
Dámelo! An Explicitly Co-locating Web Cache

File System

by

Jonathan T. Ledlie

A thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Science

(Computer Science)

at the

UNIVERSITY OF WISCONSIN - MADISON

2000

Abstract

How to best relate cached web objects is a complex
and on-going problem and always depends on the
workload. By locating objects which are likely to be
referenced together adjacently on disk and then im-
porting them into memory as a group, large reduc-
tions in user-perceived read latency are possible.
Instead of discovering new policies for relating ob-
jects, we have built a specialized file system called
Dámelo which leverages its data’s cache-only na-
ture for speed while leaving the determination of
how to relate objects as a flexible policy external
to the system. By providing a simple but effective
interface for co-location, Dámelo provides much
higher performance for its specialized web object
workload than a standard Unix file system. The
purpose of this thesis is to design, implement, and
test the Dámelo file system with microbenchmarks
and real workloads and to build a multithreaded
networking layer to propel web objects through it.

1 Introduction

Cachable web objects embody certain unique

properties which enable — and demand — much

higher performance than when they are stored

in a standard UNIX file system as part of a

caching proxy. While various elegant methods

have attempted to keep frequently accessed files

in-memory, one study has portrayed that approx-

imately 90% of all hits for files at a proxy come

from disk and that disk delays contribute 30% to-

ward total response time: in memory speedups can

only go so far [18]. As network speeds advance

and disk access rates stagnate, this disk delay per-

centage can only increase. Two other studies have

established that arranging files by size and domain

name can improve throughput by as much as 25

times over a naive allocation within a simple direc-

tory hierarchy [11][12]. These systems also lever-

age the unchanging size and lack of ownership in-

herent in cacheable web objects by storing some

“related” objects in the same file. Fetching one

of these objects leads to a prefetch for all. One

system further improves performance by buffering

writes to make for more sequential access, often at

the expense of reads. Both systems use a standard

file system.

How to best relate cached web objects is a

complex and on-going problem and always de-

pends on the workload. Instead of coming up with

more policies which work well under some work-

loads, we have designed, implemented, and tested

a specialized file system called Dámelo (give it to

me in Spanish) which leverages its data’s cache-

only nature for speed while leaving the determi-

nation of how to relate files as a flexible policy

external to the system. That the objects already

have a “backup” is true by definition and enables

us to loosen the strict consistency semantics that

a standard file system enforces. By keeping meta-

data in memory and checkpointing based on how

much we are willing to lose with a crash, Dámelo

achieves a balance between robustness and speed.

Dámelo replaces the standard mechanism of a

file system with one which both exposes relations

between objects and allows for user-defined ro-

bustness. Dámelo has two tuneable “knobs” which

reflect the twin foci of prior research:

1. which objects are related to one another

2. which sets of objects to keep “hot” or in mem-

ory

Objects’ interrelationships can be based on when

the requests occured, if they came from the same

client, if they were for the same server, how often

an object is referenced, or some other metric or

any combination of these. Storing related files to-

gether on disk can be simulated by placing them

in the same directory, as earlier research has done,

1

but this attempt at co-location works more and

more poorly over time as inode references become

scattered over distant cylinders. In Dámelo, re-

lated objects go into the same group which then

directly translates into on-disk adjacency, even as

the disk fills up.

The second major policy which caches must

determine is which objects to keep resident in

memory. This form of buffer management is less

akin to a file system and more to a database. Like

object interrelations, determining which objects

are hot is a complex problem. After grouping re-

lated objects, a proxy can hint to Dámelo which

to keep in memory. The proxy, making these de-

terminations at run-time, decides to love or hate

groups based on their anticipated usage. Loved

groups stay hot; hated ones percolate to disk.

Dámelo’s purpose is to function as a fast file

cache while turning previously implicit, rigid poli-

cies into explicit, malliable mechanisms. Section

2 discusses previous policies for relating objects

and the origins of Dámelo’s underpinnings, like

checkpointing and in-memory metadata. Section

3 portrays how a researcher would use the thread-

safe API. Section 4 looks at how Dámelo works

beneath its interface. Section 5 examines results

from microbenchmarks and a sample proxy. Sec-

tion 6 looks at future modifications and Section 7

summarizes the project and its results.

