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Abstract

This paper proposes and evaluates soft timers, a new oper-
ating system facility that allows the efficient scheduling of
software events at a granularity down to tens of microsec-
onds. Soft timers can be used to avoid interrupts and reduce
context switches associated with network processing without
sacrificing low communication delays.

More specifically, soft timers enable transport protocols
like TCP to efficiently perform rate-based clocking of packet
transmissions. Experiments show that rate-based clocking
can improve HTTP response time over connections with high
bandwidth-delay products by up to 89% and that soft timers
allow a server to employ rate-based clocking with little CPU
overhead (2–6%) at high aggregate bandwidths.

Soft timers can also be used to perform network polling,
which eliminates network interrupts and increases the mem-
ory access locality of the network subsystem without sacri-
ficing delay. Experiments show that this technique can im-
prove the throughput of a Web server by up to 25%.

1 Introduction

We propose and evaluatesoft timers, an operating system
facility that allows efficient scheduling of software events at
microsecond (�sec) granularity.

The key idea behind soft timers is to take advantage of
certain states in the execution of a system where an event
handler can be invoked at low cost. Such states include the
entry points of the various OS kernel handlers, which are ex-
ecuted in response to system calls, exceptions (TLB miss,
page fault, arithmetic) and hardware interrupts. In these
“trigger states”, the cost of saving and restoring of CPU state
and the shift in memory access locality associated with the
switch to kernel mode have already been incurred; invoking
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an additional event handler from the trigger state amortizes
this overhead over a larger amount of useful computation.

Of course, the times at which a system enters a trigger
state are unpredictable and depend on the workload. There-
fore, soft timers can schedule events only probabilistically:
A soft timer event may be delayed past its scheduled time
by a random but bounded amount of time. In practice, trig-
ger states are reached often enough to allow the scheduling
of events at intervals down to a few tens of�secs, with rare
delays up to a few hundred�secs. As we will show, soft
timers allow the scheduling of events at these intervals with
very low overhead, while the use of a conventional hardware
interrupt timer at the same rate would result in unacceptable
overhead on the system.

We explore the use of a soft timers facility to perform
two optimizations in the network subsystem. Soft timers en-
able a transport protocol like TCP to efficiently performrate-
based clocking, i.e., to transmit packets at a given rate, inde-
pendent of the arrival of acknowledgment (ACK) packets.
Rate-based clocking has been proposed as a technique that
improves the utilization of networks with high bandwidth-
delay products [25, 18, 1, 10, 5]. Our experiments show
that a Web server that employs rate-based clocking using
soft timers can achieve up to 89% lower response time than
a server with a conventional TCP over networks with high
bandwidth-delay product.

A second optimization issoft timer based network
polling. Here, soft timer events are used to poll the network
interface, thus avoiding interrupts. Experiments show that
the performance of a Web server using this optimization can
increase by up to 25% over a conventional interrupt based
implementation.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide background and motivation for this work.
The soft timers facility is presented in Section 3. Applica-
tions of soft timers are discussed in Section 4. We present
empirical results obtained with a prototype implementation
of soft timers in Section 5, discuss related work in Section 6
and conclude in Section 7. Background information on the
need for rate-based clocking can be found in the Appendix.
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2 Background and motivation

Modern CPUs increasingly rely on pipelining and caching to
achieve high performance. As a result, the speed of program
execution is increasingly sensitive to unpredictable control
transfer operations. Interrupts and context switches are par-
ticularly expensive, as they require the saving and restoring
of the CPU state and entail a shift in memory access local-
ity. This shift typically causes cache and TLB misses in the
wake of the entry and the exit from the interrupt handler, or
the context switch, respectively.

The cost of interrupts and context switches is generally
not a concern as long as they occur on a millisecond (msec)
timescale. For instance, disk interrupts, conventional timer
interrupts used for time-slicing and the associated context
switches typically occur at intervals on the order of tens of
msecs.

However, high-speed network interfaces can generate in-
terrupts and associated context switches at intervals on the
order of tens of�secs. A network receive interrupt typically
entails a context switch to a kernel thread that processes the
incoming packet and possibly transmits a new packet. Only
after this thread finishes is the activity that was originally
interrupted resumed.

As we will show, these interrupts and context switches
can have a significant impact on the performance of server
systems performing large amounts of network I/O. Even a
single Fast Ethernet interface can deliver a full-sized packet
every 120�secs and Gigabit Ethernet is already on the mar-
ket. Moreover, many high-end Web servers already have
backbone connections to the Internet at Gigabit speed.

2.1 Rate-based clocking

Achieving high network utilization on networks with in-
creasingly high bandwidth-delay products may require
transport protocols like TCP to performrate-based clocking,
that is, to transmit packets at scheduled intervals, rather than
only in response to the arrival of acknowledgment (ACK)
packets.

Current TCP implementations are strictlyself-clocking,
i.e., packet transmissions are paced by the reception of ACK
packets from the receiver. Adding the ability to transmit
packets at a given rate, independent of the reception of ACK
packets (rate-based clocking), has been proposed to over-
come several known shortcomings of current TCP imple-
mentations:

� Rate-base clocking can allow a sender to skip the
slow-start phase in situations where the available network
capacity is known or can be estimated. This can lead to
significantly increases in network utilization and achieved
throughput, particularly when traffic is bursty and the net-
work’s bandwidth-delay product is high. Such conditions
arise, for instance, with Web (HTTP) traffic in today’s Inter-
net [25, 18].

� Rate-based clocking can overcome the effects ofACK
compressionandbig ACKs. Either phenomenon may cause
a self-clocked sender to transmit a burst of packets in close
succession, which can adversely affect network congestion.

� Rate-based clocking allows a TCP sender to shape its
traffic in integrated services networks [10].

Rate-based clocking requires a protocol implementation
to transmit packets at regular intervals. On high-bandwidth
networks, the required intervals are in the range of tens to
hundreds of�secs. For instance, transmitting 1500 byte
packets at 100Mbps and 1Gbps requires a packet transmis-
sion every 120�secs and 12�secs, respectively. Server
systems with high-speed network connections transmit data
at these rates even in today’s Internet. As we will show in
Section 3, conventional facilities for event scheduling avail-
able in general-purpose operating systems today cannot ef-
ficiently support events at this granularity. A more detailed
discussion of the need for rate-based clocking can be found
in Appendix A.

To summarize this section, interrupts and context
switches are increasingly costly on modern computer sys-
tems. At the same time, high-speed network interfaces al-
ready generate interrupts and associated context switches at
a rate that places a significant burden on server systems.
Rate-based clocking in transport protocols, which has been
proposed as a technique to increase network utilization and
performance on high-speed WANs, necessitates even more
interrupts when implemented using conventional timers.

In the following section, we present the design of the soft
timers facility, which enables efficient rate-based clocking
and can be used to avoid network interrupts.

3 Design of the soft timers facility

In this section, we present the design of soft-timers, a mech-
anism for scheduling fine-grained events in an operating sys-
tem with low overhead.

Conventional timer facilities schedule events by invok-
ing a designated handler periodically in the context of an
external hardware interrupt. For example, an Intel 8253 pro-
grammable interrupt timer chip is usually supplied with a
Pentium-based CPU. The former can be programmed to in-
terrupt the processor at a given frequency.

Unfortunately, using hardware interrupts for fine-grained
event scheduling causes high CPU overhead for the follow-
ing reasons:

� On a hardware interrupt, the system has to save the
context of the currently executing program and, after execut-
ing the interrupt handler, restore the interrupted program’s
state.

