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Abstract 
We have performed a study of the usage of the Windows NT 
File System through long-term kernel tracing. Our goal 
was to provide a new data point with respect to the 1985 
and 1991 trace-based File System studies, to investigate the 
usage details of the Windows NT file system architecture, 
and to study the overall statistical behavior of the usage 
data. 

In this paper we report on these issues through a 
detailed comparison with the older traces, through details 
on the operational characteristics and through a usage 
analysis of the file system and cache manager. Next to 
architectural insights we provide evidence for the pervasive 
presence of heavy-tail distribution characteristics in all 
aspect of file system usage. Extreme variances are found in 
session inter-arrival time, session holding times, read/write 
frequencies, read/write buffer sizes, etc., which is of 
importance to system engineering, tuning and 
benchmarking. 

Categories and subject descriptors: C.4 [Computer 
Systems Organization]: performance of systems - design 
studies, D.4.3 [Software]: operating systems - file systems 
management. 

1 Introduction 
There is an extensive body of literature on usage patterns 
for file systems [1,5,9,11,14], and it has helped shape file 
system designs [8,13,17] that perform quite well. However, 
the world of computing has undergone major changes since 
the last usage study was performed in 1991; not only have 
computing and network capabilities increased beyond 
expectations, but the integration of computing in all aspects 
of professional life has produced new generations of 
systems and applications that no longer resemble the 
computer operations of the late eighties. These changes in 
the way computers are used may very well have an 
important impact on the usage of computer file systems.  

 

One of the changes in systems has been the introduction 
of a new commercial operating system, Microsoft’s 
Windows NT, which has acquired an important portion of 
the professional OS market. Windows NT is different 
enough from Unix that Unix file systems studies are 
probably not appropriate for use in designing or optimizing 
Windows NT file systems.  

These two observations have lead us to believe that new 
data about file systems usage is required, and that it would 
be particularly interesting to perform the investigation on a 
Windows NT platform.  

In this paper we report on a file system usage study 
performed mainly during 1998 on the Windows NT 4.0 
operating system. We had four goals for this study: 

1. Provide a new data point with respect to earlier file 
system usage studies, performed on the BSD and Sprite 
operating systems. 

2. Study in detail the usage of the various components of 
the Windows NT I/O subsystem, and examine 
undocumented usage such as the FastIO path. 

3. Investigate the complexity of Windows NT file system 
interactions, with a focus on those operations that are 
not directly related to the data path. 

4. Study the overall distribution of the usage data. 
Previous studies already hinted at problems with 
modeling outliers in the distribution, but we believe that 
this problem is more structural and warrants a more 
detailed analysis. 

Next to these immediate goals, we wanted the 
investigation to result in a data collection that would be 
available for public inspection, and that could be used as 
input for file system simulation studies and as configuration 
information for realistic file system benchmarks. 

The complexity of Windows NT file usage is easily 
demonstrated. When we type a few characters in the 
notepad text editor, saving this to a file will trigger 26 
system calls, including 3 failed open attempts, 1 file 
overwrite and 4 additional file open and close sequences.  

The rest of this paper is structured as follows: in section 
2 we describe the systems we measured, and in section 3 
and 4, we describe the way we collected the data and 
processed it. In section 5 we examine the file system layout 
information, and in section 6 we compare our tracing 
results with the BSD and Sprite traces. Section 7 contains a 
detailed analysis of the distribution aspects of our collected 
data. Sections 8, 9 and 10 contain details about the 
operation of various Windows NT file system components. 
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Section 11 touches on related work and section 12 
summarizes the major points of the study. An overview of 
our observations can be found in table 1. 

2 Systems under study 
We studied a production environment in which five distinct 
categories of usage are found:  

Walk-up usage. Users make use of a pool of available 
systems located in a central facility. The activities of these 
users vary from scientific analysis and program 
development to document preparation.  

Pool usage. Groups of users share a set of dedicated 
systems, located near their work places. These users mainly 
are active in program development, but also perform a fair 
share of multimedia, simulation and data processing. 

Personal usage. A system is dedicated to a single user and 
located in her office. The majority of the activities is in the 
category of collaborative style applications, such as email 
and document preparation. A smaller set of users uses the 
systems for program development. 

Administrative usage. All these systems are used for a 
small set of general support tasks: database interaction, 
collaborative applications, and some dedicated 
administrative tools. 

Scientific usage. These systems support major 
computational tasks, such as simulation, graphics 

processing, and statistical processing. The systems are 
dedicated to the small set of special applications. 

The first four categories are all supported by Pentium 
Pro or Pentium II systems with 64-128 Mb memory and a 
2-6 GB local IDE disk. The pool usage machines are in 
general more powerful (300-450 MHz, some dual 
processors), while the other machines are all in the 200 
MHz range. The scientific usage category consists of 
Pentium II 450 Xeon dual and quad processors with a 
minimum of 256 MB of memory and local 9-18 GB SCSI 
Ultra-2 disks. All systems ran Windows NT 4.0 with the 
latest service packs applied. At the time of the traces the 
age of file systems ranged from 2 months to 3 years, with 
an average of 1.2 years. 

There is central network file server support for all users. 
Only a limited set of personal workstations is supported 
through a backup mechanism, so central file storage is 
implicitly encouraged. All systems are connected to the 
network file servers through a 100 Mbit/sec switched 
Ethernet. The users are organized in three different NT 
domains, one for the walk-up usage, one general usage and 
one for experiments. The experimental domain has a trust 
relationship with the general domain and network file 
services are shared. The walk-up domain is separated from 
the other domains through a network firewall and has its 
own network file services.  

In comparison with the Sprite and BSD traces Operational characteristics 

− Per user throughput remains low, but is about 3 times 
higher (24 Kbytes/sec) than in Sprite (8 Kb/sec) 

− Files opened for data access are open for increasingly 
shorter periods: 75% of files remain open for less then 
10 milliseconds versus a 75th percentile of 250 
milliseconds in Sprite. 

− Most accessed files are short in length (80% are smaller 
than 26 Kbytes), which is similar to Sprite. 

− Most access (60%) to files is sequential, but there is a 
clear shift towards random access when compared to 
Sprite. 

− The size of large files has increased by an order of 
magnitude (20% are 4Mbytes or larger), and access to 
these files accounts for the majority of the transferred 
bytes. 

− 81% of new files are overwritten within 4 milliseconds 
(26%) or deleted within 5 seconds (55%). 

− The burstiness of the file operations has increased to the 
point where it disturbs the proper analysis of the data. 

− Control operations dominate the file system requests: 
74% of the file opens are to perform a control or 
directory operation. 

− In 60% of the file read requests the data comes from the 
file cache.  

− In 92% of the open-for-read cases a single prefetch was 
sufficient to load the data to satisfy all subsequent reads 
from the cache. 

− The FastIO path is used in 59% of the read and 96% of 
the write requests. 

− Windows NT access attributes such as temporary file, 
cache write- through, sequential access only, can 
improve access performance significantly but are 
underutilized. 

Trace data distribution characteristics File system content 

− There is strong evidence of extreme variance in all of the 
traced usage characteristics. 

− All the distributions show a significant presence of 
heavy-tails, with values for the Hill estimator between 
1.2 and 1.7, which is evidence of infinite variance. 

− Using Poisson processes and Normal distributions to 
model file system usage will lead to incorrect results. 

− Executables, dynamic loadable libraries and fonts 
dominate the file size distribution. 