2 Related Work

A web proxy cache’s goal is to reduce the latency

between clients and servers. The primary method

for achieving this aim is to retain a valid copy of

a subset of the data clients have asked for be-

fore, in anticipation that the at least one of the

clients will request the same data in the future.

After some (possibly zero) length of time after the

data passes through the proxy on its route down

from the server to the client, the data expires,

causing the next request for the expired data to

miss in the cache and the server to generate a

fresh copy with a new expiration date. Projects

to first research this method for reducing Inter-

net latency were Harvest[2], its sucessor Squid[21],

and CERN[10]. Figure 1 shows how Dámelo fits

between a proxy (like Harvest, Squid, or CERN)

and the disks where it would store the bulk of its

data.

Proxy

clients

Damelo

servers

Figure 1: Where Dámelo fits in

One key concept originating in these first web

caches is that data can simply expire in the cache,

causing a miss and then a new fetch from the server

with no harm except for a client-perceived delay.

As long as Dámelo can detect inconsistencies in

cached copies and then expire bad data before it

is sent to the client, it can be far more aggresive

in storing data than either a typical database or

file system. This fact that the data we are storing

is entirely replaceable is one of the three invari-

ants which differentiate Dámelo from a typical file

system.

The two other pieces of information that

Dámelo does not need to store are ownership and

execution permissions. Once in transit, Internet

2

data is anonymous. Similarly, any execution priv-

iledges are encapsulated in the data itself, e.g. in

the header of a multimedia file. Other file system

work has shown that by taking advantage of invari-

ants, a much faster solution is often possible[16].

More recently cacheable data has begun to in-

clude dynamically generated content, the results

of CGI queries, for example [9]. It could store

this data but Dámelo would need to sit beneath

the active caching intelligence, just as it currently

resides under a proxy. An active cache’s datum

might be much larger than the typical static web

object which was tested in Section 5. For example,

an active cache might want to refer to a query ta-

ble as a single object, in order to always transfer it

to and from memory as one unit. If a cache were to

handle both types of data concurrently, it would

probably benefit from multiple page sizes. This

will be discussed in the section on future work.

2.1 Relating Web Objects

Much research has gone into how to best interre-

late web objects and how to exploit their unique

characteristics. [11] lists most of their significant

attributes:

• Objects are always read in their entirety. We

add the observation that they are never mod-

ified locally.

• 74% of web objects are ≤ 8kb and 99% of

transfers are smaller than 64kb [18].

• Web objects’ popularity follows a Zipf-like

distribution, which means that some files are

much more popular than others, although this

popularity does evolve over time [3].

• Embedded objects (like inline gifs) and intra-

domain-name references produce high data

and meta-data locality.

• Objects are redundant; they are by definition

“backed up.”

On redundancy, the authors note: “it is ac-

ceptable to never actually store web objects to disk

or to periodically store all objects to disk in the

event of a server crash.” We concur and indepen-

dently explored this idea in [14]. In addition to

these attributes, [11] lists a low ratio of disk reads

to writes because “every miss involves a read of

the cache meta-data [and] a write of the meta-

data.” If the redundancy of the data affords us

the freedom to keep much of it and its meta-data

in memory, however, these I/O operations disap-

pear.

[11] and [12] independently researched meth-

ods for preserving locality. By locating objects

which are frequently accessed together nearby,

they hope to prefetch some objects and to have

their meta-data cached to reduce I/O. In [11] the

authors modified Squid to map domain names

to particular directories, but found that “a sin-

gle directory may store objects from a popular

server. This can lead to directories with many en-

tries which results in a directory spanning multiple

blocks.” As a typical Fast File System (FFS) [8]

like Linux’s ext2 fills up and becomes fragmented,

however, these multiple blocks will no longer be

in the same cylinder and maybe not in the same

cylinder group. [12] takes the domain name map-

ping one step further and places small objects

which hash to the same directory into the same file.

They call these objects “buddies.” Their idea is to

reduce the meta-data overhead and fragmentation

caused by many small files. As noted above, how-

ever, this frequently accessed meta-data lends it-

self to remaining in memory, alleviating this prob-

lem entirely. Dámelo also solves the fragmentation

3

problem by compacting its buffers, putting all free

space at the end of each.

