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Abstract

Flow control in high speed networks requires distributed routers to make fast decisions based only on
local information in allocating bandwidth to connections. While most previous work on this problem
focuses on achieving local objective functions, in many cases it may be necessary to achieve global
objectives such as maximizing the total flow. This problem illustrates one of the basic aspects of
distributed computing: achieving global objectives using local information.

Papadimitriou and Yannakakis [PY93] initiated the study of such problems in a framework of solving
positive linear programs by distributed agents. We take their model further, by allowing the distributed
agents to acquire more information over time. We therefore turn attention to the tradeoff between the
running time and the quality of the solution to the linear program.

We give a distributed algorithm that obtains a (14 ¢€) approximation to the global optimum solution
and runs in a polylogarithmic number of distributed rounds. While comparable in running time, our
results exhibit a significant improvement on the logarithmic ratio previously obtained by [AA94]. Our
algorithm, which draws from techniques developed by Luby and Nisan [LN93], is considerably simpler
than previous approximation algorithms for positive linear programs, and thus may have practical value
in both centralized and distributed settings.

1 Introduction

Processors in a distributed environment make decisions based only on local data. Therefore, fast dis-
tributed algorithms must do without global information about the system as a whole. This is exactly why
computing many target functions in distributed models quickly is provably hard [L.87]. However, quite
surprisingly, some of the most interesting global optimization problems can be very closely approximated
based only on local information.

We study the problem of developing flow control policies with global objective functions. Flow control
is the mechanism by which routers of a network distribute the available network bandwidth across con-
nections. When the connections transmit data along fixed routes in the network, flow control is typically
performed by allowing routers to regulate the rate at which connections inject data into the network.
This connection-oriented, or rate-based, approach is expected to become widely used in packet-based
networks and is a standard for routing available bit rate traffic in ATM networks. In this approach, each
router in the network must make regulatory decisions based only on local information, which typically
consists of the current transmission rates of connections using the router. Most existing flow control
policies try to satisfy local objective functions such as maz-min fairness [BG87, AM096, C94]. However,
there are many other practical scenarios in which global objective functions are the appropriate choice.
For example, in a commercial subnetwork in which users are paying for use of the network bandwidth
(possibly at different rates), the administrator would want to use a flow control policy which maximizes
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total revenue. We show how to express such a flow control policy objective as a positive linear program.
Complicating the issue is the problem that routers must generate feasible solutions to this linear program
(LP) quickly, and based only on available information.

Motivated by this and related applications, Papadimitriou and Yannakakis considered the problem of
having distributed decision-makers assign values to a set of variables in a linear program, where the agents
have limited information [PY93]. In one scenario they describe, each agent, acting in isolation, must set
the value of a single primal variable, knowing only the constraints affecting that variable in the LP. In
the context of flow control where the objective is to maximize the total flow through the network, this
corresponds to a setting in which connections only know how many other connections share each of the
routers they intend to use. When all edge capacities are 1, their “safe” algorithm sets each connection’s
flow to the reciprocal of the maximum number of connections which share an edge with that connection.
It is not hard to see that the worst-case approximation ratio achieved by the “safe” algorithm is O(A),
where A is the maximum number of connections that share an edge. They also prove that the “safe”
algorithm achieves the best possible worst-case ratio when agents may not communicate, leaving open
the possibility that much better ratios can be obtained when agents can interact.

We extend their model to allow computation to proceed in a sequence of rounds, in each of which
agents can communicate a fixed-size message to their immediate neighbors. Our goal is to determine the
number of rounds necessary to achieve a (1 + ¢) approximation ratio to the optimum LP solution. In
the setting of flow control, in one round, connections can communicate their flow values to all routers
along their path, and routers can communicate a value describing their load to all connections which use
them. Although we focus on the application of flow control, this study could also be performed on a
range of resource allocation problems including those described in [PY93]. We note that similar models

for describing the interaction between connections and routers in theoretical evaluations of flow control
policies have been suggested in [AA94, AMO96, AS97].