� Hardware interrupts are usually assigned the highest
priority in the operating system. Thus, irrespective of the
process currently running on the CPU, the interrupt handler
is allowed to interrupt the execution of the former. In gen-
eral, the data and instructions touched by the interrupt han-
dler are unrelated to the interrupted entity, which can ad-
versely affect cache and TLB locality.

In summary, the overhead of saving state, restoring state
and the cache/TLB pollution associated with interrupts lim-
its the granularity at which a conventional facility can sched-
ule events. In Section 5 we show that the total cost of a timer
interrupt in a busy Web server amounts to on average 4.45
�secs on a 300MHz Pentium-II machine running FreeBSD-
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2.2.6. This cost is insignificant when interrupts are being
generated every msec but it is unacceptable when interrupts
need to be generated (say) every 20�secs.

The key idea behind soft timers is as follows. During
normal operation, a system frequently reaches states in its
execution where an event handler could be invoked with
minimal overhead. Examples of such opportunetrigger
statesare

� at the end of executing a system call, just before re-
turning to the user program,

� at the end of executing an exception handler, such as
the ones triggered by a memory exception (e.g., TLB1

or page fault) or an arithmetic exception (e.g., divide-
by-zero),

� at the end of executing an interrupt handler associated
with a hardware device interrupt, just before returning
from the interrupt,

� whenever a CPU is executing the idle loop.

In these trigger states, invoking an event handler costs
no more than a function call and no saving/restoring of CPU
state is necessary. Furthermore, the cache and TLB contents
in these trigger states have already been disturbed due to the
preceding activity, potentially reducing the impact of further
cache pollution by the event handler. Performance results
presented in Section 5 confirm this reasoning.

Whenever the system reaches one of the trigger states,
the soft-timer facility checks for any pending soft timer
events and invokes the associated handlers when appropri-
ate. As such, the facility can execute pending events without
incurring the cost of a hardware timer interrupt. Checking
for pending soft timer events in a trigger state is very effi-
cient: it involves reading the clock (usually a CPU register)
and a comparison with the scheduled time of the earliest soft
timer event2. As we will show, performing this check when-
ever the system reaches a trigger state has no noticeable im-
pact on system performance.

A disadvantage of the soft-timer facility is that the time
at which an event handler is invoked may be delayed past
its scheduled time, depending on how much time passes be-
tween the instant when a soft timer event becomes due and
the instant when the system reaches a trigger state.

The maximal delay experienced by a soft timer event is
bounded, because the soft timer facility still schedules a pe-
riodic hardware interrupt that is used to schedule any over-
due events. The key point to notice is that as long as a sys-
tem reaches trigger states with sufficient frequency, the soft
timer facility can schedule events at much finer granularity
than would be feasible using a periodic hardware interrupt.

Results presented in Section 5 show that a 300Mhz Pen-
tium II system running a variety of workloads reaches trig-
ger states frequently enough to allow the scheduling of soft-
timer events at a granularity of tens of�secs.

1In some architectures (e.g., Pentium), TLB misses are handled
in hardware; in these machines, TLB faults cannot be used as trig-
ger states.

2A modified form of timing wheels [24] is used to maintain
scheduled soft timer events.

Example of minimum Event Time (just larger than T=1)

Example of maximum Event Time (just smaller than T+X+1=4)

event fires

event scheduled

event scheduled

event fires

Time

interrupt clock tick

measuring clock tick

Figure 1 . Lower and upper bounds for event schedul-
ing

The soft-timer facility provides the following operations.

� measure resolution() . Returns a 64-bit value
that represent the resolution of the clock (in Hz).

� measure time() returns a 64-bit value represent-
ing the current real time in ticks of a clock whose reso-
lution is given bymeasure resolution() . Since
this operation is intended to measure time intervals, the
time need not be synchronized with any standard time
base.

� schedule soft event(T, handler) : sched-
ules the functionhandlerto be called at leastT ticks
in the future (the resolution ofT is specified bymea-
sure resolution() ).

� interrupt clock resolution() : gives the
expected minimal resolution (in Hz) at which the fa-
cility can schedule events and equals the frequency of
the system’s periodic timer interrupt, which is used to
“back up” soft timers.

The soft timer facility fires an event (by calling
the corresponding handler) when the value returned
by measure time() exceeds the value stored at the
time the event was scheduled by at leastT + 1 (the
increment by one accounts for the fact that the time at
which the event was scheduled may not exactly coincide
with a clock tick). If X is the resolution of the inter-
rupt clock relative to the measurement clock (i.e.,X �
measure resolution()=interrupt clock resolution()),
then the soft timer facility puts the following bounds on the
actual time (in ticks of the measurement clock) when the
event fires:

T < Actual Event T ime < T +X + 1

Figure 1 gives examples of the above bounds whenT =
1 andX = 2. It is to be noted that the increment by one
is negligible if the measurement clock is significantly finer

234



than the interrupt clock (as is the case in most modern sys-
tems).

The reason for the upper bound is that the soft-timer fa-
cility uses a periodic timer interrupt to check for overdue
soft-timer events. However, the actual time at which the han-
dler is invoked is likely to be much closer toT . Expressed
differently, if we assume that

Actual Event T ime = T + d

whered is a random variable in the range[0::X + 1],
then the probability distribution ofd would be uniform if a
conventional timer interrupt based facility was used. With
typical values for the measurement resolution and interrupt
clock resolution of 1 MHz (1�secs) and 1 KHz (1msec), re-
spectively, X is 1000 and the maximal delay is 1001�secs.

With soft timers, the probability distribution ofd is de-
pendent on the system’s workload, which influences how of-
ten trigger states are reached. Results shown in Section 5
show that among a variety of workloads, the worst case dis-
tribution of d results in a mean delay of 31.6�secs and is
heavily skewed towards low values (median is 18�secs).
Therefore, applications that can benefit from fine-grained
events on the order of tens of�secs in the common case,
but can tolerate rare delays up to the resolution of the sys-
tem’s interrupt clock (typically 1msec), are well served by
soft timers.

4 Applications of soft timers

In this section, we describe two applications of soft timers,
rate-based clocking and network polling. In Section 5, we
will present empirical results to evaluate the use of soft
timers in these applications.

4.1 Rate-based clocking

As discussed in Section 2.1, achieving high utilization in
networks with large bandwidth-delay products may require
transport protocols like TCP to perform rate-based clocking.
In a conventional implementation of rate-based clocking, a
periodic hardware timer event must be scheduled at the in-
tended rate of packet transmissions. At network speeds of
several hundred Mbps and a packet size of 1500 Bytes (Eth-
ernet), this would require timer interrupt rates of one every
few tens of�secs. Given the overhead of hardware timer
interrupts (e.g., 4.45�secs), this would lead to unacceptable
overhead.

We observe that transmitting multiple packets per timer
event would lead to bursty packet transmissions and defeat
the purpose of rate-based clocking, which is to transmit data
at a relatively constant rate. However, packet transmissions
on different network connections that have separate bottle-
neck links could be performed in a single timer event.

Soft timers allow the clocked transmission of network
packets at average intervals of tens of�secs with low over-
head. Due to the probabilistic nature of soft timer event
scheduling, the resulting transmission rate is variable. In

Section 5, we will empirically show the statistics of the re-
sulting transmission process.

