identifying them or even recog-
nizing that they exist. Thus, a PASS must enable applications to
add attributes to the system’s provenance.

2.2.2 Network Attached Provenance

On a local file system, automatic collection of provenance is
conceptually straightforward. The system controlling the stor-

age also controls execution of processes and can therefore cap-
ture whatever information it needs while processes run. How-
ever, in many cases, local file systems are the exception and most
important data is stored in network-attached storage systems.
A network-attached PASS requires (1) a provenance-aware net-
work protocol and (2) client-side extensions to transmit prove-
nance.

Until provenance becomes mandatory in storage systems, we
must adopt a solution that permits optional provenance. This can
be achieved today by using the extended attribute capabilities
of network storage protocols such as NFS [19] and CIFS [12].
In order to deploy a provenance-aware network-attached storage
system, a vendor would either need to rely on client software to
provide provenance or would need to supply client-side exten-
sions that perform the provenance collection described above.
Although this provides an obstacle to adoption, it is a small
price to pay for the additional guarantees that integrated data
and provenance management provides. (It is also no different
from deploying any other client-side file system extension.)

In the long term, we firmly believe that provenance will be-
come standard in storage systems and that protocols will be de-
veloped to address these issues. We merely bring up the chal-
lenges associated with network-attached storage to point out that
they can be addressed in the short-term, even if the solution is
less than ideal.

For the remainder of this paper, we assume a local file sys-
tem. The majority of the issues are similar for network-attached
storage, except we do not address the network protocol issues;
they are beyond the scope of this paper.

2.2.3 Cycles and Versioning

Simple transformations lend themselves to simple provenance
and simple ancestry relationships between objects (i.e., object
A is derived from object B which is derived from object C).
Under such transformations, provenance can be expressed in a
tree-structure, like ancestry, and new versions are created as the
result of a transformation.

Since a process can create multiple output files and a process
can read many input files long before it writes any output file,
we find it convenient to think about the provenance of processes.
A process’s provenance is the concatenation of the provenance
of its input files plus information about the process itself. A
process’s provenance is then passed along to any objects created
or written by that process.

Multiple cooperating processes can generate ancestry struc-
tures that are not trees: they may contain cycles. Consider the
example below.

processP processQ

1 readA
2 write B
3 readB
4 write A

These operations generate the following object-ancestry prove-
nance records where→ means “depends on”:

1. Q → A
2. B → Q, henceB → Q → A
3. P → B, henceP → B → Q → A

3

Harvard University Computer Science Technical Report TR-18-05

4. A → P , henceA → P → B → Q → A

Step 4 creates a cycle.
Cyclical ancestry is incorrect and should not be allowed. In

this example, and in fact in all cases that do not violate causality,
the actual ancestry is acyclic and the cycles are an artifact of the
data collection: the granularity is either too fine or too coarse. If
B is a temporary file andP is a subprocess, a high-level descrip-
tion of events might correctly omit it entirely; or, conversely, if
theA written in step 4 is construed as a new version and thus a
different object, the cycle disappears.

When provenance is entered manually, people will automat-
ically and instinctively pick a recording granularity that makes
the most sense in their environment, and the resulting ancestry
information will be acyclic. However, when provenance man-
agement is automated, and the processes that act upon data are
not simple transformations, selecting this intuitive granularity is
more challenging.

First, provenance implies some form of versioning. If a trans-
formation reads file A and B and then writes file A, the prove-
nance of A before that transformation and the provenance of A
after that transformation are different. That difference is what
is traditionally referred to as a version. Even if a storage sys-
tem does not support versioning of its files, once it becomes
provenance-aware, it must become cognizant of the fact that a
file may have different provenance at different points in time,
and that these different collections of provenance represent ver-
sions of the provenanced object.

Second, at its lowest level, a system observes provenance
events as a sequence of low-level read and write operations. A
simple solution is to track provenance at this low level; that is,
create new versions of objects and provenance those for every
write. Not surprisingly, this level of detail generates unaccept-
able overhead: the size of the meta-data far exceeds the size of
the actual data. In addition, this level of detail is not useful to
end users. End users are interested in answering application-
level queries and these do not correspond to per-write objects.
Such fine-grained provenance recording might still be useful for
security auditing and is left as a subject of future work.

The challenge in provenance collection is to recreate a high-
level view of the transformations. As part of doing so, it must
either avoid cycles or detect and break cycles that it encoun-
ters. Both cycle avoidance and cycle elimination require that the
storage system carefully select points at which to cease adding
provenance to an object, and instead, declare a new version of it.
In this paper we refer to these points as “freeze” points. “Frozen”
objects are those that have had no provenance (or data) added to
them since a freeze point. When a frozen object is subsequently
modified, we call that object “thawed”, and a new version is ma-
terialized.

In section 3.2, we discuss our implementation of cycle de-
tection and removal and the corresponding version management
algorithms that we have developed.

2.2.4 Philosophical Issues

All the issues that we have discussed so far in this section are
requirements for any PASS system. There is another class of
features that raise questions whose answers are less clear.

Reproducibility Our initial goal for PASS was to enable
the reproduction of specific objects, but not necessarily to pro-
vide direct support. However, early feedback from users sug-
gested that the ability to generate scripts to recreate objects or
capture sequences of experiments or analysis was highly desir-
able. Therefore, we wish to capture sufficient information in the
provenance to support automatic regeneration. That said, in or-
der to exploit provenance for reproducibility, it is essential that
one can construct an identical execution environment. For ex-
ample, if I run a program today on a particular release of the
operating system and standard libraries, in order to reproduce it,
I must construct an identical platform on which to run the pro-
cess. This is not always practical, so we define the minimum
requirement for a PASS that it be able to identify the complete
environment in which a process must be run in order to generate
identical output. As such, it is not a requirement that the storage
system (or associated tools) be able to recreate that environment
in its entirety.