One observation toward achieving our goal is that a centralized administrator with complete informa-
tion could certainly solve the problem exactly using one of the well known polynomial-time algorithms
for linear programming (see for example, [K96]). Recently, much faster algorithms that produce approxi-
mate solutions to positive linear programs to within a (1 + €) factor of optimal have been developed. The
sequential algorithm of Plotkin, Shmoys and Tardos [PST94] repeatedly identifies a globally minimum
weight path, and pushes more flow along that path. The algorithm of Luby and Nisan [LN93] has both a
fast sequential and parallel implementation, and repeatedly performs a global median selection algorithm
on the values of the dual variables, then increases values of dual variables above this threshold. Although
these algorithms have efficient implementations, they both perform global operations which make them
unsuitable for fast distributed implementation. Clearly, each of the global operations in these algorithms
can be implemented in a polynomial number of distributed rounds, in which agents broadcast the values
of relevant variables to all other agents. But we are interested in more time-efficient solutions.

The only previously known result for a distributed flow control algorithm with a global objective
function is an algorithm of Awerbuch and Azar [AA94], which gives a logarithmic approximation ratio
and also runs in a polylogarithmic number of rounds. Their algorithm is based on fundamental results
from competitive analysis [AAFPW92, AAP93]. The deterministic algorithm we present produces (14 ¢€)
approximate solutions to positive linear programs, both in general and for the flow control problem, and
builds on ideas used in these other algorithms [AA94, LN93, PST94]. Our algorithm is most closely
related to the algorithm of Luby and Nisan, and affords the following advantages. It eliminates the need
for the complex global selection operations and a global normalization step upon termination, enabling
fast implementation in a distributed setting. Those simplifications carry over to serial and parallel
settings as well, where we have a dramatically simpler implementation which saves a % factor in the
running time over the algorithm of Luby-Nisan. Finally, we can parameterize the algorithm to quantify
a tradeoff between the number of rounds and the quality of the approximation. In practice, we can run
the algorithm for any number of phases, with the guarantee that after a constant number of phases, we



have a logarithmic factor approximation, and after a logarithmic number of phases, we have a (1 + ¢)
approximation.

The rest of the paper is organized as follows. We begin with a formulation of our distributed model
and an explanation of the correspondence between flow control policies and positive linear programs in
Section 2. In Section 3, we present our algorithm first as an easily understandable and implementable
serial algorithm for approximately solving positive linear programming. In Section 4, we prove that the
algorithm achieves a (1 4 €) approximation ratio, and prove that it runs in a polylogarithmic number
of rounds. Then in Section 5, we present the distributed implementation applicable to the flow control
problem and explain the modification in the analysis of this case.

2 The Model

We consider the following model in the spirit of Papadimitriou and Yannakakis in which distributed
agents generate approximate solutions to positive linear programs in the following standard form, which
is well known to be as general as arbitrary positive linear programming.

PRIMAL DUAL
maXY:Zyj minX:in
Vi, Y ajy; <1 Vi, Y agzi > 1

J i
Vi, y; >0 Vi, z; > 0
V27]7a2j20 V%]aamZO

We associate a primal agent with each of the n primal variables y; and a dual agent with each of the m
dual variables z;. FEach agent is responsible for setting the value of their associated variable. For any ¢, j
such that a;; > 0, we say that dual agent 7 and primal agent j are neighbors. By this definition, primal
agents are neighbors only with dual agents, and vice versa. In a round of computation, each agent may
broadcast a fixed-size message to all of its neighbors, i.e., in one round each primal agent j may transmit
messages to its set of dual neighbors I; = {i|a;; > 0} and each dual agent ¢ may transmit messages
to its set of primal neighbors J; = {jla;; > 0}. For simplicity, we consider algorithms which alternate
between rounds in which primal agents transmit messages and rounds in which dual agents transmit
messages. In the abstract model, we make no limitations on how many messages an agent may receive
in one round, although practical considerations may introduce such limitations. After a fixed number of
rounds, the agents must choose feasible values for their variables to (in the case of the primal) minimize
the approximation ratio: OPT /3~ y;, where OPT is the value of the optimal solution to the LP. We then
study the tradeoff between the number of rounds and the quality of the approximation ratio obtained.

