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Abstract

Click is a new software architecture for building flexible and
configurable routers. A Click router is assembled from packet
processing modules calledelements. Individual elements im-
plement simple router functions like packet classification,
queueing, scheduling, and interfacing with network devices.
Complete configurations are built by connecting elements
into a graph; packets flow along the graph’s edges. Several
features make individual elements more powerful and com-
plex configurations easier to write, includingpull processing,
which models packet flow driven by transmitting interfaces,
andflow-based router context, which helps an element locate
other interesting elements.

We demonstrate several working configurations, including
an IP router and an Ethernet bridge. These configurations
are modular—the IP router has 16 elements on the forward-
ing path—and easy to extend by adding additional elements,
which we demonstrate with augmented configurations. On
commodity PC hardware running Linux, the Click IP router
can forward 64-byte packets at 73,000 packets per second,
just 10% slower than Linux alone.

1 Introduction

Routers are increasingly expected to do more than route pack-
ets. Boundary routers, which lie on the borders between or-
ganizations, must often prioritize traffic, translate network
addresses, tunnel or filter packets, or act as firewalls, among
other things. Furthermore, fundamental router policies like
packet dropping are still under active research [5, 11, 13],
and initiatives like Differentiated Services [3] are bringing
the need for flexibility closer to the core of the Internet.
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Unfortunately, most routers have closed, static, and inflex-
ible designs. Network administrators may be able to turn
router functions on or off, but they cannot easily specify
or even identify the interactions of different functions. Fur-
thermore, network administrators and third party software
vendors cannot easily implement new functions. Extensions
require access to software interfaces in the router’s forward-
ing path, but these often don’t exist, don’t exist at the right
point, or aren’t published.

This paper presents Click, a flexible, modular software
architecture for building routers. Click’s building blocks are
packet processing modules calledelements. To build a router
configuration, the user connects a collection of elements into
a graph; packets move from element to element along the
graph’s edges. To extend a configuration, the user can write
new elements or compose existing ones in new ways, much
as UNIX allows one to build complex applications directly
or by composing simpler ones using pipes.

Two specific features add power to this simple architecture.
Pull processingmodels packet motion driven by transmitting
interfaces and makes packet schedulers easy to compose, and
flow-based router contextexamines the router graph to help
an element locate other interesting elements. We present an
element in Section 4.2 that, using these features, implements
four variants of the random early detection dropping pol-
icy (RED) [11]—RED, RED over multiple queues, weighted
RED, and drop-from-front RED—depending on its context
in the router. This would be difficult or impossible to achieve
in previous modular networking systems [12, 18, 25].

We have implemented this architecture on general-purpose
hardware (which is cheap and has good performance) as an
extension to Linux. A Click IP router running on a 450 MHz
Pentium III can forward 73,000 64-byte packets per second,
and can forward 250-byte packets (the average size seen on
WAN links [28]) at 100 megabits per second.

In the next sections, we describe Click’s architecture in de-
tail, including the language used to describe configurations
(Section 2), present a functioning Click IP router (Section 3),
and outline some useful router extensions as implemented
in Click (Section 4). After summarizing our implementation
(Section 5), we evaluate its performance on some of the pre-
sented routers (Section 6). Finally, we describe related work
(Section 7) and summarize our conclusions (Section 8).
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2 Architecture

A Click router configuration is a directed graph whose nodes
are calledelements. A single element represents a unit of
router processing. An edge, orconnection, between two el-
ements represents a possible path for packet transfer. This
graph resembles a flowchart, except that connections repre-
sent packet flow, not control flow, and elements are actual ob-
jects that may maintain private state. Inside a running router,
each element is a C++ object and connections are pointers to
elements. The overhead of passing a packet along a connec-
tion is a single virtual function call.

The most important properties of an element are:

• Element class. Like objects in an object-oriented pro-
gram, each element has a class that determines its be-
havior.

• Input and output ports. Ports are the endpoints of con-
nections between elements. An element can have any
number of input or output ports, which can have differ-
ent semantic meanings (a normal and an error output,
for example).

• Configuration string. Some element classes support ad-
ditional arguments, used to initialize per-element state
and fine-tune element behavior. The configuration string
contains these arguments.

Figure 1 shows how we diagram these properties for a single
element,Tee(2). ‘Tee’ is the element class; aTeecopies each
packet it receives from its single input port, sending one
copy to each output port. (The packet data is not copied:
Click packets are copy-on-write.) Configuration strings are
enclosed in parentheses: the ‘2’ in ‘ Tee(2)’ is a configuration
string thatTeeinterprets as a request for two outputs.

Every action performed by a Click router’s software is
encapsulated in an element, from device reading and writing
to queueing, routing table lookups, and counting packets.
The user determines what a Click router does by choosing
the elements to be used and the connections among them.
Figure 2 shows a sample router that counts incoming packets,
then throws them all away.

Click provides two kinds of connections between elements,
pushandpull. In a push connection, the upstream element
hands a packet to the downstream element; in a pull con-
nection, the downstream element asks the upstream element
to return a packet. Each kind of handoff is implemented as
a virtual function call. Packet arrival usually initiates push
processing, which stops when an element discards the packet
or stores it for later. Output interfaces initiate pull processing
when they are ready to send a packet; processing flows back-
wards through the graph until an element yields up a packet.
Pull elements can simply and explicitly represent decisions
that should occur at packet transmission time, such as packet
scheduling.

Tee(2)input port output ports

element class

configuration string

Figure 1: A sample element. Triangular ports are inputs and rectan-

gular ports are outputs.

FromDevice(eth0) Counter Discard

Figure 2: A router configuration that throws away all packets.

The rest of this section discusses the Click architecture in
more detail, including push and pull processing, flow-based
router context, the implementation of an element, and the
Click language for specifying router configurations.

2.1 Control flow and queues

When an element receives a packet from a push connection,
it must store it, discard it, or forward it to another element for
more processing. Most elements forward packets by calling
the next element’spush function. Since packet handoff is
just a virtual function call, a Click CPU scheduler could not
stop packet processing at arbitrary points—elements must
cooperatively choose to stop processing.

