
93

File system usage in Windows NT 4.0
Werner Vogels

Department of Computer Science, Cornell University

vogels@cs.cornell.edu

Abstract
We have performed a study of the usage of the Windows NT
File System through long-term kernel tracing. Our goal
was to provide a new data point with respect to the 1985
and 1991 trace-based File System studies, to investigate the
usage details of the Windows NT file system architecture,
and to study the overall statistical behavior of the usage
data.

In this paper we report on these issues through a
detailed comparison with the older traces, through details
on the operational characteristics and through a usage
analysis of the file system and cache manager. Next to
architectural insights we provide evidence for the pervasive
presence of heavy-tail distribution characteristics in all
aspect of file system usage. Extreme variances are found in
session inter-arrival time, session holding times, read/write
frequencies, read/write buffer sizes, etc., which is of
importance to system engineering, tuning and
benchmarking.

Categories and subject descriptors: C.4 [Computer
Systems Organization]: performance of systems - design
studies, D.4.3 [Software]: operating systems - file systems
management.

1 Introduction
There is an extensive body of literature on usage patterns
for file systems [1,5,9,11,14], and it has helped shape file
system designs [8,13,17] that perform quite well. However,
the world of computing has undergone major changes since
the last usage study was performed in 1991; not only have
computing and network capabilities increased beyond
expectations, but the integration of computing in all aspects
of professional life has produced new generations of
systems and applications that no longer resemble the
computer operations of the late eighties. These changes in
the way computers are used may very well have an
important impact on the usage of computer file systems.

One of the changes in systems has been the introduction
of a new commercial operating system, Microsoft’s
Windows NT, which has acquired an important portion of
the professional OS market. Windows NT is different
enough from Unix that Unix file systems studies are
probably not appropriate for use in designing or optimizing
Windows NT file systems.

These two observations have lead us to believe that new
data about file systems usage is required, and that it would
be particularly interesting to perform the investigation on a
Windows NT platform.

In this paper we report on a file system usage study
performed mainly during 1998 on the Windows NT 4.0
operating system. We had four goals for this study:

1. Provide a new data point with respect to earlier file
system usage studies, performed on the BSD and Sprite
operating systems.

2. Study in detail the usage of the various components of
the Windows NT I/O subsystem, and examine
undocumented usage such as the FastIO path.

3. Investigate the complexity of Windows NT file system
interactions, with a focus on those operations that are
not directly related to the data path.

4. Study the overall distribution of the usage data.
Previous studies already hinted at problems with
modeling outliers in the distribution, but we believe that
this problem is more structural and warrants a more
detailed analysis.

Next to these immediate goals, we wanted the
investigation to result in a data collection that would be
available for public inspection, and that could be used as
input for file system simulation studies and as configuration
information for realistic file system benchmarks.

The complexity of Windows NT file usage is easily
demonstrated. When we type a few characters in the
notepad text editor, saving this to a file will trigger 26
system calls, including 3 failed open attempts, 1 file
overwrite and 4 additional file open and close sequences.

The rest of this paper is structured as follows: in section
2 we describe the systems we measured, and in section 3
and 4, we describe the way we collected the data and
processed it. In section 5 we examine the file system layout
information, and in section 6 we compare our tracing
results with the BSD and Sprite traces. Section 7 contains a
detailed analysis of the distribution aspects of our collected
data. Sections 8, 9 and 10 contain details about the
operation of various Windows NT file system components.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SOSP-17 12/1999 Kiawah Island, SC

(C) 1999 ACM 1-58113-140-2/99/0012...$5.00

17th ACM Symposium on Operating Systems Principles (SOSP’99)
Published as Operating Systems Review 34(5):93—109, Dec. 1999

94

Section 11 touches on related work and section 12
summarizes the major points of the study. An overview of
our observations can be found in table 1.

2 Systems under study
We studied a production environment in which five distinct
categories of usage are found:

Walk-up usage. Users make use of a pool of available
systems located in a central facility. The activities of these
users vary from scientific analysis and program
development to document preparation.

Pool usage. Groups of users share a set of dedicated
systems, located near their work places. These users mainly
are active in program development, but also perform a fair
share of multimedia, simulation and data processing.

Personal usage. A system is dedicated to a single user and
located in her office. The majority of the activities is in the
category of collaborative style applications, such as email
and document preparation. A smaller set of users uses the
systems for program development.

Administrative usage. All these systems are used for a
small set of general support tasks: database interaction,
collaborative applications, and some dedicated
administrative tools.

Scientific usage. These systems support major
computational tasks, such as simulation, graphics

processing, and statistical processing. The systems are
dedicated to the small set of special applications.

The first four categories are all supported by Pentium
Pro or Pentium II systems with 64-128 Mb memory and a
2-6 GB local IDE disk. The pool usage machines are in
general more powerful (300-450 MHz, some dual
processors), while the other machines are all in the 200
MHz range. The scientific usage category consists of
Pentium II 450 Xeon dual and quad processors with a
minimum of 256 MB of memory and local 9-18 GB SCSI
Ultra-2 disks. All systems ran Windows NT 4.0 with the
latest service packs applied. At the time of the traces the
age of file systems ranged from 2 months to 3 years, with
an average of 1.2 years.

There is central network file server support for all users.
Only a limited set of personal workstations is supported
through a backup mechanism, so central file storage is
implicitly encouraged. All systems are connected to the
network file servers through a 100 Mbit/sec switched
Ethernet. The users are organized in three different NT
domains, one for the walk-up usage, one general usage and
one for experiments. The experimental domain has a trust
relationship with the general domain and network file
services are shared. The walk-up domain is separated from
the other domains through a network firewall and has its
own network file services.

In comparison with the Sprite and BSD traces Operational characteristics

− Per user throughput remains low, but is about 3 times
higher (24 Kbytes/sec) than in Sprite (8 Kb/sec)

− Files opened for data access are open for increasingly
shorter periods: 75% of files remain open for less then
10 milliseconds versus a 75th percentile of 250
milliseconds in Sprite.

− Most accessed files are short in length (80% are smaller
than 26 Kbytes), which is similar to Sprite.

− Most access (60%) to files is sequential, but there is a
clear shift towards random access when compared to
Sprite.

− The size of large files has increased by an order of
magnitude (20% are 4Mbytes or larger), and access to
these files accounts for the majority of the transferred
bytes.

− 81% of new files are overwritten within 4 milliseconds
(26%) or deleted within 5 seconds (55%).

− The burstiness of the file operations has increased to the
point where it disturbs the proper analysis of the data.

− Control operations dominate the file system requests:
74% of the file opens are to perform a control or
directory operation.

− In 60% of the file read requests the data comes from the
file cache.

− In 92% of the open-for-read cases a single prefetch was
sufficient to load the data to satisfy all subsequent reads
from the cache.

− The FastIO path is used in 59% of the read and 96% of
the write requests.

− Windows NT access attributes such as temporary file,
cache write- through, sequential access only, can
improve access performance significantly but are
underutilized.

Trace data distribution characteristics File system content

− There is strong evidence of extreme variance in all of the
traced usage characteristics.

− All the distributions show a significant presence of
heavy-tails, with values for the Hill estimator between
1.2 and 1.7, which is evidence of infinite variance.

− Using Poisson processes and Normal distributions to
model file system usage will lead to incorrect results.

− Executables, dynamic loadable libraries and fonts
dominate the file size distribution.

− 94% of file system content changes are in the tree of user
profiles (personalized file cache).

− Up to 90% of changes in the user’s profile occur in the
WWW cache.

− The time attributes recorded with files are unreliable
Table 1: Summary of observations

95

From the 250 systems that were available for
instrumentation, we selected a set of 45 systems based on
privacy concerns and administrative accessibility. A subset
of these systems was traced for 3 periods of 2 weeks during
the first half of 1998 while we adjusted the exact type and
amount of data collected. Some of the changes were related
to the fact that our study was of an exploratory nature and
the data collection had to be adjusted based on the initial
results of the analysis. Other adjustments were related to
our quest to keep the amount of data per trace record to an
absolute minimum, while still logging sufficient
information to support the analysis. We were not always
successful as, for example, logging only the read request
size is of limited use if the bytes actually read are not also
logged. The analysis reported in this paper is based on a
final data collection that ran for 4 weeks in November and
December of 1998. The 45 systems generated close to 19
GB of trace data over this period.