An interesting question is how a protocol implemen-
tation should schedule soft timer transmission events to
achieve a given target transmission rate. Scheduling a series
of transmission events at fixed intervals results in the cor-
rect average transmission rate. However, this approach can
lead to occasional bursty transmissions when several trans-
mission events are all due at the end of a long interval during
which the system did not enter a trigger state. A better ap-
proach is to schedule only one transmission event at a time
and let the protocol maintain a running average of the actual
transmission rate. The next transmission event is then adap-
tively scheduled in the context of the previous event handler
to smooth the rate fluctuations.

Our prototype implementation employs a simple algo-
rithm for scheduling the next transmission. The algorithm
uses two parameters, the target transmission rate and the
maximal allowable burst transmission rate. The algorithm
keeps track of the average transmission rate since the begin-
ning of the current train of transmitted packets. Normally,
the next transmission event is scheduled at an interval ap-
propriate for achieving the target transmission rate. How-
ever, when the actual transmission rate falls behind the tar-
get transmission rate due to soft timer delays, then the next
transmission is scheduled at an interval corresponding to the
maximal allowable burst transmission rate.

We will experimentally evaluate the use of soft timers for
rate-based clocking in Section 5.

4.2 Network polling

In conventional network subsystem implementations, the
network interfaces generate a hardware interrupt to signal
the completion of a packet reception or transmission3. Upon
a receiver interrupt, the system accepts the packet, performs
protocol processing and signals any blocked process that has
been waiting to receive data. Upon a transmit interrupt,
the system decreases the reference count on the transmitted
packets’ buffers, possibly deallocating them. In busy sys-
tems with high-speed network interfaces (e.g., server sys-
tems), network interrupts can occur at a rate of one every
few tens of�secs.

Another approach to scheduling network processing is
polling, where the system periodically reads the network in-
terfaces’ status registers to test for completed packet recep-
tions or transmissions. In a pure polling system, the sched-
uler periodically calls upon the network driver to poll the
network interfaces.

Pure polling avoids the overhead of interrupts and it can
reduce the impact of memory access locality shifts by (1)
testing for network events at “convenient” points in the exe-
cution of the system, and by (2) aggregating packet process-
ing. By performing polling when the scheduler is active,
packet processing is performed at a time when the system
already suffers a locality shift. By polling at an appropriate
average rate, multiple packets may have completed since the

3Some interfaces can be programmed to signal the completion
of a burst of packet transmissions or receptions.
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last poll, thus allowing the aggregation of packet processing,
increasing memory access locality.

However, the disadvantage of pure polling is that it may
substantially increase communication latency by delaying
packet processing. As a result, hybrid schemes have been
proposed. Traw and Smith [23] use periodic hardware timer
interrupts to initiate polling for packet completions when
using a Gigabit network interface. This approach involves
a tradeoff between interrupt overhead and communication
delay. Mogul and Ramakrishan [17] propose a system that
uses interrupts under normal network load and polling under
overload, in order to avoid receiver livelock. When process-
ing of a packet completes, the system polls the network in-
terface for more outstanding packets; only when no further
packets are found are network interrupts re-enabled.

Soft timers offer a third design choice. With soft timer
based network polling, a soft timer event is used to poll the
network interfaces. As in pure polling, network interrupts
are avoided and memory access locality is improved because
network polling and processing is performed only when the
associated soft timer event expires and the system reaches
a trigger state. However, since soft timer events can be ef-
ficiently scheduled at�sec granularity, communications la-
tency can be close to that achieved with interrupt driven net-
work processing in the common case.

In general, the soft timer poll interval can be dynamically
chosen so as to attempt to find a certain number of packets
per poll, on average. We call this number theaggregation
quota. An aggregation quota of one implies that one packet
is found, on average, per poll.

We will experimentally evaluate the use of soft timers for
network polling in Section 5.

5 Experimental results

In this section, we present experimental results to evaluate
the proposed soft timer facility. We quantify the overhead of
our proposed soft timer facility and compare it to the alter-
native approach of scheduling events using hardware timer
interrupts. We also present measurements that show the dis-
tribution of delays in soft timer event handling, given a vari-
ety of system workloads.

Finally, we evaluate the performance of soft timers when
used to perform rate-based clocking and network polling.

5.1 Base overhead of hardware timers

Our first experiment is designed to determine the base over-
heads of a conventional hardware interrupt timer as a func-
tion of interrupt frequency.

The experimental setup consists of four 300MHz
Pentium-II machines, each configured with 128MB of RAM
and connected through a switched 100Mbps Ethernet. We
ran the Apache-1.3.3 [3] Web server on one of the PII ma-
chines while the other three PII machines ran a client pro-
gram that repeatedly requested a 6 Kbyte file from the Web
server. The number of simultaneous requests to the Web
server were set such that the server machine was saturated.

The FreeBSD-2.2.6 OS runs on the server machine. The
kernel uses its standard timer facilities to schedule all events
in the system. However, an additional hardware timer inter-
rupt was scheduled with varying frequency. A “null handler”
(i.e., a handler function that immediately returns upon invo-
cation) was invoked whenever this timer interrupt fires, to
isolate the overhead of the timer facility alone.

We then measured the throughput of the Apache server
in the presence of the additional hardware timer, as a func-
tion of frequency. By measuring the impact of hardware in-
terrupts on the performance of a realistic workload, we are
able to capture the full overhead of hardware timers, includ-
ing secondary effect like cache and TLB pollution that result
from handling the timer interrupt.

Figure 2 plots the throughput of the Apache Web server
as the interrupt frequency of the hardware timer is increased
to 100KHz. Figure 3 plots the percentage reduction in
throughput and is indicative of the overhead imposed by the
hardware interrupts. The results show that the interrupt over-
head increases approximately linearly with frequency and
can be as high as 45% at an interrupt frequency of 100KHz
(one interrupt every 10�secs). From these results, it can be
calculated that the average combined overhead per interrupt
is about 4.45�secs4.

We repeated the experiment on a machine with a
500MHz Pentium III (Xeon) CPU running FreeBSD-3.3 and
found that the interrupt overhead was 4.36�secs. This in-
dicates that interrupt overhead does not scale with CPU
speed and suggests that the relative cost of interrupts in-
creases as CPUs get faster. Finally, a similar experiment
performed on an AlphaStation 500au (500MHz 21164 CPU)
running FreeBSD-4.0-beta resulted in an interrupt overhead
of 8.64�secs. This indicates that the high overhead associ-
ated with interrupt handling is not unique to Intel PCs.

Note that the overhead of a timer interrupt can be lower
on both platforms when the machine is idle, since the code,
data and TLB entries used during interrupt handling remain
fully cached. Our experiment tries to obtain a more mean-
ingful measure of the overhead by evaluating the total im-
pact of timer interrupts on the performance of a real work-
load that stresses the memory system. The results show that
timer interrupts have a significant overhead.

5.2 Base overhead of soft timers

The next experiment determines the base overhead of soft
timers. We implemented soft timers in the FreeBSD kernel.
Trigger states were added in the obvious places described
in Section 3. In practice, we found that the trigger interval
distribution could be improved by adding a few additional
trigger states to ensure that certain kernel loops contain a
trigger state. Examples of such loops are the TCP/IP output
loop and the TCP timer processing loop. Since Intel x86
CPUs handle TLB misses in hardware, these events could
not be used as trigger states in our prototype.

The idle loop checks for pending soft timer events. How-
ever, to minimize power consumption, an idle CPU halts

4Measurements using performance counters to measure the av-
erage elapsed time spent in the interrupt handler confirm this result.
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Figure 3 . Base interrupt overhead

when either (a) there are no soft timer events scheduled at
times prior to the next hardware timer interrupt, or (b) an-
other idle CPU is already checking for soft timer events.