In discussing flow control policies, we study a scenario in which each of n connections transmits data
along a fixed path in the network, along an ordered subset of the m routers which comprise the network.
Each router ¢ has capacity C;, which it may share among the connections which utilize it, while each
connection is willing to pay B; for every unit of end-to-end capacity which it receives. Therefore, the
connections act as the primal agents and the routers act as the dual agents in the following positive linear
program.
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Clearly, this positive linear program can be converted to standard form by the local operation a;; =

a5
B;C;+
of its neighboring routers will receive. Since routers do not typically initiate transmissions to connection

In a primal round, each connection may transmit a fixed-length message along its path, which each

endpoints in existing networks, we implement a dual round by having each connection transmit a control
message which loops through the network and back to the source. Then, each router en route, i.e. exactly
those routers which neighbor a given connection, may modify the contents of the payload of the control
message for that connection as it passes through in the dual round. This implementation introduces a
restriction on the general model, however, in that each connection only receives a single message from
its neighboring routers in each dual round. As mentioned earlier, this simple and natural model of
communication between connections and routers corresponds to models previously suggested in other
studies of flow control [AA94, AMO96, AS97]. In a synchronous model, each round takes time equal to
the maximum round-trip time experienced by a connection in the network.

Another assumption that we make on the LP is that it is given to the algorithm in a normalized
form in which the a;; are either 0, or satisfy ’l_v < a;; < 1. One can convert a problem in standard form

to the normalized form simply by dividing all constraints by @, = maxa;;, thereby setting v = z:‘:z,
(where a,,;, = min{a;;|a;; > 0}). Performing this transformation is straightforward in both the serial
setting and in the distributed setting if bounds on the values of a4, and a,,;, are known to all agents
in advance. In the context of the flow control problem, all agents would need to know are bounds on
the min and max values of the edge capacities and benefit coefficients to compute y. A disadvantage of
this approach is that the value of v, which affects the running time of our algorithm, depends on the
values of the entries of the matrix. So we show in Section 5 that solving a problem in standard form can
be reduced to solving problems in normalized form where the value of v depends only on m and ¢ and
does not significantly affect the approximation ratio or the running time of our algorithm. Moreover, this
transformation can be done distributively in a constant number of rounds, without global knowledge of
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A final note is that the message size we use in our implementation can be bounded by a number of
bits polynomial in log m,logy and 1/e.

3 The Algorithm

Our algorithm for approximately solving linear programming runs in phases as shown in Figure 1. At
the end of each phase, the flow values y; assigned to the connections are primal feasible and the “weights”
on the routers z; are dual feasible:

Primal Feasibility: Vi, A; = Z a;;y; < 1.
J

Dual Feasibility: Vj, a; = Zaz’jfﬁ > 1.
7
In a primal feasible solution, each router ¢ has sufficient capacity to route the aggregate flow A; allo-

cated to neighboring connections. In a dual feasible solution, each connection j transports flow through
neighboring routers with aggregate weight a; > 1.



procedure Round-Update() {
Vi, Ai = )25 aijy;
. Ay
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}

procedure Initialize() {
§=0+c% p=1;  Q=pln(6yme);
p=(r+8)(Q+pn(Q+pIn(2pQ)));  Y=m;  Pp=06mzerts;

Vi, iy =3 ie, Qi Vi, nj = maXier; i Yi = w8

}

Algorithm LP() {

call Initialize()

repeat until (¢ > ¥r) { /* Phase */
call Round-Update()
repeat until (min; a; > 1) { /* Iteration */

Vj,if (a; < 1) then y; =y, (1 + %)
call Round-Update()
}
b= p(1+0
}
Vj, output y;

}

Figure 1: The Linear Programming Approximation Algorithm

Throughout the algorithm, the values of the z; are dependent on the values of neighboring y; by
the exponential weighting function: z; = /1), where ¢ is a constant which depends on the desired
approximation ratio, and 1 is a scaling factor which depends upon the phase number. We begin each
phase by increasing the value of v, scaling down the dual feasible values of the z; from the previous phase
and thereby introducing some slack by lightly loosening the z;’s dependence on the y;. At this point
the dual variables may no longer be feasible. This introduction of slack allows us to perform iterations
in which we slowly increase, or “pump”, the values of certain y; in order to move to a primal solution
with greater benefit. The y; which are pumped in a given iteration are exactly those for which the value
of the variable a; is dual infeasible, i.e. smaller than 1. Therefore, when pumping terminates, ending a
phase, dual feasibility is again achieved. Primal feasibility is maintained throughout the execution of the
algorithm.