Since then we have run additional traces on selected
systems to understand particular issues that were unclear in
the original traces, such as burst behavior of paging I/O,
reads from compressed large files and the throughput of
directory operations.

3 Collecting the data
The systems were instrumented to report two types of data:
1) snapshots of the state of the local file systems and 2) all
I/O requests sent to the local and remote file systems. The
first type is used to provide basic information about the
initial state of the file system at the start of each tracing
period and to establish the base set of files toward which
the later requests are directed. In the second type of data all
file system actions are recorded in real-time.

On each system a trace agent is installed that provides
an access point for remote control of the tracing process.
The trace agent is responsible for taking the periodic
snapshots and for directing the stream of trace events
towards the collection servers. The collection servers are
three dedicated file servers that take the incoming event
streams and store them in compressed formats for later
retrieval. The trace agent is automatically started at boot
time and tries to connect to a collection server; if it
succeeds, it will initiate the local data collection. If a trace
agent loses contact with the collection servers it will
suspend the local operation until the connection is re-
established.

3.1 File system snapshots
Each morning at 4 o’clock a thread is started by the trace
agent server to take a snapshot of the local file systems. It
builds this snapshot by recursively traversing the file
system trees, producing a sequence of records containing
the attributes of each file and directory in such a way that
the original tree can be recovered from the sequence. The
attributes stored in a walk record are the file name and size,
and the creation, last modify and last access times. For

directories the name, number of files entries and number of
subdirectories is stored. Names are stored in a short form as
we are mainly interested in the file type, not in the
individual names. On FAT file systems the creation and last
access times are not maintained and thus ignored.

The trace agent transfers these records to the trace
collection server, where they are stored in a compressed
format. Access to the collection files is through an OLE/DB
provider, which presents each file as two database tables:
one containing the directory and the other containing file
information.

Producing a snapshot of a 2 GB disk takes between 30
and 90 seconds on a 200 MHz P6.

3.2 File system trace instrumentation
To trace file system activity, the operating system was
instrumented so that it would record all file access
operations. An important subset of the Windows NT file
system operations are triggered by the virtual memory
manager, which handles executable image loading and file
cache misses through its memory mapped file interface. As
such, it is not sufficient to trace at the system call level as
was done in earlier traces. Our trace mechanism exploits
the Windows NT support for transparent layering of device
drivers, by introducing a filter driver that records all
requests sent to the drivers that implement file systems. The
trace driver is attached to each driver instance of a local file
system (excluding removable devices), and to the driver
that implements the network redirector, which provides
access to remote file systems through the CIFS protocol.

All file systems requests are sent to the I/O manager
component of the Windows NT operating system,
regardless of whether the request originates in a user-level
process or in another kernel component, such as the virtual
memory manager or the network file server. After
validating the request, the I/O manager presents it to the
top-most device-driver in the driver chain that handles the
volume on which the file resides. There are two driver
access mechanisms: one is a generic packet based request
mechanism, in which the I/O manager sends a packet (an
IRP -- I/O request packet) describing the request, to the
drivers in the chain sequentially. After handling a request
packet a driver returns it to the I/O manager, which will
then send it to the next device. A driver interested in post-
processing of the request, after the packet has been handled
by its destination driver, modifies the packet to include the
address of a callback routine. A second driver access
mechanism, dubbed FastIO, presents a direct method
invocation mechanism: the I/O manager invokes a method
in the topmost driver, which in turn invokes the same
method on the next driver, and so on. The FastIO path is
examined in more detail in section 10.

The trace driver records 54 IRP and FastIO events,
which represent all major I/O request operations. The
specifics of each operation are stored in fixed size records

96

in a memory buffer, which is periodically flushed to the
collection server. The information recorded depends on the
particular operation, but each record contains at least a
reference to the file object, IRP, File and Header Flags, the
requesting process, the current byte offset and file size, and
the result status of the operation. Each record receives two
timestamps: one at the start of the operation and the other at
completion time. These time stamps have a 100
nanosecond granularity. Additional information recorded
depends on the particular operation, such as offset, length
and returned bytes for the read and write operations, or the
options and attributes for the create operation. An
additional trace record is written for each new file object,
mapping object id to a file name.

The trace driver uses a triple-buffering scheme for the
record storage, with each storage buffer able to hold up to
3,000 records. An idle system fills this size storage buffer
in an hour; under heavy load, buffers fill in as little as 3-5
seconds. Were the buffers to fill in less than 1 second, the
increased communication latency between the host and
server could lead to the overflow of the tracing module
storage buffer. The trace agent would detect such an error,
but this never occurred during our tracing runs.

Kernel profiling has shown the impact of the tracing
module to be acceptable; under heavy IRP load the tracing
activity contributed up to 0.5% of the total load on a 200
MHz P6.

In a 24-hour period the file system trace module would
record between 80 thousand and 1.4 million events.

3.3 Executable and paging I/O
Windows NT provides functionality for memory mapped
files, which are used heavily by two system services: (1)
the loading of executables and dynamic loadable libraries is
based on memory mapped files, and (2) the cache manager
establishes a file mapping for each file in its cache, and
uses the page fault mechanism to trigger the VM manager
into loading the actual data into the cache. This tight
integration of file system, cache manager and virtual
memory manager poses a number of problems if we want
to accurately account for all the file system operations.

The VM manager uses IRPs to request the loading of
data from a file into memory and these IRPs follow the
same path as regular requests do. File systems can
recognize requests from the VM through a PagingIO bit set
in the packet header. When tracing file systems one can
ignore a large portion of the paging requests, as they
represent duplicate actions: a request arrives from process
and triggers a page fault in the file cache, which triggers a
paging request from the VM manager. However, if we do
ignore paging requests we would miss all paging that is
related to executable and dynamic loadable library (dll)
loading, and other use of memory mapped files. We
decided to record all paging requests and filter out the

cache manager induced duplicates during the analysis
process.

We decided in favor of this added complexity, even
though it almost doubled the size of our traces, because of
the need for accuracy in accounting for executable-based
file system requests. In earlier traces the exec system call
was traced to record the executable size, which was used to
adjust the overall trace measurements. In Windows NT this
is not appropriate because of the optimization behavior of
the Virtual Memory manager: executable code pages
frequently remain in memory after their application has
finished executing to provide fast startup in case the
application is executed again.

3.4 Missing and noise data
We believe the system is complete in recording all major
file system IO events, which is sufficient for getting insight
into general Windows NT file system usage. There are
many minor operations for which we did not log detailed
information (such as locking and security operations), but
they were outside of the scope of our study. During our
analysis we found one particular source of noise: the local
file systems can be accessed over the network by other
systems. We found this access to be minimal, as in general
it was used to copy a few files or to share a test executable.
Given the limited impact of these server operations we
decided to not remove them from the trace sets.

4 The data analysis process
The data analysis presented us with a significant problem:
the amount of data was overwhelming. The trace data
collection run we are reporting on in this paper totaled
close to 20 GB of data, representing over 190 million trace
records. The static snapshots of the local disks resulted in
24 million records.

Most related tracing research focuses on finding
answers to specific sets of questions and hypotheses, which
could be satisfied through the use of extensive statistical
techniques, reducing the analysis to a number crunching
exercise. Given the exploratory nature of our study we
needed mechanisms with which we could browse through
the data and search for particular patterns, managing the
exposed level of details. Developing a representation of the
data such that these operations could be performed
efficiently on many millions of records turned out to be a
very hard problem.

We were able to find a solution by realizing that this
was a problem identical to the problems for which there is
support in data-warehousing and on-line analytical
processing (OLAP). We developed a de-normalized star
schema for the trace data and constructed corresponding
database tables in SQL-server 7.0. We performed a series
of summarization runs over the trace data to collect the
information for the dimension tables. Dimension tables are
used in the analysis process as the category axes for multi-

97

dimensional cube representations of the trace information.
Most dimensions support multiple levels of summarization,
to allow a drill-down into the summarized data to explore
various levels of detail. An example of categorization is
that a mailbox file with a .mbx type is part of the mail files
category, which is part of the application files category.