− 94% of file system content changes are in the tree of user 
profiles (personalized file cache). 

− Up to 90% of changes in the user’s profile occur in the 
WWW cache. 

− The time attributes recorded with files are unreliable 
Table 1: Summary of observations 
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From the 250 systems that were available for 
instrumentation, we selected a set of 45 systems based on 
privacy concerns and administrative accessibility. A subset 
of these systems was traced for 3 periods of 2 weeks during 
the first half of 1998 while we adjusted the exact type and 
amount of data collected. Some of the changes were related 
to the fact that our study was of an exploratory nature and 
the data collection had to be adjusted based on the initial 
results of the analysis. Other adjustments were related to 
our quest to keep the amount of data per trace record to an 
absolute minimum, while still logging sufficient 
information to support the analysis. We were not always 
successful as, for example, logging only the read request 
size is of limited use if the bytes actually read are not also 
logged. The analysis reported in this paper is based on a 
final data collection that ran for 4 weeks in November and 
December of 1998.  The 45 systems generated close to 19 
GB of trace data over this period. 

Since then we have run additional traces on selected 
systems to understand particular issues that were unclear in 
the original traces, such as burst behavior of paging I/O, 
reads from compressed large files and the throughput of 
directory operations. 

3 Collecting the data 
The systems were instrumented to report two types of data: 
1) snapshots of the state of the local file systems and 2) all 
I/O requests sent to the local and remote file systems. The 
first type is used to provide basic information about the 
initial state of the file system at the start of each tracing 
period and to establish the base set of files toward which 
the later requests are directed. In the second type of data all 
file system actions are recorded in real-time.  

On each system a trace agent is installed that provides 
an access point for remote control of the tracing process. 
The trace agent is responsible for taking the periodic 
snapshots and for directing the stream of trace events 
towards the collection servers. The collection servers are 
three dedicated file servers that take the incoming event 
streams and store them in compressed formats for later 
retrieval. The trace agent is automatically started at boot 
time and tries to connect to a collection server; if it 
succeeds, it will initiate the local data collection. If a trace 
agent loses contact with the collection servers it will 
suspend the local operation until the connection is re-
established. 

3.1 File system snapshots 
Each morning at 4 o’clock a thread is started by the trace 
agent server to take a snapshot of the local file systems. It 
builds this snapshot by recursively traversing the file 
system trees, producing a sequence of records containing 
the attributes of each file and directory in such a way that 
the original tree can be recovered from the sequence. The 
attributes stored in a walk record are the file name and size, 
and the creation, last modify and last access times. For 

directories the name, number of files entries and number of 
subdirectories is stored. Names are stored in a short form as 
we are mainly interested in the file type, not in the 
individual names. On FAT file systems the creation and last 
access times are not maintained and thus ignored.  

The trace agent transfers these records to the trace 
collection server, where they are stored in a compressed 
format. Access to the collection files is through an OLE/DB 
provider, which presents each file as two database tables: 
one containing the directory and the other containing file 
information.  

Producing a snapshot of a 2 GB disk takes between 30 
and 90 seconds on a 200 MHz P6. 

3.2  File system trace instrumentation 
To trace file system activity, the operating system was 
instrumented so that it would record all file access 
operations. An important subset of the Windows NT file 
system operations are triggered by the virtual memory 
manager, which handles executable image loading and file 
cache misses through its memory mapped file interface. As 
such, it is not sufficient to trace at the system call level as 
was done in earlier traces. Our trace mechanism exploits 
the Windows NT support for transparent layering of device 
drivers, by introducing a filter driver that records all 
requests sent to the drivers that implement file systems. The 
trace driver is attached to each driver instance of a local file 
system (excluding removable devices), and to the driver 
that implements the network redirector, which provides 
access to remote file systems through the CIFS protocol. 

All file systems requests are sent to the I/O manager 
component of the Windows NT operating system, 
regardless of whether the request originates in a user-level 
process or in another kernel component, such as the virtual 
memory manager or the network file server. After 
validating the request, the I/O manager presents it to the 
top-most device-driver in the driver chain that handles the 
volume on which the file resides. There are two driver 
access mechanisms: one is a generic packet based request 
mechanism, in which the I/O manager sends a packet (an 
IRP -- I/O request packet) describing the request, to the 
drivers in the chain sequentially. After handling a request 
packet a driver returns it to the I/O manager, which will 
then send it to the next device. A driver interested in post-
processing of the request, after the packet has been handled 
by its destination driver, modifies the packet to include the 
address of a callback routine. A second driver access 
mechanism, dubbed FastIO, presents a direct method 
invocation mechanism: the I/O manager invokes a method 
in the topmost driver, which in turn invokes the same 
method on the next driver, and so on. The FastIO path is 
examined in more detail in section 10.  

The trace driver records 54 IRP and FastIO events, 
which represent all major I/O request operations. The 
specifics of each operation are stored in fixed size records 
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in a memory buffer, which is periodically flushed to the 
collection server. The information recorded depends on the 
particular operation, but each record contains at least a 
reference to the file object, IRP, File and Header Flags, the 
requesting process, the current byte offset and file size, and 
the result status of the operation. Each record receives two 
timestamps: one at the start of the operation and the other at 
completion time. These time stamps have a 100 
nanosecond granularity. Additional information recorded 
depends on the particular operation, such as offset, length 
and returned bytes for the read and write operations, or the 
options and attributes for the create operation. An 
additional trace record is written for each new file object, 
mapping object id to a file name. 

The trace driver uses a triple-buffering scheme for the 
record storage, with each storage buffer able to hold up to 
3,000 records.  An idle system fills this size storage buffer 
in an hour; under heavy load, buffers fill in as little as 3-5 
seconds.  Were the buffers to fill in less than 1 second, the 
increased communication latency between the host and 
server could lead to the overflow of the tracing module 
storage buffer. The trace agent would detect such an error, 
but this never occurred during our tracing runs. 

Kernel profiling has shown the impact of the tracing 
module to be acceptable; under heavy IRP load the tracing 
activity contributed up to 0.5% of the total load on a 200 
MHz P6.  

In a 24-hour period the file system trace module would 
record between 80 thousand and 1.4 million events.  

3.3 Executable and paging I/O 
Windows NT provides functionality for memory mapped 
files, which are used heavily by two system services: (1) 
the loading of executables and dynamic loadable libraries is 
based on memory mapped files, and (2) the cache manager 
establishes a file mapping for each file in its cache, and 
uses the page fault mechanism to trigger the VM manager 
into loading the actual data into the cache. This tight 
integration of file system, cache manager and virtual 
memory manager poses a number of problems if we want 
to accurately account for all the file system operations. 

The VM manager uses IRPs to request the loading of 
data from a file into memory and these IRPs follow the 
same path as regular requests do. File systems can 
recognize requests from the VM through a PagingIO bit set 
in the packet header. When tracing file systems one can 
ignore a large portion of the paging requests, as they 
represent duplicate actions: a request arrives from process 
and triggers a page fault in the file cache, which triggers a 
paging request from the VM manager. However, if we do 
ignore paging requests we would miss all paging that is 
related to executable and dynamic loadable library (dll) 
loading, and other use of memory mapped files. We 
decided to record all paging requests and filter out the 

cache manager induced duplicates during the analysis 
process. 