The parameter r in the algorithm determines the number of phases the algorithm executes, which
trades off against the quality of the approximation. The approximation ratio which we obtain is a
(r4(1 + €)*) approximation to the optimum solution of the LP. We prove that after running for a constant
number of phases, we obtain a logarithmic approximation ratio, and after running for a logarithmic
number of phases, we obtain the stated ratio. Furthermore, we show that in each phase, we perform
at most a polylogarithmic number of “pump” iterations. In the sequential implementation presented in
Figure 1, the bottleneck operation is to recompute the a;s after each iteration, which takes O(nm) time.



Until now, our discussion of the algorithm has centered on the serial implementation. Additional
considerations must be taken into account in the definition and description of the distributed algorithm,
which we briefly discuss here, leaving the details for Section 5. Since global operations cannot be per-
formed quickly, each distributed processor must be able to independently compute the values of all of
the variables described in the serial implementation. In the case of network parameters which are fixed,
such as the value of m, and for the parameters which affect the approximation ratio, r and ¢, we assume
that these values are known to all processors. The parameter v may not be known by all processors, but
we describe how to specify this parameter in the event that it cannot be locally computed in Section 5.3.
The one remaining parameter is n, the number of connections. We do not assume that this value is
globally known - instead, each primal agent j uses a value n; which it can compute from its neighbors in
two distributed rounds.

4 Analysis

In this section, we prove the following main results about our algorithm:

Theorem 1 For 0 < ¢ < 1 and 0 < r < In(ym) the algorithm produces a feasible (r + (1 + €)*)-
In? (ym) In(ymn/e) )

approzimation to the optimum primal linear programming solution, and runs in O( 2

rounds.

The following corollary clarifies the tradeoff between running time and quality of the approximation
and follows directly from Theorem 1.

Corollary 2 For any ¢ < 1 there exists a (14 ¢) approzimation algorithm for positive linear programming
2
that runs in O (MM{;‘MZ) rounds. For any 1 < r < In(ym) there exists a (1+ r) approrimation

€

2
algorithm for positive linear programming that runs in O (MM) rounds.

r

The remainder of this section is divided into three parts: first we prove that at the end of each phase
both the primal and the dual solutions are feasible. Then we carry on the analysis of the approximation
ratio and finally we prove the claimed running time. In the proof we use the following two facts:

Fact 3 ¢ > c.
Fact 4 e~ > 1.

Fact 3 follows from the definitions, and the involved proof of Fact 4 is left for the Appendix.

4.1 Feasibility

Recall that the algorithm has the property that at the end of each phase (prior to increasing ), the z;s
are a feasible solution to the dual program, implying the following fact:

Fact 5 (Dual Feasibility) At the end of each phase, for all j, a; > 1.

We next prove that the y;s are primal feasible throughout the execution of the algorithm, using
Claim 6 to help perform the induction. Throughout the proof it will be convenient to think of the y;s as
being increased from 0 to their actual initial value set in the algorithm. We will refer this operation as
iteration 0.

Claim 6 For all i and for every iteration, AN; < %
Claim 7 (Primal Feasibility) For all i, \; < 1 throughout the execution of the algorithm.

We prove these two claims simultaneously by induction over iterations of the algorithm.



Proof: Let J; = {j|a;; > 0}. The first step is to prove that Claim 6 holds for iteration 0:

Ai = Zaijyjézaijﬁ
J

J€J; J€J;

=2 =<
a;; = n; -
n2¢ 17 k3 ¢_

. T,
JEJ; ¢

ol

Since ¢ > ¢ this also implies that Claim 7 holds at iteration 0.

Consider a subsequent iteration, and let Av denote the change in variable v in that iteration. We
have that for all 7, Ay; < y]é by the rate of increase in an iteration, so for all 1,

€ € €
AN =Y aijAy; <Y agyi— = A~ < -
7 7 ¢ ¢~ ¢

where the final inequality holds by the inductive hypothesis of Claim 7. This completes the proof of
Claim 6.

To complete the proof of Claim 7, we consider two cases for A; separately. We first consider edges ¢
for which A\; < 1 — g prior to an iteration. From the proof of Claim 6 we have that after an iteration on
such an edge, \! < A\, + g < 1, giving the desired result.

