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From a software-technology point of view, the p-kernel

concept is superior to large integrated kernels. On the

other hand, it is widely believed that (a) p-kernel based

systems are inherently inefficient and (b) they are not

sufficiently flexible. Contradictory to this belief, we
show and support by documentary evidence that inef-

ficiency and inflexibility of current p-kernels is not in-

herited from the basic idea but mostly from overloading

the kernel and/or from improper implementation.

Based on functional reasons, we describe some con-

cepts which must be implemented by a p-kernel and

illustrate their flexibility. Then, we analyze the per-

formance critical points. We show what performance

is achievable, that the efficiency is sufficient with re-

spect to macro-kernels and why some published contra-

dictory measurements are not evident. Furthermore, we

describe some implementation techniques and illustrate

why p-kernels are inherently not port able, although

they improve portability of the whole system.

1 Rationale

p-kernel based systems have been built long before the

term itself was introduced, e.g. by Brinch Hansen [1970]

and Wulf et al. [1974]. Traditionally, the word ‘kernel’

is used to denote the part of the operating system that is

mandatory and common to all other software. The basic

idea of the ~-kernel approach is to minimize this part,

i.e. to implement outside the kernel whatever possible.
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The software technological advantages of this ap-

proach are obvious:

(a)

(b)

(c)

A clear p-kernel interface enforces a more modular

system structure. 1

Servers can use the mechanisms provided by the

~-kernel like any other user program. Server mal-

function is as isolated as any other user program’s

malfunction.

The system is more flexible and tailorable. Differ-

ent strategies and APIs, implemented by different

servers, can coexist in the system.

Although much effort haa been invested in p-kernel

construction, the approach is not (yet) generally ac-

cepted. This is due to the fact that most existing p-

kernels do not perform sufficiently well. Lack of effi-

ciency also heavily restricts flexibility, since important

mechanisms and principles cannot be used in practice

due to poor performance. In some cases, the p-kernel

interface has been weakened and special servers have

been re-integrated into the kernel to regain efficiency.

It is widely believed that the mentioned inefficiency

(and thus inflexibility) is inherent to the p-kernel ap-

proach. Folklore holds that increased user-kernel mode

and address-space switches are responsible. At a first

glance, published performance measurements seem to

support this view.

In fact, the cited performance studies measured the

performance of a particular p-kernel based system with-

out analyzing the reasons which limit efficiency. We can

only guess whether it is caused by the ~-kernel approach,

by the concepts implemented by this particular p-kernel

or by the implementation of the p-kernel. Since it is

known that conventional IPC, one of the traditional p-

kernel bottlenecks, can be implemented an order of mag-

nitude fasterz than believed before, the question is still

I Althoughmanymacro-kernels tend to be less modular, there

are exceptions from this rule. e.g. Chorus [Rozier et al. 1988] and

Peace [Sc2w6der-Preikschat 1994].
2Short u.ser-tu-user cross-address space IPC in L3 [Liedtke

1993] is 22 times faster than in Ma&, both -ng on a 486.

On the R2000, the specialized Exo-tlrpc [Engler et rd. 1995] is 30

times faster thsm Mach’s general RPC.
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open. It might be possible that we are still not applying

the appropriate construction techniques.

For the above reasons, we feel that a conceptual anal-

ysis is needed which derives p-kernel concepts from pure

functionality requirements (section 2) and that discusses

achievable performance (section 4) and flexibility (sec-

tion 3). Further sections discuss portability (section 5)

and the chances of some new developments (section 6).

2 Some p-Kernel Concepts

In this section, we reason about the minimal concepts

or. “primitives” that a p-kernel should implement.3 The

determining criterion used is functionality, not perfor-

mance. More precisely, a concept is tolerated inside the

p-kernel only if moving it outside the kernel, i.e. per-

mitting competing implementations, would prevent the

implement ation of the system’s required functionalist y.

We assume that the target system has to support

interactive and/or not completely trustworthy applica-

tions, i.e. it has to deal with protection. We further

assume that the hardware implements page-based vir-

tual memory.

One inevitable requirement for such a system is that

a programmer must be able to implement an arbitrary

subsystem S in such a way that it cannot be disturbed or

corrupted by other subsystems S’. This is the principle

of independence: ,S can give guarantees independent of

S’. The second requirement is that other subsystems

must be able to rely on these guarantees. This is the

principle of integrity: there must be a way for S1 to

address S2 and to establish a communication channel

which can neither be corrupted nor eavesdropped by

s’.
Provided hardware and kernel are trustworthy, fur-

ther security services, like those described by Gasser
et al. [1989], can be implemented by servers. Their in-

tegrity can be ensured by system administration or by

user-level boot servers. For illustration: a key server

should deliver public-secret RSA key pairs on demand.

It should guarantee that each pair has the desired RSA

property and that each pair is delivered only once and

only to the demander. The key server can only be
realized if there are mechanisms which (a) protect its

code and data, (b) ensure that nobody else reads or

modifies the key and (c) enable the demander to check

whether the key comes from the key server. Finding the

key server can be done by means of a name server and

checked by public key based authentication.

3proving ~~m~tY, necess~ity and completeness wo~d be

nice but is impossible, since there is no agreed-upon metric and

all is Turing-equivalent.

2.1 Address Spaces

At the hardware level, an address space is a mapping

which associates each virtual page to a physical page

frame or marks it ‘non-accessible’. For the sake of

simplicity, we omit access attributes like read-only and

read/write. The mapping is implemented by TLB hard-

ware and page tables.

The ~-kernel, the mandatory layer common to all sub-

systems, has to hide the hardware concept of address

spaces, since otherwise, implementing protection would

be impossible. The p-kernel concept of address spaces

must be tamed, but must permit the implementation of

arbitrary protection (and non-protection) schemes on

top of the p-kernel. It should be simple and similar to

the hardware concept.

The basic idea is to support recursive construction

of address spaces outside the kernel. By magic, there

is one address space aO which essentially represents the

physical memory and is controlled by the first subsys-

tem SO. At system start time, all other address spaces

are empty. For constructing and maintaining further

address spaces on top of aO, the p-kernel provides three

operations:

Grant. The owner of an address space can grant any

of its pages to another space, provided the recipient

agrees. The granted page is removed from the granter’s

address space and included into the grantee’s address

space. The import ant restriction is that instead of phys-

ical page frames, the granter can only grant pages which

are already accessible to itself.

Map. The owner of an address space can map any of its

pages into another address space, provided the recipient

agrees. Afterwards, the page can be accessed in both

address spaces. In contrast to granting, the page is not

removed from the mapper’s address space. Comparable

to the granting case, the mapper can only map pages

which itself already can access.