Packet storage must be implemented by the element itself;
unlike some systems [18, 25], Click elements do not have im-
plicit queues on their input and output ports, or the associated
performance and complexity costs. Instead, Click queues are
explicit objects, implemented by a separate element (Queue).
This enables valuable configurations that are difficult to ar-
range otherwise—for example, a single queue feeding mul-
tiple interfaces, or a queue feeding a traffic shaper on the
way to an interface.Queueis the most common element that
stops packet processing, giving the system a chance to sched-
ule different work: it enqueues packets it receives rather than
passing them on. Thus, the placement ofQueues in a config-
uration determines that configuration’s execution profile. If a
user wants to carefully manage packet scheduling as soon as
packets enter the system, she will wantQueues early in the
graph.

2.2 Push and pull processing

Push and pull are duals of one another: the upstream end of
a connection initiates a push call, while the downstream end
initiates a pull call. Together, push and pull allow the appro-
priate end of a connection to initiate packet transfer, solving
several router control flow problems. For example, packet
scheduling decisions—choosing which queue to ask for a
packet—are easily expressed as composable pull elements,
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FromDevice Null Null ToDevice

push(p) push(p)

return
return

pull()
pull()

return p return p

receive
packet p

enqueue p
transmit
complete
interruptdequeue p

and return it

send p

Figure 3: Push and pull control flow. This diagram shows functions

called as a packet moves through a simple router. The central el-

ement is a Queue. During the push, control flow moves forward

through the element graph starting at the receiving interface; during

the pull, control flow moves backward through the graph, starting

at the transmitting interface. The packet p always moves forward.

FromDevice

FromDevice

ToDevice
Counter

ToDevice

Figure 4: Some invariant violations. The top configuration has four

errors: (1) FromDevice’s push output connects to ToDevice’s pull in-

put; (2) more than one connection to FromDevice’s push output; (3)

more than one connection to ToDevice’s pull input; and (4) the ag-

nostic element Counter is in a mixed push/pull context. By contrast,

the bottom configuration is legal. In a properly configured router, the

port colors on either end of each connection will match.

as we show in Section 4.1. As another example, the system
should not send packets to a busy transmitting interface. If
it did, the interface would have to store the packet, and the
router would lose the ability to affect it later (to throw it away,
to modify its precedence, and so forth). This restriction can
be simply expressed by giving the transmitting interface a
pull input; then the interface is in control of packet transfer,
and can ask for packets only when it’s ready.

Figure 3 shows how this works in a simple router. In our
configuration diagrams, black ports are push and white ports
are pull. This particular configuration has twoNull elements,
one push and one pull. Like many elements,Null is agnostic,
meaning it can work as either push or pull depending on its
context in the router. Agnostic ports are shown in diagrams
as push or pull ports with a double outline.

The following invariants hold for all correctly configured
routers: Push outputs must be connected to push inputs, and
pull outputs must be connected to pull inputs. Each agnostic
port must be used as push or pull exclusively; furthermore,
if packets can flow within an element between an agnostic
input and an agnostic output, both ports must be used in the
same way (either push or pull). Finally, push outputs and pull

RED Classifier Discard

PullToPush

Strip

Figure 5: The elements downstream of RED, found by flow-based

router context with a filter that stops at Queues. The downstream

elements are colored grey.

inputs must be connected exactly once. (This ensures that
each packet handoff—pushing to an output port or pulling
from an input port—has a unique destination.) These invari-
ants are automatically checked by the system during router
initialization. Figure 4 demonstrates violations of each of
them.

The invariants are designed to catch intuitively invalid con-
figurations. For example, in Figure 4, the connection in the
figure from FromDeviceto ToDeviceis disallowed by the
invariants becauseFromDevice’s output is push whileToDe-
vice’s input is pull. But this connection should be illegal:
if it remained,ToDevicemight receive packets when it was
not ready to send them. TheQueueelement, which converts
from push to pull, is also intuitively necessary to provide the
temporary packet storage required.

Every push call in a running router passes an actual packet
object, but pull calls can return a null pointer if no packet
is ready. In this case, the pulling element must arrange to
wake up when it makes sense to try again. This can be done
element-specifically—using a timer, for example—but Click
also includes a generic mechanism calledpacket-upstream
notification. During initialization, eachQueueuses flow-
based router context (described in more detail below) to find
the elements downstream of it that are interested in packet-
upstream. When theQueuebecomes nonempty, it notifies
these elements of a packet-upstream event; they will soon re-
act by retrying the pull. The combination of pull processing
and packet-upstream notification resembles Clark’s upcalls
and arming calls [7].

2.3 Flow-based router context

Sometimes an element must find other elements that might
not be directly connected to it. For example, aQueuemust
find the elements downstream of it that are interested in
packet-upstream notification; these might be directly con-
nected to theQueue, or they might be separated from it by
arbitrarily many elements. They are related to theQueuenot
by direct connection, but by its transitive closure,packet flow.

The Click architecture can provide any element with packet
flow information for the whole router, which we callflow-
based router context. For example, an element can find the
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class NullElement : public Element {
public:
NullElement()

{ add_input(); add_output(); }
const char *class_name() const

{ return "Null"; }
PushOrPull default_processing() const

{ return AGNOSTIC; }
NullElement *clone() const

{ return new NullElement; }
void push(int port_number, Packet *p)

{ output(0).push(p); }
Packet *pull(int port_number)

{ return input(0).pull(); }
};

Figure 6: The complete implementation of a do-nothing element.

elements downstream of its first output, or the elements up-
stream of its second input. These questions have a well-
defined answer even in the presence of cycles in the router
configuration.

The flow-based router context algorithms accept an op-
tional filter that limits the search. If the filter matches an
element on a downstream search, then nothing downstream
of that element will be returned (unless it is reachable on an-
other path), and similarly for upstream searches. Filters can
match arbitrary element classes and interfaces, so searches
can be stopped atQueues (and subtypes ofQueue) or at any
element implementing a hypotheticalQueuelike interface.
Figure 5 shows how this works. With these filters and flow-
based router context, an element can find nearby elements
that are known to implement a specific interface; it can then
manipulate their exported variables and methods, gaining ac-
cess to information like queue lengths, interface addresses,
and so on.

2.4 Implementation

We implement elements as C++ objects. Each element class
corresponds to a C++ subclass ofElement, which has on the
order of 20 virtual functions.Element provides reasonable
default implementations for many of these, allowing most
subclasses to get away with overriding six of them or less.
Only two virtual functions are used during router operation,
namelypush andpull; the others are used for identification,
push and pull specification, configuration, initialization, and
statistics.