[11] takes its related web objects and places

them in memory-mapped files. The authors then

align these objects on page boundries to cir-

cumvent undesired paging. Dámelo takes this

workaround and makes it explicit: objects go into

pages which are aligned but which are swapped

out when explicitly told to do so, not when a gen-

eral purpose operating system algorithm believes

is correct.

Similarly, [12] buffers its buddies into

“streams,” which it keeps in memory for a period

long enough to make the write to disk worthwhile.

When full, each stream is written out atomically,

much like a Dámelo page after it has been hated.

This uninterupted streaming approach, combined

with locality, achieves 495 URL-get-operations per

second vs. 20 for Squid’s naive scheme.

An alternative approach is to design an oper-

ating system especially for caching. The CacheOS

improves response time with “object pipelining,”

which opens as many simultaneous TCP connec-

tions as the origin server will allow and retrieves

these object in parallel [4]. This algoritm ap-

pears to be a refinement on the multithreaded ap-

proach used in subsection 5.4, in that it parses each

HTML document on its way back to the client and

requests inline objects automatically. Still, this al-

gorithm clearly could be incorporated into a proxy

running on a conventional operating system.

The difficultly with these solutions is that they

either rest on a standard file system or are operat-

ing systems unto themselves, suffering from porta-

bility problems. When incorporated into a regular

file system, [11] and [12] are not taking advan-

tage of the invariants their data afford. Thus, they

study the best policies for how to relate one ob-

ject with another but still perform the actual stor-

age with a mechanism which is far more flexible

than they need. With an FFS-based file system,

they lose opportunities for optimization. Here, in

Dámelo, we have designed a user-level file system

which works with the same commonly used oper-

ating systems as their research, but is significantly

faster because it is not constrained by the seman-

tics of general-purpose irreplacable data.

2.2 Constituent Mechanisms

The primary source for Dámelo’s explicit grouping

idea is [7]. The authors “aggressively pursue ad-

jacency of small objects rather than just locality.”

Like Dámelo, they espouse the idea of large blocks:

“a 64kb access takes less than twice as long as an

8kb access.” Because they offer conventional file

system integrity as part of their Co-locating Fast

File System (C-FFS), they keep their inodes on

disk, but embedded within the files themselves.

Grouping and embedding inodes make up the two

halves of their solution.

While the idea of a specialized, but portable,

file system for caching web objects is a new one,

Dámelo internal mechanisms include ideas from

many other research system sources. The ori-

gin for the streams above and here for appending

additions to new groups in memory is the Log-

Structured File System [17]. Flushing Dámelo’s

groups’ metadata in the background and at dis-

tinct times comes from [13] and [1]. The concept of

less-than-ACID semantics is discussed more fully

in [6]. Attempting to minimize in-memory copy-

ing, in particular to a network port, was utilized

in [20]’s zero-copy. Placing large objects toward

the outside of the disk platter is discussed more

fully in [15]. Dámelo’s buffer manager and inter-

nal interfaces grew out of the Minirel project [5].

4

The speedups possible through in-memory meta-

data were explored by the author and Matthew

McCormick in [14].

3 Interface

Dámelo is designed to work with a multithreaded

server, be it a web proxy or some other source

of cache-only data. Its designers felt that making

the library thread-safe was necessary because each

file request has the potential to block for a rela-

tively long time, during which other threads could

be sending responses out to clients, forwarding re-

quests to servers, and, in particular, accessing data

in Dámelo’s memory pool.

In addition to allowing multiple threads to

create, read and delete objects concurrently, we

designed Dámelo to minimize in-memory copying.

To this end, each reading thread is given a pointer

directly to the spot in the memory pool where its

object is located — it is not given a copy of the

data. Similarly, as will be discussed in the Inter-

nals section, when pages of the memory pool are

written to disk, they are not copied elsewhere first

(as would happen with a kernel-managed block de-

vice). This reduction in memory creation, dele-

tion, and copying also allows for a more accurate

sum of total memory usage — a problem with

Squid, for example — which in turn means that

a cache administrator can allocate more physical

memory to the system without resulting in unde-

sired swapping.

Dámelo links as a library and header file into

an application. The main thread of the application

calls Dámelo’s constructor.