Flush. The owner of an address space can j?ush any of

its pages. The flushed page remains accessible in the

flusher’s address space, but is removed from all other

address spaces which had received the page directly or

indirectly from the flusher. Although explicit consent

of the affected address-space owners is not required, the

operation is safe, since it is restricted to own pages. The
users of these pages already agreed to accept a potential

flushing, when they received the pages by mapping or

granting.

Appendix A contains a more precise definition of ad-

dress spaces and the above three operations.
.

Reasoning

The described address-space concept leaves memory

management and paging outside the ,u-kernel; only the
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grant, map and flush operations are retained inside the

kernel. Mapping and flushing are required to implement

memory managers and pagers on top of the p-kernel.

The grant operation is required only in very special

situations: consider a pager F which combines two un-

derlying file systems (implemented as pagers ~1 and ~~,

operating on top of the standard pager) into one uni-

fied file, system (see figure 1). In this example, .fl maps

Y\g=rit”””‘
user X J

\ / . . .

~/7f=~.:p“, 1

disk std pager

Figure 1: A Granting Example

one of its pages to F which grants the received page

to user A. By granting, the page disappears from F so

that it is then available only in ~1 and user A; the re-

sulting mappings are denoted by the thin line: the page

is mapped in user A, fl and the standard pager. Flush-

ing the page by the standard pager would affect .fl and

user A, flushing by ~1 only user A. F is not affected by

either flush (and cannot flush itself), since it used the

page only transiently. If F had used mapping instead

of granting, it would have needed to replicate most of

the bookkeeping which is already done in .fl and -fz.

Furthermore, granting avoids a potential address-space

overflow of F.

In general, granting is used when page mappings

should be passed through a controlling subsystem with-

out burdening the controller’s address space by all pages

mapped through it.

The model can easily be extended to access rights on

pages. Mapping and granting copy the source page’s

access right or a subset of them, i.e., can restrict the

access but not widen it. Special flushing operations may

remove only specified access rights.

1/0

An address space is the natural abstraction for incorpo-

rating device ports. This is obvious for memory mapped

1/0, but 1/0 ports can also be included. The granu-
larity of control depends on the given processor. The

386 and its successors permit control per port (one very

small page per port) but no mapping of port addresses

(it enforces mappings with v = v’); the PowerPC uses

pure memory mapped 1/0, i.e., device ports can be con-

trolled and mapped with 4K granularity.

Controlling 1/0 rights and device drivers is thus also

done by memory managers and pagers on top of the

p-kernel.

2.2 Threads and IPC

A thread is an activity executing inside an address space.

A thread T is characterized by a set of registers, includ-

ing at least an instruction pointer, a stack pointer and

a state information. A thread’s state also includes the

address space CT(TJin which ~ currently executes. This

dynamic or static association to address spaces is the de-

cisive reason for including the thread concept (or some-

thing equivalent) in the p-kernel. To prevent corruption

of address spaces, all changes to a t bread’s address space

(at’) := a’) must be controlled by the kernel. This im-

plies that the p-kernel includes the notion of some ~ that

represents the above mentioned activity. In some oper-

ating systems, there may be additional reasons for int re-

ducing threads as a basic abstraction, e.g. preemption.

Note that choosing a concrete thread concept remains

subject to further OS-specific design decisions.

Consequently, cross-address-space communicant ion,

also called inter-process communication (IPC), must be

supported by the p-kernel. The classical method is

transferring messages between threads by the p-kernel.

IPC always enforces a certain agreement between

both parties of a communication: the sender decides

to send information and determines its contents; the

receiver determines whether it is willing to receive in-

formation and is free to interpret the received message.

Therefore, IPC is not only the basic concept for com-

munication between subsystems but also, together with

address spaces, the foundation of independence.

Other forms of communication, remote procedure call

(RPC) or controlled thread migration between address

spaces, can be const rutted from message-transfer based

IPC.

Note that the grant and map operations (section 2.1)

need IPC, since they require an agreement between

granter/mapper and recipient of the mapping.

Supervising IPC

Architectures like those described by Yokote [1993] and

Kiihnhauser [1995] need not only supervise the memory

of subjects but also their communication. This can be

done by introducing either communication channels or

Clans [Liedtke 1992] which allow supervision of IPC by
user-defined servers. Such concepts are not discussed

here, since they do not belong to the minimal set of

concepts. We only remark that Clans do not burden

the p-kernel: their base cost is 2 cycles per IPC.
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Interrupts

The natural abstraction for hardware interrupts is the

IPC message. The hardware is regarded as a set of
threads which have special thread ids and send empty

messages (only consisting of the sender id) to associated

software threads. A receiving thread concludes from the

message source id, whether the message comes from a

hardware interrupt and from which interrupt:

driver thread:
do

wait for (msg. sender) ;

if sender = my hardware interrupt

then read/write io ports ;

reset hardware interrupt

else . . .

fl

od

Transforming the interrupts into messages must be

done by the kernel, but the p-kernel is not involved in

device-specific interrupt handling. In particular, it does

not know anything about the interrupt semantics. On

some processors, resetting the interrupt is a device spe-

cific action which can be handled by drivers at user level.

The iret-instruction then is used solely for popping sta-

tus information from the stack and/or switching back to

user mode and can be hidden by the kernel. However, if

a processor requires a privileged operation for releasing

an interrupt, the kernel executes this action implicitly

when the driver issues the next IPC operation.

2.3 Unique Identifiers

A p-kernel must supply unique identifiers (uid) for

something, either for threads or tasks or communication

channels. llids are required for reliable and efficient lo-

cal communication. If S1 wants to send a message to

S2, it needs to specify the destination S? (or some chan-

nel leading to S2). Therefore, the p-kernel must know

which uid relates to S2. On the other hand, the receiver

S2 wants to be sure that the message comes from S1.

Therefore the identifier must be unique, both in space

and time.

In theory, cryptography could also be used. In prac-

tice, however, enciphering messages for local commu-

nication is far too expensive and the kernel must be
trusted anyway. S2 can also not rely on purely user-

supplied capabilities, since S1 or some other instance

could duplicate and pass them to untrusted subsystems

without control of S2.

3 Flexibility

To illustrate the flexibility of the basic concepts, we

sketch some applications which typically belong to the

basic operating system but can easily be implemented

on top of the p-kernel. In this section, we show the

principal flexibility of a p-kernel. Whether it is really

as flexible in practice strongly depends on the achieved

efficiency of the p-kernel. The latter performance topic

is discussed in section 4.

Memory Manager. A server managing the initial
address space CTOis a classical main memory manager,

but outside the ~-kernel. Memory managers can easily

be stacked: MO maps or grants parts of the physical

memory (CO) to UI, controlled by Ml, other parts to az,

controlled by M2. Ifow we have two coexisting main

memory managers.