Non-determinism The question of reproducibility intro-
duces the question of how to handle non-determinism. Non-
determinism that results from random number generation can be
addressed simply by capturing the seed of that generator. (The
particular generator is captured in the computing environment
and is addressed as part of the software provenance discussed
above.) However, not all non-determinism is so easily captured.
For example, a multi-threaded process whose output is a func-
tion of the decisions of the thread scheduler can produce dif-
ferent outputs that are different, but whose provenance is indis-
tinguishable. (Except perhaps for information identifying the
specific invocation of the process.) In this case, exact repro-
ducibility is simply not possible. The fundamental provenance
question is whether different invocations of a process should be
uniquely identified. For non-deterministic processes, the invoca-
tion is what makes two subsequent runs distinguishable. How-
ever, for deterministic processes, distinguishing outputs this way
makes no sense. To address this issue, we define the process
invocation as a provenanced element that can optionally be ig-
nored.

Cryptographic Keys Processes that emit encrypted data gen-
erally use a cryptographic key to do so. This key is undoubtedly
part of the provenance of the output; however, recording it would
defeat the cryptography. Thus, a PASS isnot required to record
cryptographic keys for the data it stores. We understand that this
limits the applicability of a PASS to certain domains, but view
this as a lesser evil than retaining cryptographic keys.

Security Model Provenance is unlike other meta-data in its
security properties. Most meta-data requires the same level of
security or access control as the data it describes. However, this
is not sufficient for provenance. Consider the following example
from Caoet al. [13]: A manager is preparing a review for one
of her employees. She receives several pieces of email from col-
leagues, segments of which are cut and pasted into the review.
The manager would not want the person being reviewed to have
access to the provenance of the review, because that would relin-
quish the anonymity she wishes to provide to colleagues. In this
example, we need stronger access controls for the provenance
than we do for the data. In other instances,e.g., a classified
user creates a classified document, the access controls for the

4

Harvard University Computer Science Technical Report TR-18-05

data need to be at least as strong if not stronger than those of the
provenance. Thus, a PASS must provide separate access controls
for data and provenance.

2.3 Provenance Queries and Indexing
Setting aside methods of presentation, a PASS must be able to
answer certain fundamental queries about the provenance of an
object. Some of these queries are similar to what current file ac-
cess tools offer and others require more thorough indexing than
the file system currently does to make them useful on an inter-
active basis.

Queries on provenance stored in a PASS fall into three main
categories: (1) a file’s immediate provenance, (2) a more com-
prehensive query over the ancestry graph, and (3) queries about
other provenance-specific meta-data. These categories are anal-
ogous tofstat , recursivefind , and afind starting at the
root of the file system with parameters like-size . The first
provides detailed information about a particular file, the second
probes a graph recursively, and the third scans all files looking
for matches.

The simplest provenance query asks for the immediate ances-
tors of a file: what executable created the file and what files the
process read. A minor elaboration on this type of query might
return any parameters used or the complete command line that
created the file. File systems could support simple provenance
queries through an augmented inode structure that includes ref-
erences to parent inodes and the command line or other exe-
cutable information. An augmentedfstat could then return
sufficient information to answer queries about immediate prede-
cessors of a file. At the cost of some redundancy, inodes could
also include pointers to their immediate children, allowing for
simple descendant queries.

While finding a file’s immediate ancestors and what files it
has created are akin to standard lookups performed on meta-data
today –e.g.,finding files in a directory – the true power for a
user of a PASS comes in terms of full provenance ancestor and
descendant queries. These queries are inherentlyrecursive: they
traverse up or down the ancestry graph. Therefore, in order to
be efficient, they require some form of auxiliary data structure
beyond the immediate parent and child references that suffice
for simpler queries.

Examples of these more comprehensive provenance queries
are of the forms “How do I recreate this file?” or “How did this
file come into being?” Note that these queries are fundamentally
distinct because it may be possible to describe how a file came
into existence without being able to recreate it exactly. Like the
simple query, both of these might return results augmented with
parameters or whole command lines expressing the file’s origin
as a shell script.

Being able to perform the full provenance query is the essen-
tial motivation of this work. It is what makes PASS an enabling
technology for businesses complying with Sarbanes-Oxley and
scientists striving to reproduce their own or others’ results.

Queries down the ancestry graph show the usage and impact
of a file, which is useful in at least two forms. First, they find
dependencies. This is useful when newer versions of objects be-
come available; for example, if a code generation tool was found
to be buggy and a fix was issued. The person in charge of such an

object far up the dependency chain can find its users in order to
notify them that an improved version is available. Of course, on
a smaller scale, long chains of dependencies often exist within
an individual’s working environment, including those of the sci-
entists we interviewed. Second, descendant queries show who
has used a file. This answers the question “How much impact
has my work had?”. For example, if an astronomer has a partic-
ularly interesting snapshot of a galaxy, processed with her tools,
she could find who had used the file.

The final type of query requires being able to search on at-
tributes. As we conducted user studies, it became clear that the
ability to query on particular attributes was important. For ex-
ample, users wanted to be able to ask: “For which files did I use
this set of parameters?” While this type of information could
be accessed withfstat or within a parameterizedfind , such
queries do not operate at interactive speeds on a storage system
of any realistic size, unless there is indexing support.

The requirements of these three types of queries suggest a
more robust architecture than simple tweaks to the file system
can provide. Instead, a PASS must make comprehensive queries
viable for an interactive user. The simplest provenance query,
the immediate ancestry query, could work with an augmented
inode. The more complex recursive and attribute queries, which
might contain thousands of dependencies, however, require the
storage system to include data structures specialized for search-
ing.

3 Implementation
Our prototype implementation was developed with scientific
users in mind. This target user community has guided our
database design and our choice of events to record. Nonethe-
less, we believe that most of the decisions we have made are
reasonably general and will be necessary in other domains as
well. That is, PASS isnot a domain-specific provenance solu-
tion.

Our system has three components: first, a storage system, de-
scribed in Section 3.1; second, an automatic provenance collec-
tor, described in Section 3.2; and finally, query tools, described
in Section 3.3.