Damelo (char *raw disk device name,

int number of groups,

int memory pool size,

int &status)

~ Damelo ();

The raw disk partition should have already

been created and given rw permissions for the user

id the application runs under (see the raw com-

mand under Linux; under Solaris these unbuffered

partitions should already exist). The number of

groups signifies how many groups Dámelo should

anticipate handling: this controls how the disk is

divided and sets up data structures for each group.

Group numbers range from 1 to n and are allocated

alternating from the center of the disk. Visually,

this looks like Figure 2 (assuming k is odd).

k

3

1
5 2

4
6
k-1

Figure 2: Disk layout

Because requests are handled using a two-way

elevator algorithm, groups with low numbers will

have lower response times because the disk head

will pass over them more often. Because the outer

tracks can achieve greater bandwidth due to their

higher rotational speed, large objects should be

placed in these groups [15]. This stage is still un-

der development; please see Future Work for more

detail.

5

The memory pool size parameter should be

some multiple of the page size (because there is no

point in having room for 1

2
a page, for example).

It is given to the constructor in megabytes. In our

tests, we used pool sizes of 128M and 256M — a

minimal amount of memory typically available on

most machines. Pages and frames have the same

size and this size is currently compiled into the li-

brary. Pages refer to data which is moved as an

atomic unit and frames to the entities which con-

tain them; pages migrate between memory frames

and disk frames.

The status parameter for the constructor is

passed by reference and allows, like the other re-

turn codes, any errors to be deciphered. Like the

return values from the other functions, any non-

zero status signifies an error and can be sent to

Dámelo’s perror() for a text explanation.

Dámelo’s destructor forces all pending deletes,

flushes all dirty buffers to disk, checkpoints the

groups, and frees the memory pool.

int create (char *file name, char *data,

int size, int group number)

create() takes a file of a given size and copies

its data into the specified group. The assump-

tion here is that objects are write-once, read-many.

In a web proxy context (and in the one built for

the Experiments section) files are assumed to have

been sent to the requesting client before the proxy

create()s the file in Dámelo. The reason the proxy

would forward the response to the client first is

that then this create() operation is taken out of

the client’s latency. The proxy always has the data

in its entirety before calling create().

Choosing in which group to place an object is

exactly the complex question previous research has

attacked and which Dámelo is designed to make

simpler. How objects interrelate has many crite-

ria. A simple scheme would hash domain names

to the same group. A more complex one would

try to pick out which objects are more commonly

accessed than others and put those into the lower

numbered groups. Any statistical information on a

group or object could be kept in a header as part

of the object, in another object in the group, or

all this information could be placed together in its

own group, or any combination of these. Keeping

this meta-information in the objects themselves

is not the best solution, however, because then a

page might need to be saved to disk, even if its

actual data had not been modified.

If the proxy anticipates creating many objects

in the same group, it can love() the group, as will

be discussed more below. For example, a scheme

with hysteresis would automatically love a group

if two objects were created there in a row and then

hate() it once actions on this group ceased.

To simplify Dámelo’s internal mechanisms, ev-

ery object must fit into one frame. Because it is

built on a regular operating system, larger objects

can be cached in its regular file system, in another

mechanism, or not at all. We do not see this as a

drawback because the main penalties with a stan-

dard file system are seen with small objects, where

seek times dominate. Also many of these large

objects are multimedia files, which would prob-

ably use a disk streaming mechanism instead of

Dámelo’s which always reads objects in their en-

tirety.

int lookup (char *file name,

int &group number)

lookup() takes a filename and either returns

0 and the file’s group number by reference or an

error code signifying the file was not found. The

6

purpose of this function is so that a program using

Dámelo neither needs to remember which files it

has created nor which groups they were put in.

Thus, if the group assignment mechanism evolves

over time (e.g. a server name formerly mapped to

a low priority group but now maps to a high one),

old files can still be found. Generally, lookup() is

called directly before read() or remove() in order

to find the object’s group number.

int read (char *file name,

int group number,

char *&data, int &size)

int release (char *file name,

int group number)

read() and release() are used as a pair to

acquire a pointer into the memory pool where

Dámelo has positioned the requested object and

then to signify that the proxy’s thread has finished

reading the data and its space can be used for an-

other page. Because we want to avoid copying data

and because how long a thread will take to send

this object out to the client is unknown, Dámelo

provides a shared lock on the page where this ob-

ject is located. release() releases this lock. Other

threads can read() and remove() objects from this

page while this shared lock is in place.