We decided in favor of this added complexity, even 
though it almost doubled the size of our traces, because of 
the need for accuracy in accounting for executable-based 
file system requests. In earlier traces the exec system call 
was traced to record the executable size, which was used to 
adjust the overall trace measurements. In Windows NT this 
is not appropriate because of the optimization behavior of 
the Virtual Memory manager: executable code pages 
frequently remain in memory after their application has 
finished executing to provide fast startup in case the 
application is executed again.  

3.4 Missing and noise data 
We believe the system is complete in recording all major 
file system IO events, which is sufficient for getting insight 
into general Windows NT file system usage. There are 
many minor operations for which we did not log detailed 
information (such as locking and security operations), but 
they were outside of the scope of our study. During our 
analysis we found one particular source of noise: the local 
file systems can be accessed over the network by other 
systems. We found this access to be minimal, as in general 
it was used to copy a few files or to share a test executable. 
Given the limited impact of these server operations we 
decided to not remove them from the trace sets.  

4 The data analysis process 
The data analysis presented us with a significant problem: 
the amount of data was overwhelming. The trace data 
collection run we are reporting on in this paper totaled 
close to 20 GB of data, representing over 190 million trace 
records. The static snapshots of the local disks resulted in 
24 million records.  

Most related tracing research focuses on finding 
answers to specific sets of questions and hypotheses, which 
could be satisfied through the use of extensive statistical 
techniques, reducing the analysis to a number crunching 
exercise. Given the exploratory nature of our study we 
needed mechanisms with which we could browse through 
the data and search for particular patterns, managing the 
exposed level of details.  Developing a representation of the 
data such that these operations could be performed 
efficiently on many millions of records turned out to be a 
very hard problem.  

We were able to find a solution by realizing that this 
was a problem identical to the problems for which there is 
support in data-warehousing and on-line analytical 
processing (OLAP).  We developed a de-normalized star 
schema for the trace data and constructed corresponding 
database tables in SQL-server 7.0. We performed a series 
of summarization runs over the trace data to collect the 
information for the dimension tables. Dimension tables are 
used in the analysis process as the category axes for multi-
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dimensional cube representations of the trace information. 
Most dimensions support multiple levels of summarization, 
to allow a drill-down into the summarized data to explore 
various levels of detail. An example of categorization is 
that a mailbox file with a .mbx type is part of the mail files 
category, which is part of the application files category. 

We departed from the classical data-warehouse model 
in that we used two fact tables (the tables that hold all the 
actual information), instead of one. The first table (trace) 
holds all the trace data records, with key references to 
dimension tables. The second table (instance) holds the 
information related to each FileObject instance, which is 
associated with a single file open-close sequence, combined 
with summary data for all operations on the object during 
its life-time.  Although the second table could be produced 
by the OLAP system, our decision to use two fact tables 
reduced the amount of storage needed in the trace table by 
references to the instance table, reducing the processing 
overhead on operations that touch all trace records.  

The use of a production quality database system 
provided us with a very efficient data storage facility. An 
operation that would touch all trace data records, such as 
calculation of the basic statistical descriptors (avg, stdev, 
min, max) of request inter-arrival times, runs at 30% of the 
time a hand optimized C-process on the original trace data 
takes. More complex statistical processing that could not be 
expressed in SQL or MDX was performed using the SPSS 
statistical processing package that directly interfaces with 
the database.  

Because we processed the data using different category 
groupings (e.g. per day, per node, per user, per process, 
etc.) our analysis frequently did not result in single values 
for the statistical descriptors. In the text we show the ranges 
of these values or, where relevant, only the upper or lower 
bound.  

5 File system content characteristics 
To accurately analyze the real-time tracing results we 
needed to examine the characteristics of the set of files that 
were to be accessed in our trace sessions. For this we took 
snapshots of each of the file systems that was used for 
tracing as described in section 3.1. We collected file names 
and sizes, and creation and access times, as well as 
directory structure and sizes.  

We supplemented this data with periodic snapshots of 
the user directories at the network file severs. However, the 
results of these snapshots cannot be seen as the correct state 
of the system from which the real-time tracing was 
performed, as they included the home directories of more 
users than those being traced. The network file server 
information was used to establish an intuitive notion of the 
differences between local and network file systems. 

Recently Douceur and Bolosky have published a study 
on the content of over 10,000 Windows NT file systems 
within Microsoft [4]. Most of our findings are consistent 

with their conclusions, and we refer to their paper for a 
basic understanding of Windows NT file system content. 
Our content tracing allowed us to track the state of the file 
systems over time, and in this section we report from that 
specific view. 

We see that the local file systems have between 24,000 
and 45,000 files, that the file size distribution is similar for 
all systems, and that the directory depth and sizes are 
almost identical. File systems are between 54% and 87% 
full.  

The network server file systems are organized into 
shares, which is a remote mountable sub-tree of a file 
system. In our setting each share represents a user’s home 
directory. There was no uniformity in size or content of the 
user shares; sizes ranged from 500 Kbytes to 700 Mbytes 
and number of files from 150 to 27,000. The directory 
characteristics exhibit similar variances. 

Decomposition of the local and network file systems by 
file type shows a high variance within the categories as 
well as between categories. What is remarkable is that this 
file type diversity does not appear to have any impact on 
the file size distribution; the large-sized outliers in the size 
distribution dominate the distribution characteristics. If we 
look again at the different file types and weigh each type by 
file size we see that the file type distribution is similar for 
all system types, even for the network file systems. The file 
size distribution is dominated by a select group of file-types 
that is present in all file systems. For local file systems the 
size distribution is dominated by executables, dynamic 
loadable libraries and fonts, while for the network file 
system the set of large files is augmented with development 
databases, archives and installation packages. 

When we examine the local file systems in more detail 
we see that the differences in file system state are 
determined by two factors: 1) the file distribution within 
the user’s profile, and 2) the application packages installed. 
Most of our test systems have a limited number of user 
specific files in the local file system, which are generally 
stored on the network file servers.  

Of the user files that are stored locally between 87% 
and 99% can be found in the profile tree 
(\winnt\profiles\<username>). Each profile holds all the 
files that are unique to a user and which are stored by the 
system at a central location. These files are downloaded to 
each system the user logs into from a profile server, 
through the winlogon process. This includes files on the 
user’s desktop, application specific data such as mail files, 
and the user’s world-wide-web cache. At the end of each 
session the changes to the profiles are migrated back to the 
central server. When we detect major differences between 
the systems, they are concentrated in the tree under the 
\winnt\profiles directory. For the “Temporary Internet 
Files”  WWW cache we found sizes between 5 and 45 
Mbytes and with between 2,000 and 9,500 files in the 
cache.  
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A second influence on the content characteristics of the 
file system is the set of application packages that are 
installed. Most general packages such as Microsoft Office 
or Adobe Photoshop have distribution dynamics that are 
identical to the Windows NT base system and thus have 
little impact on the overall distribution characteristics. 
Developer packages such as the Microsoft Platform SDK, 
which contains 14,000 files in 1300 directories, create a 
significant shift in file-type count and the average directory 
statistics.  

When we examine the changes in the file systems over 
time, similar observations can be made. Major changes to a 
Windows NT file system appear when a new user logs onto 
a system, which triggers a profile download, or when a new 
application package is installed. Without such events, 
almost all of the measured changes were related to the 
current user’s activities, as recorded in her profile. A 
commonly observed daily pattern is one where 300-500 
files change or are added to the system, with peaks of up to 
2,500 and 3,000 files, up to 93% of which are in the WWW 
cache.  