The provenance collector records pertinent system activity
and keeps track of provenance meta-data for in-memory objects.
When these objects are flushed to disk, the provenance meta-
data is handed to the storage system, which stores it in a simple
indexed store. Later, users may extract information of interest
from the database using the query tools. An illustration of how
the parts fit together is shown in Figure 1.

We now examine each of these components in more detail.

3.1 Pasta: The Provenance And STorAge Layer

The storage system itself consists of a stackable file system,
called Pasta, and a kernel-level database engine.

Pasta uses the FiST [22] toolkit for Linux to create layers on
top of any conventional file system; in our case we useext2fs .
This underlying file system then holds both the regular file data
and the provenance.

We use an in-kernel port of the Berkeley DB engine [17],
called KBDB [10] to store provenance. Berkeley DB is a high-

5

Harvard University Computer Science Technical Report TR-18-05

User

Kernel

VFS Layer

User Processes

Collector

Pasta KBDB

ext2

records

data
pr

ov
en

an
ce

provenance

pro
ve

na
nc

e

data

event

rec
ord

s

ev
en

t

Figure 1: Architecture of our prototype PASS implementation.
The query tool accesses the databases at user level.

performance transactional storage system that traditionally em-
beds in an application’s address space. KBDB retains the high-
performance transactional capabilities of Berkeley DB and runs
in the kernel’s address space. This allows Pasta to call directly
into the database library to store provenance. Using a user-level
database engine would incur extra domain-crossing costs.

Pasta is not a versioning file system in the conventional sense,
in that it retains only the most recent version of each file’s data.
However, it is versioned in the provenance sense in that it re-
tains distinct provenance information for every file version cre-
ated by the system. These “provenance nodes,” or “pnodes,” are
uniquely numbered and are not removed or recycled even when
a file is deleted. This is necessary to ensure that full provenance
information is retained for descendants.

Berkeley DB provides no schema capabilities; it simply
stores key/value pairs on top of which applications (or in this
case, the kernel) impose their own schema. Each collection of
related key/data pairs is called a database in Berkeley DB termi-
nology (in a relational database, it would be called a table; we
use the Berkeley DB terminology here). Pasta uses four Berke-
ley DB databases, organized as follows:

Database Key Values

MAP inode number pnode number
PROVENANCE pnode number and provenance data

record type
ARGDATA record id command line text
ARGINDEX words fromargv pnode number

TheMAP database records the pnode number for each inode;
this changes over time as files, described by the same inode, are
frozen and thawed. ThePROVENANCE database holds the prove-
nance data: cross-references to other files, references to previous
versions of the same file, generating process information, etc.

TheARGDATA database holds the command line and environ-

ment strings; this is a space-saving measure. Command lines
and particularly environments are large, relative to the other
provenance data, and are often repeated; offloading these to their
own database allows us to avoid storing multiple identical copies
in thePROVENANCEdatabase. The record id number is an integer
key assigned by Berkeley DB.

TheARGINDEX database is a secondary reverse mapping that
serves as a text index of the command lines and environment
lists. This mapping is maintained to accelerate queries based on
specific command line arguments, command names, or environ-
ment settings.

The record types found in thePROVENANCE database are as
follows:

NAME full pathname of file within volume
INPUT FILE pnode number of an input file
PREVVERSION pnode number of a previous file version
ARGUMENTS ARGDATA record id for arguments
ENVIRONMENT ARGDATA record id for environment
PROCNAME name of generating application
PID pid of generating process

This database permits duplicate data values for keys, so each
input file appears in its own key/data pair. This database is stored
sorted first by pnode and then by string so records are clustered
by pnode.

In order to show how the schema is used, we describe a query
that finds all the ancestors of a given file. We begin by using
stat to retrieve the file’s inode number. We then lookup the
inode number in theMAP database; this lookup returns a pnode
number. A pnode number provides access to thePROVENANCE

database. Combining this number with each of thePROCNAME,
ENVIRONMENT, andARGUMENTSstrings returns exactly one
entry. A fourth query usingINPUT FILE produces one entry
for each input file. These values provide enough information
to perform recursive lookups for each file whose version is less
than our own.

3.2 Collector

The role of the collector is to record provenance data or events
as they happen within the kernel and then to ensure that these
records are passed to the file system for attachment to the appro-
priate output files.

There are several parts to this task: dataflow, data recording,
and cycle eradication.

3.2.1 Dataflow

Provenance is meta-data, and the meta-data must flow through
the kernel in parallel with the data it describes. In principle, each
data transfer operation (read , write , etc.) must have a corre-
sponding provenance record that describes it. Additional records
describing actions of later interest may also be generated.

In our system, all files and all processes are considered prove-
nanced kernel objects. We retain provenance in memory even
for files that are not on provenance-aware volumes; this allows
them to participate in the ancestry of files that are on such vol-
umes. Processes, or, more precisely, the virtual memory spaces
of processes, are collections of data similar in some ways to
files; tracking the provenance of the data in each process mem-

6

Harvard University Computer Science Technical Report TR-18-05

ory space seems the most natural model, as it best matches the
flow of data in the system.

Each provenanced kernel object has a virtual provenance
node, or vpnode, associated with it. Each of these accumulates a
list of provenance records, which, together, form the provenance
of the kernel object.

Our system supports file-level, not record-level, provenance.
So when data flows through the system, it is sufficient to record
from where it came, that is, from which other provenanced ker-
nel object it was derived; there is no need to record precisely
which part of the object was accessed or the precise ancestry of
that particular data.

There are two ways to store dataflow information: either as
a cross-reference to the provenance of another object, or by di-
rectly copying the complete provenance of the referenced object.
Within the kernel, for space and general efficiency reasons, we
always create cross-references. However, when provenance is
sent to the file system for storage on disk, some copying is al-
ways required: in general the provenance of an output file will
always refer to the provenance of at least one process and occa-
sionally more. It may also refer to non-PASS files or pipes and
other file-like objects. At freeze time, when provenance is writ-
ten, the collector logic traverses these other objects and copies
their provenance records into the file system as part of the target
file’s provenance.