Pager. A Pager may be integrated with a memory

manager or use a memory managing server. Pagers use

the p-kernel’s grant, map and flush primitives. The

remaining interfaces, pager – client, pager – memory

server and pager – device driver, are completely based

on IPC and are user-level defined.

Pagers can be used to implement traditional paged

virtual memory and file/database mapping into user ad-

dress spaces as well as unpaged resident memory for de-
vice drivers and/or real time systems. Stacked pagers,

i.e. multiple layers of pagers, can be used for combin-

ing access control with existing pagers or for combining

various pagers (e.g. one per disk) into one composed ob-

ject. User-supplied paging strategies [Lee et al. 1994;

Cao et al. 1994] are handled at the user level and are in

no way restricted by the ~-kernel. Stacked file systems

[Khalidi and Nelson 1993] can be realized accordingly.

Multimedia Resource Allocation. Multimedia
and other real-time applications require memory re-

sources to be allocated in a way that allows predictable

execution times. The above mentioned user-level mem-

ory managers and pagers permit e.g. fixed allocation

of physical memory for specific data or locking data in

memory for a given time.

Note that resource allocators for multimedia and for
timesharing can coexist. .Managing allocation conflicts

is part of the servers’ jobs.

Device Driver. A device driver is a process which
directly accesses hardware 1/0 ports mapped into its

address space and receives messages from the hard-

ware (interrupts) through the standard IPC mechanism

Device-specific memory, e.g. a screen, is handled by

means of appropriate memory managers. Compared to

other user-level processes, there is nothing special about

a device driver. hTo device driver has to be integrated

into the g-kernel.4

4In general, there is no reason for integrating boot drivers into

the kernel. The hooter, e.g. located in ROM, simply loads a bit

image into memory that contains the micro-kernel and perhaps
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Second Level Cache and TLB. Improving the hit

rates of a secondary cache by means of page allocation or

reallocation [Kessler and Hill 1992; Romer et al. 1994]

can be implemented by means of a pager which applies

some cache-dependent (hopefully conflict reducing) pol-

icy when allocating virtual pages in physical memory.

In theory, even a software TLB handler could be im-

plemented like this. In practice, the first-level TLB

handler will be implemented in the hardware or in the

p-kernel. However, a second-level TLB handler, e.g.

handling misses of a hashed page table, might be imple-

mented as a user-level server.

Remote Communication. Remote IPC is imple-

m~nted by communication servers which translate local

messages to external communication protocols and vice

versa. The communication hardware is accessed by de-

vice drivers. If special sharing of communication buffers

and user address space is required, the communication

server will also act as a special pager for the client. The

p-kernel is not involved.

Unix Server. Unixs system calls are implemented by

IPC. The Unix server can act as a pager for its clients

and also use memory sharing for communicating with

its clients. The Unix server itself can be pageable or

resident.

Conclusion. A small set of p-kernel concepts lead to

abstractions which stress flexibility, provided they per-

form well enough. The only thing which cannot be im-

plemented on top of these abstractions is the processor

architecture: registers, first-level caches and first-level

TLBs.

4 Performance, Facts & Rumors

4.1 Switching Overhead

It is widely believed that switching between kernel and

user mode, between address spaces and bet ween threads

is inherently expensive. Some measurements seem to

support this belief.

4.1.1 Kernel–User Switches

Ousterhout [1990] measured the costs for executing the

“null” kernel call getpid. Since the real getpid opera-

tion consists only of a few loads and stores, this method

measures the basic costs of a kernel call. Normalized to

a hypothetical machine with 10 MIPS rating (10x VAX

some set of initial pagers and drivers (-ng at user mode and
not linked but simply appended to the kernel). Afterwards, the

boot drivers are no longer used.

5Unix is a registered trademark of UNIX System Laboratories.

11/780 or roughly a 486 at 50 MHz), he showed that

most machines need 20-30 ps per getpid, one required

even 63 KS. Corroborating these results, we measured

18 ps per Machs p-kernel call get.se~.thread In fact,

the measured kernel-ca(l costs are high.

For analyzing the measured costs, our argument is

based on a 486 (50 MHz) processor. We take an x86

processor, because kernel-user mode switches are ex-

tremely expensive on these processors. In contrast to

the worst case processor, we use a best-case measure-

ment for discussion, 18 ps for Mach on a 486/50.

The measured costs per kernel call are 18 x 50 = 900

cycles. The bare machine instruction for entering kernel

mode costs 71 cycles, followed by an additional 36 cy-

cles for returning to user mode. These two instructions

switch between the user and kernel stack and push/pop

flag register and instruction pointer. 107 cycles (about

2 ps) is therefore a lower bound on kernel–user mode

switches. The remaining 800 or more cycles are pure

kernel overhead. By this term, we denote all cycles

which are solely due to the construction of the kernel,

nevermind whether they are spent in executing instruc-

tions (800 cycles x 500 instructions) or in cache and

TLB misses (800 cycles x 270 primary cache misses =

90 TLB misses). We have to conclude that the measured

kernels do a lot of work when entering and exiting the

kernel. Note that this work by definition has no net

effect.

Is an 800 cycle kernel overhead really necessary? The

answer is no. Empirical proof L3 [Liedtke 1993] has a

minimal kernel overhead of 15 cycles. If the p-kernel call

is executed infrequently enough, it may increase by up

to 57 additional cycles (3 TLB misses, 10 cache misses).

The complete L3 kernel call costs are thus 123 to 180

cycles, mostly less than 3 ps.

The L3 p-kernel is process oriented, uses a kernel

stack per thread and supports persistent user processes

(i.e. the kernel can be exchanged without affecting the

remaining system, even if a process actually resides in

kernel mode). Therefore, it should be possible for any

other ~-kernel to achieve comparably low kernel call

overhead on the same hardware.

Other processors may require a slightly higher over-

head, but they offer substantially cheaper basic op-

erations for entering and leaving kernel mode. From

an architectural point of view, calling the kernel from

user mode is simply an indirect call, complemented by

a stack switch and setting the internal ‘kernel’-bit to

permit privileged operations. Accordingly, returning

from kernel mode is a normal return operation comple-

mented by switching back to user stack and resetting the

‘kernel’-bit. If the processor has different stack pointer
registers for user and kernel stack, the stack switching

costs can be hidden. Conceptually, entering and leaving

cMach 3.0, NORMA MK 13
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kernel mode can perform exactly like a normal indirect

call and return instruction (which do not rely on branch

prediction). Ideally, this means 2+2=4 cycles on a 1-

issue processor

Conclusion. Compared to the theoretical minimum,

kernel–user mode switches are costly on some proces-

sors. Compared to existing kernels however, they can

be improved 6 to 10 times by appropriate p-kernel con-

st ruction. Kernel–user mode switches are not a serious

conceptual problem but an implementational one.