Next we consider edges 7 for which A; > 1 — é prior to an iteration. Let ¢ be such an edge and fix

j € J;. We have that:
it e

o; = Zaijk > Q% = Ujj—— 2> Ojj——.
- " "

In the proof of Fact 4 in the appendix we show that by our choice of ¢, e?~¢ > 71, and hence a; > a;y > 1.
By the definition of the algorithm, we never increase the flow on connection j if a; > 1, so in fact, no
path in .J; increases its flow in this iteration. Therefore, A; does not increase during this iteration and
remains smaller than 1 by the induction hypothesis, completing the proof. [ |

4.2 Proof of the Approximation

We now turn to bound the approximation ratio obtained by the algorithm stated as the first half of
Theorem 1:

Claim 8 For any 0 < € < 1 and 0 < r < In(ym) the algorithm produces a feasible (r + (1 + €)?)-
approzimation to the optimum primal linear programming solution.

We use the notation AY =3, Ay; to denote the aggregate change in the y values over the course of an
iteration and similar notation for other variables. We begin with the following lemma.

Lemma 9 For every iteration

AX
— <
Proof: As ¢ < 1, we have from Claim 6 that AX;¢ < ¢ < 1. It follows that
Az, = (eA’\"(b — 1)
<z AN+ AN)
< xZAAqu(l + 6)

using the inequality e* — 1 < z(1 4+ z) for z < 1.



Let S = {jla; < 1} be the set of active connections in the iteration. The lemma follows from the
following sequence of inequalities:

AX = Z Azx; < Z :EZA/\qu(l + 6)

= Dowi ) aAyio(1+ o)
: JjES
= Z ij Zaij.riqb(l + 6)
j€Ss B
= D Ayaié(l+e)
J€S
< AY¢(1+¢).

The final inequality holds from the definition of 5. [ |

In stating and proving the next lemma, we require a more precise description of our notation. We
now consider the change in the values of the dual variables X over the course of a phase. In the proof,
we let X' denote the sum of the z; at the end of the current phase, and we let X denote the sum of the
x; at the end of the previous phase. We let AX denote the change in a the sum of the z; over the course
of the current phase. We further define X* to be the minimum over all dual feasible solutions obtained
at the end of each phase and let Y7, be the primal feasible solution obtained at the end of the final phase.
The following lemma directly implies Claim 8.

Lemma 10 X+
Y, > —m——.
L=7% + (14 ¢€)?

Fact 5 and Claim 7 respectively imply that X™* is dual feasible and Y7, is primal feasible. In conjunction
with Lemma 10 this implies the approximation result stated in Claim 8, by linear programming duality.

Proof: Since the values X are scaled down by a % = 1 + ¢ factor just following the end of each phase,
the earlier definitions imply that:

a—
X' =X—+4 AX.
W

By rewriting this expression and applying the inequality ¢* > 1 4 z, we have:

xix D (14 AXUED) o b (o)

Now, using X* < X and applying Lemma 9 yields

U AY(1+€)2
KgX%G_T*O

Now let X; be the value of the dual solution at the end of the first phase and ¥, be the initial value
of . Similarly let X7 be the value of the dual solution at the end of the last phase and ¥ be the
appropriate value of .

Using the bound above repeatedly to compare Xy, with X; gives us:

7 Vi d(1+0)?
Xp <X 22 (75 (1)
by,



We again use Lemma 9 applied to the first phase. Let X stand for the value for X before the first

&0

initialization of the y;s, that is Xq = >, = = 1. Let Y; denote the value of the primal solution at the
end of the first phase. We have that

X1 — Xo S }/1¢(1 + 6).

If X7, < d’%ﬁe)(X 1— Xo) then by the monotonicity of the primal solution the claim of the theorem follows:

X*<Xp<(r+6)Y1 <(r+(1+0HYg

We are left with the case that X7, > ¢(1+e)(
is bounded below by 1 (by the normalized form of the program) we have that X > 1 = Xy. Also note
that by the assumption r < In(ym), we have ¢ > (r + ¢). We therefore obtain

o(1+¢€) P2+ ¢€)
r46 r+6

X1 — Xo). Since X7, is dual feasible and the optimal solution

X1<XL< ‘|‘1)§XL

Using the bound above in (1) and observing that »; = m and ¥, > ¥r/(1 + €) we get
€ 2
Ypedro” YF

m 5,2_:;) (1+¢)

¢ =
6mr+5er+

m(2 + ¢)(1 +e)rf5

(1+)%9
> ert(1+e)?