In our next experiment, we scheduled a periodic soft
timer event such that a handler was invoked whenever the
system reaches a trigger state. That is, we programmed the
soft timer facility to invoke a soft timer event handler at the
maximal frequency possible, given the Web server work-
load. As with the hardware timer, a “null handler” was in-
voked whenever the soft timer fired.

The soft timer handler invocations caused no observable
difference in the Web server’s throughput. This implies that
the base overhead imposed by our soft timer approach is neg-
ligible. This is intuitive because the calls to the handler ex-
ecute with the overhead of a procedure call, whereas a hard-
ware interrupt involves saving and restoring the CPU state.
With soft timers, the event handler was called every 31.5
�secs on average. We observe that using a hardware inter-
rupt timer at a frequency of one event every 30�secs (33.3
KHz) would have a base overhead of approximately 15%.

5.3 Soft timer event granularity under differ-
ent workloads

Recall that once a soft timer event is due, the associated han-
dler is executed at the earliest time when the system reaches
a trigger state. The performance of a soft timer facility,
i.e., the granularity and precision with which it can sched-
ule events, therefore depends on the frequency at which the
system reaches trigger states.

We measured the distribution of times between succes-
sive trigger states for a variety of workloads. Figure 4 shows
the cumulative distribution function of time between succes-
sive trigger states.

The workloads are as follows. “ST-Apache” corresponds
to the Apache Web server workload from the previous ex-
periment. In “ST-Apache-compute”, an additional compute-
bound background process is running concurrently with the
Web server. “ST-Flash” is a Web server workload using a
fast event-driven Web server calledFlash [20]. “ST-real-
audio” was measured with a copy of the RealPlayer [22] run-
ning on the machine, playing back a live audio source from
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the Internet. “ST-nfs” reflects the trigger state inter-arrival
times when the workload is a NFS fileserver. Finally, “ST-
kernel-build” was measured while a copy of the FreeBSD-
2.2.6 kernel was built on the machine from the sources.

Additional information about the distribution with each
workload is given in Table 1. Two million samples were
taken in each workload to measure the distributions.

The results show that under a workload typical of a busy
Web server, the soft timer facility can schedule events at
a mean granularity of tens of�secs with negligible over-
head and with delays over 100�secs in less than 6% of the
samples. As shown below, this performance is sufficient to
perform rate-based clocking of 1500 byte packets at several
hundreds of Mbits/sec and it allows effective polling of net-
work interface events at the same rate.

In a busy Web server, it is intuitive that the many net-
work packet arrivals, disk device interrupts and system calls
provide frequent trigger states. One concern is that the
presence of compute-bound background computations may
cause long periods where the system does not encounter
a trigger state, thus degrading the performance of the soft
timer facility.

To measure this effect, we added a compute-bound back-
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Max (�sec) Mean (�sec) Median (�sec) StdDev (�sec) > 100�sec (%) > 150�sec (%)
ST-Apache 476 31.52 18 32 5.3 0.39
ST-Apache-compute 585 31.59 18 32.1 5.3 0.43
ST-Flash 1000 22.53 17 20.8 1.09 0.013
ST-real-audio 1000 8.47 6 13.2 0.025 0.013
ST-nfs 910 2.13 2 3.3 0.021 0.011
ST-kernel-build 1000 5.63 2 47.9 0.038 0.033
ST-Apache (Xeon) 1000 19.41 11 23 0.44 0.13

Table 1 . Trigger state interval distribution

ground process to the Web server, which executes in a
tight loop without performing system calls (“ST-Apache-
compute”). The results show that the presence of back-
ground processes has no tangible impact on the performance
of the soft timer facility. The reason is that a busy Web server
experiences frequent network interrupts that have higher pri-
ority than application processing and yield frequent trigger
states even during periods where the background process is
executing.

“ST-nfs” is another example of a server workload. The
NFS server is saturated but disk-bound, leaving the CPU idle
approximately 90% of the time. The vast majority of sam-
ples indicate a trigger state interval around 2�secs on this
workload.

The RealPlayer (“ST-real-audio”) was included because
it is an example of an application that saturates the CPU. De-
spite the fact that this workload performs mostly user-mode
processing and generates a relatively low rate of interrupts,
it yields a distribution of trigger state intervals with very low
mean, due to the many systems calls that RealPlayer per-
forms.

Finally, we measure a workload where the FreeBSD OS
kernel is built from the source code. This workload involves
extensive computation (compilation, etc.) as well as disk
I/O.

To determine the impact of CPU speed on the trigger in-
terval distribution, we repeated the experiment with the “ST-
Apache” workload on a machine with a 500MHz Pentium III
(Xeon) CPU running FreeBSD-3.3. The summary informa-
tion about the resulting distribution is included in Table 1.
The results show that the shape of the distribution is simi-
lar to that obtained with the slower CPU, however the mean
is reduced by a factor that roughly reflects the CPU clock
speed ratio of the CPUs. This indicates that the granularity
of soft timer events increases approximately linearly with
CPU speed.

While our selection of measured workloads is necessar-
ily limited, we believe that the soft timer facility can provide
fine-grained event support across a wide range of practical
workloads. The reason is that (1) most practical programs
frequently make system calls, suffer page faults, TLB faults
or generate other exceptions that cause the system to reach
a trigger state and (2) the soft timer facility can schedule
events at very fine grain whenever a CPU is idle.

In the most pessimistic scenario, all CPUs are busy, the
executing programs make infrequent system calls, cause few
page faults or other exceptions and there are few device I/O
interrupts. These conditions mark the absence of signifi-

cant I/O or communication activity in the workload, and can
arise, for instance, in scientific applications. However, ob-
serve that�sec timers are used primarily in networking, and
it is thus unlikely that any soft timer events are scheduled
under such conditions.

5.4 Changes in trigger interval distribution
over time

The trigger interval distributions shown in the previous sec-
tion are aggregated over 2 million samples, corresponding to
4–64 secs of execution time for the various workloads. A re-
lated question is how the trigger interval distribution changes
during the runtime of a workload. For instance, it is con-
ceivable that context switching between different processes
could cause significant changes in the trigger interval distri-
bution. To investigate this question, we computed the medi-
ans of the trigger interval distributions during intervals of 1
ms and 10 ms. Results are plotted in Figure 5 for a period of
10 secs of the runtime of the “ST-Apache-compute” work-
load. The x-axis represents the runtime of the workload, the
y-axis shows the median of the trigger interval distribution
during a given interval (1 ms and 10ms).

With 1ms intervals, the bulk of the trigger interval medi-
ans are in the range from 14 to 26�secs. A few intervals (less
than 1.13%) have medians above 40�secs. The medians for
the 10ms intervals (which corresponds to a timeslice in the
FreeBSD system), on the other hand, almost all fall into a
narrow band between 17 and 19�secs.

These results indicate that the dynamic behavior of the
workload appears to cause noticeable variability in the trig-
ger interval distribution over 1ms intervals. However, there
is little variability in the trigger interval distributions over
10ms intervals.

5.5 Trigger interval distribution by event
source

A related question is what fraction of trigger states is con-
tributed by each event source and how that contribution
affects the resulting trigger state interval distribution. To
answer this questions, we separately accounted for trigger
states by event source for the “ST-Apache” workload. Ta-
ble 2 shows the fraction of trigger state samples contributed
by each event source.