4.1.2 Address Space Switches

Folklore also considers address-space switches as costly.

All measurements known to the author and related to

this topic deal with combined thread and address-space

switch costs. Therefore, in this section, we analyze only

the architectural processor costs for pure address-space

switching. The combined measurements are discussed

together with thread switching.

Most modern processors use a physically indexed

primary cache which is not affected by address-space

switching. Switching the page table is usually very

cheap: 1 to 10 cycles. The reaI costs are determined

by the TLB architecture.

Some processors (e.g. Mips R4000) use tagged TLBs,

where each entry does not only contain the virtual page

address but also the address-space id. Switching the

address space is thus transparent to the TLB and costs

no additional cycles. However, address-space swit thing

may induce indirect costs, since shared pages occupy

one TLB entry per address space. Provided that the ~-

kernel (shared by all address spaces) haa a small working

set and that there are enough TLB entries, the problem

should not be serious. However, we cannot support this

empirically, since we do not know an appropriate p-

kernel running on such a processor.

Most current processors (e.g. 486, Pentium, PowerPC

and Alpha) include untagged TLBs. An address-space

switch thus requires a TLB flush. The real costs are de-

termined by the TLB load operations which are required

tore-establish the current working set later. If the work-

ing set consists of n pages, the TLB is fully-associative,

has s entries and a TLB miss costs m cycles, at most

min(n, s) x m cycles are required in total.
Apparently, larger untagged TLBs lead to a perfor-

mance problem. For example, completely reloading

the Pentium’s data and code TLBs requires at least

(32 + 64) x 9 = 864 cycles. Therefore, intercepting a
program every 100ps could imply an overhead of up to

9%. Although using the complete TLB is unrealistic~,

7Both TLBs are 4-way set-associative. Working sets which

are not compact in the virtual address space, usually imply some

conflicts so that only about half of the TLB entries are used si-

multaneous y. Furthermore, a working set of 64 data pages will

this worst-caae calculation shows that switching page

tables may become critical in some situations.

Fortunately, this is not a problem, since on Pentium

and PowerPC, address-space switches can be handled

differently. The PowerPC architecture includes segment

registers which can be controlled by the p-kernel and

offer an additional address translation facility from the

local 232-byte address space to a global 252-byte space.

If we regard the global space as a set of one million local

spaces, address-space switches can be implemented by

reloading the segment registers instead of switching the

page table. With 29 cycles for 3.5 GB or 12 cycles for

1 GB segment switching, the overhead is low compared

to a no longer required TLB flush. In fact, we have a

tagged TLB.

Things are not quite as easy on the Pentium or the

486. Since segments are mapped into a 232-byte space,

mapping multiple user address spaces into one linear

space must be handled dynamically and depends on the

actually used sizes of the active user address spaces.

The according implementation technique [Liedtke 1995]

is transparent to the user and removes the potential

performance bottleneck. Address space switch overhead

then is 15 cycles on the Pentium and 39 cycles on 486.

For understanding that the restriction of a 232-byte

global space is not crucial to performance, one has to

mention that address spaces which are used only for

very short periods and with small working sets are ef-

fectively very small in most cases, say 1 MB or less for a

device driver. For example, we can multiplex one 3 GB

user address space with 8 user spaces of 64 MB and ad-

ditionally 128 user spaces of 1 MB. The trick is to share

the smaller spaces with all large 3 GB spaces. Then any

address-space switch to a medium or small space is al-

ways fast. Switching between two large address spaces

is uncritical anyway, since switching between two large
working sets implies TLB and cache miss costs, never-

mind whether the two programs execute in the same or

in different address spaces.

Table 1 shows the page table switch and segment

switch overhead for several processors. For a TLB miss,

the minimal and maximal cycles are given (provided

that no referenced or modified bits need updating). In

the case of 486, Pentium and PowerPC, this depends on

whether the corresponding page table entry is found in
the cache or not. As a minimal working set. we assume

4 pages. For the maximum case, we exclude 4 pages

from the address-space overhead costs, because at most

4 pages are required by the p-kernel and thus would as
well occupy TLB entries when the address space would

not be switched.

most likely lead to cache thrashing: in best case, the cache sup-

ports 4 x 32 bytes per page. Since the cache is only 2-way set-

associative, probably only I or 2 cache entries can be used per

page in practice.
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TLB TLB miss Page Table \ Segment
entries cycles switch cycles

486 32 9...13 36...364 39
Pentium 96 9...13 36...1196 15
PowerPC 601 256 .? ? 29
Alpha 21064 40 20. . . Soa 80...1800 nja

Mips R4000 48 20...50” Ob
nla

“Alpha and Mips TLB misses are handled by software,
*R4000 has a tagged TLB.

Tablel: Address Space Switch Overhead

Conclusion. Properly constructed address-space

switches are not very expensive, less than 50 cycles on

modern processors. On a 100 MHz processor, the in-

herited costs of address-space switches can be ignored

roughly up to 100,000 switches per second. Special op-

timization, like executing dedicated servers in kernel

space, are superfluous. Expensive context swit thing in

some existing p-kernels is due to implementation and

not caused by inherent problems with the concept.

4.1.3 Thread Switches and 1P C

Ousterhout [1990] also measured context switching in

some Unix systems by echoing one byte back and forth

through pipes between two processes. Again normalized

to a 10 Mips machine, most results are between 400 and

System CPU, MHz RPC time
(round trip)

cycles/IPC
(oneway)

full IPC semantics

L3 486, 50 10 us 250

QNX 486:33

Mach R2000, 16.7

SRC RPC CVAX, 12.5

Mach 486, 50

Amoeba 68020, 15

Spin Alpha 21064, 133

Mach Abha 21064, 133

76 /JS 1254

190 ps 1584

464 /.lS 2900

230 @ 5750

800 /.lS 6000

102 ,uS 6783

104 us 6916

Table 2: l-byte-RPC performance

800 ps per ping-pong, one was 1450 ,US. All existing p-

kernels are at least 2 times faster, but it is proved by

construction that 10 ps, i.e. a 40 to 80 times faster RPC
is achievable. Table 2 gives the costs of echoing one byte

by a round trip RPC, i.e. two IPC operations.8

aThe respective data is taken from [Liedtke 1993; Hildebrand
1992; Schroeder and Burroughs 1989; Draves et al. 1991; van

All times are user to user, cross-address space.They

include system call, argument copy, stack and address

space switch costs. Exokernel, Spring and L3 show that

communication can be implemented pretty fast and that

the costs are heavily influenced by the processor archi-

tecture: Spring on Spare has to deal with register win-

dows, whereas L3 is burdened by the fact that a 486

trap is 100 cycles more expensive than a Spare trap.