We departed from the classical data-warehouse model
in that we used two fact tables (the tables that hold all the
actual information), instead of one. The first table (trace)
holds all the trace data records, with key references to
dimension tables. The second table (instance) holds the
information related to each FileObject instance, which is
associated with a single file open-close sequence, combined
with summary data for all operations on the object during
its life-time. Although the second table could be produced
by the OLAP system, our decision to use two fact tables
reduced the amount of storage needed in the trace table by
references to the instance table, reducing the processing
overhead on operations that touch all trace records.

The use of a production quality database system
provided us with a very efficient data storage facility. An
operation that would touch all trace data records, such as
calculation of the basic statistical descriptors (avg, stdev,
min, max) of request inter-arrival times, runs at 30% of the
time a hand optimized C-process on the original trace data
takes. More complex statistical processing that could not be
expressed in SQL or MDX was performed using the SPSS
statistical processing package that directly interfaces with
the database.

Because we processed the data using different category
groupings (e.g. per day, per node, per user, per process,
etc.) our analysis frequently did not result in single values
for the statistical descriptors. In the text we show the ranges
of these values or, where relevant, only the upper or lower
bound.

5 File system content characteristics
To accurately analyze the real-time tracing results we
needed to examine the characteristics of the set of files that
were to be accessed in our trace sessions. For this we took
snapshots of each of the file systems that was used for
tracing as described in section 3.1. We collected file names
and sizes, and creation and access times, as well as
directory structure and sizes.

We supplemented this data with periodic snapshots of
the user directories at the network file severs. However, the
results of these snapshots cannot be seen as the correct state
of the system from which the real-time tracing was
performed, as they included the home directories of more
users than those being traced. The network file server
information was used to establish an intuitive notion of the
differences between local and network file systems.

Recently Douceur and Bolosky have published a study
on the content of over 10,000 Windows NT file systems
within Microsoft [4]. Most of our findings are consistent

with their conclusions, and we refer to their paper for a
basic understanding of Windows NT file system content.
Our content tracing allowed us to track the state of the file
systems over time, and in this section we report from that
specific view.

We see that the local file systems have between 24,000
and 45,000 files, that the file size distribution is similar for
all systems, and that the directory depth and sizes are
almost identical. File systems are between 54% and 87%
full.

The network server file systems are organized into
shares, which is a remote mountable sub-tree of a file
system. In our setting each share represents a user’s home
directory. There was no uniformity in size or content of the
user shares; sizes ranged from 500 Kbytes to 700 Mbytes
and number of files from 150 to 27,000. The directory
characteristics exhibit similar variances.

Decomposition of the local and network file systems by
file type shows a high variance within the categories as
well as between categories. What is remarkable is that this
file type diversity does not appear to have any impact on
the file size distribution; the large-sized outliers in the size
distribution dominate the distribution characteristics. If we
look again at the different file types and weigh each type by
file size we see that the file type distribution is similar for
all system types, even for the network file systems. The file
size distribution is dominated by a select group of file-types
that is present in all file systems. For local file systems the
size distribution is dominated by executables, dynamic
loadable libraries and fonts, while for the network file
system the set of large files is augmented with development
databases, archives and installation packages.

When we examine the local file systems in more detail
we see that the differences in file system state are
determined by two factors: 1) the file distribution within
the user’s profile, and 2) the application packages installed.
Most of our test systems have a limited number of user
specific files in the local file system, which are generally
stored on the network file servers.

Of the user files that are stored locally between 87%
and 99% can be found in the profile tree
(\winnt\profiles\<username>). Each profile holds all the
files that are unique to a user and which are stored by the
system at a central location. These files are downloaded to
each system the user logs into from a profile server,
through the winlogon process. This includes files on the
user’s desktop, application specific data such as mail files,
and the user’s world-wide-web cache. At the end of each
session the changes to the profiles are migrated back to the
central server. When we detect major differences between
the systems, they are concentrated in the tree under the
\winnt\profiles directory. For the “Temporary Internet
Files” WWW cache we found sizes between 5 and 45
Mbytes and with between 2,000 and 9,500 files in the
cache.

98

A second influence on the content characteristics of the
file system is the set of application packages that are
installed. Most general packages such as Microsoft Office
or Adobe Photoshop have distribution dynamics that are
identical to the Windows NT base system and thus have
little impact on the overall distribution characteristics.
Developer packages such as the Microsoft Platform SDK,
which contains 14,000 files in 1300 directories, create a
significant shift in file-type count and the average directory
statistics.

When we examine the changes in the file systems over
time, similar observations can be made. Major changes to a
Windows NT file system appear when a new user logs onto
a system, which triggers a profile download, or when a new
application package is installed. Without such events,
almost all of the measured changes were related to the
current user’s activities, as recorded in her profile. A
commonly observed daily pattern is one where 300-500
files change or are added to the system, with peaks of up to
2,500 and 3,000 files, up to 93% of which are in the WWW
cache.

Changes to user shares at the network file server occur
at much slower pace. A common daily pattern is where 5-
40 files change or are added to the share, with peaks
occurring when the user installs an application package or
retrieves a large set of files from an archive.

If we look at the age of files and access patterns over
time, a first observation to make is that the three file times
recorded with files (creation, last access, last change) are
unreliable. These times are under application control,
allowing for changes that cause inconsistencies. For
example, in 2-4% of the examined cases, the last change
access is more recent than the last access times. Installation
programs frequently change the file creation time of newly
installed files to the creation time of the file on the
installation medium, resulting in files that have creation
times of years ago on file systems that are only days or
weeks old. In [18] the creation times were also not
available and a measure used to examine usage over time
was the functional lifetime, defined as the difference
between the last change and the last access. We believe that
these timestamps in Windows NT are more accurate than

the creation time, as the file system is the main modifier of
these timestamps, but we are still uncertain about their
correctness, and as such we cannot report on them.

6 BSD & Sprite studies revisited
One of the goals of this study was to provide a new data
point in relation to earlier studies of the file system usage in
BSD 4.2 and the Sprite operating systems. These studies
reported their results in three categories: 1) user activity
(general usage of the file system on a per user basis), 2)
access patterns (read/write, sequential/random), and 3) file
lifetimes. A summary of the conclusions of this comparison
can be found in table 1.

The Windows NT traces contain more detail than the
BSD/Sprite traces, but in this section we will limit our
reporting to the type of data available in the original
studies.

Strong caution: when summarizing the trace data to
produce tables identical to those of the older traces, we
resort to techniques that are not statistically sound. As we
will show in section 7, access rates, bytes transferred and
most of the other properties investigated are not normally
distributed and thus cannot be accurately described by a
simple average of the data. We present the summary data in
table 2 and 3 to provide a historical comparison.

6.1 User activity
Table 2 reports on the user activity during the data
collection. The tracing period is divided into 10-minute and
10-second intervals, and the number of active users and the
throughput per user is averaged across those intervals. In
the BSD and Sprite traces it was assumed that 10 minutes
was a sufficient period to represent a steady state, while the
10-second average would more accurately capture bursts of
activity.

The earlier traces all reported on multi-user systems,
while the Windows NT systems under study are all
configured for a single user. A user and thus a system are
considered to be active during an interval if there was any
file system activity during that interval that could be
attributed to the user. In Windows NT there is a certain
amount of background file system activity, induced by

 Windows NT Sprite BSD
Max number of active users 45 27 31
Average number of active users 28.9 (21.6) 9.1 (5.1) 12.6
Average throughput for a user in an interval 24.4 (57.9) 8.0 (36) 0.40 (0.4)
Peak throughput for an active user 814 458 NA

10-minute intervals

Peak throughput system wide 814 681 NA
Max number of active users 45 12 NA
Average number of active users 6.3 (15.3) 1.6 (1.5) 2.5 (1.5)
Average throughput for a user in an interval 42.5 (191) 47.0 (268) 1.5 (808)
Peak throughput for an active user 8910 9871 NA

10-second intervals

Peak throughput system wide 8910 9977 NA
Table 2. User activity. The throughput is reported in Kbytes/second (with the standard deviation in parentheses).

99

systems services, that was used as the threshold for the user
activity test.

The result of the comparison is in table 2. The average
throughput per user has increased threefold since the 1991
Sprite measurements. A remarkable observation is that this
increase can only be seen for the 10-minute periods, for the
10-second period there was no such increase and the peak
measurements are even lower.