Subclasses ofElement are easy to write, so we expect
users will have no problem writing new element classes as
needed. In fact, the complete implementation of a simple
working element class (Null, which passes packets from its
single input to its single output unchanged) takes less than 20
lines of code; see Figure 6. Most elements define functions

# a trivial router that drops everything
src :: FromDevice(eth0);
ctr :: Counter;
sink :: Discard;
src -> ctr;
ctr -> sink;

# the same, with anonymous elements
FromDevice(eth0) -> Counter -> Discard;

Figure 7: The trivial router of Figure 2 specified in two ways.

for parsing configuration strings and initialization in addition
to those in Figure 6, and take about 120 lines of code.

2.5 Language

Click configurations are written in a simple textual language
with two important constructs:declarationsandconnections.
A declaration says that an element should be created; con-
nections specify how those elements should be connected.
Syntactic sugar allows a user to elide declarations and piggy-
back connections for readability. The syntax is easy enough
to learn from an example; Figure 7 uses it to define a trivial
router.

Configuration strings are opaque to the language. They
are sent uninterpreted to the elements themselves, which are
free to use them however they like. Most of the elements we
have written treat configuration strings as comma-separated
argument lists, using a common library to parse data like
integers and IP addresses.

The language contains constructs that allow users to define
new element classes by composing existing ones. Thus, any
user can create a library of personalized element classes; for
example, a user could defineMyQueueto be aQueuefol-
lowed by aShaper, and useMyQueueas if it was a Click
primitive. These new classes, calledcompound elements, are
strictly compile-time constructs: at run time, a compound el-
ement has exactly the same representation as the correspond-
ing collection of simple elements. Thus, compound elements
have no additional run-time overhead.

Router configurations in the Click language can be opti-
mized using a preprocessor based on pattern matching. The
optimizer reads a router configuration and a file describing
element patterns and their replacements; it replaces patterns
in the configuration until no more changes can be made, then
writes out the new configuration. We plan to write other pre-
processors, including one that checks configurations using a
static type system. This would prevent users from sending
Ethernet packets to elements that expect IP packets, for ex-
ample. Currently, Click configurations are not type checked,
except for the push and pull invariants described above.
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3 An IP router

This section shows how a real router configuration—an IP
router that forwards unicast packets in nearly full compli-
ance with the standards [1, 23, 24]—can be written in Click.
Figure 8 shows a two-interface Click IP router configuration.
(The reader may want to refer to Figure 9, a glossary of Click
elements used in Figure 8 and elsewhere in the paper.) The
rest of this section describes the IP router in more detail.
Section 4 shows how to extend this router by changing its
scheduling and queueing behavior, and Section 6 evaluates
its performance.

The IP forwarding tasks that are most natural in Click are
those that involve only local information. For example,Dec-
IPTTL decides if a packet’s TTL has expired. If it has, it
emits the packet on its second output (usually connected to
an ICMPError element); if the TTL is still valid,DecIPTTL
decrements it, updates the packet’s checksum, and emits the
packet on its first output. These actions depend only on the
packet’s contents; they don’t interact with decisions made
elsewhere except as expressed in the packet’s path through
the element graph. Such self-contained elements compose
easily—for example, one could connectDecIPTTL’s “ex-
pired” output to aDiscard to avoid generating ICMP errors,
or insert an element that limits the rate at which errors are
generated.

Some forwarding tasks require that information about a
packet be calculated in one place and used in another. Click
usesannotationsto carry such information along. (An anno-
tation is a piece of information attached to a packet that isn’t
part of the packet data.) The annotations used in the IP router
include:

• Destination address.Elements that deal with a packet’s
destination address use this annotation rather than
the IP header field, allowing several such elements
to be chained together.GetIPAddresscopies the des-
tination field from the IP header to the annotation,
LookupIPRoutereplaces the annotation with the next-
hop gateway’s address, andARPQueriermaps the an-
notation to the next-hop Ethernet address.

• Paint. ThePaint element marks a packet with an inte-
ger “color”. CheckPaintemits every packet on its first
output, and a copy of any packet with a given color on
its second output. The IP router uses paint to decide
whether a packet is leaving the same interface on which
it arrived, and thus should prompt an ICMP redirect.

• Link-level broadcast flag. FromDevicesets this flag
on packets that arrived as link-level broadcasts. The IP
router usesDropBroadcastto drop such packets if they
are about to be forwarded, but not if they are destined
for the router itself.

• ICMP Parameter Problem pointer. This is set byIP-

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(1.0.0.2, ...)

ToDevice(eth1)

ARPResponder
(2.0.0.1, ...)

ARPResponder
(1.0.0.2, ...)

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

CheckPaint(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(1.0.0.2)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.2)

CheckPaint(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Figure 8: The IP router configuration.
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Element Description
ARPQuerier(...) Encapsulates IP packets in Ethernet headers using ARP; 2nd input processes ARP responses
ARPResponder(x y) Responds to ARP queries for IP addressx with static Ethernet addressy
CheckIPHeader(...) Discards packets with invalid IP length or checksum fields
CheckPaint(p) Sends packets with paint annotation= p to both outputs; otherwise just to first
Classifier(...) Checks packet data against classifiers; sends packet to output for the first classifier that matched
DecIPTTL Decrements IP packets’ time-to-live; sends to second output iff TTL has expired
Discard Discards all packets
DropBroadcasts Discards packets that arrived as link-level broadcasts
EtherSpanTree(...) Implements the IEEE 802.1d spanning tree algorithm for Ethernet switches
EtherSwitch Learning, forwarding Ethernet switch
FixIPSrc(addr) Sets the IP header’s source field toaddr if the Fix IP Source annotation is set
FromDevice(device) Outputs packets when they arrive from a Linux device driver
GetIPAddress(...) Copies the destination address from the IP header to the destination address annotation
HashDemux(...) Sends packet to one ofn outputs, chosen by a hash of specified packet contents
ICMPError(type, code) Encapsulates IP packets in ICMP error packets, sets Fix IP Source annotation
IPEncap(...) Encapsulates packets in a statically specified IP header
IPFragmenter(mtu) Fragments IP packets larger thanmtu; too-large packets with DF flag set go to second output
IPGWOptions Processes IP Record Route and Timestamp options; packets with invalid options go to second output
LookupIPRoute Looks up the destination annotation in a static routing table, choosing the output and setting the