€

by substituting § = (1+ €)%, and using ¢ < 1. We finally get
o, 1
X* 7 r4+(1+e¢)?

4.3 Running Time

We now prove the second half of Theorem 1, bounding the number of rounds every connection executes
before outputting its flow value:

Claim 11 Our algorithm runs in O (Mﬁmﬁ)w) rounds.

TE

Proof: We bound the number of phases by measuring the change in :

oo (15)] =0 (4 25) <o (232).

We now bound the number of iterations in a phase by computing the maximum number of iterations

needed to increase all a; values above 1. In particular, we prove that if a connection j participates in a
polylogarithmic number of iterations in a phase, a; increases above 1.

For a given j, we say that y; is large once y; > %, Initially, y; = ne—(ﬁ and at every iteration it increases
J

by a factor of 1+ % Therefore the number of iterations connection j can participate in before y; becomes

large is at most
v n¢
1 e | =-—].
OB1+5 <€2 € )



Now once y; is large, we have that

v

|

Let the set I; = {i|a;; > 0}. Therefore for all ¢ € I;

1 1
AN > D gy > —Ay; > — and
P gl €
a; = Zaijmg = Zaijxi CeBNd > a; celle
7 7

Therefore, after In(ym(1 + ¢€))e additional iterations:
a;- >a;-ym(l4¢)
where a; and o’ denote values at the start and end of these iterations respectively. At the beginning of
the first phase, all a; > mi, since all x; are initialized to £ = L1 At the beginning of subsequent phases,
y m m
all a; > 11?, by Fact 5. It follows from the discussion above that after these iterations a; > 1.
The bound on the number of iterations during a phase is therefore:

[logl_l_i (%) + In(ym(1+ 6))4
= 0 (2In(222) 4 In(ym))
o (1)

€

With the bound on the number of phases this completes the proof of Claim 11 and Theorem 1. m

5 The Distributed Implementation and Special Form

In this section, we first present a distributed implementation of our algorithm. Then we describe modi-
fications of the linear program and the analysis which enable us to implement our algorithm when 7 is
not known to all distributed agents or when we wish to eliminate the dependence of the running time on
values of the matrix, i.e. when v = %=z Finally, the last subsection describes a distributed technique

Amin

for dividing our original program into subprograms conforming to these modifications.

5.1 The Distributed Algorithm

The distributed implementation of our algorithm is shown in Figure 2. The top half of the imple-
mentation specifies the code executed at the routers and the bottom half specifies the code executed at
the connections. Connections and routers communicate by message-passing, in the model of distributed
rounds described in Section 2. Much of the complexity in converting the serial implementation into a
distributed implementation involves local synchronization. In our implementation, message-passing prim-
itives enable control to alternate between connections and routers at a local level. This is not to say that
control is globally synchronized — in fact, at any instant in time, connections in separate areas of the
network might not even be working on the same phase.

The other technical obstacle in converting the serial algorithm to a distributed algorithm is the
condition for ending a phase: (min;a; > 1). Since we cannot hope to compute this minimum value
in our distributed model, we instead let each connection check its end-of-phase condition locally and
independently. Upon completion, each connection sends an end-of-phase message to its neighboring
routers, and waits for those neighboring routers to terminate the phase before proceeding on to the next
phase.

10



procedure Router-Update; () { /* Update A; and z;. */
A

Ai = )5 aijys r; = ip—l; transmit z; to all connections j € J;;

}

procedure Router-Initialize; () { /* Initialization for Router i */
Ji = {jla;; > 0}; i =) ier, ij; Y =m;

transmit 72; to all connections j € J;;
wait until (initial y; values arrive from all j € J;)

}

Algorithm Router-DLP;() { /* Algorithm for Router ¢ */
call Router-Initialize;()
repeat until (all j € J; terminate) {
call Router-Update;() /* Phase begins after this update */
repeat until (all j € J; end current phase) {
wait until (new y; values arrive from all active j € J;)
call Router-Update;()