The Sprite researchers already noticed that the increase
in throughput per user was not on the same scale as the
increase of processor power per user. They attributed this to
the move from a system with local disk to a diskless system
with network file systems. In our traces we are able to
differentiate between local and network access, and when
summarizing it appears that there is indeed such a
difference in throughput. However detailed analysis shows
that the difference can be completely attributed to the
location of executables and large system-files such as fonts,
which are all placed on the local disk.

One of the reasons for the high peak load in Sprite was
the presence of large files from a scientific simulation.
Although the scientific usage category in our traces uses
files that are of an order of magnitude larger (100-300

Mbytes), they do not produce the same high peak loads
seen in Sprite. These applications read small portions of the
files at a time, and in many cases do so through the use of
memory-mapped files.

The peak load reported for Windows NT was for a
development station, where in a short period a series of
medium size files (5-8 Mb), containing precompiled header
files, incremental linkage state and development support
data, was read and written.

6.2 File access patterns
The BSD and Sprite (and also the VMS [15]) traces all
concluded that most access to files is sequential.
Summaries of our measurements, as found in table 3,
support this conclusion for Windows NT file access, but
there is also evidence of a shift towards more randomized
access to files when compared to the Sprite results.

A sequential access is divided into two classes:
complete file access and partial file access. In the latter
case all read and write accesses are sequential but the
access does not start at the beginning of the file or transfers
fewer bytes than the size of the file at close time.

The Windows NT traces do not support the trend seen

File Usage Accesses (%) Bytes (%) Type of transfer Accesses (%) Bytes (%)
 W - + S W - + S W - + S W - + S

Whole file 68 1 99 78 58 3 96 89
Other sequential 20 0 62 19 11 0 72 5

Read-only 79 21 97 88 59 21 99 80

Random 12 0 99 3 31 0 97 7
Whole file 78 5 99 67 70 1 99 69
Other sequential 7 0 51 29 3 0 47 19

Write-only 18 3 77 11 26 0 73 19

Random 15 0 94 4 27 0 99 11
Whole file 22 0 90 0 5 0 76 0
Other sequential 3 0 28 0 0 0 14 0

Read/Write 3 0 16 1 15 0 70 1

Random 74 2 100 100 94 9 100 0
Table 3. Access patterns, the W column holds the mean for the Windows NT traces, the S column holds the values from
the Sprite traces. The – and + columns indicate the range for the values. All numbers are reported in percentages.

run length (bytes)

10 100 1K 10K 100K

p
e
r
c
e
n
t
a
g
e

o
f

f
i
l
e
s

0

20

40

60

80

100

read runs

write runs

 run length(bytes)

10 100 1K 10K 100K

p
e
r
c
e
n
t
a
g
e

o
f

B
y
t
e
s

T
r
a
n
s
f
e
r
e
d

0

20

40

60

80

100

read runs

write runs

Figure 1. The cumulative distribution of the sequential run
length weighted by the number of files

Figure 2. The cumulative distribution of the sequential run
length weighted by bytes transferred

100

in Sprite, where there was a 10% increase in sequential
access. On average 68% of the read-only accesses were
whole-file sequential, versus 78% in the Sprite traces. A
significant difference from Sprite is the amount of data
transferred sequentially: in Sprite 89% of the read-only data
was transferred sequentially versus 58% in the Windows
NT traces. When comparing this type of trace summary
there is a stronger presence of random access to data both
in number of accesses and in the amount of data accessed
for all file usage categories.

Another important access pattern examined is that of
the sequential runs, which is when a portion of a file is read
or written in a sequential manner. The prediction of a series
of sequential accesses is important for effective caching
strategies. When examining these runs we see that they
remain short; the 80% mark for Sprite was below the 10
Kbytes, while in our traces we see a slight increase in run
length with the 80% mark at 11 Kbytes (figure 1).

An observation about the Sprite traces was that most
bytes were transferred in the longer sequential runs. The
Windows NT traces support this observation, although the
correlation is less prominent (figure 2). Access to large files
shows increasing random access patterns, causing 15%-
35% (in some traces up to 70%) of the bytes to be
transferred in non-sequential manner.

If we look at all file open sessions for which data
transfers where logged, not just those with sequential runs,
we see that the 80% mark for the number of accesses
changes to 24 Kbytes. 10% of the total transferred bytes
were transferred in sessions that accessed at least 120
Kbytes.

When examining the size of files in relation to the
number of sequential IO operations posted to them we see a
similar pattern: most operations are to short files (40% to
files shorter than 2K) while most bytes are transferred to
large files (figures 3 and 4).

In Sprite the researchers found that, when examining
the top 20% of file sizes, an increase of an order of
magnitude was seen with respect to the BSD traces. This
trend has continued: in the Windows NT traces the top 20%
of files are larger than 4 Mbytes. An important
contribution to this trend comes from the executables and
dynamic loadable libraries in the distribution, which
account for the majority of large files.

The last access pattern for which we examine the traces
concerns the period of time during which a file is open. In
this section we only look at file open sessions that have
data transfer associated with them; sessions specific for
control operation are examined in section 8. The results are
presented in figure 5; about 75% of the files are open less
than 10 milliseconds. This is a significant change when
compared to the Sprite and BSD traces, which respectively
measured a quarter-second and a half-second at 75%. The
less significant difference between the two older traces was
attributed to the fact that in the BSD traces the I/O was to

File Size (bytes)

1 10 100 1K 10K 100K 1M 10M 100M 1G

P
e
r
c
e
n
t
a
g
e

o
f

F
i
l
e
s

0

20

40

60

80

100

Read-Only
Read-Write
Write-Only

 File Size (bytes)

1 10 100 1K 10K 100K 1M 10M 100M

P
e
r
c
e
n
t
a
g
e

o
f

B
y
t
e
s

T
r
a
n
s
f
e
r
e
d

0

20

40

60

80

100

Read-Only
Read-Write
Write-Only

Figure 3. File size cumulative distribution, weighted by the
number of files opened

Figure 4. File size cumulative distribution, weighted by the
number of bytes transferred

File open times

1 msec 1 sec 16 min 4 days

P
e
r
c
e
n
t
a
g
e

o
f

F
i
l
e
s

0

20

40

60

80

100

all files
local file system
network file server

Figure 5. File open time cumulative distribution weighted by
the number of files.

101

local storage while in the Sprite the storage was accessed
over the network. In the Windows NT traces we are able to
examine these access times separately, and we found no
significant difference in the access times between local and
remote storage.

6.3 File lifetimes
The third measurement category presented in the BSD &
Sprite traces is that of the lifetime of newly created files.
The Sprite traces showed that between 65% and 80% of the
new files were deleted within 30 seconds after they were
created. In the Windows NT traces we see that the presence
of this behavior is even stronger; up to 80% of the newly
created files are deleted within 4 seconds of their creation.

In Windows NT we consider three sources for deletion
of new files: (1) an existing file is truncated on open by use
of a special option (37% of the delete cases), (2) a file is
newly created or truncated and deleted using a delete
control operation (62%), and (3) a file is opened with the
temporary file attribute (1%).

In about 75% of the delete-through-truncate cases a file
was overwritten within 4 milliseconds after it was created.
The distribution shows a strong heavy tail with the top 10%
having a lifetime of at least 1 minute, and up to 18 hours. If
we inspect the time between the closing of a file and the
subsequent overwrite action, we see that over 75% of these
files are overwritten within 0.7 millisecond of the close.

In the case of explicitly deleted files, we see a higher
latency between create and delete action. 72% of these files
are deleted within 4 seconds after they were created and
60% 1.5 seconds after they were closed (see figure 6).

One of the possible factors in the difference in latency
is related to which process deletes the file. In 94% of the
overwrite cases, the process that overwrites the file also
created it in the first place, while in 36% of the DeleteFile
cases the same process deletes the file. A second factor is
that there are no other actions posted to overwritten files,

while in 18% of the DeleteFile cases, the file is opened one
or more times between creation and deletion.

The temporary file attribute not only causes the file to
be deleted at close time, but also prevents the cache
manager’s lazy writer threads from marking the pages
containing the file data for writing to disk. Although it is
impossible to extract the exact persistency requirements for
temporary file usage from the traces, analysis suggests that
at least 25%-35% of all the deleted new files could have
benefited from the use of this attribute.

In 23% of the cases where a file was overwritten,
unwritten pages were still present in the file cache when the
overwrite request arrived. In the case of the
CreateFile/DeleteFile sequence 5% of the newly created
files had still unwritten data present in the cache when
deleted. Anomalous behavior was seen in 3% of the cases
where the file was flushed from the cache by the
application before it was deleted.