The sources “syscalls” and “traps” are self-explanatory.
The source “ip-output” generates a trigger event every time
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Figure 5 . Trigger interval medians during 1 ms and 10 ms intervals, ST-Apache-compute workload

an IP packet (e.g., TCP segment) is transmitted. The source
“tcpip-others” represents a number of other trigger states in
the network subsystem, such as the processing loop for TCP
timers. Network interface interrupts are reflected in the “ip-
intr” source.

Source Fraction of samples (%)
syscalls 47.7
ip-output 28

ip-intr 16.4
tcpip-others 5.4

traps 2.5

Table 2 . Trigger state sources

Figure 6 shows the impact that each trigger source has
on the trigger interval distribution. The graphs show the
CDFs of the resulting trigger interval distributions when one
of the trigger sources is removed. For instance, “no ipintr”
shows the CDF of the resulting trigger interval distribution
when there is no trigger state associated with network inter-
rupts. “All” represents the original distribution for the “ST-
Apache” workload from Figure 4. It is evident from the re-
sults that system calls and IP packet transmissions are the
most important sources of trigger events in this workload.

5.6 Rate-based clocking: timer overhead

In this section, we evaluate the use of soft timers to per-
form rate-based clocking in TCP. We show results that com-
pare the overhead of performing rate-based clocking with
soft timers versus hardware timer interrupts, we evaluate the
statistics of the packet transmission process and we explore
the potential for network performance improvements due to
rate-based pacing.

Our first experiment is designed to explore the over-
head of rate-based clocking in TCP using soft timers versus
hardware timers. The experimental setup is the same as in
the previous experiment except that the Web server’s TCP
implementation uses rate-based clocking using either soft
timers or a conventional interrupt timer to transmit packets.

The soft timer was programmed to generate an event ev-
ery time the system reaches a trigger state. One packet is
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Figure 6 . Impact of event sources on trigger interval,
CDF (ST-Apache workload)

transmitted whenever the handler is invoked and a packet is
pending transmission. On a LAN, such as the one used in our
testbed, FreeBSD’s TCP implementation does not use slow-
start. Thus, all packets are normally sent in a burst, as fast
as the outgoing network link can transmit them. Since the
transmission of a 1500 byte packet takes 120�secs on our
100Mbps network, the use of rate-based clocking has no ob-
servable impact on the network. Therefore, the experiment
isolates the overhead of using soft timers versus hardware
timers for rate-based clocking in TCP, but does not expose
possible benefits of rate-based clocking.

Table 3 shows the performance results obtained in this
experiment. We present results for both the Apache-1.3.3
Web server as well as the Flash server. For the results with
hardware interrupt timers, the 8253 was programmed to in-
terrupt once every 20�secs (50KHz frequency), causing the
dispatch of a thread (BSD software interrupt) that transmits
a packet. From the previous experiments, we know the base
overhead for event dispatch at this rate is about 22%. The
extra overhead indicated by the results is most likely due
to cache pollution, since the computation performed by the
handler is exactly the same as that performed during trans-
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Apache Flash
Base Throughput (conn/s) 774 1303

HW timer throughput (conn/s) 560 827
HW timer Ovhd (%) 28 36

HW timer Avg xmit intvl (�secs) 31 35
Soft timer throughput (conn/s) 756 1224

Soft timer Ovhd (%) 2 6
Soft timer Avg xmit intvl (�secs) 34 24

Table 3 . Overhead of rate-based clocking

mission of a packet in the original TCP implementation.
The results indicate that the effect of cache pollution

with hardware timers is at least 4% (28 � 22 � 2) and 8%
(36�22�6) worse than with soft timers for the Apache and
the Flash server, respectively. The fact that Flash appears
to be more affected by the cache pollution can be explained
as follows. Apache is a multi-process server whose frequent
context switching leads to relatively poor memory access lo-
cality. Flash, on the other hand, is a small, single-process
event-driven server with presumably relatively good cache
locality. It is intuitive, therefore, that the Flash server’s per-
formance is more significantly affected by the cache pollu-
tion resulting from the timer interrupts.

The results also show that the average time between
transmissions with soft timers is only slightly higher than
with the hardware timer when using the Apache server, and
it is lower when using the Flash server. This result can be
explained as follows. With hardware timers, the transmis-
sion rate is lower than the rate at which the 8253 chip was
programmed because the transmission event handler may in
general be delayed due to disabled interrupts. On the other
hand, soft timers perform substantially better when the Flash
server is used because that server is much faster than Apache
and therefore generates trigger states at a higher rate. The
combined effect is that soft timers with Flash result in a
lower time between transmissions than the hardware timer.

In summary, the results of this experiment show that soft
timers can be used to do rate-based clocking in TCP at rates
that approach Gigabit speed with very low overhead (2-6%
in our experiment). Using a conventional interrupt timer at
this rate has an overhead of 28-36% in our experiment and
is therefore not practical.

5.7 Rate-based clocking: transmission pro-
cess statistics

As discussed in Section 4, our implementation of rate-based
clocking based on soft timers uses an adaptive algorithm for
scheduling transmissions, in order to smooth variations in
the transmission rate caused by the probabilistic nature of
soft timers. The algorithm keeps track of the actual sending
rate, and whenever this rate falls behind the target sending
rate, the next transmission event is scheduled so as to achieve
the maximal allowable burst sending rate, until the actual
sending rate once again catches up with the target sending
rate.

We performed an experiment to determine the actual

achievable transmission rate and the resulting statistics of the
transmission process, as a function of the maximal allowable
burst transmission rate, assuming a target transmission rate
of one packet every 40�secs and 60�secs, respectively. The
workload in this experiment was that of the busy Web server
(“ST-Apache” in Figure 4), which is among the two work-
loads with the largest mean trigger state interval (i.e, worst
case).

We assume in this experiment that the bandwidth of the
network link attached to the sender is 1Gbps and the packet
size is 1500 bytes. Therefore, the minimal interval setting of
12 �secs reflects the maximal transmission rate of the net-
work link. At this minimal interval setting, rate-based clock-
ing is allowed to send packets at the link bandwidth when-
ever the actual rate is below the target transmission rate.

The results are shown in Tables 4 and 5 for target trans-
mission intervals of 40�secs and 60�secs, respectively. For
comparison, results for hardware timer based rate-based
clocking were also included. The hardware timer was pro-
grammed to fire regularly at the target transmission interval.

The results show that soft timers can support rate-
based clocking up to rates of one packet transmission every
40�secs, if it is allowed to send bursts at the link speed of
one packet every 12�secs. As the minimal allowable burst
interval is increased, the soft timers can no longer maintain
an average transmission interval of 40�secs, and drops to
65.9�secs at a minimal allowable interval of 35�secs.

At a target interval of 60�secs, soft timers can maintain
the average interval up to a minimal allowable burst interval
of 30�secs. The standard deviation is in all cases in the 30–
35�secs range and improves as the minimal burst interval
increases, as expected.

We note that these measurements apply to rate-based
clocking on a single connection. Soft timers can be used to
clock transmission on different connections simultaneously,
even at different rates. (A server may perform many trans-
mission simultaneously, resulting in large aggregate band-
widths.) In this case, multiple packets may be transmitted
on different connections in a single soft timer event (i.e., in
the context of one trigger state).

With hardware timers, rate-based clocking falls short of
the target transmission rate by 3�secs and 3.6�secs, respec-
tively. The reason is that some timer interrupts are lost dur-
ing periods when interrupts are disabled in FreeBSD. The
hardware timers achieve a somewhat better standard devia-
tion than soft timers, which is to be expected given the prob-
abilistic nature of the latter.