Changes to user shares at the network file server occur 
at much slower pace. A common daily pattern is where 5-
40 files change or are added to the share, with peaks 
occurring when the user installs an application package or 
retrieves a large set of files from an archive. 

If we look at the age of files and access patterns over 
time, a first observation to make is that the three file times 
recorded with files (creation, last access, last change) are 
unreliable. These times are under application control, 
allowing for changes that cause inconsistencies. For 
example, in 2-4% of the examined cases, the last change 
access is more recent than the last access times. Installation 
programs frequently change the file creation time of newly 
installed files to the creation time of the file on the 
installation medium, resulting in files that have creation 
times of years ago on file systems that are only days or 
weeks old. In [18] the creation times were also not 
available and a measure used to examine usage over time 
was the functional lifetime, defined as the difference 
between the last change and the last access. We believe that 
these timestamps in Windows NT are more accurate than 

the creation time, as the file system is the main modifier of 
these timestamps, but we are still uncertain about their 
correctness, and as such we cannot report on them. 

6 BSD & Sprite studies revisited 
One of the goals of this study was to provide a new data 
point in relation to earlier studies of the file system usage in 
BSD 4.2 and the Sprite operating systems. These studies 
reported their results in three categories: 1) user activity 
(general usage of the file system on a per user basis), 2) 
access patterns (read/write, sequential/random), and 3) file 
lifetimes. A summary of the conclusions of this comparison 
can be found in table 1. 

The Windows NT traces contain more detail than the 
BSD/Sprite traces, but in this section we will limit our 
reporting to the type of data available in the original 
studies.  

Strong caution: when summarizing the trace data to 
produce tables identical to those of the older traces, we 
resort to techniques that are not statistically sound. As we 
will show in section 7, access rates, bytes transferred and 
most of the other properties investigated are not normally 
distributed and thus cannot be accurately described by a 
simple average of the data. We present the summary data in 
table 2 and 3 to provide a historical comparison.  

6.1 User activity 
Table 2 reports on the user activity during the data 
collection. The tracing period is divided into 10-minute and 
10-second intervals, and the number of active users and the 
throughput per user is averaged across those intervals. In 
the BSD and Sprite traces it was assumed that 10 minutes 
was a sufficient period to represent a steady state, while the 
10-second average would more accurately capture bursts of 
activity.  

The earlier traces all reported on multi-user systems, 
while the Windows NT systems under study are all 
configured for a single user. A user and thus a system are 
considered to be active during an interval if there was any 
file system activity during that interval that could be 
attributed to the user. In Windows NT there is a certain 
amount of background file system activity, induced by 

  Windows NT Sprite BSD 
Max number of active users 45 27 31 
Average number of active users 28.9 (21.6) 9.1 (5.1) 12.6 
Average throughput for a user in an interval  24.4 (57.9) 8.0 (36) 0.40 (0.4) 
Peak throughput for an active user 814 458 NA 

10-minute intervals 

Peak throughput system wide 814 681 NA 
Max number of active users 45 12 NA 
Average number of active users 6.3 (15.3) 1.6 (1.5) 2.5 (1.5) 
Average throughput for a user in an interval 42.5 (191) 47.0 (268) 1.5 (808) 
Peak throughput for an active user 8910 9871 NA 

10-second intervals 

Peak throughput system wide 8910 9977 NA 
Table 2. User activity. The throughput is reported in Kbytes/second (with the standard deviation in parentheses). 
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systems services, that was used as the threshold for the user 
activity test.  

The result of the comparison is in table 2. The average 
throughput per user has increased threefold since the 1991 
Sprite measurements. A remarkable observation is that this 
increase can only be seen for the 10-minute periods, for the 
10-second period there was no such increase and the peak 
measurements are even lower.  

The Sprite researchers already noticed that the increase 
in throughput per user was not on the same scale as the 
increase of processor power per user. They attributed this to 
the move from a system with local disk to a diskless system 
with network file systems. In our traces we are able to 
differentiate between local and network access, and when 
summarizing it appears that there is indeed such a 
difference in throughput. However detailed analysis shows 
that the difference can be completely attributed to the 
location of executables and large system-files such as fonts, 
which are all placed on the local disk. 

One of the reasons for the high peak load in Sprite was 
the presence of large files from a scientific simulation. 
Although the scientific usage category in our traces uses 
files that are of an order of magnitude larger (100-300 

Mbytes), they do not produce the same high peak loads 
seen in Sprite. These applications read small portions of the 
files at a time, and in many cases do so through the use of 
memory-mapped files. 

The peak load reported for Windows NT was for a 
development station, where in a short period a series of 
medium size files (5-8 Mb), containing precompiled header 
files, incremental linkage state and development support 
data, was read and written. 

6.2 File access patterns 
The BSD and Sprite (and also the VMS [15]) traces all 
concluded that most access to files is sequential. 
Summaries of our measurements, as found in table 3, 
support this conclusion for Windows NT file access, but 
there is also evidence of a shift towards more randomized 
access to files when compared to the Sprite results.  

A sequential access is divided into two classes: 
complete file access and partial file access. In the latter 
case all read and write accesses are sequential but the 
access does not start at the beginning of the file or transfers 
fewer bytes than the size of the file at close time.  

The Windows NT traces do not support the trend seen 

File Usage Accesses (%) Bytes (%) Type of transfer Accesses (%) Bytes (%) 
 W - + S W - + S  W - + S W - + S 

Whole file 68 1 99 78 58 3 96 89 
Other sequential 20 0 62 19 11 0 72 5 

Read-only 79 21 97 88 59 21 99 80 

Random 12 0 99 3 31 0 97 7 
Whole file 78 5 99 67 70 1 99 69 
Other sequential 7 0 51 29 3 0 47 19 

Write-only 18 3 77 11 26 0 73 19 

Random 15 0 94 4 27 0 99 11 
Whole file 22 0 90 0 5 0 76 0 
Other sequential 3 0 28 0 0 0 14 0 

Read/Write 3 0 16 1 15 0 70 1 

Random 74 2 100 100 94 9 100 0 
Table 3. Access patterns, the W column holds the mean for the Windows NT traces, the S column holds the values from 
the Sprite traces. The – and + columns indicate the range for the values. All numbers are reported in percentages. 
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Figure 1. The cumulative distribution of the sequential run 
length weighted by the number of files 

Figure 2. The cumulative distribution of the sequential run 
length weighted by bytes transferred 
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in Sprite, where there was a 10% increase in sequential 
access. On average 68% of the read-only accesses were 
whole-file sequential, versus 78% in the Sprite traces. A 
significant difference from Sprite is the amount of data 
transferred sequentially: in Sprite 89% of the read-only data 
was transferred sequentially versus 58% in the Windows 
NT traces. When comparing this type of trace summary 
there is a stronger presence of random access to data both 
in number of accesses and in the amount of data accessed 
for all file usage categories. 

Another important access pattern examined is that of 
the sequential runs, which is when a portion of a file is read 
or written in a sequential manner. The prediction of a series 
of sequential accesses is important for effective caching 
strategies. When examining these runs we see that they 
remain short; the 80% mark for Sprite was below the 10 
Kbytes, while in our traces we see a slight increase in run 
length with the 80% mark at 11 Kbytes (figure 1).  