The effect of using segment based address-space

switch on Pentium is shown in figure 2. One long run-

ning application with a stable working set (2 to 64

data pages) executes a short RPC to a server with

a small working set (2 pages). After the RPC, the

application re-accesses all its pages. Measurement is

done by 100,000 repetitions and comparing each run

against running the application (100,000 time access-

ing all pages) without RPC. The given times are round

trip RPC times, user to user, plus the required time for

re-est ablishing the application’s working set.

14

1

m by segment switch

a by page-table switch
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Figure 2: Segmented Versus Standard Address-Space

Switch in LJ on Pentium, 90 MHz.

Conclusion. IPC can be implemented fast enough to

handle also hardware interrupts by this mechanism.

4.2 Memory Effects

Chen and Bershad [1993] compared the memory system

behaviour of ~ltrix, a large monolithic Unix system,

with that of the Mach p-kernel which was complemented

wit h a ~’nix server. They measured memory cycle over-

head per instruction (MCPI) and found that programs
running under Mach + V-nix server had a substantially

Renesse et al. 1988; Liedtke 1993; Bershad et aL 1995; Engler

et aL 1995: Hamilton and Kougiouris 1993; Bryce and Muller

1995; Bershad et al. 1989].
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higher NICPI than running the same programs under lJl-

trix. For some programs, the differences were up to 0.25

cycles per instruction, averaged over the total program

(user + system). Similar memory system degradation

of Mach versus Ultrix is noticed by others [N-agle et al.

1994]. The crucial point is whether this problem is due

to the way that Mach is constructed, or whether it is

caused by the p-kernel approach.

Chen and Bershad [1993, p. 125] state: “This suggests

that microkernei optimizations focussing exclusively on

IPC [. ..], without considering other sources of system

overhead such as MCPI, will have a limited impact on

overall system performance.” Although one might sup-

pose a principal impact of OS architecture, the men-

tioned paper exclusively presents facts “as is” about a

specific implementation without analyzing the reasons

for memory system degradation.

Careful analysis of the results is thus required. Ac-

cording to the original paper, we comprise under ‘sys-

tem’ either all Ultrix activities or the joined activities

of the Mach y-kernel, Unix emulation library and Unix

server. The Ultrix case is denoted by U, the Mach

case by M. We restrict our analysis to the samples that

show a significant MCPI difference for both systems:

seal, egrep, yacc, gee, compress, espresso and the an-

drew benchmark ab.

In figure 3, we present the results of Chen’s figure 2-

1 in a slightly reordered way. We have colored MCPI

Figure 3: Baseline MCPI for Ultriz and Mach.

black that are due to system i-cache or d-cache misses.
The white bars comprise all other causes, system write

buffer stalls, system uncached reads, user i-cache and

d-cache misses and user write buffer stalls. It is easy

to see that the white bars do not differ significantly

between Ultrix and Mach; the average difference is 0.00,

the standard deviation is 0.02 MCPI.

We conclude that the differences in memory system

behaviour are essentially caused by increased system ca-

che misses for Mach. They could be conflict misses (the

measured system used direct mapped caches) or capac-

ity misses. A large fraction of conflict misses would

suggest a potential problem due to OS structure.

Chen and Bershad measured cache conflicts by com-

paring the direct mapped to a simulated 2-way cache. g

They found that system self-interference is more impor-

tant than user/system interference, but the data also

show that the ratio of conflict to capacity misses in

Mach is lower than in Ultrix. Table 4 show-s the conflict

(black) and capacity (white) system cache misses both

in an absolute scale (left) and as ratio (right).

~=~f~~~=es

egrep U n 0,024

M D 0.009

y... U m 0.039

M -—] 0,098

m 1

D 1

espresso u M c1012

M m 0.037

Figure 4: MCPI Caused by Cache Misses.

From this we can deduce that the increased cache

misses are caused by higher cache consumption of the

system (Mach + emulation library + Unix server), not

by conflicts which are inherent to the system’s structure.

The next task is to find the component which is re-

sponsible for the higher cache consumption. We assume

that the used Unix single server behaves comparably

to the corresponding part of the Ultrix kernel. This

is supported by the fact that the samples spent even

fewer instructions in Mach’s Unix server than in the

corresponding Ult rix routines, We also exclude Mach’s

emulation library, since Chen and Bershad report that

only 3’% or less of system overhead is caused by it.

What remains is Mach itself, including trap handling,

IPC and memory management, which therefore must

induce nearly all of the additional cache misses.

Therefore, the mentioned measurements suggest that

memory system degradation is caused solely by high

cache consumption of the p-kernel. Or in other words:

drastically reducing the cache working set of a p-kernel
will solve the problem.

Since a p-kernel is basically a set of procedures which

are invoked by user-level threads or hardware, a high

cache consumption can only 10 be explained by a large

number of very frequently used p-kernel operations or

gAlthough ttis method does not determine all cofict fisses

as defined by Hill and Smith [1989], it can be used as a first-level

approximation.
10 We do not befieve that the Mach kernel flushes the cache ex-

plicitly. The measured system was a rmiprocessor with physically

tagged caches. The hardware does not even require explicit cache

flushes for DMA.
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by high cache working sets of a few frequently used op-

erations. According to section 2, the first case has to be

considered as a conceptual mistake. Large cache work-

ing sets are also not an inherent feature of p-kernels.

For example, L3 requires less than 1 Kfor short IPC.

(Recall: voluminous communication can be made by dy-

namic or static mapping so that the cache is not flooded

by copying very long messages.)

Mogul and Borg [199 1] reported an increase in cache

misses after preemptively-scheduled context switches

between applications with large working sets. This de-

pends mostly on the application load and the require-

ment for interleaved execution (timesharing). The type

of kernel is almost irrelevant. We showed (section 4.1.2

arid 4.1.3) that p-kernel context switches are not ex-

pensive in the sense that there is not much difference

between executing application + servers in one or in

multiple address spaces.

Conclusion. The hypothesis that p-kernel architec-

tures inherently lead to memory system degradation is

not substantiated. On the contrary, the quoted mea-

surements support the hypothesis that properly con-

structed p-kernels will automatically avoid the memory

system degradation measured for Mach.

5 Non-Portability

Older ,u-kernels were built machine-independently on

top of a small hardware-dependent layer. This approach

has strong advantages from the software technological

point of view: programmers did not need to know very

much about processors and the resulting p-kernels could

easily be ported to new machines. Unfortunately, this

approach prevented these p-kernels from achieving the

necessary performance and thus flexibility.

In retrospective, we should not be surprised, since

building a p-kernel on top of abstract hardware has se-

rious implications:

● Such a p-kernel cannot take advantage of specific

hardware.