We also note that the base overhead of using timer inter-
rupt at the target transmission rates of 40 and 60�secs is at
least 13% and 8.5%, respectively (see Figure 3). Finally, we
observe that only a single hardware timer device is available
in most system. It is impossible, therefore, to use a hard-
ware timer to simultaneously clock multiple transmissions
at different rates, unless one rate is a multiple of the other.
Moreover, reprogramming the timer device frequently to a
different rate may be too expensive, due to the long latency
associated with accessing device registers. In practice, this
may cause additional deviation from the target transmission
rate.

Combined with the high overhead, these concerns raise
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Soft timers Hardware timers
Min interval (�sec) Avg interval (�sec) Std Dev Avg interval (�sec) Std Dev
12 (line speed) 40 34.5 43.6 26.8
15 48 31.6 - -
20 51.9 30.9 - -
25 57.5 30.9 - -
30 61 30.5 - -
35 65.9 30.1 - -

Table 4 . Rate-based clocking (target transmission interval = 40�secs)

Soft timers Hardware timers
Min interval (�sec) Avg interval (�sec) Std Dev Avg interval (�sec) Std Dev
12 (line speed) 60 35.9 63 27.7
15 60 33.2 - -
20 60 32.3 - -
25 60 31.2 - -
30 61 30.5 - -
35 65.9 30 - -

Table 5 . Rate-based clocking (target transmission interval = 60�secs)

questions about the feasibility of rate-based clocking with
hardware timers at high network speeds. Soft timers, on the
other hand, can support multiple transmissions at different
rates and with low overhead.

5.8 Rate-based clocking: network perfor-
mance

Our next experiment attempts to quantify the potential im-
pact of rate-based clocking on the achieved performance of a
Web server over network connections with high bandwidth-
delay products.

In our prototype implementation of rate-based clocking
in TCP, we assume that the available capacity in the network
is known. In practice, estimating the available capacity is
not a trivial problem. Practical mechanisms for bandwidth
estimation and other details of the integration of rate-based
clocking into TCP require further research and are beyond
the scope of this paper. Related work in this area is discussed
in Section 6.

To show the potential effect of rate-based clocking on
TCP throughput, we performed an experiment where a vari-
able amount of data is transmitted over a network connection
with high bandwidth-delay product. We model this connec-
tion in the laboratory by transmitting the data on a 100Mbps
Ethernet via an intermediate Pentium II machine that acts as
a “WAN emulator”. This machine runs a modified FreeBSD
kernel configured as an IP router, except that it delays each
forwarded packet so as to emulate a WAN with a given de-
lay and bottleneck bandwidth. In our experiment, we choose
the WAN delay as 50ms and the bottleneck bandwidth to be
either 50Mbps or 100Mbps. As a result, the TCP connection
between client and server machine has a bandwidth-delay
product of either 5Mbits or 10Mbits. Network connections
with these characteristics are already available in vBNS and
will soon be available in the general Internet.

We performed HTTP requests across the laboratory
“WAN” connection to an otherwise unloaded server. Ei-
ther the standard FreeBSD TCP implementation was used,
or alternatively our modified implementation, which avoids
slow-start and instead uses soft-timer based rate-based
clocking at a rate corresponding to the bottleneck bandwidth,
i.e., one packet every 120�secs (100Mbps) or 60�secs
(50Mbps), respectively. Since a persistent connection is as-
sumed to be already established prior to starting the experi-
ment, there is no delay due to connection establishment. The
results are shown in Tables 6 and 7.

We see that rate-based clocking can lead to dramatic im-
provements in throughput, response time and network uti-
lization on networks with high bandwidth-delay products.
Response time reductions due to rate-based clocking range
from 2% for large transfers to 89% for medium sized trans-
fers (100 packets or 141 KBytes). These improvements
are the result of rate-based clocking’s ability to avoid TCP
slow-start, which tends to underutilize networks with large
bandwidth-delay products on all but very large transfers.

Since the average HTTP transfer size is reported to be in
the 5–13 KB range [4, 16], rate-based clocking can have a
significant impact on the Web.

5.9 Network polling

Our final experiment evaluates the use of soft timers for
network polling. We implemented network polling in
the FreeBSD-2.2.6 kernel, using soft timers to initiate the
polling. The polling interval is adaptively set to attempt to
find a given number of received packet per poll interval, on
average (aggregation quota).

In this experiment, a 333MHz Pentium II machine with
4 Fast Ethernet interfaces was used as the server. Four
300MHz PII machines were used as the client machines,
each connected to a different interface on the server.
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regular TCP rate-based clocking
Transfer size Xput Response time Xput Response time Resp. time reduction
(1448 Byte packets) (Mbps) (msecs) (Mbps) (msecs) (%)
5 0.12 496 0.57 101.2 79
100 1.01 1145 9.36 123.7 89
1000 6.75 1714 34.07 340 80
10000 29.95 3867 46.33 2500 35
100000 45.54 25432 46.60 24863 2

Table 6 . Rate-based clocking network performance (Bandwidth = 50Mbps, RTT = 100 msecs)

regular TCP rate-based clocking
Transfer size Xput Response time Xput Response time Resp. time reduction
(1448 Byte packets) (Mbps) (msecs) (Mbps) (msecs) (%)
5 0.16 350 0.58 100.6 71
100 1.09 1056 10.34 112 89
1000 6.38 1815 51.94 223 87
10000 38.46 3012 86.77 1335 55
100000 81.37 14235 91.92 12601 11

Table 7 . Rate-based clocking network performance (Bandwidth = 100Mbps, RTT = 100 msecs)

We measured the throughput of two different Web
servers (Apache and Flash), given a synthetic workload,
where clients repeatedly request the same 6KB file. The
throughput was measured on an unmodified FreeBSD kernel
(conventional interrupt based network processing) and with
soft timer based network polling. Table 8 shows the results
for the two different servers, for aggregation quotas ranging
from 1 to 15, and for conventional (HTTP) and persistent
connection HTTP (P-HTTP).

The throughput improvements with soft timer based
polling range from 3% to 25%. The benefits of polling are
more pronounced with the faster Flash server, as it stresses
the network subsystem significantly more than the Apache
server and, owing to its better locality, is more sensitive to
cache pollution from interrupts. With P-HTTP, amortizing
the cost of establishing a TCP connection over multiple re-
quests allows much higher throughput with both servers, in-
dependent of polling.

The difference between the results for the conventional
interrupt-based system and network polling with an aggre-
gation quota of 1 (i.e., one packet per poll on average) re-
flects the benefit of avoiding interrupts and the associated
improvement in locality. The network polling results with
aggregation quotas greater than one reflect the additional
benefits of aggregating packet processing.

In general, aggregation of packet processing raises con-
cerns about increased packet delay and ACK compression.
However, we believe that aggregation is practical with soft-
timer based network polling, for two reasons. Firstly, soft-
timer based network polling is turned off (and interrupts
are enabled instead) whenever a CPU enters the idle loop.
This ensures that packet processing is never delayed unnec-
essarily. Secondly, when rate-based clocking is used, packet
transmissions are not paced by incoming ACKs. With rate-
base clocking, it is therefore no longer necessary to preserve
the exact timing of incoming ACKs, i.e., ACK compression
is of lesser concern.

Finally, we observe that future improvements in CPU
and network speeds will continue to increase the rate of net-
work interrupts in conventional network subsystem imple-
mentations. Since the relative cost of interrupt handling is
likely to increase as CPUs get faster (see Section 5.1), avoid-
ing interrupts becomes increasingly important.