Recording ancestry at the file level also means that many
duplicate records are introduced. A simple file copy operation
that copies a large file in buffer-sized chunks will generate many
cross-references from the source to the target, but we only need
one. In our implementation these duplicates are eliminated as
early as possible to reduce memory usage.

Note that provenance is written only at file freeze time, that
is, when we decide we must stop adding to one version of the
file and start a new one. This occurs on the last close, atfsync
time, and potentially at other times as required by cycle aversion
algorithms or other internal considerations.

3.2.2 Data Recording

Data recording refers to the creation of individual provenance
records as events happen. Data recording occurs at various
places in the kernel. In our current implementation, almost all
events are recorded in the provenance of the current process;
write operations are the only exception and are recorded in the
provenance of the target file. This makes the recording of infor-
mation reasonably straightforward.

As a matter of implementation convenience, certain
provenance-related events are recorded by the storage system,
that is, below the VFS layer, and then handed to the collector.
Other events are recorded in the system call layer or wherever
else seems most accurate.

Handling themmapcall poses a complication. The order-
ing of dataflow events into and out of a process is important,
because it determines which input files are ancestors of which
output files. Trackingread andwrite operations is easy; the
kernel controls the data flow and can easily take notes as it hap-
pens. When a file is mapped into memory, however, the kernel
is taken out of the loop of the primary data flow; it only knows
when pages are moved in and out of main memory, which in-

1. Cycle Detected 2. New version of P

Process

File

Dataflow

Version History

P

A

Q

B

1

2

3
4

P

A

Q

B

1

2

3
4

P

Cycle

Figure 2: Cycle breaking by versioning. Files and processes
frozen during cycle breaking.

1. Cycle Detected

P

A

Q

B

1

2

3
4

2. Freeze and
Merge Processes

3. Re-parent Files

P

A

Q

B
PQ

P

AA

Q

BB
PQ

A B
Cycle

Frozen

Merged
Process

Figure 3: Cycle breaking by node merging.

troduces “fuzz” into the relationships. Worse, implementation
issues make it relatively difficult to record these flows. In our
implementation, we treatmmapsystem calls asread /write
system calls to the file and take the same action as we do for
normalread /write calls. Treatingmmapcalls in this manner
may introduce some false provenance if a region is mapped in
and never accessed or written. The false read provenance that
arises in this case can also arise fromread calls as well, al-
though it is significantly less likely (i.e., data can be read from
a file, but that does not guarantee that the data read is actually
used to generate the data written). The false write provenance
is unique tommapin that we assume the process modifies the
mapped region, when, in fact, it might not. We can avoid this
false provenance by initially mapping all segments read-only
and then remapping them for writing if/when we take a fault.

3.2.3 Cycle Eradication

The collector takes responsibility for making sure no cycles ap-
pear in the provenance. The simple way to avoid cycles is to
declare a new file version on every write operation; but as al-
ready mentioned, this is prohibitively expensive. Our solution
detects and then breaks cycles.

To detect cycles we maintain, in memory, a directed graph
holding the ancestry information for all the currently live vpn-
odes. This graph can be kept reasonably sized by pruning: an
object that is frozen and has no unfrozen ancestors cannot par-
ticipate in any future cycle and can be dropped from the graph.
Likewise, objects newly loaded from disk are always frozen and
need not be added to the graph in the first place. If written, they
are thawed, creating a new version; only that version need be

7

Harvard University Computer Science Technical Report TR-18-05

considered.
When cross-reference relationships are recorded, the graph is

checked; if a cycle would be introduced, the cycle-breaking al-
gorithm is invoked. We considered two different cycle-breaking
algorithms. The first, shown in Figure 2, breaks cycles by ver-
sioning. It bumps the version on one of the participants of
the would-be cycle; this creates a new object with no descen-
dants, which cannot be part of a cycle, so the cycle goes away.
However, this method performs poorly with workloads that have
cyclic dataflow: each iteration generates a whole new series of
file versions, generating significant overhead and a complex data
mining task for the query tools to sort out later.

Instead, we use a second algorithm based on node merging. It
works on the principle that a set of processes moving data around
in a circle are really a single cooperating entity, and instead of
being individually provenanced, they should share a single com-
mon set of provenance.

When a cycle is detected, the algorithm is invoked and works
as follows: first, freeze all the process vpnodes (but not the files)
participating in the cycle. Then, create a new process vpnode,
a descendant of these, to be shared in the future by all the par-
ticipating processes. Finally, all files participating in the cycle
become descendants of the merged process. We illustrate the
algorithm in Figure 3.

We chose this algorithm because it generates the least “noise”
in the resulting output; by modeling the high-level organization
of the process activity it gives a better match to the application-
level types of queries that users will want to perform later. It also
has the advantage that while it freezes processes, thus generating
new versions, it does not freeze files on disk. Process versions
exist only in memory, incur almost no overhead, and are invisi-
ble to query tools afterwords; on-disk versions exist forever and
furthermore complicate the data for the query tools.

3.2.4 Code

The implementation of the collector logic is about 3800 lines
of centralized code, along with about 250 lines more of small
patches at about a dozen critical points in the kernel (fork, exec,
exit, iget, etc.)

The collector communicates with the Pasta file system via
five new inode operations added to the VFS layer:

1. getpnid - returns the on-disk pnode number for this file

2. thaw - bump the version for this file: allocate a new pnode
number and prepare for writes

3. freeze - notification on file freeze (does nothing in Pasta)

4. write prov string - write a “flat” (non-cross-
reference) provenance record

5. write prov xref - write a provenance record that
cross-references (by pnode number) another file on the
same volume

3.2.5 Drawbacks

There are two primary drawbacks to our collector architecture:
first, because it operates above the VFS layer, it does not know

sort -n A > A.sort
sort -n B > B.sort

./multiply -x 1 -y 4 A.sort B > AB

./multiply -x 2 -y 5 B.sort A > BA

uniq AB > AB.uniq
uniq BA > BA.uniq

Figure 4: The set of commands used to generate a file.A, B, and
multiply originated indemo.tar .
prov -m BA.uniq

tar xf demo.tar
sort -n B > B.sort
./multiply -x 2 -y 5 B.sort A > BA
uniq BA > BA.uniq

Figure 5: The output from the query tool in shell script mode.

what events pertain to PASS file systems. It ends up collecting
data for all files on all volumes and then discarding it.