The apparent correlation between the file size and
lifetime, as noticed by the Sprite researchers, is
tremendously skewed by the presence of large files. In the
Windows NT case only 4% of the deleted files are over 40
Kbytes and 65% of the files are smaller than 100 bytes. In
the traces we could not find any proof that large temporary
files have a longer lifetime. Figure 7 shows a plot of
lifetime versus size of a trace sample, and although there
are no large files in this plot that are deleted in less then 1
second, there is no statistical justification for a correlation
between size and lifetime of temporary files.

7 Data distribution
When analyzing the user activity in section 6.1 we were
tempted to conclude that for Windows NT the average
throughput in general has increased, but that the average in
burst load has been reduced. The use of simple averaging
techniques allows us to draw such conclusions, in similar
fashion one could conclude from the file access patterns

lifetime of new files

100 usec 10 msec 1 sec 100 sec 10K sec

p
e
r
c
e
n
t
a
g
e

o
f

f
i
l
e
s

0

20

40

60

80

100

overwrite/truncate
explicit delete

 File size in bytes at overwrite time

0 10 100 1K 10K 100K 1M 10M

L
i
f
e
t
i
m
e

o
f

n
e
w

f
i
l
e
s

100 usec

10 msec

1 sec

100 sec

10K sec

Figure 6. The lifetime of newly created files grouped by
deletion method

Figure 7. When examining file sizes at overwrite time, we
cannot find a correlation between size and lifetime

102

that most file accesses still occur in a read-only, whole-file
sequential manner. If we examine the result of analysis of
the file access in table 3 once more, the truly important
numbers in that table are the ranges of values that were
found for each of the statistical descriptives. The -/+

columns in the table represent the min/max values found
when analyzing each trace separately.

When we have a closer look at the trace data and the
statistical analysis of it, we find a significant variance in
almost all variables that we can test. A common approach
to statistically control burstiness, which is often the cause
of the extreme variances, is to examine the data on various
time scales. For example, in the previous two file system
trace reports, the data was summarized over 10-second and
10-minute intervals, with the assumption that the 10-minute
interval would smoothen any variances found in the traces.

If, for example, we consider the arrival rate of file
system requests to be drawn from a Poisson distribution,
we should see that the variances should diminish when we
view the distribution at coarser time granularity. In figure 8
we compare the request arrival rates in one of our trace
files, randomly chosen, with a synthesized sample from a
Poisson distribution for which we estimated its mean and
variance from the trace information (the details of this test
are presented in [21]). When we view the samples at time
scales with different orders of magnitude, we see that at
larger time scales the Poisson sample becomes smooth,
while the arrival data in our sample distribution continues
to exhibit the variant behavior.

In almost all earlier file system trace research there is
some notion of the impact of large files on the statistical
analysis. In the Sprite research, for example, an attempt
was made to discard the impact of certain categories of
large files, by removing kernel development files from the
traces. The result, however, did not remove the impact of
large files, leading the researchers to conclude that the
presence of large files was not accidental.

Analyzing our traces for the impact of outliers we find
they are present in all categories. For example if we take

D
e
v
i
a
t
i
o
n

f
r
o
m

N
o
r
m
a
l

-2e9

0

2e9

4e9

6e9

8e9

Observed Value

1e7
0 2e7

3e7
4e7

5e7
6e7

Observed Value

6e7
5e7

4e7
3e7

2e7
1e7

0

D
e
v
i
a
t
i
o
n

f
r
o
m

P
a
r
e
t
o

2e9

0

-2e9

-4e9
7e7

Figure 9. The arrival data from the sample used in figure 8
is tested against a Normal and a Pareto distribution through
a QQ plot. The plot tests to what extend sample data
follows a given distribution with estimated parameters.

0 20 40 60 80 100

O
p
e
n

r
e
q
u
e
s
t
s

p
e
r

1

s
e
c
o
n
d

0

200

400

600

800

1000

 0 250 500 750 1000

O
p
e
n

r
e
q
u
e
s
t
s

p
e
r

1
0

s
e
c
o
n
d
s

0

2000

4000

6000

8000

10000

 0 2000 4000 6000 8000 1000

O
p
e
n

r
e
q
u
e
s
t
s

p
e
r

1
0
0

s
e
c
o
n
d
s

0

10000

20000

30000

40000

50000

0 20 40 60 80 100

A
r
r
i
v
a
l
s

p
e
r

1

s
e
c
o
n
d

0

200

400

600

800

 0 200 400 600 800 1000

A
r
r
i
v
a
l
s

p
e
r

1
0

s
e
c
o
n
d
s

1000

2000

3000

4000

 0 2000 4000 6000 8000 10000

0

10000

20000

30000

40000

50000

A
r
r
i
v
a
l
s

p
e
r

1
0
0

s
e
c
o
n
d
s

Figure 8. The top row displays the inter-arrival distribution of file open events at 3 different orders of magnitude. The
bottom row contains a synthesized sample of a Poisson process with parameters estimated from the sample.

103

the distribution of bytes read per open-close session, we see
that the mean of the distribution is forced beyond the 90th
percentile by the impact of large file read sessions. If we
visually examine how the sample distribution from figure 8
departs from normality through a QQ plot (figure 9) we see
that values in the quartiles support the evidence that the
distribution is not normal. If we use a QQ plot to test the
sample against a Pareto distribution, which is the simplest
distribution that can be used to model heavy-tail behavior,
we see an almost perfect match.

To examine the tail in our sample distribution we
produced a log-log complementary distribution plot (figure
10). The linear appearance of the plot is evidence of the
power-law behavior of the distribution tail; normal or log-
normal distributions would have shown a strong drop-off
appearance in the plot. When we use a least-squares
regression of points in the plotted tail to estimate the heavy-
tail α parameter1, we find a value of 1.2. This value is
consistent with our earlier observation of infinite variance;
however, we cannot conclude that the distribution also has
an infinite mean [16].

This observation of extreme variance at all time scales
has significant importance for operating system engineering
and tuning: Resource predictions are often made based on
the observed mean and variance of resource requests,
assuming that, over time, this will produce a stable system.
Evidence from our traces shows that modeling the arrival
rates of I/O request as a Poisson process or size
distributions as a Normal distribution is incorrect. Using
these simplified assumptions can lead to erroneous design
and tuning decisions when systems are not prepared for
extreme variance in input parameters, nor for the long-
range dependence of system events.

An important reason for the departure from a normal
distribution in file system analysis is that user behavior has
a very reduced influence on most of the file system
operations. Whether it is file size, file open times, inter-
arrival rates of write operations, or directory poll
operations, all of these are controlled through loops in the
applications, through application defined overhead to user
storage, or are based on input parameters outside of the
user’s direct control. More than 92% of the file accesses in
our traces were from processes that take no direct user
input, even though all the systems were used interactively.
From those processes that do take user input, explorer.exe,
the graphical user interface, is dominant, and although the
user controls some of its operation, it is the structure and
content of the file system that determines explorer’s file
system interactions, not the user requests. Unfortunately

1 A random variable X follows a heavy-tailed distribution if P[X >
x] ~ x-α, as x → ∞, 0 < α < 2. A reliable estimator for α is the Hill
estimator. We have computed this for our samples and it confirms
the more llcd plot estimation results. A value of α < 2 indicates
infinite variance, if α < 1 this also indicates an infinite mean.

this kind of information cannot be extracted form the older
traces so we cannot put this into a historical perspective.

This process controlled dominance of file system
operations is similar to observations in data-
communication, where, for example, the length of TCP
sessions are process controlled, with only limited human
factors involved. File system characteristics have an
important impact on the network traffic; as for example the
file size is a dominant factor in WWW session length.
Given that the files and directories have heavy-tailed size
distributions, this directly results into heavy-tailed
distributions for those activities that depend on file system
parameters [2,5].

Another important observation is that some
characteristics of process activity, independent of the file
system parameters, also play an important role in producing
the heavy-tailed access characteristics. From the analysis of
our traces we find that process lifetime, the number of
dynamic loadable libraries accessed, the number of files
open per process, and spacing of file accesses, all obey the
characteristics of heavy-tail distributions. Some of these
process characteristics cannot be seen as completely
independent of the file system parameters; for example, the
lifetime of the winlogon process is determined by the
number and size of files in the user’s profile.