. It cannot take precautions to circumvent or avoid

performance problems of specific hardware.

c The additional layer per se costs performance.

p-kernels form the lowest layer of operating systems

beyond the hardware. Therefore, we should accept that

they are as hardware dependent as optimizing code gen-

erators. We have learned that not only the coding but

. even the algorithms used inside a p-kernel and its

internal concepts are extremely processor depen-

dent.

5.1 Compatible Processors

For illustration, we briefly describe how a p-kernel has

to be conceptually modified even when “ported” from

486 to Pentium, i.e. to a compatible processor.

Although the Pentium processor is binary compatible

to the 486, there are some differences in the internal

I I 486 I Pentiurn I

Cache size. ways I 8K~uj 4x I 8K~,~ + 8K~d~ 2x I

line, write 16B through 32B back

fast instructions 1 cycle 0.5–1 cycle

segment register 9 cycles 3 cycles

trap 107 cycles 69 cycles

Table 3: 486 \ Pentium Differences

hardware architecture (see table 3) which influence the

internal p-kernel architect ure:

User-address-space implementation. As men-

tioned in section 4.1.2, a Pentium p-kernel should use

segment registers for implementing user address spaces

so that each 232-byte hardware address space shares all

small and one large user address space. Recall that this

can be implemented transparently to the user.

Ford [1993] proposed a similar technique for the 486,

and table 1 also suggests it for the 486. Nevertheless,

the conventional hardware-address-space switch is pre-

ferable on this processor. Expensive segment register

loads and additional instructions at various places in

the kernel sum to roughly 130 cycles required in addi-

tion. Now look at the relevant situation: an address-

space switch from a large space to a small one and back

to the large. Assuming cache hits, the costs of the seg-

ment register model would be (130+ 39) x 2 = 338 cycles,

whereas the conventional address-space model would re-

quire 28 x 9 +36= 288 cycles in the theoretical case of

100% TLB use, 14x9+36= 162 cycles for the more prob-

able case that the large address space uses only 5070 of

the TLB and only 72 cycles in the best case. In total,

the conventional method wins.

On the Pentium however, the segment register

method pays. The reasons are several: (a) Segment reg-

ister loads are faster. (b) Fast instructions are cheaper.

whereas the overhead by trap and TLB misses remain

nearly constant. (c) Conflict cache misses (which, rel-

ative to instruction execution, are anyway more expen-

sive) are more likely because of reduced associativity.
Avoiding TLB misses thus also reduces cache conflicts.

(d) Due to the three times larger TLB, the flush costs

can increase substantially. As a result, on Pentium, the

segment register method always pays (see figure 2).
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As a consequence, we have to implement an addi-

tional user-address-space multiplexer, we have to mod-

ify address-space switch rout ines, handling of user sup-

plied addresses, thread control blocks, task control

blocks, the IPC implementation and the address-space

structure as seen by the kernel. In total, the mentioned

changes affect algorithms in about half of all p-kernel

modules.

1P C implementation. Due to reduced associativity,

the Pentium caches tend to exhibit increased conflict

misses. One simple way to improve cache behaviour

during IPC is by restructuring the thread control block

data such that it profits from the doubled cache line

size. This can be adopted to the 486 kernel, since it has

no effect on 486 and can be implemented transparently

to the user.

In the 486 kernel, thread control blocks (including

kernel stacks) were page aligned. IPC always accesses

2 control blocks and kernel stacks simultaneously. The

cache hardware maps the according data of both con-

trol blocks to identical cache addresses. Due to its

4-way associativity, this problem could be ignored on

the 486. However, Pentium’s data cache is only 2-way

set-associative. A nice optimization is to align thread

control blocks no longer on 4K but on lK boundaries.

(1K is the lower bound due to internal reasons.) Then

there is a 7570 chance that two randomly selected con-

trol blocks do not compete in the cache.

Surprisingly, this affects the internal bit-structure of

unique thread identifiers supplied by the p-kernel (see

[Liedtke 1993] for details). Therefore, the new kernel

cannot simply replace the old one, since (persistent) user

programs already hold uids which would become invalid.

5.2 Incompatible Processors

Processors of competing families differ in instruction set,

register architecture, exception handling, cache/TLB

architecture, protection and memory model. Especially

the latter ones radically influence p-kernel structure.

There are systems with

multi-level page tables,
hashed page tables,

(no) reference bits,
(no) page protection,
strange page protectionll,
single/multiple page sizes,
232-, 243-, 252- and 264-byte address spaces,
flat and segmented address spaces,
various segment models,
tagged/untagged TLBs,
virtually/physically tagged caches.

] 1e.g. the 386 ignores write protection in kernel mode, the Pow-

erPC supports read only in kernel mode but this implies that the

page is seen in user mode as well.

The differences are orders of magnitude higher than be-

tween 486 and Pentium. We have to expect that a new

processor requires a new p-kernel design.

For illustration, we compare two different kernels on

two different processors: the Exokernel [Engler et al.

1995] running on an R2000 and L3 running on a 486. Al-

though this is similar to comparing apples with oranges,

a careful analysis of the performance differences helps

understanding the performance-determining factors and

weighting the differences in processor architecture. Fi-

nally, this results in different p-kernel architectures.

We compare Exokernel’s protected control transfer

(PCT) with L3’s IPC. Exo-PCT on the R2000 requires

about 35 cycles, whereas L3 takes 250 cycles on a 486

processor for an 8-byte message transfer. If this dif-

ference cannot be explained by different functionality

and/or average processor performance, there must be

an anomaly relevant to ~-kernel design.

Exo-PCT is a “substrate for implementing efficient

IPC mechanisms. [It] changes the program counter to

an agreed-upon value in the callee, donates the current

time-slice to the callee’s processor environment, and in-

stalls required elements of the callee’s processor con-

text .“ L3-IPC is used for secure communication be-

tween potentially untrusted partners; it therefore addi-

tionally checks the communication permission (whether

the partner is willing to receive a message from the

sender and whether no clan borderline is crossed), syn-

chronizes both threads, supports error recovery by send

and receive timeouts, and permits complex messages to

reduce marshaling costs and IPC frequency. From our

experience, extending Exo-PCT accordingly should re-

quire no more than 30 additional cycles. (Note that

using PCT for a trusted LRPC already costs an ad-

ditional 18 cycles, see table 2.) Therefore, we assume

that a hypothetical L3-equivalent “Exo-IPC” would cost

about 65 cycles on the R2000. Finally, we must take into

consideration that the cycles of both processors are not

equivalent as far as most-frequently-executed instruc-

tions are concerned. Based on SpecInts, roughly 1.4

486-cycles appear to do as much work as one R2000-

cycle; comparing the five instructions most relevant in

this context (2-op-alu, 3-op-alu, load, branch taken and

not taken) gives 1.6 for well-optimized code. Thus we

estimate that the Exo-IPC would cost up to approx. 100

486-cycles being definitely less than L3’s 250 cycles.