annotation based on the result
Meter(r) Sends packets to first output if recent input rate averages< r, second output otherwise
Paint(p) Sets the paint annotation top
PrioSched Pulls a packet from one ofn inputs; lower numbered inputs have priority
Queue(n) Stores at mostn packets in a queue
RED(...) Drops packets probabilistically according to the Random Early Detection algorithm
RoundRobinSched Pulls a packet from one ofn inputs, chosen by round-robin
SetIPDSCP(c) Sets the IP header’s diffserv code point field toc
Shaper(n) Simple pull traffic shaper: allows average ofn packets per second
Strip(n) Deletes packets’ firstn bytes
Suppressor Optionally drops packets arriving on particular inputs
Tee(n) Sends each packet to alln outputs
ToDevice(device) Hands packets to a Linux device driver for transmission
ToLinux Hands packets to Linux’s default network input software

Figure 9: Element glossary.

GWOptionson erroneous packets to specify the bad IP
header byte, and used byICMPError when constructing
an error message.

• Fix IP Source flag.The IP source address of an ICMP
error packet must be the address of the interface on
which the error is sent.ICMPError can’t predict this
interface, so it uses a default address and sets the Fix
IP Source annotation. After the ICMP packet has been
routed towards a particular interface, aFixIPSrcon that
path will see the flag, insert the correct source address,
and recompute the IP checksum.

In a few cases elements require information of an incon-
veniently global nature. A router usually has a separate IP
address on each attached network, and each network usually
has a separate IP broadcast address. All of these addresses

need to be known at multiple points in the Click configura-
tion:LookupIPRouteneeds to know how to decide if a packet
is destined to the router itself,CheckIPHeadermust discard
a packet with any of the IP broadcast addresses as source
address,ICMPError must suppress responses to IP broad-
casts, andIPGWOptionsmust be able to recognize any of
the router’s addresses in an IP Timestamp option. Each of
these elements takes the complete list of addresses as part of
its configuration string, but ideally they would derive the list
automatically using flow-based router context.

Some of the elements in Figure 8 require more explanation.
CheckIPHeaderchecks the validity of the IP length fields, the
IP source address, and the IP checksum.IPGWOptionspro-
cesses just the Record Route and Timestamp options, since
the source route options should be processed only on packets
addressed to the router.IPFragmenternormally fragments
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HashDemux RoundRobin...

Figure 10: A virtual queue implementing Stochastic Fairness

Queueing.

packets larger than the configured MTU, but sends unfrag-
mentable too-large packets to an error output instead. An
ICMPError element encapsulates most input packets in an
ICMP error message and outputs the result; it drops broad-
casts, ICMP errors, fragments, and source-routed packets.

4 Extensions

This section presents Click configuration fragments that im-
plement several useful router extensions. We have writ-
ten elements that support RFC 2507-compatible IP header
compression and decompression, IP security, communica-
tion with wireless radios, tunneling, and many other special-
ized routing tasks, but this section focuses on scheduling and
dropping policies, queueing requirements, and Differentiated
Services—and one non-IP router, an Ethernet switch. The last
subsection concludes the discussion by presenting some of
Click’s architectural limitations.

4.1 Scheduling

With pull processing, a packet scheduler can be implemented
in Click as a single element that maintains only local knowl-
edge of the router configuration. Packet scheduling is a kind
of multiplexing—a scheduler decides how a number of packet
sources (usually queues) will share a single output channel—
and a Click scheduler is a pull element with multiple inputs
and one output. It reacts to requests for packets by choosing
one of its inputs, pulling a packet from it, and returning it.
(If the chosen input has no packets ready, the scheduler will
usually try other inputs.)

We have implemented two scheduler elements,Round-
RobinSchedandPrioSched. RoundRobinSchedpulls from its
inputs in round-robin order, returning the first packet it finds
(or no packet, if no input has a packet ready). It always starts
pulling on the input cyclically following the last successful
pull. PrioSched(for priority scheduler) always tries its first
input, then its second, and so forth, returning the first packet
it gets.

Both Queues and scheduling elements have a single pull
output, so to an element downstream,Queues and schedulers
are indistinguishable. We can exploit this property to build
virtual queues, compound elements that look exactly like
queues from the outside but implement more complex behav-
ior than FIFO queueing. Figure 10 shows a virtual queue that
implements a version of Stochastic Fairness Queueing [15]:

r1 :: RED

r2 :: RED

r3 :: RED

Classifier
prio 1

prio 2

prio 3

Figure 11: Weighted RED. The three RED elements can have differ-

ent RED parameters, allowing packets with different priorities to be

dropped with different probabilities when the router is under stress.

packets are hashed by flow identifier into one of several
queues that are scheduled round-robin, providing some iso-
lation between competing flows.

4.2 Dropping policies

The Queueelement implements a simple dropping policy,
namely a configurable maximum length beyond which all
packets are dropped. More complex drop policies can be cre-
ated by combiningQueues with other elements. For example,
we implement random early detection [11] as an independent
REDelement containing only drop decision code.REDbases
its decisions on queue lengths—specifically, the lengths of the
nearest downstreamQueues, which it finds using flow-based
router context. For example, in Figure 5 above,RED will
include the greyQueues in its queue length calculation.

If there is more than one downstreamQueue, REDadds all
their lengths together before performing the drop calculation.
This simple generalization allows the user to create useful
RED variants like RED over multiple queues by rearrang-
ing the configuration. Other variants like weighted RED [5],
where packets are dropped with different probabilities de-
pending on their priority, also naturally follow from modular
REDelements (see Figure 11). In addition, theREDelement
can be positionedafter the queue; in this case, it is a pull ele-
ment and looks for upstream rather than downstream queues.
This results in a strategy like drop-from-front [13], which re-
ports congestion back to senders more quickly than the usual
drop-from-tail.

4.3 Complex queueing

Imagine a router with the following requirements:

• two parallel T1 links to a backbone, between which
traffic should be load-balanced;

• division of traffic into two priority levels;

• fairness among the connections within each priority
level;

• RED dropping driven by the total number of packets
queued.
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RED

Classifier

HashDemux

RoundRobin...