Our observations of heavy-tail distributions in all areas
of file system analysis lead to the following general
conclusions:

1. We need to be very careful in describing file system
characteristics using simple parameters such as average
and variance, as they do not accurately describe the
process of file system access. At minimum we need to
describe results at different granularities and examine
the data for extreme variances.

2. In our design of systems we need to be prepared for the
heavy-tail characteristics of the access patterns. This is
particularly important for the design and tuning of

Log(interarival rate) of the upper tail in milliseconds

1 2 3 4 5 6

L
o
g
(
P
[
X
>
x
]
)

-4

-3

-2

-1

0

Sample Data

Estimated Slope

Figure 10: A log-log complementary distribution plot for
the tail of the sample from figure 8, combined with a fitted
line for the estimation of the α parameter

104

limited resource systems such as file caches, as there is
important evidence that heavy-tail session length (such
as open times and amount of bytes transferred) can
easily lead to queue overflow and memory starvation
[6].

3. When constructing synthetic workloads for use in file
system design and benchmarking we need to ensure that
the infinite variance characteristics are properly
modeled in the file system test patterns. In [22], Seltzer
et al. argue for application-specific file system
benchmarking, which already allows more focused
testing, but for each test application we need to ensure
that the input parameters from the file system under test
and the ON/OFF activity pattern of the application is
modeled after the correct (heavy-tailed) distributions.

4. When using heuristics to model computer system
operations it is of the highest importance to examine
distributions for possible self-similar properties, which
indicate high variance. Exploitation of these properties
can lead to important improvements in the design of
systems, as shown in [7].

8 Operational characteristics
There were 3 focus points when we analyzed the traces to
understand the specifics of the Windows NT file system
usage:

• Examine the traces from a system engineering
perspective: the arrival rate of events, the holding time
of resources, and the resource requests in general.

• Gain understanding in how applications use the
functionality offered through the broad Windows NT
file system interface and how the various options are
exploited.

• Investigate the complexity of the Windows NT
application and file system interactions.

In this section we explore these points by looking at the
different file system operations, while in the next 2 sections
we will investigate cache manager related technologies
from these perspectives.

8.1 Open and close characteristics
Any sequence of operations on a file in Windows NT is
encapsulated in an Open/Close sequence of events. Some
operating systems have core primitives such as rename and
delete which do not require the caller to open the file first,
but in Windows NT these operations are generic file
operations on files that have been opened first. For
example, the deletion of a file or the loading of an
executable can only be performed after the file itself has
been opened.

Figure 11 displays inter-arrival times of open requests
arriving at the file system: 40% of the requests arrive
within 1 millisecond of a previous request, while 90%
arrives with 30 milliseconds. When we investigate the
arrivals by grouping them into intervals, we see that only
up to 24% of the 1-second intervals of a user’s session have
open requests recorded for them. This again shows us the
extreme burstiness of the system.

If we examine the reuse of files, we see that between
24% and 40% of the files that are opened read-only are
opened multiple times during a user’s session. Of the files
accessed write-only, 4% are opened for another write-only
session, while 36%-52% are re-opened for reading. 94% of
the files that were open for reading and writing are opened
multiple times, in the same mode.

An important measurement for resource tuning is the
time that files are kept open (file session lifetime). In figure
12 we present the session lifetimes for a number of cases.
The overall statistics show that 40% of the files are closed
within one millisecond after they were opened and that
90% are open less then one second. Of the sessions with

Interarrival period of open requests

1 msec 10 msec 100 msec 1 sec 10 sec

P
er

ce
nt

ag
e

of
 th

e
re

qu
es

ts

0

20

40

60

80

100

open for I/O
open for control

File session lifetime

1 msec 1 sec 16 min

P
e
r
c
e
n
t
a
g
e

o
f

f
i
l
e
s

0

20

40

60

80

100

All usage types
File open for control operations
File open for data operations

Figure 11. Cumulative distribution of the inter-arrival periods of
file system open requests per usage type

Figure 12. Cumulative distribution of the periods that files
are open per usage type.

105

only control or directory operations 90% closed within 10
milliseconds.

When we investigate session times for the type of data
access, we see that 70% of read-write access happens in
periods of less then 1 second, while read-only and write-
only accesses have this 1 second mark at 60% and 30%,
respectively.

The session length can also be viewed from the process
perspective. Some processes only have a single style of file
access and the session time for each access is similar. The
FrontPage HTML editor, for example, never keeps files
open for longer then a few milliseconds. Others such as the
development environments, databases control engines or
the services control program keep 40%-50% of their files
open for the complete duration of their lifetime. Programs
such as loadwc, which manages a user’s web subscription
content, keep a large number of files open for the duration
of the complete user session, which may be days or weeks.
The first approach, opening a file only for the time
necessary to complete IO, would produce a correlation
between session time and file size. When testing our
samples for such a correlation we could not find any
evidence.

In general it is difficult to predict when a file is opened
what the expected session time will be. All session
distributions, however, had strong heavy-tails, from which
we can conclude that once a file is open for a relatively
long period (3-5 seconds, in most cases) the probability that
the file will remain open for a very long time is significant.

Windows NT has a two stage close operation. At the
close of the file handle by the process or kernel module, the
IO manager sends a cleanup request down the chain of
drivers, asking each driver to release all resources. In the
case of a cached file, the cache manager and the VM
manager still hold references to the FileObject, and the
cleanup request is a signal for each manager to start
releasing related resources. After the reference count
reaches zero, the IO manager sends the close request to the
drivers. In the case of read caching this happens
immediately as we see the close request within 4-�� VHF�
after the cleanup request. In the case of write caching the
references on the FileObject are released as soon as all the
dirty pages have been written to disk, which may take 1-4
seconds.

8.2 Read and write characteristics
The burst behavior we saw at the level of file open requests
has an even stronger presence at the level of the read and
write requests. In 70% of the file opens, read/write actions
were performed in batch form, and the file was closed
again. Even in the case of files that are open longer than the
read/write operations require, we see that the reads and
writes to a file are clustered into sets of updates. In almost
80% of the reads, if the read was not at the end-of-file, a
follow-up read will occur within 90 microseconds. Writes

occur at an even faster pace: 80% have an inter-arrival
space of less than 30 microseconds. The difference between
read and write intervals is probably related to the fact that
the application performs some processing after each read,
while the writes are often pre-processed and written out in
batch style.

When we examine the requests for the amount of data
to be read or written, we find a distinct difference between
the read and write requests. In 59% of the read cases the
request size is either 512 or 4096 bytes. Some of the
common sizes are triggered by buffered file i/o of the stdio
library. Of the remaining sizes, there is a strong preference
for very small (2-8 bytes) and very large (48 Kbytes and
higher) reads. The write sizes distribution is more diverse,
especially in the lower bytes range (less then 1024 bytes),
probably reflecting the writing of single data-structures.

8.3 Directory & control operations
The majority of file open requests are not made to read or
write data. In 74%, the open session was established to
perform a directory or a file control operation.

There are 33 major control operations on files available
in Windows NT, with many operations having subdivisions
using minor control codes. Most frequently used are the
major control operations that test whether path, names,
volumes and objects are valid. In general the application
developer never requests these operations explicitly, but
they are triggered by the Win32 runtime libraries. For
example, a frequently arriving control operation is whether
the “volume is mounted”, which is issued in the name
verification part of directory operations. This control
operation is issued between up to 40 times a second on any
reasonably active system.

Another frequently issued control operation is
SetEndOfFile, which truncates the file to a given size. The
cache manager always issues it before a file is closed that
had data written to it. This is necessary as the delayed
writes through the VM manager always have the size of
one or more pages, and the last write to a page may write
more data than there is in the file. The end-of-file operation
then moves the end-of-file mark back to the correct
position.

8.4 Errors
Not all operations are successful: of the open requests 12%
fail and of the control operations 8% fail. In the open cases
there are two major categories of errors: the file to be
opened did not exist in 52% of the error cases and in 31%
the creation of a file was requested, but it already did exist.
When we examine the error cases more closely we see that
a certain category of applications that uses the “open”
request as a test for the existence of the file: the failure is
immediately followed by a create action, which will be
successful.

106

Reads hardly ever fail (0.2%); the error that does occur
on the read are attempts to read past the end-of–file. We did
not find any write errors.