An observation about the Sprite traces was that most 
bytes were transferred in the longer sequential runs. The 
Windows NT traces support this observation, although the 
correlation is less prominent (figure 2). Access to large files 
shows increasing random access patterns, causing 15%-
35% (in some traces up to 70%) of the bytes to be 
transferred in non-sequential manner. 

If we look at all file open sessions for which data 
transfers where logged, not just those with sequential runs, 
we see that the 80% mark for the number of accesses 
changes to 24 Kbytes. 10% of the total transferred bytes 
were transferred in sessions that accessed at least 120 
Kbytes. 

When examining the size of files in relation to the 
number of sequential IO operations posted to them we see a 
similar pattern: most operations are to short files (40% to 
files shorter than 2K) while most bytes are transferred to 
large files (figures 3 and 4).  

In Sprite the researchers found that, when examining 
the top 20% of file sizes, an increase of an order of 
magnitude was seen with respect to the BSD traces. This 
trend has continued: in the Windows NT traces the top 20% 
of files are larger than 4 Mbytes.  An important 
contribution to this trend comes from the executables and 
dynamic loadable libraries in the distribution, which 
account for the majority of large files. 

The last access pattern for which we examine the traces 
concerns the period of time during which a file is open. In 
this section we only look at file open sessions that have 
data transfer associated with them; sessions specific for 
control operation are examined in section 8. The results are 
presented in figure 5; about 75% of the files are open less 
than 10 milliseconds.  This is a significant change when 
compared to the Sprite and BSD traces, which respectively 
measured a quarter-second and a half-second at 75%. The 
less significant difference between the two older traces was 
attributed to the fact that in the BSD traces the I/O was to 
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Figure 3. File size cumulative distribution, weighted by the 
number of files opened 

Figure 4. File size cumulative distribution, weighted by the 
number of bytes transferred 
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Figure 5. File open time cumulative distribution weighted by 
the number of files. 
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local storage while in the Sprite the storage was accessed 
over the network. In the Windows NT traces we are able to 
examine these access times separately, and we found no 
significant difference in the access times between local and 
remote storage. 

6.3 File lifetimes 
The third measurement category presented in the BSD & 
Sprite traces is that of the lifetime of newly created files. 
The Sprite traces showed that between 65% and 80% of the 
new files were deleted within 30 seconds after they were 
created. In the Windows NT traces we see that the presence 
of this behavior is even stronger; up to 80% of the newly 
created files are deleted within 4 seconds of their creation. 

In Windows NT we consider three sources for deletion 
of new files: (1) an existing file is truncated on open by use 
of a special option (37% of the delete cases), (2) a file is 
newly created or truncated and deleted using a delete 
control operation (62%), and (3) a file is opened with the 
temporary file attribute (1%). 

In about 75% of the delete-through-truncate cases a file 
was overwritten within 4 milliseconds after it was created. 
The distribution shows a strong heavy tail with the top 10% 
having a lifetime of at least 1 minute, and up to 18 hours. If 
we inspect the time between the closing of a file and the 
subsequent overwrite action, we see that over 75% of these 
files are overwritten within 0.7 millisecond of the close.  

In the case of explicitly deleted files, we see a higher 
latency between create and delete action. 72% of these files 
are deleted within 4 seconds after they were created and 
60% 1.5 seconds after they were closed (see figure 6).  

One of the possible factors in the difference in latency 
is related to which process deletes the file. In 94% of the 
overwrite cases, the process that overwrites the file also 
created it in the first place, while in 36% of the DeleteFile 
cases the same process deletes the file. A second factor is 
that there are no other actions posted to overwritten files, 

while in 18% of the DeleteFile cases, the file is opened one 
or more times between creation and deletion. 

The temporary file attribute not only causes the file to 
be deleted at close time, but also prevents the cache 
manager’s lazy writer threads from marking the pages 
containing the file data for writing to disk. Although it is 
impossible to extract the exact persistency requirements for 
temporary file usage from the traces, analysis suggests that 
at least 25%-35% of all the deleted new files could have 
benefited from the use of this attribute. 

In 23% of the cases where a file was overwritten, 
unwritten pages were still present in the file cache when the 
overwrite request arrived. In the case of the 
CreateFile/DeleteFile sequence 5% of the newly created 
files had still unwritten data present in the cache when 
deleted. Anomalous behavior was seen in 3% of the cases 
where the file was flushed from the cache by the 
application before it was deleted. 

The apparent correlation between the file size and 
lifetime, as noticed by the Sprite researchers, is 
tremendously skewed by the presence of large files. In the 
Windows NT case only 4% of the deleted files are over 40 
Kbytes and 65% of the files are smaller than 100 bytes. In 
the traces we could not find any proof that large temporary 
files have a longer lifetime. Figure 7 shows a plot of 
lifetime versus size of a trace sample, and although there 
are no large files in this plot that are deleted in less then 1 
second, there is no statistical justification for a correlation 
between size and lifetime of temporary files. 

7 Data distribution 
When analyzing the user activity in section 6.1 we were 
tempted to conclude that for Windows NT the average 
throughput in general has increased, but that the average in 
burst load has been reduced. The use of simple averaging 
techniques allows us to draw such conclusions, in similar 
fashion one could conclude from the file access patterns 
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Figure 7. When examining file sizes at overwrite time, we 
cannot find a correlation between size and lifetime 
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that most file accesses still occur in a read-only, whole-file 
sequential manner. If we examine the result of analysis of 
the file access in table 3 once more, the truly important 
numbers in that table are the ranges of values that were 
found for each of the statistical descriptives. The -/+ 

columns in the table represent the min/max values found 
when analyzing each trace separately. 

When we have a closer look at the trace data and the 
statistical analysis of it, we find a significant variance in 
almost all variables that we can test. A common approach 
to statistically control burstiness, which is often the cause 
of the extreme variances, is to examine the data on various 
time scales. For example, in the previous two file system 
trace reports, the data was summarized over 10-second and 
10-minute intervals, with the assumption that the 10-minute 
interval would smoothen any variances found in the traces.  

If, for example, we consider the arrival rate of file 
system requests to be drawn from a Poisson distribution, 
we should see that the variances should diminish when we 
view the distribution at coarser time granularity. In figure 8 
we compare the request arrival rates in one of our trace 
files, randomly chosen, with a synthesized sample from a 
Poisson distribution for which we estimated its mean and 
variance from the trace information (the details of this test 
are presented in [21]). When we view the samples at time 
scales with different orders of magnitude, we see that at 
larger time scales the Poisson sample becomes smooth, 
while the arrival data in our sample distribution continues 
to exhibit the variant behavior.  

In almost all earlier file system trace research there is 
some notion of the impact of large files on the statistical 
analysis. In the Sprite research, for example, an attempt 
was made to discard the impact of certain categories of 
large files, by removing kernel development files from the 
traces. The result, however, did not remove the impact of 
large files, leading the researchers to conclude that the 
presence of large files was not accidental.  

Analyzing our traces for the impact of outliers we find 
they are present in all categories. For example if we take 
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Figure 9. The arrival data from the sample used in figure 8 
is tested against a Normal and a Pareto distribution through 
a QQ plot. The plot tests to what extend sample data 
follows a given distribution with estimated parameters. 
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Figure 8.  The top row displays the inter-arrival distribution of file open events at 3 different orders of magnitude. The 
bottom row contains a synthesized sample of a Poisson process with parameters estimated from the sample.  