HashDemux

RoundRobin...

PrioSched

ToDevice(...) ToDevice(...)

high priority low priority

Figure 12: A complex combination of dropping, queueing, and

scheduling. The Classifier prioritizes input packets into two virtual

queues, each of which implements stochastic fair queueing (see

Figure 10). PrioSched implements priority scheduling on the virtual

queues, preferring packets from the left. The router is driving two

equivalent T1 lines that pull packets from the same sources, pro-

viding a form of load balancing. Finally, RED, at the top, implements

random early drop over all four Queues.

Figure 12 shows how to build this combination in Click. Other
router platforms provide these features individually, and per-
haps in certain predefined combinations; in Click, since the
configuration consists of simple elements composed together,
many other configurations could be built by rearrangement
or by choosing different elements.

4.4 Differentiated Services

The Differentiated Services architecture [3] specifies mecha-
nisms for border and core routers to jointly manage aggregate
traffic streams. Diffserv border routers classify and tag pack-
ets according to traffic type, and ensure that traffic enters
the network no faster than allowed. Core routers queue and
schedule packets based on their tags. The diffserv architec-
ture envisions flexible combinations of classification, tag-
ging, shaping, dropping, queuing, and scheduling functions.
These components naturally correspond to Click elements,
and building them as elements gives the router administra-
tor full control over how they are arranged. For example,
Figure 13 shows a Click configuration corresponding closely
to Figure 4 (“An Example Traffic Conditioning Block”) in

Classifier(...)

Meter(7500)

D
iscard

Shaper(10000)

Meter(12500)

RoundRobin...

PrioSched

SetIP
D

SC
P

(4)

ToDevice(eth0)

1 2 3 4

Figure 13: A sample traffic conditioning block. Meters and Shapers

measure traffic rates; they are available in varieties that measure

bytes per second or packets per second. This example uses pack-

ets per second. 1, 2, 3, and 4 represent DSCP values.

Bernet et al [2].
This configuration separates incoming traffic into 4

streams, based on the IP Differentiated Services Code Point
(DSCP) [20]. The first three streams are rate-limited, while
the fourth represents normal best-effort delivery. The rate-
limited streams are given priority over the normal stream.
From left to right in Figure 13, the streams are (1) limited by
dropping—whenever more than 7500 packets per second are
being sent on average, the stream is dropped; (2) shaped—
at most 10,000 packets per second are allowed through the
Shaper, and any excess packets are queued; and (3) limited
by reclassification—whenever more than 12,500 packets per
second are being sent, the stream is reclassified as best-effort
delivery and sent into the lower priority queue.

4.5 Ethernet switch

The Click system is flexible enough to handle applications
other than IP routing. For example, Figure 14 shows a func-
tional Click configuration for an IEEE 802.1d-compliantEth-
ernet switch. It acts as a learning bridge and participates with
other 802.1d-compliant bridges to determine a spanning tree
for the network, eliminating cycles in the LAN graph. The
central element,EtherSwitch, can be used alone as a simple,
functional learning bridge. The other infrastructure in the
figure—EtherSpanTreeand the twoSuppressors—is neces-
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FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ToDevice(eth0) ToDevice(eth1)

802.1d other 802.1d other

EtherSpanTree(...)

in :: Suppressor

out :: Suppressor

s :: EtherSwitch

Figure 14: The Ethernet switch configuration.

sary only to avoid cycles when multiple bridges are used in a
LAN.

EtherSpanTreeimplements the IEEE 802.1d protocol for
constructing a LAN-wide spanning tree. At a given switch,
forwarding only occurs among the ports that lie on the span-
ning tree.EtherSpanTreecontrols the learning and forward-
ing behavior ofEtherSwitchusing two genericSuppressor
elements.Suppressornormally forwards packets from each
input to the corresponding output, but it exports methods to
suppress and unsuppress individual ports; packets arriving
on a suppressed port are dropped.EtherSpanTreeuses the
Suppressors to prevent theEtherSwitchfrom learning from
or forwarding to inappropriate ports. The relevantSuppres-
sors cannot be found using flow-based router context, so
the user must currently specify theSuppressors by name in
EtherSpanTree’s configuration string.

4.6 Limitations

A Click user will generally prefer small elements likeDecIP-
TTL to large ones likeEtherSpanTree, since small elements
can be rearranged to create arbitrary configurations. How-
ever, Click’s reliance on packet flow as an organizational
principle means that small elements are not appropriate for
all problems. Particularly, large elements are required when
control or data flow doesn’t match the flow of packets: the
control flow required to process a protocol like 802.1d is too
complex to split into elements.

This also makes it difficult to implement shared objects

that don’t participate in packet forwarding, such as routing
tables. In the configurations shown in this paper, each routing
table is encapsulated in a single packet-forwarding element,
which is its sole user. We plan to investigate other ways to
accommodate shared objects, perhaps by using something
like Scout’s typed ports [18].

We have not yet fully investigated how to schedule CPU
time among competing push and pull paths, a problem that
arises whenever multiple devices simultaneously receive or
are ready to send packets. Currently, Linux handles much of
this scheduling, and the work list described in the next section
controls the rest. Eventually all of it should be controlled by
a single mechanism.

5 Implementation

This section describes details of the Click implementation,
including how Click coexists with a Linux kernel. The imple-
mentation consists of about 17,000 non-blank lines of C++
code. The code compiles into about 145,000 bytes of i386
instructions in the form of a loadable Linux kernel module.
(Click can also be compiled as a user-level program that
communicates with the network using BPF [14].) A simple
element’spush or pull function compiles into a few dozen
i386 instructions.

5.1 System components

A running Click router contains five important object classes:
elements, a router, packets, timers, and a work list.

• Elements.The system contains an element object for
each element in the current configuration, as well as
prototype objects for every kind of primitive element
that could be used.

• Router. The single router object collects information
relevant to a given router configuration, and is mostly
used at initialization time. It configures the elements,
checks that connections are valid, and puts the router
on line. The router breaks the initialization process into
stages, making it possible to allow cyclic configurations
without enforcing any initialization order on the graph.
In the early stages, elements can set object variables, add
and remove ports, and change whether they are push or
pull. In later stages, they can check their connectionsand
query flow-based router context. Errors can be reported
at any stage.