Second, because provenance is not (and cannot easily be) sent
to disk before freeze time, after a crash, partially written objects
may be unprovenanced.

3.3 Query Tool
In our prototype, the provenance database is made accessible at
user level and exists as a standard set of Berkeley DB databases.
A wide variety of tools can be used to handle queries on prove-
nance data. For example, BDB can be accessed with Python,
Perl, Tcl, Java and other tools. Our query tool prototype, written
in C, uses a user-level process to access the databases, read-only.
It presents results to the user on the command line or through a
web interface.

This is, strictly speaking, an architecture suitable only for
a prototype; security considerations dictate that access to the
provenance database be mediated by the kernel. Since both the
user-level tool and the kernel can use the same Berkeley DB in-
terfaces, adding kernel mediation is a straightforward procedure.
We assign access controls on a per-pnode basis so kernel medi-
ation requires only that the kernel verify that the user process
requesting information have appropriate permissions to read the
pnodes that are accessed during a query.

The command line version of the tool takes a single filename
as input and a collection of parameters. The default operation is
to print the full ancestry of the file. The parameters specialize
the output into one of the following two forms:

• Prune the provenance after a specified level,e.g., a level
of one would show only those files upon which this file
immediately depends; a level of three would show ancestry
up to the “great-grandparent” level.

• Shell script mode outputs a list of commands to reproduce
the file. Figure 4 shows some sample commands we ran,
and Figure 5 shows the shell script mode output of the
query tool when asked how to reproduce one of the files
involved.

These modes can be combined to print shell scripts starting with
a particular ancestor. The tool currently outputs full command

8

Harvard University Computer Science Technical Report TR-18-05

lines; the mechanism to query parameters individually is not yet
in our prototype. The web version supplies the same options
through an easier (but less scriptable) interface. Because we are
simply accessing a database, additional basic query functional-
ity required of a full PASS system is not fundamentally differ-
ent from what we have currently. Instead, we have focused on
simple tools that have allowed us to get early-use feedback as
described in Section 4.5.

In addition to the simple text format shown in Figure 5,
our query tool can output in the DOT graph representation for-
mat [7]. This allows easy generation of visual representations
of the ancestry graph. An example of the graph produced by a
BLAST [1] workload appears in Figure 7. (BLAST, the Basic
Local Alignment Search Tool, is a program that assigns similar-
ity scores to sets of nucleotides and amino acids based on their
relative proximity.)

4 Evaluation
The benefit of PASS is increased functionality, not performance.
However, new functionality is not useful if it affects performance
so dramatically that becomes impossible to get real work done.
Thus, our evaluation has two parts. First, we demonstrate that
our PASS implementation does not introduce undue overhead in
the system. Then we report on experiences that a colleague in
computational biology reported when she conducted her daily
work activities on a PASS.

4.1 Evaluation Platform

We evaluated our PASS prototype on a 500Mhz Pentium III
machine with 768MB of RAM. All experiments were run on a
40GB 7200 RPM Maxtor DiamondMax Plus 8 ATA disk drive.
The machine ran Red Hat 7.3, with a Linux 2.4.29 kernel. The
Linux kernel was patched to enable provenance collection. We
chose Red Hat 7.3 and Linux 2.4.x because two groups of our
early users currently run their tools on this platform.

To ensure a cold cache, we reformatted the file system on
which the experiments took place between test runs. We mea-
sured system, user, and wall clock times, and also the amount of
disk space utilized for recording provenance. We also recorded
the wait times for all tests; wait time is mostly I/O time, but other
factors like scheduling time can also affect it. Wait time is com-
puted as the difference between the elapsed time and the sum of
system and user times. We ran each experiment 10 times. For
each of our results, the standard deviation was less than5%. We
do not discuss the user time in the results as our code is in the
kernel and does not affect the user time.

4.1.1 Overhead Evaluation

We ran two benchmarks on our system: a real workload from
the Computational Genomics lab at our university and a CPU-
intensive benchmark.

The first workload, from the Genomics lab, takes two input
files and produces one result file at the end of the process. Each
of the two input files contains protein sequences from different
species of bacteria. The output file contains a list of proteins in
the two species that may be related to each other evolutionar-
ily. The workload consists of a series of commands that produce

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

EXT2 PASS EXT2 PASS
 0

 50

 100

 150

 200

 250

 300

T
im

e
(S

ec
on

ds
)

-
G

en
om

ic
s

T
im

e
(S

ec
on

ds
)

-
S

S
H

Wait
System

User

Figure 6: Overhead for Genomics workload and SSH Compile.
The first half of the graph is the Genomics workload result and
uses the left scale. The second half of the graph is the SSH Compile
result and uses the right scale.

intermediary output files that are fed as input to the next com-
mand. Starting from input and configuration files, fifteen files
are produced, including one result file. The scientists at our Ge-
nomics center would find PASS useful to easily “recollect” the
input files from which the output was derived, two months after
the fact.

The second workload was a build of OpenSSH. We used
OpenSSH 4.1p1; it contains 65,921 lines of C code in 158 files.
The build process begins by running several configuration tests
to detect system features. It then builds the binaries and docu-
mentation: a total of 194 new files and 11.8MB of data. Though
the OpenSSH compile is CPU intensive, it contains a mixture of
file system operations. This workload approximates the perfor-
mance impact a user would see when using PASS under a normal
workload.