 



103 

the distribution of bytes read per open-close session, we see 
that the mean of the distribution is forced beyond the 90th 
percentile by the impact of large file read sessions. If we 
visually examine how the sample distribution from figure 8 
departs from normality through a QQ plot (figure 9) we see 
that values in the quartiles support the evidence that the 
distribution is not normal. If we use a QQ plot to test the 
sample against a Pareto distribution, which is the simplest 
distribution that can be used to model heavy-tail behavior, 
we see an almost perfect match.  

To examine the tail in our sample distribution we 
produced a log-log complementary distribution plot (figure 
10). The linear appearance of the plot is evidence of the 
power-law behavior of the distribution tail; normal or log-
normal distributions would have shown a strong drop-off 
appearance in the plot. When we use a least-squares 
regression of points in the plotted tail to estimate the heavy-
tail α parameter1, we find a value of 1.2. This value is 
consistent with our earlier observation of infinite variance; 
however, we cannot conclude that the distribution also has 
an infinite mean [16]. 

This observation of extreme variance at all time scales 
has significant importance for operating system engineering 
and tuning: Resource predictions are often made based on 
the observed mean and variance of resource requests, 
assuming that, over time, this will produce a stable system. 
Evidence from our traces shows that modeling the arrival 
rates of I/O request as a Poisson process or size 
distributions as a Normal distribution is incorrect. Using 
these simplified assumptions can lead to erroneous design 
and tuning decisions when systems are not prepared for 
extreme variance in input parameters, nor for the long-
range dependence of system events. 

An important reason for the departure from a normal 
distribution in file system analysis is that user behavior has 
a very reduced influence on most of the file system 
operations. Whether it is file size, file open times, inter-
arrival rates of write operations, or directory poll 
operations, all of these are controlled through loops in the 
applications, through application defined overhead to user 
storage, or are based on input parameters outside of the 
user’s direct control. More than 92% of the file accesses in 
our traces were from processes that take no direct user 
input, even though all the systems were used interactively. 
From those processes that do take user input, explorer.exe, 
the graphical user interface, is dominant, and although the 
user controls some of its operation, it is the structure and 
content of the file system that determines explorer’s file 
system interactions, not the user requests. Unfortunately 

                                                           
1 A random variable X follows a heavy-tailed distribution if P[X > 
x] ~ x-α, as x → ∞, 0 < α < 2. A reliable estimator for α is the Hill 
estimator. We have computed this for our samples and it confirms 
the more llcd plot estimation results. A value of α < 2 indicates 
infinite variance, if α < 1 this also indicates an infinite mean. 

this kind of information cannot be extracted form the older 
traces so we cannot put this into a historical perspective. 

This process controlled dominance of file system 
operations is similar to observations in data-
communication, where, for example, the length of TCP 
sessions are process controlled, with only limited human 
factors involved. File system characteristics have an 
important impact on the network traffic; as for example the 
file size is a dominant factor in WWW session length. 
Given that the files and directories have heavy-tailed size 
distributions, this directly results into heavy-tailed 
distributions for those activities that depend on file system 
parameters [2,5].  

Another important observation is that some 
characteristics of process activity, independent of the file 
system parameters, also play an important role in producing 
the heavy-tailed access characteristics. From the analysis of 
our traces we find that process lifetime, the number of 
dynamic loadable libraries accessed, the number of files 
open per process, and spacing of file accesses, all obey the 
characteristics of heavy-tail distributions. Some of these 
process characteristics cannot be seen as completely 
independent of the file system parameters; for example, the 
lifetime of the winlogon process is determined by the 
number and size of files in the user’s profile.  

Our observations of heavy-tail distributions in all areas 
of file system analysis lead to the following general 
conclusions: 

1. We need to be very careful in describing file system 
characteristics using simple parameters such as average 
and variance, as they do not accurately describe the 
process of file system access. At minimum we need to 
describe results at different granularities and examine 
the data for extreme variances.  

2. In our design of systems we need to be prepared for the 
heavy-tail characteristics of the access patterns. This is 
particularly important for the design and tuning of 
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Figure 10: A log-log complementary distribution plot for 
the tail of the sample from figure 8, combined with a fitted 
line for the estimation of the α parameter 
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limited resource systems such as file caches, as there is 
important evidence that heavy-tail session length (such 
as open times and amount of bytes transferred) can 
easily lead to queue overflow and memory starvation 
[6]. 

3. When constructing synthetic workloads for use in file 
system design and benchmarking we need to ensure that 
the infinite variance characteristics are properly 
modeled in the file system test patterns. In [22], Seltzer 
et al. argue for application-specific file system 
benchmarking, which already allows more focused 
testing, but for each test application we need to ensure 
that the input parameters from the file system under test 
and the ON/OFF activity pattern of the application is 
modeled after the correct (heavy-tailed) distributions. 

4. When using heuristics to model computer system 
operations it is of the highest importance to examine 
distributions for possible self-similar properties, which 
indicate high variance. Exploitation of these properties 
can lead to important improvements in the design of 
systems, as shown in [7]. 

8 Operational characteristics 
There were 3 focus points when we analyzed the traces to 
understand the specifics of the Windows NT file system 
usage: 

• Examine the traces from a system engineering 
perspective: the arrival rate of events, the holding time 
of resources, and the resource requests in general.  

• Gain understanding in how applications use the 
functionality offered through the broad Windows NT 
file system interface and how the various options are 
exploited.  

• Investigate the complexity of the Windows NT 
application and file system interactions. 

In this section we explore these points by looking at the 
different file system operations, while in the next 2 sections 
we will investigate cache manager related technologies 
from these perspectives. 

8.1 Open and close characteristics 
Any sequence of operations on a file in Windows NT is 
encapsulated in an Open/Close sequence of events. Some 
operating systems have core primitives such as rename and 
delete which do not require the caller to open the file first, 
but in Windows NT these operations are generic file 
operations on files that have been opened first. For 
example, the deletion of a file or the loading of an 
executable can only be performed after the file itself has 
been opened.   

Figure 11 displays inter-arrival times of open requests 
arriving at the file system: 40% of the requests arrive 
within 1 millisecond of a previous request, while 90% 
arrives with 30 milliseconds.  When we investigate the 
arrivals by grouping them into intervals, we see that only 
up to 24% of the 1-second intervals of a user’s session have 
open requests recorded for them. This again shows us the 
extreme burstiness of the system.  

If we examine the reuse of files, we see that between 
24% and 40% of the files that are opened read-only are 
opened multiple times during a user’s session. Of the files 
accessed write-only, 4% are opened for another write-only 
session, while 36%-52% are re-opened for reading. 94% of 
the files that were open for reading and writing are opened 
multiple times, in the same mode. 

An important measurement for resource tuning is the 
time that files are kept open (file session lifetime). In figure 
12 we present the session lifetimes for a number of cases. 
The overall statistics show that 40% of the files are closed 
within one millisecond after they were opened and that 
90% are open less then one second. Of the sessions with 
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Figure 11. Cumulative distribution of the inter-arrival periods of 
file system open requests per usage type 

Figure 12. Cumulative distribution of the periods that files 
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only control or directory operations 90% closed within 10 
milliseconds.  

When we investigate session times for the type of data 
access, we see that 70% of read-write access happens in 
periods of less then 1 second, while read-only and write-
only accesses have this 1 second mark at 60% and 30%, 
respectively. 