The most complex part of initialization is dealing with
push and pull. The router checks the invariants and as-
signs agnostic ports their final push-or-pull status in a
single step. Agnostic ports cause the problem: global
context is necessary to determine what an agnostic port
should be, since arbitrary numbers of agnostic elements
can be strung together. If the router decides that one of a
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string of agnostic elements is push, that constraint must
propagate through the entire string.

• Packets. Click packet data is copy-on-write—when
copying a packet, the system copies the packet header
but not the data. Annotations are stored in the packet
header in a fixed static order; there is currently no way to
dynamically add a new kind of annotation. In the Linux
kernel, Click packet objects are equivalent tosk_buffs
(Linux’s packet abstraction).

• Timers. Some elements use timers to keep track of peri-
odic events. In the Linux kernel, Linux timer queues are
used, which on Intel PCs have .01-second resolution.

• Work list. A lightweight work list can be used to sched-
ule Click elements for later processing. It is effectively
a simple, single-priority CPU scheduler, and is run after
every 8th input packet or whenever there are no more in-
put packets.Queues andShapers currently use the work
list to delay packet-upstream notification (Section 2.2).
This improves i-cache performance: under high load, 8
packets will be enqueued before the work list is run and
pull processing begins.

5.2 Linux kernel environment

The Linux networking code passes control to Click at one
of three points: when a packet arrives, when a network in-
terface becomes ready to send another packet, or when a
timer expires. Small changes to the kernel were necessary to
gain access to packet arrival and interface-ready events. In all
cases Linux runs Click code in a bottom-half handler; bot-
tom halves execute functions that are too substantial to run
during an interrupt, but are not naturally associated with any
user process. Linux ensures that at most one bottom half is
active at a time, so element code need not be reentrant. Inter-
rupts ordinarily take precedence over bottom halves, which
always take precedence over user processes. This organiza-
tion follows Linux’s own networking code (allowing a fair
comparison), but has performance implications detailed in
Section 6. We plan to implement a polling architecture for
future work.

When a Linux network device receives a packet, the de-
vice hardware copies the packet into a Linux packet buffer
and interrupts. The Linux device interrupt code appends the
buffer to an input queue of packets waiting to be processed,
then allocates a buffer for the next packet and wakes up the
bottom half. When a Click router is online, this bottom half
passes packets from the input queue directly to the appropri-
ateFromDeviceelement, bypassing normal Linux network
processing. TheFromDevicethen pushes each packet through
the element graph. The push processing typically stops when
the packet is enqueued at aQueue.

At some point an output hardware device will interrupt to
indicate that it can send more packets. The Linux interrupt
code wakes up the bottom half, which calls the appropriate
ToDeviceelement. TheToDeviceinitiates apull call which
makes its way to theQueue. TheToDevicepasses the pulled
packet directly to the Linux device driver’s output routine,
avoiding Linux’s output queues.

The Click kernel module uses Linux’s/proc filesystem to
communicate with user processes. To bring a router online,
you create a configuration description in the Click language
and write it to/proc/click/config. Reading this file re-
turns the current configuration, and writing subsequent de-
scriptions causes the configuration to change on the fly. When
a router is active, a directory is created under/proc/click
for each element in its configuration. Elements can easily add
read and write access points to their directories; we use this
interface to provide access to statistics like packet counts and
queue lengths, and to make parameters like maximum queue
lengths and RED probabilities reconfigurable at run time.

6 Evaluation

Click’s performance goals are to forward packets quickly
enough to keep typical access links busy, to impose a low cost
for incremental additions to configurations, and to correctly
implement complex behaviors like packet scheduling. This
section demonstrates that Click meets these goals.

6.1 Experimental setup

The experimental setup consists of three Intel PCs running
Linux 2.2.10: a source host, the router being tested, and a
destination host. The router has two 100 Mbit Ethernet cards
connected, by point-to-point links, to the source and destina-
tion hosts. During a test, the source generates an even flow
of UDP packets addressed to the destination; the router is
expected to get them there.

The router hardware is a 450 MHz Intel Pentium III CPU,
an Intel 440BX PCI chip set, 256 megabytes of SDRAM, and
two DEC 21140 100 Mbit PCI Ethernet controllers. The Pen-
tium III has a 16 KB L1 instruction cache, a 16 KB L1 data
cache, and a 512 KB L2 unified cache. The source host has
a 300 MHz Pentium II CPU and a DEC 21140 Ethernet con-
troller. The destination host has a 200 MHz PentiumPro CPU
and an Intel EtherExpress 10/100 Ethernet controller. The
source-to-router and router-to-destination links are point-to-
point full-duplex 100 Mbit Ethernet.

The source host generates UDP packets directly from the
kernel to avoid the expense of system calls. It produces pack-
ets at specified rates using busy loops, and can generate up
to 130,000 64-byte packets per second. The destination host
counts and discards the source’s UDP packets at interrupt
time in the device driver and can receive up to 130,000 64-
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Figure 15: Forwarding rate as a function of input rate for 64-byte

packets. An ideal router that forwarded every packet would appear

as a straight line y = x. The Simple plot is the measured perfor-

mance of a Click configuration that does no processing other than

to emit each input packet. The Linux plot shows the performance

of a standard Linux IP router. The Click plot shows the performance

of the Click IP configuration in Figure 8.

byte packets per second. The 64 bytes include Ethernet, IP,
and UDP headers. When the 64-bit preamble and 96-bit inter-
frame gap are added, a 100 Mbit Ethernet link can carry up
to 148,800 such packets per second.

6.2 Forwarding rates

We characterize performance by measuring the rate at which
a router can forward 64-byte packets over a range of input
rates. A plot of input and output rates indicates both the
maximum loss-free forwarding rate and the router’s behavior
under overload.

Figure 15 shows the results. An ideal router would emit
every input packet regardless of input rate, corresponding to
the liney = x. The line marked Click shows the performance
of the Click IP configuration in Figure 8. Click forwards all
packets for input rates up to 73,000 packets per second. Input
rates above that exhibit receive livelock [17]: an increasing
amount of CPU time is spent in input interrupt processing,
leaving less and less time to forward packets. Figure 15 shows
that the Linux 2.2.10 IP forwarding system exhibits the same
behavior under overload, though Linux is faster than Click.
The line marked Simple shows the performance of a Click
configuration that forwards input directly to output with no
intervening processing.