This substantial difference in timing indicates an iso-

lated dz~erence between both processor architectures

that strongly influences IPC (and perhaps other p-

kernel mechanisms), but not average programs.

In fact, the 486 processor imposes a high penalty on

entering/exiting the kernel and requires a TLB flush

per IPC due to its untagged TLB. This costs at least

107 + 49 = 156 cycles. On the other hand. the R2000

has a tagged TLB, i.e. avoids the TLB flush, and needs

less than 20 cycles for entering and exiting the kernel.
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From the above example, we learn two lessons:

● For well-engineered p-kernels on different processor

architectures, in particular with different memory

systems, we should expect isolated timing differ-

ences that are not related to overall processor per-

formance.
● Different architectures require processor-specific

optimization techniques that even affect the global

p-kernel structure.

To understand the second point, recall that the manda-

tory 486-TLB flush requires minimization of the num-

ber of subsequent TLB misses. The relevant tech-

niques [Liedtke 1993, pp. 179,182-183] are mostly based

on proper address space construction: concentrating

processor-internal tables and heavily used kernel data in

one page (there is no unmapped memory on then 486),

implementing control blocks and kernel stacks as virtual

objects, lazy scheduling. In toto, these techniques save

11 TLB misses, i.e. at least 99 cycles on the 486 and are

thus inevitable.

Due to its unmapped memory facility and tagged

TLB, the mentioned constraint disappears on the

R2000. Consequently, the internal structure (address

space structure, page fault handling, perhaps control

block access and scheduling) of a corresponding kernel

can substantially differ from a 486-kernel. If other fac-

tors also imply implementing control blocks as physical

objects, even the uids will differ between the R2000 (no

x pointer size + z) and 486 kernel (no x controi block

swe +x).

Conclusion. p-kernels form the link between a mini-
mal “p’’-set of abstractions and the bare processor. The

performance demands are comparable to those of earlier

microprogramming. As a consequence, p-kernels are in-

herently not portable. Instead, they are the processor

dependent basis for portable operating systems.

6 Synthesis, Spin, DP-Mach,

Panda, Cache and Exokernel

Synthesis. Henry Massalin’s Synthesis operating sys-

tem [Pu et al. 1988] is another example of a high per-

forming (and non-portable) kernel. Its distinguishing

feature was a kernel-integrated “compiler” which gener-

ated kernel code at runtime. For example, when issuing

a read pipe system call, the Synthesis kernel generated

specialized code for reading out of this pipe and modified

the respective invocation. This technique was highly

successful on the 68030. However (a good example for
non-portability), it would most probably no longer pay
on modern processors, because (a) code inflation will

degrade cache performance and (b) frequent generation

of small code chunks pollutes the instruction cache.

Spin. Spin [Bershad et al. 1994; Bershad et al. 1995]

is a new development which tries to extend the Synthesis

idea: user-supplied algorithms are translated by a ker-

nel compiler and added to the kernel, i.e. the user may

write new system calls. By controlling branches and

memory references, the compiler ensures that the newly-

generated code does not violate kernel or user integrity.

This approach reduces kernel–user mode switches and

sometimes address space switches. Spin is based on

Mach and may thus inherit many of its inefficiencies

which makes it difficult to evaluate performance results.

Resealing them to an efficient p-kernel with fast kernel-

user mode switches and fast IPC is needed. The most

crucial problem, however, is the estimation of how an

optimized p-kernel architecture and the requirements

coming from a kernel compiler interfere with each other.

Kernel architecture and performance might be e.g. af-

fected by the requirement for larger kernel stacks. (A

pure p-kernel needs only a few hundred bytes per kernel

stack.) Furthermore, the costs of safety-guaranteeing

code have to be related to p-kernel overhead and to op-

timal user-level code.

The first published results [Bershad et al. 1995] can-

not answer these questions: On an Alpha 21064, 133

MHz, a Spin system call needs nearly twice as many cy-

cles (1600, 12ps) as the already expensive Mach system

call (900, 7ps). The application measurements show

that Mach can be substantially improved by using a

kernel compiler; however, it remains open whether this

technique can reach or outperform a pure p-kernel ap-

proach like that described here. For example, a simple

user-level page-fault handler (11 00 ps under Mach) ex-

ecutes in 17 ps under Spin. However, we must take into

consideration that in a traditional p-kernel, the kernel

is invoked and left only twice: page fault (enter), mes-

sage to pager (exit), reply map message (enter+exit ).

The Spin technique can save only one system call which

on this processor should cost less than 1 ps i.e. with

12 ps the actual Spin overhead is far beyond the ideal

traditional overhead of 1+1 ps.

From our experience, we expect a notable gain if

a kernel compiler eliminates nested IPC redirection,

e.g. when using deep hierarchies of Clans or Custodi-

ans [Hart ig et al. 1993]. Efficient integration of the

kernel compiler technique and appropriate p-kernel de-

sign might be a promising research direction.

Utah-Mach. Ford and Lepreau [1994] changed Mach

IPC semantics to migrating RPC which is based on

thread migration between address spaces, similar to the

Clouds model [Bernabeu-Auban et al. 1988]. Substan-
tial performance gain was achieved, a factor of 3 to 4.

DP-Mach. DP-Mach [Bryce and Muller 1995] imple-

ments multiple domains of protection within one user



address space and offers a protected inter-domain call.

The performance results (see table 2) are encouraging.

However, although this inter-domain call is highly spe-

cialized, it is twice as slow as achievable by a general

RPC mechanism. In fact, an inter-domain call needs

two kernel calls and two address-space switches. A gen-

eral RPC requires two additional t bread switches and

argument transferal 2. Apparently, the kernel call and

address-space switch costs dominate. Bryce and Muller

presented an interesting optimization for small inter-

domain calls: when switching back from a very small

domain, the TLB is only selectively flushed. Although

the effects are rather limited on their host machine (a

486 with only 32 TLB entries), it might become more

relevant on processors with larger TLBs. To analyze

whether kernel enrichment by inter-domain calls pays,

we need e.g. a Pentium implementation and then com-

pare it with a general RPC based on segment switching.

Panda. The Panda system’s [Assenmacher et al.

1993] p-kernel is a further example of a small kernel

which delegates as much as possible to user space. Be-

sides its two basic concepts protection domazn and vir-

tual processor, the Panda kernel handles only interrupts

and exceptions.