} /* End of phase */
transmit end-of-phase message to all connections j € J;;
=91 +0);
}
}
procedure Connection-Increase; () { /* Update y; */
Y = yj (1 + é), transmit y; to all routers ¢ € Ij;
}
procedure Connection-Initialize;() { /* Initialization for Connection j */
I; = {i]a;; > 0}; wait until (72; values arrive from all i € I;)
§=(14+¢?% p=1 Q = pIn(6yme®);
85
d=(r+8)@Q+pm(Q+pM(20Q)));  ¥=m;  Pp=06mzeris;
nj = maX;ey; Ng; Y = nfé; transmit y; to all routers i € I;;
}
Algorithm Connection-DLP; () { /* Algorithm for Connection j */

call Connection-Initialize; ()
repeat until (¢ > ¢r) {
wait until (z; values arrive from all ¢ € I;)
aj =) aijx; /* Phase begins after this update */
repeat until (a; > 1) {
call Connection-Increase; ()
wait until (z; values arrive from all ¢ € I;)
aj = ) i T
/* End of phase — become inactive */
transmit end-of-phase message to all routers i € I;;
wait until (end-of-phase messages arrive from all routers ¢ € I;)
} ¥ =91+ e);

output y; and terminate;

}

Figure 2: The Distributed Algorithm
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5.2 Special Form

When we wish to avoid setting v = Z:‘::, we can transform an LP in standard form to a special form
(similar to one used by Luby and Nisan) in place of the transformation to normalized form described in
Section 2. A precondition for transforming an LP Z in standard form to an LP Z’ in special form is that
we can approximate the value of the optimal solution for Z to within a factor of 7: ¢ < OPT < er. If
this precondition is satisfied, we can perform the following transformation, which bounds the value of the
ai; in Z' by ;—i < aj; < 1forall i and j, giving 7' = 7.

Define v = 7*, and perform the following transformation operation on the constraints:

€ e €
” if a;; <

TC CT
1 ifa;>v
a% otherwise
This transformed LP has the following properties, proofs of which are omitted:

1. If {y}} is a primal feasible solution for Z’ then

0 if 37 such that a;»j =1
Yi=193 v .
-+ otherwise

is primal feasible for 7, and >_; y; > El{ Y% _ ¢.0OPT.

Vv

+e

2. If {y;} is primal feasible for Z then {y§ = f } is primal feasible for Z’, and 3°, 4} = 3=, YiTee-

3. ;% < ap; < 1forall 7 and j.

vTe —

We generate an approximate solution to Z by performing the transformation to special form and com-
puting a (1 + ¢) approximation {y}} for Z’ using our algorithm. We transform this solution to {y;} as
described in (1) and get a primal feasible solution Y such that:
!
Y OPT’
SRR
- v

Y —¢-0OPT > — —¢-0PT
v
OPT(

(1+¢)

v

The first inequality is from property (1), the second is based on the fact that {y:} is a (1 + ¢
approximation to the value of Z’' (denoted by OPT’) and the final inequality is from property (2).

Next we need to explain how to choose the parameters ¢ and 7 as to guarantee ¢ < OPT < cr.
Recall that /; denotes the set of edges incident to connection j: I; = {i|a;; > 0} and J; denotes the set
of connections incident to edge i: .J; = {j|a;; > 0}. Now define

;, = min maxa
Bi Min max ay,
a quantity which can be locally computed in one round for each router 7. Also, let § = min; 3; and for
each connection j, define 3; = min;ez; 8;. It is relatively easy to show that L < OPT < 2. The first
inequality holds from the primal feasibility of the solution in which the connection j used in the evaluation
of the minimum f; is assigned flow y; = % The second inequality holds from the dual feasibility of the

solution in which each router 7 is assigned weight z; = ﬁi
k2

Therefore, we can set ¢ = %, and 7 = m in sequential implementations, giving v’ = T—;, and bounding
In?(m/e) In(mn/e)

= ) rounds.
TE

the running time by O (
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5.3 Distributed Implementation

In the sequential case, knowledge of 3 is enough to perform the transformation to special form, but
distributed agents may not know this value. We now describe a technique in which we distributively
subdivide the LP into subprograms based on local estimates of 3. The value of each subprogram is
bounded, so we can work in special form. Then, we recombine solutions in such a way as to only give
flow to connections with good estimates of 3, but we prove that this only reduces the total flow by a
small factor.