The session length can also be viewed from the process 
perspective. Some processes only have a single style of file 
access and the session time for each access is similar. The 
FrontPage HTML editor, for example, never keeps files 
open for longer then a few milliseconds. Others such as the 
development environments, databases control engines or 
the services control program keep 40%-50% of their files 
open for the complete duration of their lifetime. Programs 
such as loadwc, which manages a user’s web subscription 
content, keep a large number of files open for the duration 
of the complete user session, which may be days or weeks. 
The first approach, opening a file only for the time 
necessary to complete IO, would produce a correlation 
between session time and file size. When testing our 
samples for such a correlation we could not find any 
evidence.  

In general it is difficult to predict when a file is opened 
what the expected session time will be. All session 
distributions, however, had strong heavy-tails, from which 
we can conclude that once a file is open for a relatively 
long period (3-5 seconds, in most cases) the probability that 
the file will remain open for a very long time is significant.  

Windows NT has a two stage close operation. At the 
close of the file handle by the process or kernel module, the 
IO manager sends a cleanup request down the chain of 
drivers, asking each driver to release all resources. In the 
case of a cached file, the cache manager and the VM 
manager still hold references to the FileObject, and the 
cleanup request is a signal for each manager to start 
releasing related resources. After the reference count 
reaches zero, the IO manager sends the close request to the 
drivers. In the case of read caching this happens 
immediately as we see the close request within 4-�� VHF�
after the cleanup request. In the case of write caching the 
references on the FileObject are released as soon as all the 
dirty pages have been written to disk, which may take 1-4 
seconds.  

8.2 Read and write characteristics 
The burst behavior we saw at the level of file open requests 
has an even stronger presence at the level of the read and 
write requests. In 70% of the file opens, read/write actions 
were performed in batch form, and the file was closed 
again. Even in the case of files that are open longer than the 
read/write operations require, we see that the reads and 
writes to a file are clustered into sets of updates. In almost 
80% of the reads, if the read was not at the end-of-file, a 
follow-up read will occur within 90 microseconds. Writes 

occur at an even faster pace: 80% have an inter-arrival 
space of less than 30 microseconds. The difference between 
read and write intervals is probably related to the fact that 
the application performs some processing after each read, 
while the writes are often pre-processed and written out in 
batch style. 

When we examine the requests for the amount of data 
to be read or written, we find a distinct difference between 
the read and write requests. In 59% of the read cases the 
request size is either 512 or 4096 bytes. Some of the 
common sizes are triggered by buffered file i/o of the stdio 
library. Of the remaining sizes, there is a strong preference 
for very small (2-8 bytes) and very large (48 Kbytes and 
higher) reads. The write sizes distribution is more diverse, 
especially in the lower bytes range (less then 1024 bytes), 
probably reflecting the writing of single data-structures. 

8.3 Directory & control operations 
The majority of file open requests are not made to read or 
write data. In 74%, the open session was established to 
perform a directory or a file control operation.  

There are 33 major control operations on files available 
in Windows NT, with many operations having subdivisions 
using minor control codes. Most frequently used are the 
major control operations that test whether path, names, 
volumes and objects are valid. In general the application 
developer never requests these operations explicitly, but 
they are triggered by the Win32 runtime libraries. For 
example, a frequently arriving control operation is whether 
the “volume is mounted”, which is issued in the name 
verification part of directory operations. This control 
operation is issued between up to 40 times a second on any 
reasonably active system.  

Another frequently issued control operation is 
SetEndOfFile, which truncates the file to a given size. The 
cache manager always issues it before a file is closed that 
had data written to it. This is necessary as the delayed 
writes through the VM manager always have the size of 
one or more pages, and the last write to a page may write 
more data than there is in the file. The end-of-file operation 
then moves the end-of-file mark back to the correct 
position. 

8.4 Errors 
Not all operations are successful: of the open requests 12% 
fail and of the control operations 8% fail. In the open cases 
there are two major categories of errors: the file to be 
opened did not exist in 52% of the error cases and in 31% 
the creation of a file was requested, but it already did exist.  
When we examine the error cases more closely we see that 
a certain category of applications that uses the “open” 
request as a test for the existence of the file: the failure is 
immediately followed by a create action, which will be 
successful. 
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Reads hardly ever fail (0.2%); the error that does occur 
on the read are attempts to read past the end-of–file. We did 
not find any write errors. 

9 The cache manager 
An important aspect of the Windows NT file system design 
is the interaction with the cache manager. The Windows 
NT kernel is designed to be extensible with many third 
party software modules, including file systems, which 
forces the cache manager to provide generalized support for 
file caching. It also requires file system designers to be 
intimately familiar with the various interaction patterns 
between file system implementation, cache manager and 
virtual memory manager. A reasonably complete 
introduction can be found in [12]. 

In this section we will investigate two file system and 
cache manager interaction patterns: the read-ahead and 
lazy-write strategies for optimizing file caching. The cache 
manager never directly requests a file system to read or 
write data; it does this implicitly through the Virtual 
Memory system by creating memory-mapped sections of 
the files. Caching takes place at the logical file block level, 
not at the level of disk blocks.  

A process can disable read caching for the file at file 
open time. This option is hardly ever used: read caching is 
disabled in only 0.2% of all files that had read/write actions 
performed on them. 76% of those files were data files from 
opened by the “system” process. All of these files were 
used in a read-write pattern with a write-through option set 
to also disable write caching. Developers using this option 
need to be aware of the block size and alignment 
requirements of the underlying file system. All of the 
requests for these files will go through the traditional IRP 
path. 

9.1 Read-ahead 
When caching is initialized for a file, the Windows NT 
cache manager tries to predict application behavior and to 
initiate file system reads before the application requests the 
data, in order to improve cache hit rate. The standard 
granularity for read-ahead operation is 4096 bytes, but is 
under the control of the file system, which can change it on 
a per file basis. In many cases the FAT and NTFS file 
systems boost the read-ahead size to 65 Kbytes.  Caching 
of a file is initiated when the first read or write request 
arrives at the file system driver. 

Of all the sessions that performed reads 31% used a 
single IO operation to achieve their goal, and although this 
caused the caching to be initiated and data to be loaded in 
the cache, the cached data was never accessed after the first 
read. 

Of the sequential accesses with multiple reads, which 
benefit from the read-ahead strategy, 40% used read sizes 
smaller than 4Kbytes and 92% smaller than 65Kbytes. This 

resulted in that only 8% of the read sequences required 
more than a single read-ahead action. 

The cache manager tries to predict sequential access to 
a file so it can load data even more aggressively. If the 
application has specified at open time that the file data will 
be processed through sequential access only, the cache 
manager doubles the size of the read-ahead requests. Of 
file-opens with sequential read accesses only 5% specified 
this option.  Of those files 99% were smaller than the read-
ahead granularity and 80% smaller than a single page, so 
the option has no effect. 

The cache manager also tries to predict sequential 
access by tracking the application actions: read-ahead is 
performed when the 3rd of a sequence of sequential requests 
arrives. In our traces this happened in 7% of the sequential 
cases that needed data beyond the initial read-ahead.  

The cache manager uses a fuzzy notion of sequential 
access; when comparing requests, it masks the lowest 7 bits 
to allow some small gaps in the sequences. In our test in 
section 6.2, this would have increased the sequential 
marked trace runs by 1.5%. 