Cache-Kernel. The Cache-kernel [Cheriton and

Duda 1994] is also a small and hardware-dependent p-

kernel. In contrast to the Exokernel, it relies on a small

fixed (non extensible) virtual machine. It caches ker-

nels, threads, address spaces and mappings. The term

‘caching’ refers to the fact that the p-kernel never han-

dles the complete set of e.g. all address spaces, but only

a dynamically selected subset. It was hoped that this

technique would lead to a smaller p-kernel interface and

also to less p-kernel code, since it no longer haa to deal

with special but infrequent cases. In fact, this could

be done as well on top of a pure ~-kernel by means of

according pagers. (Kernel data structures, e.g. thread

control blocks, could be held in virtual memory in the

same way as other data.)

Exokernel. In contrast to Spin, the Exokernel [En-

gler et al. 1994; Engler et al. 1995] is a small and

hardware-dependent ~-kernel. In accordance with our
processor-dependency thesis, the exokernel is tailored

to the R2000 and gets excellent performance values

for its primitives. In contrast to our approach, it is

based on the philosophy that a kernel should not pro-

vide abstractions but only a minimal set of primitives.

12Sometimes, the ~went tm.nsfer can be omitted. For imp-

lementing inter-domain calls, a pager can be used whick shares
the address spacesof caller and mllee such that the trusted caflee
can access the parameters in the caller space. E.g. LRPC [Ber-
shad et al. 1989] and NetWare [Major et al. 1994] use a similar
technique.

Consequently, the Exokernel interface is architecture de-

pendent, in particular dedicated to software-controlled

TLBs. A further difference to our driver-less p-kernel

approach is that Exokernel appears to partially inte-

grate device drivers, in particular for disks, networks

and frame buffers.

We believe that dropping the abstractional approach

could only be justified by substantial performance gains.

Whether these can be achieved remains open (see dis-

cussion in section 5.2) until we have well-engineered exo-

and abstractional p-kernels on the same hardware plat-

form. It might then turn out that the right abstractions

are even more efficient than securely multiplexing hard-
ware primitives or, on the other hand, that abstractions

are too inflexible. We should try to decide these ques-

tions by constructing comparable p-kernels on at least

two reference platforms.

probably also lead to new

7 Conclusions

Such a co-construction will

insights for both approaches.

A p-kernel can provade higher layers with a m~nimal set

of appropriate abstractions that are flexible enough to al-

low implementation of arbitrary operating systems and

aliow ezploitatton of a wade range of hardware. The

presented mechanisms (address space with map, flush

and grant operation, threads with IPC and unzque iden-

tifiers) form such a basis. Multi-level-security systems

may additionally need clans or a similar reference mon-

itor concept. Choosing the right abstractions is crucial

for both flexibility and performance. Some existing p-

kernels chose inappropriate abstractions, or too many

or too specialized and inflexible ones.

Simdar to optimizing code generators, p-kernels must

be constructed per processor and are inherently not

portable. Basic implementation decisions, most algo-

rithms and data structures inside a ~-kernel are pro-

cessor dependent. Their design must be guided by

performance prediction and analysis. Besides inappro-

priate basic abstractions, the most frequent mistakes

come from insufficient understanding of the combined

hardware-software system or inefficient implementation.

The presented design shows that d ZS possible to

achieve well performing p-kernels through processor-

spectj?c implementations of processor-tndcpendent ab-

stractions.

Availability

The source code of the L4 ~-kernel, a successor of the L3

p-kernel, is available for examination and experimenta-

tion through the web:

httpi/borneo.gmd, de/RSiL4.
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A Address Spaces

An Abstract Model of Address Spaces

We describe address spaces as mappings. u, : V *

R-u {~} is the initial address space, where V is the set

of virtual pages, R the set of available physical (real)

pages and d the nilpage which cannot be accessed. Fur-

ther address spaces are defined recursively as mappings
a : V ~ (X x V)U {4}, where X is the set of address

spaces. It is convenient to regard each mapping as a one

column table which cent ains u(o) for all v e V and can

be indexed by v. We denote the elements of this table

by ~v .

All modifications of address spaces are based on the

replacement operation: we write U. x x to describe a

change of u at v, precisely:

flush (u, V) ; a. := z .

A page potentially mapped at v in u is flushed, and the

new value x is copied into UV. This operation is internal

to the p-kernel. We use it only for describing the three

exported operations.

A subsystem S with address space u can grant any

of its pages v to a subsystem S with address space a’

provided S’ agrees:

(7:, + u~ , UU+4.

Note that S determines which of its pages should be

granted, whereas S’ determines at which virtual address

the granted page should be mapped in v’. The granted

page is transferred to c+ and removed from a.

A subsystem S with address space u can map any

of its pages v to a subsystem S with address space u’

provided S’ agrees:

u:, + ((?, v) .

In contrast to grant, the mapped page remains in the

mapper’s space u and a link to the page m the map-

per’s address space (u, v) is stored in the receiving ad-

dress space u’, instead of transferring the existing link

from av to a~,. This operation permits to construct

address spaces recursively, i.e. new spaces based on ex-

isting ones.

Flushing, the reverse operation, can be executed with-

out explicit agreement of the mappees, since they agreed

implicitly when accepting the prior map operation. S

can j7ush any of its pages:

vu:, = (c)u) :C:, -Q.

Note that N and flush are defined recursively. Flushing

recursively affects also all mappings which are indirectly

derived from UV.

No cycles can be established by these three opera-

tions, since * flushes the destination prior to copying.

Implementing the Model

At a first glance, deriving the phyical address of page v

in address space a seems to be rather complicated and

expensive:

{

U’(v’) if v. =(a’, v’)

u(v) = if Uu=r

; if uv=~

Fortunately, a recursive evaluation of O(V) is never re-

quired. The three basic operations gvarantee that the

physical address of a virtual page will never change,

except by flushing. For implementation, we therefore

complement each u by an additional table P, where PV

corresponds to CV and holds either the physical address

of v or d. Mapping and granting then include

P;, := P.

and each replacement UU + 4 invoked by a flush oper-

ation includes

P. :=4

P“ can always be used instead of evaluating a(v). In

fact, P is equivalent to a hardware page table. p-kernel

address spaces can be implemented straightforward by

means of the hardware- address-translation facilities.

The recommended implementation of u is to use one

mapping tree per physical page frame which describes

all actual mappings of the frame. Each node contains

(P, v), where v is the according virtual page in the ad-

dress space which is implemented by the page table P.

Assume that a grant-, map- or flush-operation deals

with a page v in address space c to which the page

table P is associated. In a first step, the operation se-

lects the according tree by P., the physical page. In the

next step, it selects the node of the tree that contains

(P, v). (This selection can be done by parsing the tree

or in a single step, if Pv is extended by a link to the

node.) ‘Granting then simply replaces the values stored
in the node and map creates a new child node for stor-

ing (P’, v’). Flush lets the selected node unaffected but

parses and erases the complete subtree, where P; := @

is executed for each node (P’, c’) in the subtree.
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