Figure 16 shows the effect of packet size on forwarding
rate. Each point is the maximum over all possible input rates
of the router’s throughput for packets of the indicated Ether-
net frame size. For packet sizes of 250 bytes or larger, both
Linux and Click are limited only by the 100 Mbit Ethernet.
For smaller sizes the per-packet CPU overhead limits the rate.

An otherwise idle Click IP router forwards 64-byte packets
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Figure 16: Effect of packet size on maximum forwarding rate.

with a one-way latency of 33 microseconds. This number was
calculated by measuring the round-trip ping time through the
router, subtracting the round-trip ping time with the router
replaced with a wire, and dividing by two. 5.8 µs of the 33
are due to the time required to transmit a 64-byte Ethernet
packet at 100 megabits per second. The latency of a router
running standard Linux IP code is 28 µs.

The simple test configuration used here shows both Click
and Linux in a better light than might be seen in a real net-
work. The tests did not involve fragmentation, IP options,
ICMP errors, or multiple destinations, though Figure 8 has
all the code needed to handle these. Increasing the number
of hosts might slow Click down by increasing the number of
ARP table entries. Increasing the number of network inter-
faces might decrease performance by decreasing the number
of packets processed per interrupt. Increasing the routing ta-
ble size would also decrease performance, a problem existing
work on fast lookup in large tables could address [10, 29].
Despite these issues, a simple benchmark is enough to show
the performance differences between Linux and Click that
are fundamentally due to the Click architecture.

6.2.1 Detailed forwarding cost

Table 1 breaks down the cost of forwarding an IP packet
into five categories. The costs are the amount of CPU time
spent in the relevant code divided by the number of packets
processed. The CPU times were obtained with the Pentium
cycle counter. The input load was 73,000 64-byte packets
per second. Interrupts were turned off for the duration of the
Click and Linux IP processing code so that the cycle counts
would not include interrupt times.

The 10.7 µs per-packet interrupt cost is a function of the
cost of an interrupt and the number of packets processed
per interrupt. In this experiment the input Ethernet device
delivered an average of 1.5 packets per interrupt. The av-
erage interrupt cost 1 µs for the CPU to save and restore
its state, 6.7 µs for Linux to coordinate with the interrupt
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Linux Click
Phase (µs) (µs)

Interrupt 11.1 10.7
IP processing 1.4 2.4
Device send 1.0 1.0

Total 13.5 14.1

Table 1: Average CPU time cost for basic IP forwarding in microsec-

onds per packet.

controller chip and to dispatch the interrupt, and 8.3 µs to
execute the Ethernet device driver’s interrupt handler. The
handler moves the 1.5 packets from the receive DMA list
to Linux’s incoming packet queue, and frees any outgoing
packets whose transmission has completed. A polling input
architecture [17] might eliminate the CPU and Linux parts
of the interrupt cost under high load, reducing the per-packet
cost from 10.7 to 8.3/1.5 = 5.53 µs. The difference in inter-
rupt costs between Linux and Click in Table 1 is an artifact
of interrupts being turned off while executing IP forwarding
code: Click leaves interrupts off for longer, allowing more
packets to accumulate for the next interrupt.

The Linux IP processing line in Table 1 includes perform-
ing IP forwarding tasks such as checksum computation and
routing table lookup. The Click IP processing line includes
the cost of executing the elements in Figure 8, which perform
the same tasks. The Device Send line indicates the cost of
placing a packet on the device’s hardware DMA list.

Table 2 details the cost of each element on the forward-
ing path in Figure 8, obtained by repeated invocations of
that element alone. Every cost but that forQueueincludes
the overhead of moving a packet from one element to the
next. This overhead appears to be at least 30 nanoseconds,
which indicates that at least 20% of the Click IP processing
cost of 2.4 µs is due to architectural overhead rather than IP
processing.

The microbenchmark times in Table 2 sum to 1.4 µs,
whereas the overall measured time to execute all the Click
code is 2.4 µs per packet. Part of the difference is that Table 2
is missing theFromDeviceandToDeviceelements; these are
hard to measure in isolation. Another source of difference is
that the microbenchmarks never experience instruction cache
misses, while the Pentium performance counters reveal that
the complete Click router (including device driver code as
well as Click elements) spends roughly 2 µs per packet wait-
ing for instruction fetches.

To help separate the costs of IP processing from element
overhead, we wrote single elements that do the work of com-
mon groups of IP routing elements, then used the optimizer
mentioned in Section 2.5 to replace those groups in Figure 8
with the single combination elements. This new configuration
is equivalent to Figure 8, but has only eight elements on the
forwarding path instead of 16: it mergesPaint, Strip, Check-

Element Time (ns)

Paint 38
Classifier 95
Strip 54
CheckIPHeader 299
GetIPAddress 72
LookupIPRoute 66
DropBroadcasts 48
CheckPaint 50
IPGWOptions 59
FixIPSrc 49
DecIPTTL 101
IPFragmenter 62
ARPQuerier 257
Queue 145

Total 1400

Table 2: Microbenchmarks of individual elements involved in IP

forwarding, measured in nanoseconds per packet.
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Figure 17: Forwarding rate as a function of input rate for some

sample Click configurations.

IPHeader, andGetIPAddressinto a single input element, and
DropBroadcasts, CheckPaint, IPGWOptions, FixIPSrc, Dec-
IPTTL, andIPFragmenterinto a single output element. The
new configuration processes an IP packet in 1.9 µs instead of
2.4. When we add eight distinct no-op elements to the for-
warding path of the new configuration, the packet processing
time rises to 2.3 µs. This suggests that most of the reduc-
tion from 2.4 to 1.9 is due to fewer inter-element calls and
fewer instruction cache misses, and not due to better compiler
optimization of the larger elements.