For each workload, we evaluate the performance and space
overhead and then compare the number of provenance records
recorded by PASS to other similar systems. We found it chal-
lenging to precisely quantify the memory overhead that our sys-
tem introduces, but severalad hocmeasurements confirmed that
the in-memory overhead is roughly comparable to the size of the
provenance for objects being created/written.

4.1.2 Configurations

We used the following configurations for evaluation:

• EXT 2: Vanilla Ext2, used as baseline for performance.

• PASS: PASS stacked on top of Ext2.

4.2 Performance Overhead
4.2.1 Genomics Workload

The left half of Figure 6 compares the overhead of PASS with
EXT2 for the Genomics workload. The overhead on elapsed
time is negligible (less than 1%) with both the system time and
wait time increasing negligibly. At any point, there are at most
three open files, hence the in-memory cycle breaking algorithm

9

Harvard University Computer Science Technical Report TR-18-05

RBHB.out A B A.recip A B A

B A.best B A

Hinf.faa.phr

.ncbirc

Hinf.faa

formatdb.log

.ncbirc

Hinf.faa

.ncbirc

Mpne.faa

Hinf.faa.psq

.ncbirc

Hinf.faa

formatdb.log

.ncbirc

Hinf.faa

Hinf.faa.pin

.ncbirc

Hinf.faa

formatdb.log

.ncbirc

Hinf.faa

A B.best A B

Mpne.faa.phr

.ncbirc

Mpne.faa

formatdb.log

.ncbirc

Hinf.faa

Mpne.faa

.ncbirc

Hinf.faa

Mpne.faa.psq

.ncbirc

Mpne.faa

formatdb.log

.ncbirc

Hinf.faa

Mpne.faa

Mpne.faa.pin

.ncbirc

Mpne.faa

formatdb.log

.ncbirc

Hinf.faa

Mpne.faa

Figure 7:Provenance tree for Genomics workload (Blast).

does not measurably effect the system time. The amount of
provenance generated is also quite small (see Section 4.3), hence
the wait time is also not affected significantly.

Figure 7 shows the provenance tree for the Genomics work-
load. Mpne.faa and Hinf.faa are the two files contain-
ing the protein sequence,.ncbirc is a configuration file, and
RHRB.out is the output file.

4.2.2 SSH Compile

The right half of Figure 6 compares the overhead of PASS with
EXT2 for the SSH compile benchmark. Overall, there is a 19.2%
increase in the elapsed time for PASS compared to EXT2. The
increase in the elapsed time is mainly due to the system time
doubling from 36.1s to 72.3s. The increase in system time can
be attributed to the in-memory cycle checking. The number of
nodes in the graph increases as the compile progresses (at the
end of the compile the graph contains 12,025 nodes) increasing
the cost of cycle checking. (The code in question is untuned
and largely unoptimized at this point, so this overhead can be
expected to be less in future versions.) The wait time also in-
creases from 3.2s to 7.9s due to the extra provenance meta-data
being recorded.

4.3 Comparison of records generated
Systems such as the Lineage File System [13] and Back-
tracker [11] log everyread and write and later build the
lineage from the log. Reading or writing a large file requires
multiple read /write system calls on the file. In such cases,
the Lineage File System and Backtracker record multiple entries
where one would suffice. PASS, however, detects such dupli-
cates producing fewer records. Table 1 shows the number of
records that would have been recorded in systems like the Lin-

eage File System and Backtracker and the number of records
recorded by PASS. PASS records significantly fewer records.
We estimated the number of records generated by the other sys-
tems by counting the number ofread , write andmmapsys-
tem calls executed by the benchmarks. The number of records
generated by PASS is a count of the number of records in the
provenance database at the end of the experiment. The last col-
umn in Table 1 shows the amount of reduction in the number of
records due to the duplicate detection.

In scientific experiments, we expect there to be a small num-
ber of large files implying that a large number of read/write calls
are needed to process them. Logging each call is inefficient.
Duplicate detection reduces the storage space required to store
provenance and hence the time required for building provenance
trees.

4.4 Space Overhead

Table 2 shows the space overhead due to provenance. The space
overhead for the Genomics workload is 2.8% and for SSH com-
pile is 12.9%. Although we find these overheads acceptable, we
expect that with pruning algorithms, we can reduce these if nec-
essary.

4.5 User Evaluation

During the design of PASS, we met with researchers from as-
tronomy, physics and computational biology to understand what
functionality PASS needed to be practically useful to scientists.
Once we had a working prototype, we sought out other scien-
tists who knew nothing about PASS until being solicited for this
study. Our goal was to generate early user feedback on PASS, in
general, and on our query capabilities in particular. We success-
fully recruited a member of the Computational Genomics lab at
our university. Our early adopter, who we call Suzy, was actu-
ally less UNIX-savvy than the scientists with whom we’d met
earlier, but was willing to use our system and provide feedback.

According to Suzy, she exemplifies a fairly typical user in ad-
vanced computational biology: knowledgeable in her field, but
not comfortable with the “black window” of the Unix command
line. However, she did feel comfortable enough to run a small set
of commands for which she had documentation. She performed
all file operations (e.g.,copy and make directory) through a Win-
dows GUI and did not use common Unix shell commands like
cp or mkdir .

A typical computational biology experiment consists of sift-
ing through gene expression data. Gene expression data is ob-
tained by microarray experiments, which produce measurements
that indicate what genes are “turned on” (expressed) in response
to particular probes. Suzy first uses a microarray to gather the
gene expression data for her organism (the fishA. burtoni). Then
using BLAST [1], a tool for locating a particular gene sequence
in the genomic sequence of known organisms, she creates hun-
dreds of files from the parameter combinations used to gener-
ate the BLAST queries. Most of these queries would be “dead
ends;” a small subset were compared against an dataset available
on the Internet.

Suzy has a private system for keeping track of the parame-
ters and inputs for each output file. Usually these were partially

10

Harvard University Computer Science Technical Report TR-18-05

Benchmark Other systems PASS % Savings
Genomics Workload 28,499 160 99.4%
SSH compile 99,699 34,783 65.1%

Table 1: Comparison of number of records generated by other systems with number of records generated by PASS.