Set p = [H and for ¢ = 0,...,p— 1, define the sets

| /m\PEDEe m\ Ptta
G?I{J <?) Sﬂj<<?) }

for integer ¢. It is clear that each connection belongs to exactly p of these sets. Independently for each
value of ¢, each router ¢ assigns flow only to connections which are members of G%q, where T}, is the
minimal set index of connections in J; for ¢. In effect, this means that the algorithm is run on the network
p successive times. From the connection’s point of view, it runs p successive algorithms, using 3; as an
approximation for #. In each of the algorithms, it can be rejected (i.e. given no flow) by some of the
routers. The final flow assigned to connection j is the average of the flows given in the p independent
trials. We will prove that this procedure does not decrease the flow by more than an additional (1 — ¢)?

factor.

Now define OPT(X) to be the value of the modified LP when flow can only be assigned to connections
in the set X. It is not difficult to show that OPT(GY) is bounded between (%)p(t_l)ﬂ and ( )p(t—l)-l-q ,

€
m
(%)1/E -m. Thus, we have that for each set G}, the special form of the modified LP for connections in

241
G{ has vy = (%) /.
We now turn to bound the approximation ratio. Consider a particular ¢ € {0,...,p — 1}, and let
T and @ be the unique integers such that § is in the interval defined by G% and g > (%)pT+Q_1. For

q # @ and for the dual feasible setting {z; = %}

OPT (UG?) < Yo @

t>T ilien l€eGEt>T

m €

€

This implies that OPT (G%) > (1 — ¢) OPT for all ¢ # Q. The quality of the solution we obtain is
therefore bounded below by:

Ls~ orr (63> 2= 11— ) oPT > (1 - o)? OPT.
P ozq P

Putting everything together, we have a distributed algorithm that assumes global knowledge only of m and
the approximation parameters r and €. This algorithm finds a primal feasible (r + (14 €)°)-approximation

2
of the optimal solution, and terminates in O (%) distributed rounds.

6 Discussion

We studied the problem of generating feasible solutions to positive linear programs in a distributed
environment, and in particular, the application of flow control. Our results explore the tradeoff between
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the amount of communication among the distributed agents and the quality of the solution we obtain,
measured by the approximation ratio. We give an algorithm which obtains a (1 + €) approximation ratio
in a polylogarithmic number of distributed communication rounds. Yet, many theoretical and practical
questions remain open.

One obvious question is can the running time be improved? It is not difficult to show that % distributed
rounds are required to achieve a 1 + ¢ approximation, but other less trivial lower bounds are yet to be
found. Another interesting theoretical question is the scope of these results, i.e. can they be applied to
non-positive LPs?. Finding fast sequential approximation algorithms for general linear programs could
be a start in this direction.

On the more practical side, we are interested in implementing our algorithm as a flow control policy.
Our preliminary implementation indicates that further work on fine-tuning the algorithm to improve
performance could enable the use of the algorithm for flow control on real networks.
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Proof of Fact 4

We have to prove that e?~¢ > 4. Substituting ¥z for ¢ and multiplying by e, we must show

e’ > (67meE)T+6er+5 or
L2 1 ¢ 1

+6 > (6 ar r.

> (me)H )

Recall from the definitions that p = %,

Q@ = pln(6yme), and Tj_é =Q +pn(Q + P), where P = pIn(2pQ). Therefore it is enough to prove the
following.

7’—}—5 pln(T+5) Q
=Q+pn(Q+P)—pln(Q +pn(Q +P)) - Q

_ Q+
= PIn(gp tgery) 2 0-

To show that pln(ﬁ(gm) is nonnegative we need P > pIn(Q + P) or
pln(Q+ P)— pIn(2pQ) = pln(%) <0.

It is left to show then that Q+P < 1, but

20Q
Q+P _ Q+pIn(2Q)+pIn(p)
20Q T 2PQ
S 21p _I_ ln(ZQ) + ln( ) < 2p _I_ + ln(p)‘

This follows from the fact that @ > p and from Inz/z < 1/e. Since 1 4 In p < p we get

Q+P§1+1<1
2 €

which completes the proof. [ |
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