5.10 Discussion

Soft timers allow the efficient scheduling of events at a gran-
ularity below that which can be provided by a conventional
interval timer with acceptable overhead. The “useful range”
of soft timer event granularities is bounded on one end by the
highest granularity that can be provided by a hardware inter-
rupt timer with acceptable overhead, and on the other end by
the soft timer trigger interval. On our measured workloads
on a 300 MHz PII CPU, this useful range is from a few tens
of �secs to a few hundreds of�secs. Moreover, the use-
ful range of soft timer event granularities appears to widen
as CPUs get faster. Our measurements on two generations of
Pentium CPUs (300MHz PII and 500MHz PIII) indicate that
the soft timer event granularity increases approximately lin-
early with CPU speed, but that the interrupt overhead (which
limits hardware timer granularity) is almost constant.

Soft timers can be easily integrated with an existing, con-
ventional interval timer facility. The interval timer facility
provides conventional timer event services, and its periodic
interrupt is also used to schedule overdue soft timer events.
Conventional timers should be used for events that need to be
scheduled at or below the granularity of the interval timer’s
periodic interrupt. Soft timers should be used for events that
require a granularity up to the trigger state interval, provided
these events can tolerate probabilistic delays up to the gran-
ularity of the conventional interval timer.

242



Interrupt Xput (req/sec) Soft Poll Xput (req/sec)
Aggregation 1 1 2 5 10 15
HTTP
Apache 854 (1.0) 915 (1.07) 933 (1.09) 939 (1.10) 944 (1.11) 945 (1.11)
Flash 1376 (1.0) 1568 (1.14) 1620 (1.17) 1690 (1.23) 1702 (1.24) 1719 (1.25)
P-HTTP
Apache 1346 (1.0) 1380 (1.03) 1395 (1.04) 1421 (1.06) 1439 (1.07) 1440 (1.07)
Flash 4439 (1.0) 4816 (1.08) 5071 (1.14) 5271 (1.19) 5376 (1.21) 5498 (1.24)

Table 8 . Network polling: throughput on 6KB HTTP requests

6 Related work

The implementation of soft timers is based on the idea of
polling, which goes back to the earliest days of computing.
In polling, a main-line program periodically checks for asyn-
chronous events, and invokes handler code for the event if
needed.

The novel idea in soft timers is to implement an effi-
cient timer facility by making the operating system “poll” for
pending soft timer events in certain strategic states. These
“trigger states” are known to be reached very frequently dur-
ing execution. Furthermore, these states are associated with
a shift in memory access locality, thus allowing the interpo-
sition of handler code with little impact on system perfor-
mance. The resulting facility can then be used to schedule
events at a granularity that could not be efficiently achieved
with a conventional hardware timer facility.

Traw and Smith [23] use periodic hardware timer inter-
rupts to initiate polling for packets completions when using a
Gigabit network interface. This approach involves a tradeoff
between interrupt overhead and communication delay. With
soft timer based network polling, on the other hand, one can
obtain both low delay and low overhead.

Mogul and Ramakrishan [17] describe a system that
uses interrupts under normal network load and polling under
overload, in order to avoid receiver livelock. Their scheme
disables interrupts during the network packet processing and
polls for additional packets whenever the processing of a
packet completes; when no further packets are found, inter-
rupts are reenabled.

In comparison, soft timer based network polling disables
interrupts and uses polling whenever the system is saturated
(i.e., no CPU is idle). That is, polling is used even when the
packet interarrival time is still larger than the time it takes
to process packets. Moreover, soft timers allow the dynamic
adjustment of the poll interval to achieve a predetermined
packet aggregation quota.

A number of researchers have pointed out the benefits of
rate-based clocking of TCP transmissions [25, 18, 1, 10, 5].
Our work shows that using conventional hardware timers to
support rate-based clocking at high bandwidth is too costly,
and we propose soft timers as an efficient alternative.

The use of rate-based clocking has been proposed in
the context of TCP slow-start, when an idle persistent
HTTP (P-HTTP) connection becomes active [19, 16, 12].
Visweswaraiah et. al. [25] observe that an idle P-HTTP con-
nection causes TCP to close its congestion window and the
ensuing slow-start phase tends to defeat P-HTTP’s attempt to

utilize the network more effectively that HTTP/1.0 [7] con-
nections. A similar observation was made by Padmanabhan
et. al. in [18]. Soft timers can be used to efficiently clock
the transmission of packets upon restart of an idle P-HTTP
connection.

Allman et. al. [1] show the limiting effect of slow-start
and congestion avoidance schemes in TCP in utilizing the
bandwidth over satellite networks. Using rate-based clock-
ing instead of slow-start addresses the former concern. Feng
et. al. [10] propose the use of rate-based clocking in TCP
to support the controlled-load network service [26], which
guarantees a minimal level of throughput to a given connec-
tion.

Balakrishnan et. al. [5] have proposed ACKfiltering, a
mechanism that attempts to improve TCP performance on
asymmetric network paths by discarding redundant ACKs at
gateways. They observe that this method can lead to bursti-
ness due to the big ACKs seen by the sender and suggest
pacing packet transmissions so as to match the connection’s
sending rate.

Besides an efficient timer mechanism, rate-based clock-
ing also depends on mechanisms that allow the measurement
or estimation of the available network capacity. A num-
ber of techniques have been proposed in the literature. The
basic packet-pair technique was proposed by Keshav [14].
Hoe et. al. [13] propose methods to improve TCP’s con-
gestion control algorithms. They set the slow-start thresh-
old (ssthresh) to an appropriate value by measuring the
bandwidth-delay product using a variant of the packet-pair
technique. Paxson [21] suggests a more robust capacity es-
timation technique called PBM that forms estimates using a
range of packet bunch sizes. A technique of this type could
be used to support rate-based clocking. Allman and Pax-
son [2] compare several estimators and find that sender-side
estimation of bandwidth can often give inaccurate results
due to the failure of the ACK stream to preserve the spacing
imposed on data segments by the network path. They pro-
pose a receiver-side method for estimating bandwidth that
works considerably better.

7 Conclusions

This paper proposes a novel operating system timer facil-
ity that allows the system to efficiently schedule events at a
granularity down to tens of microseconds. Such fine-grained
events are necessary to support rate-based clocking of trans-
mitted packets on high-speed networks and can be used to
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support efficient network polling.
Unlike conventional timer facilities, soft timers take ad-

vantage of certain states in the execution of a system where
an event handler can be invoked at low cost. In these states,
the saving and restoring of CPU state normally required
upon a hardware timer interrupt is not necessary, and the
cache/TLB pollution caused by the event handler is likely to
have low impact on the system performance.

Experiments with a prototype implementation show that
soft timers can be used to perform rate-based clocking in
TCP at granularities down to a few tens of microseconds.
At these rates, soft timers impose an overhead of only 2–6%
while a conventional timer facility would have an overhead
of 26–38%. The use of rate-based clocking in a Web server
can improve client response time over connections with high
bandwidth-delay products by up to 89%.

Soft timers can also be used to perform network polling,
thus avoiding network interrupts while preserving low com-
munications delays. Experiments show that the performance
of a Web server using this optimization can increase by up
to 25% over a conventional interrupt based implementation.

Furthermore, the performance improvements obtained
with soft timers can be expected to increase with network
and CPU speeds. As networks and CPUs get faster, so does
the rate of network interrupts. However, the speed of inter-
rupt handling does not increase as fast as CPU speed, due to
its poor memory access locality. The relative cost of inter-
rupt handling therefore increases, underscoring the need for
techniques that avoid interrupts.