6.3 Cost of incremental complexity

Click makes it easy to create complex and potentially slow
configurations. Figure 17 shows the performance of some
of the example Click configurations described in this paper,
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bered line corresponds to one DSCP; see Figure 13. The x axis

corresponds to the input rate for one DSCP, so the aggregate input

rate is four times this value. The performance peak is at roughly

72,000 aggregate packets per second. The line for DSCP 4 jumps

up at 12,500 packets per second because, at that rate, packets with

DSCP 3 are relabeled as DSCP 4.

and demonstrates that small increases in complexity incur
small performance costs. The line marked IP shows the per-
formance of the basic IP configuration in Figure 8. The line
marked IP+RED corresponds to a configuration in which a
REDelement is inserted before eachQueuein Figure 8. No
packets were dropped by RED in the performance test, since
the router’s output link is as fast as its input. The IP+SFQ line
shows the performance of Figure 8 with eachQueuereplaced
with a copy of the fair queuing arrangement in Figure 10. The
Switch line corresponds to the Ethernet switch configuration
of Figure 14, which does much less work than the IP router.

6.4 Differentiated Services evaluation

We tested the diffserv configuration in Figure 13 by adding it
to the IP router (Figure 8) in place of theQueues. The source
host generated four streams of data simultaneously, each
with a different DSCP corresponding to one path through
Figure 13. Figure 18 shows the results. This graph clearly
shows the different policing behaviors of the four streams,
and also demonstrates the livelock behavior discussed in Sec-
tion 6.2. As the input rate grows large, Linux takes more and
more interrupts to service the receiving interface. Eventu-
ally, there is not enough CPU time to handle the incoming
packets, and new packets are discarded at the interface itself.
Since packets are discarded early—before entering the Click
configuration—theMeters see a packet rate much smaller
than the true input rate. Thus, at the right edge of the graph,
theMeters switch back to their non-overload behavior. Again,
this livelock problem could be alleviated with a polling ar-
chitecture.

6.5 Performance summary

Click performs well despite its modularity. Its 73,000 packet
per second IP forwarding rate is 90% as fast as Linux on
the same hardware, and faster than that of some low-end
commercial routers. For example, Cisco advertises the 2621,
a router with about the same cost as our hardware ($2000),
as forwarding packets between its two 100 Mbit ports at
25,000 packets per second [6]. Click uses only 16% of the
total CPU cycles required to forward a packet, the rest being
consumed by device drivers. Finally, adding a new element to
the forwarding path is cheap enough that it should not deter
users from taking advantage of Click’s flexibility.

7 Related work

Several previous projects have investigated composable net-
work software. These projects concentrated on end nodes,
where packet motion is vertical (between the network and
user level) rather than horizontal (between interfaces), so
they aren’t as well suited as Click for routing. None of them
have pull processing, explicit queues, or flow-based router
context.

The x-kernel [12] is a framework for implementing and
composing network protocols. Like a Click router, anx-kernel
configuration is a graph of processing nodes, and packets are
passed between nodes through virtual function calls. Un-
like Click, anx-kernel configuration graph is always acyclic
and layered, asx-kernel nodes were intended to represent
protocols in a protocol stack. This prevents cyclic configu-
rations like the IP router (Figure 8). Connections between
nodes are bidirectional—packets travel up the graph to user
level and down the graph to the network. Packets pass alter-
nately through “protocol” nodes and “session” nodes, where
the session nodes correspond to end-to-end network connec-
tions like TCP sessions; session nodes are irrelevant to most
routers. The inter-node communication protocols are more
complex than Click’s. Lastly, many protocol graph changes
require recompilation.

Scout [18, 22] is better suited for routing than thex-kernel;
for example, there are no session objects and cyclic configu-
rations are partially supported. Execution in Scout is centered
on paths, sequences of nodes that are run from beginning to
end. Packets are classified into the correct path as early as
possible, so that, for example, Ethernet packets containing
MPEG data can be treated differently as soon as they arrive.
Each path is executed by a thread. It is interesting to note
that Click automatically supports paths without enforcing
them: an earlyClassifierelement can separate out MPEG-in-
TCP-in-IP-in-Ethernet traffic, creating a de facto path. Each
Scout path has implicit queues on its inputs and outputs. It
is not clear, therefore, how many queues would be involved
in a complex configuration like the IP router, which is not
amenable to linearization. Scout does have some features
Click currently lacks, namely a more interesting scheduler
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and explicit support for different kinds of inter-node commu-
nication (not just packet flow).

The UNIX System V STREAMS system [25] also provides
composable packet processing modules. Every STREAMS
module includes implicit queuing by default. Each module
must be prepared for the next module’s queue to fill up, and to
respond by queuing or discarding or deferring the processing
of incoming packets. Modules with multiple inputs or outputs
must also make packet scheduling decisions. STREAMS’
tendency to spread scheduling and queuing logic throughout
the configuration conflicts with a router’s need for precise
control over these functions.

The router plugins system [8, 9] is designed for packet
forwarding, but is only partially configurable.A router plugin
is a software module executed when a classifier matches a
particular flow. These classifiers can be installed at any of
severalgates, which are fixed points in the IP forwarding
path. Plugins do not allow control over the path itself.

To the best of our knowledge, commercial routers are dif-
ficult to extend, either because they use specialized hard-
ware [19, 21] or because their software is proprietary. Even
open software is not enough, however. A network adminis-
trator could, in principle, implement new routing functions
in Linux, but in practice, we expect few administrators have
the time or capability to modify an operating system ker-
nel. Kernel programming is harder than extending a Click
configuration.

The active networking research program allows anyone to
write code that will affect a router [26, 27]. However, this
code is intended to teach the router new protocols, not to
change core router properties like scheduling or dropping
policies. Click allows a trusted user to change any aspect
of a router; active networking allows untrusted packets to
decide how they should be routed. The two approaches are
complementary.

A number of research projects have built routers out of off-
the-shelf PC hardware and public-domain software [4, 30].
In many ways this trend towards commodity hardware and
software is a return to how routers were constructed 15 years
ago [16]. The parts of this work that focused on making
commodity routers fast use techniques that could be applied
to Click.

8 Conclusion

Click is an open, extensible, and configurable router frame-
work. Our IP router demonstrates that real routers can be built
by connecting small, modular elements, and our performance
analysis shows that this need not come at unacceptablecost—
the Click IP router is just 10% slower than Linux 2.2.10, our
base system. Interesting scheduling and dropping policies,
complex queueing, and Differential Services can be added to
the IP router simply by adding a couple of elements, and Click
is flexible enough to support other applications as well. We

have made the Click system free software; it is available for
download athttp://www.pdos.lcs.mit.edu/click/.
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