
Open Grid Services Architecture: What is it?

Summary by Jonathan Ledlie on January 24, 2003

1 Big Picture

OGSA is an API that describes the interaction of Grid
components. It “defines mechanisms for creating, man-
aging, and exchanging information among entities called
Grid services.” Its definition is in progress and was last
updated (publicly) in October. It is defined in terms of the
Web Service Definition Language (WSDL).

OGSA relates to Globus as follows. Globus v2 (?) (and
younger) essentially glues together various Condor and
Condor-like components running at universities and re-
search labs. It was a trial run on what might be needed to
get the Grid to work. Now, what was in Globus is being
generalized to the specification that is OGSA. Globus v3
will be a reference implementation of OGSA.

The Grid manifesto is essentially broken into three main
papers:

1. The Anatomy of the Grid is the earliest paper and
describes the motivations behind having a global
computation service used by virtual organizations.
This paper states why the Grid cannot be built us-
ing existing technologies and why something new
must be created (and why they need funding to do
it). “Virtual organizations” are “dynamic collections
of individuals, institutions, and resources.” Appears
in the International Journal of Supercomputing Ap-
plications, 2001.

2. The Physiology of the Grid describes OGSA at a
fairly high level. This is what I read for this meet-
ing.

3. Grid Service Specification is an evolving specifica-
tion using the Web Service Definition Language
(WSDL). I have not read this.

2 Physiology of the Grid

Some points from this paper:

� Service Providers (SPs) (e.g., web hosting, content
distribution, application, storage) need standardiza-
tion. “B2B relationships are, in effect, virtual orga-
nizations.”

� Microsoft .NET and Apache Axis are mentioned to-
gether. What is Apache Axis?

� While OGSA seems to me to be an API, they never
use this term.

� They imply a very flexible API. For example, that a
“reference implementation” would be capable of do-
ing certain things on any platform (e.g., performing
traces). However, some platforms would be more ca-
pable of doing this function than others and this ca-
pability should not be masked by the interface. I’m
not sure how they plan to achieve this.

� They mention “transient services” a lot and include
pings to let a service know that its consumer is still
alive. They never use the word “leases” however and
seem to disparage Jini. “Soft-state protocols allow
state established at a remote location to be discarded
eventually, unless refreshed by a stream of subse-
quent “keep-alive” messages.” Their service creation
and destruction seems weak.

� Naming. “Every Grid service instance is assigned
a globally unique name, the Grid service handle
(GSH), that distinguishes a specific Grid service in-
stance from all other Grid service instances that have
existed, exist now, or will exist in the future.” How
this is achieved is left as an exercise for the reader :).

� “Unlike a GSH, which is invariant, the [Grid service
reference] GSR(s) for a Grid service instance can
change over that service’s lifetime. A GSR has an
explicit expiration time, and may become invalid at
any time during a service’s lifetime....”

� Much like Jini, they have Factories, Service Discov-
ery, Registries, Notification sources and sinks.

� There seem to be many opportunities for distributed
lease data structures, like a leased DHT.

2.1 The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations

Authors: Ian Foster, Carl Kesselman, Steven Tuecke

The authors attempt to formulate a definition for what
the Grid is trying to be and what components it needs to
have in order to take that shape. In particular they argue
that existing technologies do not support “virtual organi-
zations” from being able to flexibly share one another’s

resources. For this reason, a new technology, the Grid, is
necessary. The Grid’s architecture follows an hourglass
form, with broad interface definitions at the top and bot-
tom, and narrow ones in the middle. The layered archi-
tecture, in order, is: application, collective, resource, con-
nectivity, and fabric. Although the authors occasionally
depict the architecture as a stack (and, in fact, place it
next to the OSI stack for comparison), here the applica-
tion can in fact make direct calls to the resource and con-
nectivity layers. Another real deficit is that they do not
differentiate between global and local perspectives (and
seem to perceive of everything from a one-off global per-
spective). For example, it appears that collectives (col-
lections of resources) are the same collection of resources
from everyone’s point of view — that my collection is
your collection and vice versa. Similarly they use the cen-
tralized X.509 format instead of the more flexible and rel-
ative SPKI. This is particularly interesting because they
suggest that sharing relationships between virtual orga-
nizations (VOs) “do not necessarily involve an explicitly
named set of individuals” but instead may include “stu-
dents.” This level of indirection is what SPKI is good
at; I’m not sure if it’s available in X.509. They suggest
that several major technology trends (e.g., Internet, en-
terprise, distributed and p2p computing) all have much to
gain from the Grid, but, strangely, they do not suggest that
the Grid could benefit from them. In discussing the Grid
architecture, the authors spend a great deal of their time
talking about coscheduling, which is presumably of great
import in the type of applications they are envisioning.

They offer a definition of the goal of the Grid: “flexible,
secure, coordinate resource sharing among dynamic col-
lections of individuals, institutions, and resources — what
we refer to as virtual organizations.”

The narrow components of the Grid architecture are the
resource and connectivity protocols. The components in
greater depth are:

Fabric Fabric components implement the local,
resource-specific operations that occur on spe-
cific resources (whether physical or logical) as
a result of sharing operations at higher levels.
Here the authors include “enquiry” mechanisms
that permit discovery of state and capabilities and
“resource management” mechanisms (e.g., General-
purpose Architecture for Reservation and Allocation
(GARA), Portable Batch System, and Condor).

Connectivity This layer enables the exchange of data be-
tween Fabric layer resources. It includes communi-
cation and authentication. Globus includes the Grid
Security Infrastructure (GSI), which is mainly built
on the Transport Layer Security (TLS) protocol. Lo-
cal policies can be integrated via the Generic Autho-

rization and Access (GAA) control interface.

Resource “Resource layer protocols are concerned en-
tirely with individual resources and hence ignore is-
sues of global state and atomic actions across dis-
tributed collections.” The classes of resource proto-
cols are (1) information and (2) management. These
appear to be directly analogous to the Fabric’s en-
quiry and resource management mechanisms. The
Globus implementations of the resource level in-
clude: Grid Resource Information Protocol (GRIP,
based on LDAP), Grid Resource Access and Man-
agement (GRAM, HTTP-based), and GridFTP.

Collective These are collections of resources and this
layer offers services on collections. For example: di-
rectory services allow users to query for resources
by name and/or attributes such as type, availabil-
ity, or load; co-location and scheduling services, like
Condor-G; data replication

The authors offer a nice rebuttal of many confusing points
about the Grid. One in particular is that even though it is
distributed, it does not need a new computing model — I
bet Jim Waldo would disagree.