Benchmark Data Size Number Size of % Overhead
of files Provenance

Genomics Workload 5.6MB 18 160KB 2.8%
SSH compile 33.1MB 595 4.3MB 12.9%

Table 2: Space overhead due to provenance.

reflected in the output file’s name, but sometimes they were man-
ually entered in her lab notebook.

Suzy tried out our system for approximately an hour. She
found the system “transparent” because she was able to use her
normal tools and features like output redirection as she normally
does. The aspect she found most useful was the shell script cre-
ation. It showed the full set of parameters used to generate her
output files. She said that if she were able to use the system
full-time, she would create shell scripts both for documentation
and to modify and simplify processing of other files. Currently,
all of her typical procedures are captured using our PASS proto-
type, except for the final remote processing stage. We discussed
how this stage might be augmented to allow for semi-automated
provenance.

Suzy said two pieces of functionality would be most useful
for short term use. First, she would like to annotate the outputs
of her experiments with information on why she chose certain
parameters and why, in particular, certain experiments didnot
work. She said it would be most useful if these annotations were
closely associated with each file so that they would be either
printed along with the provenance information or added into the
shell script that described how the file was generated. She also
wanted to be able to search these annotations, which, if they
were stored as a separate file, could be indexed with existing
tools (e.g.,Glimpse [15]). These user annotations are distinct
from provenance, but could be linked with a file through our ex-
isting database mechanisms; in fact, this functionality has been
part of our design from the outset and is scheduled for a fu-
ture release. Second, she wanted to search the parameters for
each experiment. For example, which outputs did I create yes-
terday using a BLAST distance ofX? This is simply a query
on the command-line records stored in our provenance database
and could be constructed using Perl or Python, but is not yet im-
plemented in our query tool. Finally, she asked when it would
be possible to install PASS for full-time use because, she said, it
would greatly simplify her and her labmates’ work environment
at no apparent cost.

Although this reflects only a single user’s experience, we
find it a powerful validation of PASS. With no training, a non-
programmer was able to instantly collect and query provenance,
without having to change her work habits at all or learn new
tools. The human factors evaluation of PASS is outside the scope
of our current work, but we intend to conduct a thorough user-

study that describes and, where possible, quantifies the benefits
it provides.

5 Related Work
There are three main areas of work that overlap with the research
areas relating to provenance-aware storage: domain-specific
provenance solutions (which have already been discussed in
Section 1), source code control and build systems, and other
general purpose provenance systems. In the remainder of this
section, we focus on these latter two categories.

5.1 Source Code Control and Build Systems
As mentioned earlier, source code control and build systems are
actually provenance systems. Although source code control sys-
tems store provenance, their primary purpose is to provide ver-
sioning and building capabilities. As discussed in Section 2, data
versioning and reconstruction of derived objects is a secondary
goal for a PASS. The primary goal is maintaining the complete
provenance to facilitate responding to queries about an object’s
origin. This difference in emphasis leads to very different de-
sign decisions in source code control systems and in PASS, even
though there is also a significant overlap in functionality. For
example, a build systems typically maintains some sort of user-
created description of how the derived objects are created (e.g.,
Makefiles) and to not necessarily explicitly track the dependen-
cies that exist between objects. In a PASS, no such “recipes”
exist; rather, the recipes are created each time a new object is
created.

Although a number of source code control systems exist and
manage provenance, those that are most similar to PASS are
those that create environments in which the build process is au-
tomatically monitored and maintained. ClearCase (and its pre-
decessor DSEE) and Vesta are the two systems most closely re-
lated.

ClearCase [3] is a source code control system, now owned
and sold by IBM. It includes a custom file system that acts as
the source code repository. The build system relies on the stan-
dardmake utility, but the custom file system tracks and main-
tains system dependencies to avoid work in future builds and to
trigger re-evaluation of the build process. These dependencies
are part of the provenance that a PASS captures. However, as
is the case with all build systems of which we are aware, the
means by which derived files are created is specifieda priori. In

11

Harvard University Computer Science Technical Report TR-18-05

a PASS, these derivations are obtained by observation and must
be obtained as any process runs, not simply those processes un-
der control of the source code control system.

Vesta [9] is a second generation build system developed at
DEC Silicon Valley Research Center (SRC). The key design
goals were making builds repeatable, consistent, and incremen-
tal. As with DSEE, Vesta relies on a custom build environment
that monitors the build process in order to extract dependencies
and record the complete environment information that will fa-
cilitate repeatable builds. And like DSEE and other source code
control systems, it relies on ana priori description of the deriva-
tion process. As a result, it ignores the central PASS challenge:
automatically generating the derivation rules as a system runs.

5.1.1 Source Code Control System Summary

In summary, source code control systems focus on versioning
and facilitating builds. A PASS’s primary goal is recording
derivations, as they happen to facilitate responding to queries.
Versioning is something that is a necessity in PASS, but only
because it facilitates accurate provenance accumulation. Sim-
ilarly, building is a desirable side effect, not a central design
point. More fundamentally, source code control systems require
explicit use; PASS is transparent and implicit. Users need not
do anything special to track provenance on a PASS, yet they can
recreate their actions and trace the derivation of the files they
create.

5.2 Provenance Systems
The only two systems of which we are aware that address prove-
nance in a general manner are Trio and the Lineage File System.

Trio [21] focuses on providing provenance for data in a
database system. The Trio project is a centralized database sys-
tem that manages not only data, but also the provenance and ac-
curacy of the data. Trio focuses on the data model and extending
SQL to support lineage and accuracy information. Provenance
tracking is initially off, and must be activated – on a per relation
basis – by the application. When active, lineage tracking occurs
at the tuple level. Tuples are not modified in place or deleted;
instead new versions of the data are created. Like PASS, Trio is
interested in recording and querying provenance. Unlike PASS,
Trio has initially focused on formalizing a query language and
data model, and, to the best of our knowledge, does not yet have
an implementation.