9 The cache manager
An important aspect of the Windows NT file system design
is the interaction with the cache manager. The Windows
NT kernel is designed to be extensible with many third
party software modules, including file systems, which
forces the cache manager to provide generalized support for
file caching. It also requires file system designers to be
intimately familiar with the various interaction patterns
between file system implementation, cache manager and
virtual memory manager. A reasonably complete
introduction can be found in [12].

In this section we will investigate two file system and
cache manager interaction patterns: the read-ahead and
lazy-write strategies for optimizing file caching. The cache
manager never directly requests a file system to read or
write data; it does this implicitly through the Virtual
Memory system by creating memory-mapped sections of
the files. Caching takes place at the logical file block level,
not at the level of disk blocks.

A process can disable read caching for the file at file
open time. This option is hardly ever used: read caching is
disabled in only 0.2% of all files that had read/write actions
performed on them. 76% of those files were data files from
opened by the “system” process. All of these files were
used in a read-write pattern with a write-through option set
to also disable write caching. Developers using this option
need to be aware of the block size and alignment
requirements of the underlying file system. All of the
requests for these files will go through the traditional IRP
path.

9.1 Read-ahead
When caching is initialized for a file, the Windows NT
cache manager tries to predict application behavior and to
initiate file system reads before the application requests the
data, in order to improve cache hit rate. The standard
granularity for read-ahead operation is 4096 bytes, but is
under the control of the file system, which can change it on
a per file basis. In many cases the FAT and NTFS file
systems boost the read-ahead size to 65 Kbytes. Caching
of a file is initiated when the first read or write request
arrives at the file system driver.

Of all the sessions that performed reads 31% used a
single IO operation to achieve their goal, and although this
caused the caching to be initiated and data to be loaded in
the cache, the cached data was never accessed after the first
read.

Of the sequential accesses with multiple reads, which
benefit from the read-ahead strategy, 40% used read sizes
smaller than 4Kbytes and 92% smaller than 65Kbytes. This

resulted in that only 8% of the read sequences required
more than a single read-ahead action.

The cache manager tries to predict sequential access to
a file so it can load data even more aggressively. If the
application has specified at open time that the file data will
be processed through sequential access only, the cache
manager doubles the size of the read-ahead requests. Of
file-opens with sequential read accesses only 5% specified
this option. Of those files 99% were smaller than the read-
ahead granularity and 80% smaller than a single page, so
the option has no effect.

The cache manager also tries to predict sequential
access by tracking the application actions: read-ahead is
performed when the 3rd of a sequence of sequential requests
arrives. In our traces this happened in 7% of the sequential
cases that needed data beyond the initial read-ahead.

The cache manager uses a fuzzy notion of sequential
access; when comparing requests, it masks the lowest 7 bits
to allow some small gaps in the sequences. In our test in
section 6.2, this would have increased the sequential
marked trace runs by 1.5%.

9.2 Write-behind
Unless explicitly instructed by the application, the cache
manager does not immediately write new data to disk. A
number of lazy-write worker threads perform a scan of the
cache every second, initiating the write to disk of a portion
of the dirty pages, and requesting the close of a file after all
references to the file object are released. The algorithm for
the lazy-writing is complex and adaptive, and is outside of
the scope of this paper. What is important to us is the bursts
of write requests triggered by activity of the lazy-writer
threads. In general, when the bursts occur, they are in
groups of 2-8 requests, with sizes of one or more pages up
to 65 Kbytes.

Applications have two methods for control over the
write behavior of the cache. They can disable write caching
at file open time, or they can request the cache manager to
write its dirty pages to disk using a flush operation.

In 1.4% of file opens that had write operations posted to
them, caching was disabled at open time. Of the files that
were opened with write caching enabled, 4% actively
controlled their caching by using the flush requests. The
dominant strategy used by 87% of those applications was to
flush after each write operation, which suggests they could
have been more effective by disabling write caching at
open time.

10 FastIO
For a long time the second access path over which requests
arrived at the file system driver, dubbed the FastIO path,
has been an undocumented part of the Windows NT kernel.
The Device Driver Kit (DDK) documentation contains no
references to this part of driver development, which is
essential for the construction of file systems. The

107

Installable File System Kit (IFS) shipped as Microsoft’s
official support for file system development, contains no
documentation at all. Two recent books [12,20] provide
some insight into the role of the FastIO path, but appear
unaware of its key role in daily operations. In this section
we will examine the importance of this access path, and
provide some insight into its usage.

For some time the popular belief, triggered by the
unwillingness of Microsoft to document FastIO, was that
this path was a private “hack” of the Windows NT kernel
developers to secretly bypass the general IO manager
controlled IRP path. Although FastIO is a procedural
interface, faster when compared with the message-passing
interface of the IO manager, it is not an obscure hack. The
“fast” in FastIO does not refer to the access path but to the
fact that the routines provide a direct data path to the cache
manager interface as used by the file systems. When file
system drivers indicate that caching has been initialized for
a file, the IO manager will try to transfer the data directly in
and out of the cache by invoking methods from the FastIO
interface. The IO manager does not invoke the cache
manager directly but first allows file system filters and
drivers to manipulate the request. If the request does not
return a success value, the IO manager will in most cases
retry the operation over the traditional IRP path. File
system filter drivers that do not implement all of methods
of the FastIO interface, not even as a passthrough
operation, severely handicap the system by blocking the
access of the IO manager to the FastIO interface of the
underlying file system and thus to the cache manager.

Caching is not performed automatically for each file; a
file system has to explicitly initialize caching for each
individual file and in general a file system delays this until
the first read or write request arrives. This results in a file
access pattern where the traces will log a single read or
write operation through the IRP interface, which sets up
caching for that file, followed by a sequence of FastIO calls

that interact with the file cache directly. The effect on
latency of the different operations is shown in figure 13.

If we examine the size of the read requests in figure 14,
we see that FastIO requests have a tendency towards
smaller size. This is not related to the operation itself, but
to the observation that processes that use multiple
operations to read data, in general use more targeted sized
buffers to achieve their goal. Processes that use only a few
operations do this using larger buffers (page size, 4096
bytes, being the most popular).

Some processes takes this to the extreme; a non-
Microsoft mailer uses a single 4Mbyte buffer to write to its
files, while some of the Microsoft Java Tools read files in 2
and 4 byte sequences, often resulting in thousands of reads
for a single class file.

The cache manager has functionality to avoid a copy of
the data through a direct memory interface, providing
improved read and write performance, and this
functionality can be accessed through the IRP as well as the
FastIO interface. We observed that only kernel-based
services use this functionality.

11 Related work
File tracing has been an important tool for designing file
systems and caches. There are 3 major tracing studies of
general file systems: the BSD and Sprite studies [1,14],
which were closely related and examined an academic
environment. The 3rd study examined in detail the file
usage under VMS at a number of commercial sites [15].
One of our goals was to examine the Windows NT traces
from an operating system perspective; as such we
compared our results with those found in the BSD and
Sprite studies. The VMS study focused more on the
differences between the various usage types encountered,
and a comparison with our traces, although certainly
interesting, was outside of the scope of this paper.

request completion latency (microseconds)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

p
e
r
c
e
n
t
a
g
e

o
f

o
p
e
r
a
t
i
o
n
s

0

20

40

60

80

100

FastIO Read
FastIo Write
IRP Read
IRP Write

 Requested data size

0 10 100 1K 10K 100K

P
e
r
c
e
n
t
a
g
e

o
f

o
p
e
r
a
t
i
o
n
s

0

20

40

60

80

100 FastIO Read
FastIO Write
IRP Read
IRP Write

Figure 13. The cumulative distribution of the service period
for each of the 4 major request types

Figure 14. The cumulative distribution of the data request
size for each of the 4 major request types

108

A number of other trace studies have been reported,
however, they either focused on a specific target set, such
as mobile users, or their results overlapped with the 3 major
studies [3,9,11,23].

There is a significant body of work that focuses on
specific subsets of file system usage, such as effective
caching, or file system and storage system interaction.

There have been no previous reports on the tracing of
file systems under Windows NT. A recent publication from
researchers at Microsoft Research examines the content of
Windows NT file systems, but does not report on trace-
based usage [4].