9.2 Write-behind 
Unless explicitly instructed by the application, the cache 
manager does not immediately write new data to disk. A 
number of lazy-write worker threads perform a scan of the 
cache every second, initiating the write to disk of a portion 
of the dirty pages, and requesting the close of a file after all 
references to the file object are released. The algorithm for 
the lazy-writing is complex and adaptive, and is outside of 
the scope of this paper. What is important to us is the bursts 
of write requests triggered by activity of the lazy-writer 
threads. In general, when the bursts occur, they are in 
groups of 2-8 requests, with sizes of one or more pages up 
to 65 Kbytes. 

Applications have two methods for control over the 
write behavior of the cache. They can disable write caching 
at file open time, or they can request the cache manager to 
write its dirty pages to disk using a flush operation. 

In 1.4% of file opens that had write operations posted to 
them, caching was disabled at open time. Of the files that 
were opened with write caching enabled, 4% actively 
controlled their caching by using the flush requests. The 
dominant strategy used by 87% of those applications was to 
flush after each write operation, which suggests they could 
have been more effective by disabling write caching at 
open time.  

10 FastIO 
For a long time the second access path over which requests 
arrived at the file system driver, dubbed the FastIO path, 
has been an undocumented part of the Windows NT kernel. 
The Device Driver Kit (DDK) documentation contains no 
references to this part of driver development, which is 
essential for the construction of file systems. The 
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Installable File System Kit (IFS) shipped as Microsoft’s 
official support for file system development, contains no 
documentation at all. Two recent books [12,20] provide 
some insight into the role of the FastIO path, but appear 
unaware of its key role in daily operations. In this section 
we will examine the importance of this access path, and 
provide some insight into its usage. 

For some time the popular belief, triggered by the 
unwillingness of Microsoft to document FastIO, was that 
this path was a private “hack” of the Windows NT kernel 
developers to secretly bypass the general IO manager 
controlled IRP path. Although FastIO is a procedural 
interface, faster when compared with the message-passing 
interface of the IO manager, it is not an obscure hack. The 
“fast” in FastIO does not refer to the access path but to the 
fact that the routines provide a direct data path to the cache 
manager interface as used by the file systems. When file 
system drivers indicate that caching has been initialized for 
a file, the IO manager will try to transfer the data directly in 
and out of the cache by invoking methods from the FastIO 
interface.  The IO manager does not invoke the cache 
manager directly but first allows file system filters and 
drivers to manipulate the request. If the request does not 
return a success value, the IO manager will in most cases 
retry the operation over the traditional IRP path. File 
system filter drivers that do not implement all of methods 
of the FastIO interface, not even as a passthrough 
operation, severely handicap the system by blocking the 
access of the IO manager to the FastIO interface of the 
underlying file system and thus to the cache manager. 

Caching is not performed automatically for each file; a 
file system has to explicitly initialize caching for each 
individual file and in general a file system delays this until 
the first read or write request arrives. This results in a file 
access pattern where the traces will log a single read or 
write operation through the IRP interface, which sets up 
caching for that file, followed by a sequence of FastIO calls 

that interact with the file cache directly. The effect on 
latency of the different operations is shown in figure 13. 

If we examine the size of the read requests in figure 14, 
we see that FastIO requests have a tendency towards 
smaller size. This is not related to the operation itself, but 
to the observation that processes that use multiple 
operations to read data, in general use more targeted sized 
buffers to achieve their goal. Processes that use only a few 
operations do this using larger buffers (page size, 4096 
bytes, being the most popular).  

Some processes takes this to the extreme; a non-
Microsoft mailer uses a single 4Mbyte buffer to write to its 
files, while some of the Microsoft Java Tools read files in 2 
and 4 byte sequences, often resulting in thousands of reads 
for a single class file. 

The cache manager has functionality to avoid a copy of 
the data through a direct memory interface, providing 
improved read and write performance, and this 
functionality can be accessed through the IRP as well as the 
FastIO interface. We observed that only kernel-based 
services use this functionality. 

11 Related work 
File tracing has been an important tool for designing file 
systems and caches. There are 3 major tracing studies of 
general file systems: the BSD and Sprite studies [1,14], 
which were closely related and examined an academic 
environment. The 3rd study examined in detail the file 
usage under VMS at a number of commercial sites [15]. 
One of our goals was to examine the Windows NT traces 
from an operating system perspective; as such we 
compared our results with those found in the BSD and 
Sprite studies. The VMS study focused more on the 
differences between the various usage types encountered, 
and a comparison with our traces, although certainly 
interesting, was outside of the scope of this paper. 
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Figure 13. The cumulative distribution of the service period 
for each of the 4 major request types 

Figure 14. The cumulative distribution of the data request 
size for each of the 4 major request types 
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A number of other trace studies have been reported, 
however, they either focused on a specific target set, such 
as mobile users, or their results overlapped with the 3 major 
studies [3,9,11,23]. 

There is a significant body of work that focuses on 
specific subsets of file system usage, such as effective 
caching, or file system and storage system interaction. 

There have been no previous reports on the tracing of 
file systems under Windows NT. A recent publication from 
researchers at Microsoft Research examines the content of 
Windows NT file systems, but does not report on trace-
based usage [4]. 

With respect to our observations of heavy-tails in the 
distributions of our trace data samples; there is ample 
literature on this phenomenon, but little with respect to 
operating systems research. A related area with recent 
studies is that of wide-area network traffic modeling and 
World Wide Web service models. 

 In [5], Gribble, et al. inspected a number of older 
traces, including the Sprite traces, for evidence of self-
similarity and did indeed find such evidence for short, but 
not for long term behavior. They did conclude that the lack 
of detail in the older traces made the analysis very hard. 
The level of detail of the Windows NT traces is sufficient 
for this kind of analysis. 

12 Summary 
To examine file system usage we instrumented a 

collection of Windows NT 4.0 systems and traced, in detail, 
the interaction between processes and the file system. We 
compared the results of the traces with the results of the 
BSD and Sprite studies [1,14] performed in 1985 and 1991. 
A summary of our observations is presented in table 1. 

We examined the samples for presence of heavy-tails in 
the distributions and for evidence of extreme variance. Our 
study confirmed the findings of others who examined 
smaller subsets of files: that files have a heavy-tail size 
distribution.  But more importantly we encountered heavy-
tails for almost all variables in our trace set: session inter-
arrival time, session holding times, read/write frequencies, 
read/write buffer sizes, etc. This knowledge is of great 
importance to system engineering, tuning and 
benchmarking, and needs to be taken into account when 
designing systems that depend on distribution parameters. 

When we examined the operational characteristics of 
the Windows NT file system we found further evidence of 
the extreme burstiness of the file systems events. We also 
saw that the complexity of the operation is mainly due to 
the large number of control operations issued and the 
interaction between the file systems, cache manager and 
virtual memory system. 

The file system cache manager plays a crucial role in 
the overall file system operation. Because of the aggressive 
read-ahead and write-behind strategies, an amplification of 

the burstiness of file system requests occurs, this time 
triggered by the virtual memory system. 

We examined the undocumented FastIO path and were 
able to shed light on its importance and its contribution to 
the overall Windows NT file system operation. 

In this paper we reported on the first round of analysis 
of the collected trace data. There are many aspects of file 
system usage in Windows NT that have not been examined 
such as file sharing, file locking, details of the control 
operations, details of the various file cache access 
mechanisms, per process and per file type access 
characteristics, etc. We expect to report on this in the 
future. 
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