Trio and PASS are likely to ultimately be complementary.
Since PASS tracks provenance at a file-level granularity, it will
not be useful for tracking database updates. However, it is likely
to be more efficient and useful for tracking provenance of file
system objects, as observed by Suzy.

The Lineage File System [13] is an instance of a PASS, but
differs in several significant ways from the implementation de-
scribed here. Like PASS, the Lineage File System focuses on ex-
ecutables, command lines and input files as the source of prove-
nance. Unlike PASS, it ignores the hardware and software en-
vironment in which such processes run. A second, and perhaps
more important, difference is that provenance collection is de-
layed in the Lineage File System and it is performed by a user-
level thread that writes the lineage data to an external database.
As a result, the tight coupling that we require of a true PASS

is lost, as is a significant part of the benefit. Since the Lineage
File System stores its lineage records in a relational database, the
query language is SQL. In our implementation, we use a simple
key/value storage schema so that a variety of schema layers can
be provided.

6 Conclusion
In this paper, we have defined a new class of storage systems
that track and maintain provenance automatically. Our goal is to
help users — currently, scientists — gain more control over their
own data and work environment. We have done so by providing
an environment in which users can identify the origin of the files
they were working on yesterday, last week, or last year.

These newprovenance-awarestorage systems must provide:
tight-coupling of provenance and files, automatic collection
where possible, methods to tackle cycles and versioning, and
robust query tools. Our prototype implementation includes a
collector to record relevant system activity, a file system layer,
Pasta, to capture this activity and work with the collector to store
provenance in an in-kernel database, and a query tool to answer
user requests about a file’s provenance. In response to the posi-
tive feedback we received from the early user we report on and
others, we will be distributing be running beta versions of our
software in several labs around our university.

There is much future work to be done on PASS, in general,
and on our prototype, in particular. Some of the open questions
for PASS are:

• How do our user experiences generalize? Do other sci-
entists gain the same benefit as Suzy? Does PASS pro-
vide a useful tool for those responsible for complying with
Sarbanes-Oxley or for archivists storing digital data?

• How do we extend PASS to the wide-area? Do we need a
new network protocol? If not, how do we extend existing
network file system protocols?

• Is provenance simply an instance of a more general prob-
lem? Should we be investigating PASS-like approaches for
other kinds of meta-data, such as DRM information?

Some of the short term enhancements to our prototype in-
clude:

• Introduce kernel mediation into provenance queries.

• Provide enhanced query capabilities, in particular, user-
friendly interfaces to query command line parameters.

• Integrate our automatic provenance with that produced by
a work environment, such as GenePattern.

• Tune the performance and storage used by our implemen-
tation.

References
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.

Basic local alignment search tool.Molecular Biology, 215:403–
410, 1990.

12

Harvard University Computer Science Technical Report TR-18-05

[2] P. Buneman, S. Khanna, and W. Tan. Why and Where: A Char-
acterization of Data Provenance. InInternational Conference on
Database Theory, London, UK, Jan. 2001.

[3] ClearCase. http://www.ibm.org/software/
awdtools/clearcase .

[4] Collaboratory for Multi-scale Chemical Science.http://
cmcs.org .

[5] Committee on Digital Archiving and the National Archives and
Records Administration. R. Sproull and J. Eisenberg, eds.Build-
ing an Electronic Records Archive at the National Archives and
Records Administration: Recommendations for a Long-Term
Strategy. The National Academies Press, Washington, D.C., 2005.

[6] W. Deelman, G. Singh, M. Atkinson, A. Chervenak, N. Hong,
C. Kesselman, S. Patil, L. Peakrlan, and M. Su. Grid-based meta-
data services. InScientific and Statistical Database Management
(SSDBM), June 2004.

[7] E. R. Gansner and S. C. North. An Open Graph Visualization
System and Its Applications to Software Engineering.Software:
Practice and Experience, 30(11), 2000.

[8] GenePattern. http://www.broad.mit.edu/cancer/
software/genepattern .

[9] A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta Approach
to Software Configuration Management. Technical Report 168,
Compaq Systems Research Center, March 2001.

[10] A. Kashyap. File System Extensibility and Reliability Using an
in-Kernel Database. Master’s thesis, Stony Brook University, De-
cember 2004. Technical Report FSL-04-06.

[11] S. T. King and P. M. Chen. Backtracking Intrusions. InSOSP,
Bolton Landing, NY, October 2003.

[12] P. Leach and D. Naik. A Common Internet File System (CIFS/1.0)
Protocol, IETF Internet-Draft, March 1997.

[13] Lineage File System. http://crypto.stanford.edu/
˜cao/lineage.html .

[14] GNU Make.http://www.gnu.org/software/make .
[15] U. Manber and S. Wu. GLIMPSE: a tool to search through en-

tire file systems. InWinter USENIX Technical Conference, San
Francisco, CA, January 1994.

[16] B. Mann. Some Provenance and Data Derivation Issues in Astron-
omy. InWorkshop on Data Derivation and Provenance, Chicago,
IL, Oct. 2002.

[17] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In
USENIX Annual Technical Conference, FREENIX Track, Mon-
terey, CA, June 1999.

[18] C. Pancerella et al. Metadata in the Collaboratory for Multi-
scale Chemical Science. InDublin Core Conference, Seattle, WA,
2003.

[19] R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh, and B. Lyon.
Design and implementation of the sun network filesystem. In
Summer USENIX Technical Conference, Atlanta, GA, June 1986.

[20] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, S. Patil, and L. Pearlman. A metadata catalog ser-
vice for data intensive applications. InSupercomputing, Phoenix,
AZ, November 2003.

[21] J. Widom. Trio: A System for Integrated Management of Data,
Accuracy, and Lineage. InConference on Innovative Data Sys-
tems Research, Asilomar, CA, January 2005.

[22] E. Zadok, I. B̆adulescu, and A. Shender. Extending file systems
using stackable templates. InUSENIX Technical Conference,
Monterey, CA, June 1999.

13