With respect to our observations of heavy-tails in the
distributions of our trace data samples; there is ample
literature on this phenomenon, but little with respect to
operating systems research. A related area with recent
studies is that of wide-area network traffic modeling and
World Wide Web service models.

 In [5], Gribble, et al. inspected a number of older
traces, including the Sprite traces, for evidence of self-
similarity and did indeed find such evidence for short, but
not for long term behavior. They did conclude that the lack
of detail in the older traces made the analysis very hard.
The level of detail of the Windows NT traces is sufficient
for this kind of analysis.

12 Summary
To examine file system usage we instrumented a

collection of Windows NT 4.0 systems and traced, in detail,
the interaction between processes and the file system. We
compared the results of the traces with the results of the
BSD and Sprite studies [1,14] performed in 1985 and 1991.
A summary of our observations is presented in table 1.

We examined the samples for presence of heavy-tails in
the distributions and for evidence of extreme variance. Our
study confirmed the findings of others who examined
smaller subsets of files: that files have a heavy-tail size
distribution. But more importantly we encountered heavy-
tails for almost all variables in our trace set: session inter-
arrival time, session holding times, read/write frequencies,
read/write buffer sizes, etc. This knowledge is of great
importance to system engineering, tuning and
benchmarking, and needs to be taken into account when
designing systems that depend on distribution parameters.

When we examined the operational characteristics of
the Windows NT file system we found further evidence of
the extreme burstiness of the file systems events. We also
saw that the complexity of the operation is mainly due to
the large number of control operations issued and the
interaction between the file systems, cache manager and
virtual memory system.

The file system cache manager plays a crucial role in
the overall file system operation. Because of the aggressive
read-ahead and write-behind strategies, an amplification of

the burstiness of file system requests occurs, this time
triggered by the virtual memory system.

We examined the undocumented FastIO path and were
able to shed light on its importance and its contribution to
the overall Windows NT file system operation.

In this paper we reported on the first round of analysis
of the collected trace data. There are many aspects of file
system usage in Windows NT that have not been examined
such as file sharing, file locking, details of the control
operations, details of the various file cache access
mechanisms, per process and per file type access
characteristics, etc. We expect to report on this in the
future.

Acknowledgements
Thanks goes to Fred Schneider for the motivation to do this
study, to Thorsten von Eicken for the initial discussions of
the results, and to my colleagues Ken Birman and Robbert
van Renesse for never questioning what I was doing “on-
the-side”.

The paper improved significantly because of the very
thoughtful comments of the reviewers and the help of Peter
Chen, the official shepherd. Special praise goes to Sara
Shaffzin, without whose editorial help this paper would
never have made it through the first round. Tim Clark,
Raoul Bhoedjang and Ken Birman provided useful help
with the final version.

This investigation was made possible by grants from
Microsoft Corporation and Intel Corporation, and was
supported by the National Science Foundation under Grant
No. EIA 97-03470 and by DARPA/ONR under contract
N0014-96-1-10014.

References
[1] Baker, Mary G., John H. Hartmann, Michael D.

Kupfer, Ken W. Shirriff, and John K. Ousterhout,
Measurement of a Distributed File System, in
Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, pages 198-212, Pacific
Grove, CA, October 1991.

[2] Crovella, Mark, Murad Taqqu, Aze Bestevaros,
“Heavy-Tailed Probability Distributions in the World
Wide Web”, in A Practical Guide to Heavy-Tails:
Statistical Techniques and Applications, R. Adler, R.
Feldman and M.S. Taqqu, Editors, 1998, Birkhauser
Verlag, Cambridge, MA.

[3] Dahlin, Michael, Clifford Mather, Randolph Wang,
Thomas Anderson, and David Patterson, A
Quantitative Analysis of Cache Policies for Scalable
Network File Systems. In Proceedings of the 1994
ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 150 - 160,
Nashville, TN, May 1994.

109

[4] Douceur, John, and William Bolosky, A Large Scale
Study of File-System Contents, in Proceedings of the
SIGMETRICS’99 International Conference on
Measurement and Modeling of Computer Systems,
pages 59-70, Atlanta, GA, May 1999.

[5] Gribble, Steven, Gurmeet SinghManku, Drew Roselli,
Eric A.Brewer, Timothy J.Gibson, and Ethan L.Miller;
Self-similarity in file systems , in Proceedings of the
SIGMETRICS’98 / PERFORMANCE’98 joint
International Conference on Measurement and
Modeling of Computer Systems, pages 141 – 150,
Madison, WI, June 1998.

[6] Heath, David, Sidney Resnick, and Gennady
Samorodnitsky, Patterns of Buffer Overflow in a Class
of Queues with Long Memory in the Input Stream,
School of OR & IE technical report 1169, Cornell
University, 1996.

[7] Harchol, Mor, and Allen Downey, Exploiting Process
Lifetime Distributions for Dynamic Load Balancing, in
ACM Transactions on Computer Systems, volume 15,
number 3, pages 253-285, August 1997.

[8] Kistler, James J., and M. Satyanarayanan,
Disconnected Operation in the Coda File System, in
ACM Transactions on Computer Systems, volume 10,
number 1, pages 3-25, February 1992.

[9] Kuenning, Geoffrey H., Gerald J. Popek, and Peter L.
Reiher, An Analysis of Trace Data for Predictive File
Caching in Computing, in Proceedings of the USENIX
Summer 1994 Technical Conference, pages 291-303,
Boston, MA, June 1994.

[10] Majumdar, Shikharesh, and Richard B. Bunt,
Measurement and Analysis of Locality Phases in File
Referencing Behavior, in Proceedings of the 1986
ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 180-192,
Raleigh, NC, May 1986.

[11] Mummert, Lily B., and M. Satyanarayanan, Long
Term Distributed File Reference Tracing:
Implementation and Experience, in Software: Practice
and Experience, volume 26, number 6, pages 705-736,
June 1996.

[12] Nagar, Rajeev, Windows NT File System Internals,
O’Reilly & Associates, September 1997.

[13] Nelson, Michael N., Brent B. Welch, and John K.
Ousterhout, Caching in the Sprite Network File

System, ACM Transactions on Computer Systems,
volume 6, number 1, pages 134-154, February 1988

[14] Ousterhout, John K., Herve Da Costa, David Harrison,
John A. Kunze, Michael Kupfer and James G.
Thompson, A Trace-Driven Analysis of the UNIX
4.2BSD File System, in the Proceeding of the Tenth
ACM Symposium on Operating Systems Principles,
pages 198-121, Orcas Island, WA, October 1991.

[15] Ramakrishnan, K. K., P. Biswas, and R. Karedla,
Analysis of File I/O Traces in Commercial Computing
Environments, in Proceedings of the 1992 ACM
SIGMETRICS and Performance ’92 International
Conference on Measurement and Modeling of
Computer Systems, pages 78-90, Pacific Grove, CA,
June 1992.

[16] Resnick, Sidney I., Heavy Tail Modeling and
Teletraffic Data, school of OR & IE technical report
1134, Cornell University, 1995.

[17] Rosenblum, Mendel, and John K.Ousterhout, The
Design and Implementation of a Log-Structured File
System, in ACM Transactions on Computer Systems.
10(1), pages 26–52, February 1992.

[18] Satyanarayanan, M., A Study of File Sizes and
Functional Lifetimes, in Proceedings of the 8th ACM
Symposium on Operating Systems Principles, pages
96-108, Pacific Grove, CA, December 1981.

[19] Smith, Alan Jay, Analysis of Long Term File
Reference Patterns for Application to File Migration
Algorithms. IEEE Transactions on Software
Engineering, volume 7, number 4, pages 403-417, July
1981.

[20] Solomon, David, Inside Windows NT, Second Edition,
Microsoft Press, 1998

[21] Willinger, Walt, and Vern Paxson, “Where
Mathematics meets the Internet”, in Notices of the
Amercian Mathematical Society, volume 45, number 8,
1998

[22] Seltzer, Margo, David Krinsky, Keith Smith and
Xiaolan Zhang, “The Case for Application-Specific
Benchmarking”, in Proceedings of the 1999 Workshop
on Hot Topics in Operating Systems, Rico, AZ, 1999

[23] Zhou, Songnian, Herve Da Costa and Alan Jay Smith,
A File System Tracing Package for Berkeley UNIX, in
proceedings of the USENIX Summer 1985 Technical
Conference, pages 407-419, Portland Oregon, June
1985