Soft timer performance, on the other hand, appears to
scale with CPU speed. Soft timers are cache friendly and
faster CPU speeds imply that trigger states are reached more
frequently, thus improving the granularity at which soft
timers can schedule events.
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A The need for rate-based clocking

In this appendix, we provide further motivation for rate-
based clocking. We restrict ourselves here to a general dis-
cussion of how an appropriate timer facility can be used for
rate-based clocking of transmissions. The details of how a
specific protocols like TCP should be extended to add rate-
based clocking may require further research; they are be-
yond the scope of this paper.

A.1 ACK compression and big ACKs

Previous work has demonstrated the phenomenon ofACK
compression, where ACK packets from the receiver lose
their temporal spacing due to queuing on the reverse path
from receiver to sender [27, 15]. ACK compression can
cause bursty packet transmissions by the TCP sender, which
contributes to network congestion. Balakrishnan et. al. [6]
have observed the presence of ACK compression in a busy
Web server.

With rate-based clocking, a TCP sender can keep track
of the average arrival rate of ACKs. When a burst of ACKs
arrives at a rate that significantly exceeds the average rate,
the sender may choose to pace the transmission of the cor-
responding new data packets at the measured average ACK
arrival rate, instead of the burst’s instantaneous rate as would
be dictated by self-clocking.

A related phenomenon is that ofbig ACKs, i.e., ACK
packets that acknowledge a large number of packets or up-
date the flow-control window by a large number of packets.
Upon receiving a big ACK, self-clocked senders may send
a burst of packets at the bandwidth of the network link ad-
jacent to the sender host. Transmitting such bursts can ad-
versely affect congestion in the network. A detailed discus-
sion of phenomena that can lead to big ACKs (i.e., ACKs
that can lead to the transmission of more than 3 packets) in
TCP is given in Section A.3.

Using rate-based clocking, it is possible to avoid sending
packet bursts in the same way as was described above in
connection with ACK compression.

A.2 Slow-start

Self-clocked protocols like TCP use aslow-startphase to
start transmitting data at the beginning of a connection or
after an idle period. During slow-start, the sender transmits
a small number of packets (typically two), and then trans-
mits two more packets for every acknowledged packet, until
either packet losses occur or the estimated network capac-
ity is reached. In this way, the sender increases the amount
of data transmitted per RTT exponentially until the network
capacity is reached.

The disadvantage of slow-start is that despite the ex-
ponential growth of the transmit window, it can take many
RTTs before the sender is able to fully utilize the network.
The larger the bandwidth-delay product of the network, the
more time and transmitted data it takes to reach the point
of network saturation. In particular, transmissions of rela-
tively small data objects may not allow the sender to reach
the point of network saturation at all, leading to poor net-
work utilization and low effective throughput.

The bulk of traffic in the Internet today consists of
HTTP transfers that are typically short (between 5KB and
13KB) [16, 4]. A typical HTTP transfer finishes well be-
fore TCP finishes its slow-start phase, causing low utiliza-
tion of available network bandwidth and long user-perceived
response times [16]. The magnitude of this problem is ex-
pected to increase as higher network bandwidth becomes
available.
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Slow-start serves a dual purpose. It starts a transmission
pipeline that allows the sender to self-clock its transmission
without sending large bursts of packets. At the same time,
it probes the available network capacity without overwhelm-
ing the network. The key idea to avoid slow-start is the fol-
lowing. If the available network capacity is known or can
be measured/estimated, then a TCP sender can immediately
use rate-based clocking to transmit packets at the network
capacity without going through slow-start [18].

The problem of measuring available network capacity
has been addressed by several prior research efforts, for in-
stance packet pair algorithms [14, 9, 13] and PBM [21].
Moreover, when starting transmission after an idle period,
the network capacity during the last busy period can be used
as an estimate for the current capacity [19, 16, 12]. Finally,
in future network with QoS support, the available network
capacity may be knowna priori.

A.3 Causes of big ACKs

In the previous section, we discussed the effects of big ACKs
on TCP connections. Here, we describe several phenomena
that can cause big ACKs.
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Figure 7 . Packet processing path in OS

Figure 7 shows the processing of a packet, starting from
its reception by the network adaptor to its delivery to the
application. 1) A high priority device interrupt places the
packet into the input queues of the IP protocol, 2) TCP/IP
processing is done in the context of a software interrupt and
the packet is placed in the application’s socket buffer, 3) The
application reads the data from its socket; in the context of
this read, an ACK is sent back to the TCP sender if needed.

Upon reception of a packet acknowledgingx packets, a
TCP sender normally injectsx new closely spaced packets
into the network. In normal operation,x is 2 because TCP
receivers usually delay every other ACK5 to take advantage
of piggybacking opportunities. We now present some sce-
narios that cause a TCP receiver to send big ACKs (ACKs

5The presence of TCP options causes TCP receivers to send an
ACK for every 3 packets [8].

that acknowledge more than 3 packets), causing the sender
to inject a burst of packets that can adversely affect conges-
tion in the network.

Figure 7 indicates that an ACK is sent by the receiver
when the application reads the data from the socket buffer
(or when the delayed ACK timer fires). If the interarrival
time of packets is smaller than the packet processing time,
then owing to the higher priorities of the interrupts as com-
pared to application processing, all closely spaced packets
sent by the TCP sender will be received before any ACK
is sent. When the incoming packet train stops (due to flow
control), the receiver will send a big ACK to the sender ac-
knowledging all packets sent. The same happens if the de-
layed ACK timer fires first. The problem is self-sustaining
because the TCP sender responds to the big ACK by sending
a burst of closely spaced packets.

On a 300MHz Pentium II machine, the packet processing
time can take more than 100�secs while the minimum in-
terarrival time of 1500 byte packets on 100Mbps and 1Gbps
Ethernet is 120�secs and 12�secs, respectively. This sug-
gests that big ACKs can be prevalent in high-bandwidth net-
works.

The situation described above is not necessarily re-
stricted to high-bandwidth networks. It can also happen
when the receiver application is slow in reading newly ar-
rived data from the socket buffers. This can happen, for ex-
ample, when a Web browser (TCP receiver) is rendering pre-
viously read graphics data on the screen. During this time,
ACKs for all packets from the Web server (TCP sender) shall
be delayed until either the delayed ACK timer fires (once ev-
ery 200ms) or the browser reads more data from the socket
buffer. The ACK packet when sent would acknowledge a
large number of packets.

While high bandwidth is not yet widely available in
WANs, we have analyzed TCP packet traces on a 100Mbps
LAN and have observed big ACKs on almost every suffi-
ciently long transfer. We have also analyzed packet traces
from the Rice CS departmental Web server. Our results show
that 40% of all transfers that were greater than 20Kbytes
showed the presence of big ACKs, thus confirming our hy-
pothesis that big ACKs also occur on transfers over current
low-bandwidth WAN links.

Brakmo and Peterson [8] have also observed these big
ACKs in the context of recovery from large number of
packet losses and reordering of packets. They propose to re-
duce TCP congestion window upon receiving a big ACK so
that slow-start is used instead of sending packet bursts. Fall
and Floyd [11] propose to use a maxburst parameter to limit
the potential burstiness of the sender for packets sent after a
loss recovery phase (fast recovery). While these techniques
can limit the burstiness, they adversely affect bandwidth uti-
lization as the network pipeline is drained of packets.
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