int remove (char *file name,

int group number)

remove() prevents future access to the object

and frees up space in its group. As will be ex-

plained in detail in the Internals section, deletes

are buffered so that they only affect in-memory

pages and data structures. Like create(), remove()

does not return a locked page so no second func-

tion call is required.

int love (int group number)

int hate (int group number)

As stated in the discussion on create(), an-

ticipated use of a group should be preceeded by

a love() of the group and anticipated disuse by a

hate(). These translate into LRU or MRU buffer

pool replacement, respectively. If the proxy’s

group management scheme does not choose to

modify any group’s loved or hated state ever dur-

ing run time, all groups should be initially set

loved ; otherwise, no matter how many buffers the

pool is allocated, only one would ever get used!

setCheckpoint (int group #, int time)

Dámelo achieves much of the speedup seen in

the experimental results by keeping file metadata

in memory. Thus, there is no inode to first refer-

ence before performing the data-fetching I/O. To

limit the amount of data lost in case of a crash,

it can periodically checkpoint this metadata. This

level of robustness can be modified during run-

time and at the granularity of a group: groups

to which there is little current access could be se-

lected for checkpointing and, if no checkpointing

is desired, it can be switched off entirely. Because

the checkpoint operations are at a group level, they

do not bring the system to a halt. The time pa-

rameter signifies the number of seconds between

checkpoints. If set to zero, checkpointing is turned

off.

void perror (char *s, int error)

Like the standard C library call, Dámelo’s per-

ror() takes a string which is output to stderr be-

fore the string which describes the error condition.

7

4 Internals

Figure 3 portrays Dámelo’s main data structures

and lists the main steps in a create request, enu-

merated (a - m). It also shows two read re-

quests concurrently asking for objects from the

fifth buffer. The figure divides the system into

five main components, which represent the stages

a thread traverses from the network at the top to

the disk at the bottom.

The initial Dámelo object, whose constructor

was discussed in the previous section, creates n

groups, a buffer manager, and forks a new disk

thread.

Each group object contains a list of its pages

are in memory and how much free space is on each

of its pages (including those on disk). Using this

information, the group can try to allocate a new

web object on a page currently in memory. During

its constructor, each group also creates a file ob-

ject. Files encapsulate the disk operations of each

group while the group objects themselves handle

in-memory operations. Each group also contains

a large in-memory hash table recording the logical

location (a 〈 page,slot 〉 pair) of each of its files. In

order to reduce memory usage, each web file name

(a URL) is converted to its 16-byte MD5 equiva-

lent before insertion into the file table. Because it

stays in memory, this file name length is significant

when it is multiplied by millions of entries.

The buffer manager is perhaps Dámelo’s most

interesting and complex member. Frames are al-

ways in one of three states: unused and on the

free list, shared by one or more threads, or used

exclusively by one thread. Deletes are buffered so

that they only occur when a page has already been

exclusively locked due to a pending create or read.

If a requested page is not in the pool, both create

and read acquire an exclusive lock on an unused

frame (frames 1 and 3 in Figure 3). If this frame

already contains a valid, dirty page with pending

deletes, the deletes and subsequent compaction are

performed just before the victim page is sent to

disk. The disk then reads in the requested page

and, still with the exlusive lock, deletes objects

from this page (the one which actually generated

the request). The benefits of buffered deletes are

twofold:

1. a delete request is changed from two I/O op-

erations (read-modify-write) to zero.

2. they allow requests for deletions for the same

page to be sorted into their most efficient or-

der.

This order is the one which requires the least mem-

ory copying during compaction. In the case where

every object in a page is being deleted, if objects

are deleted front to back, every object must be

shifted forward during each deletion. By reorder-

ing them back to front, no memory copying is re-

quired at all.

Files map groups’ logical page numbers into

the disk ’s physical frame offsets. When the buffer

manager needs to read or write a page, it enters

that group’s corresponding file to make this trans-

lation and to generate a request for the disk. The

thread which has caused this action then sleeps

within the file object until the request is complete.

The disk thread waits for files to enqueue re-

quests. After handling each request, it signals the

requesting thread and looks for any new requests

on its request queue. If there are none, the disk

goes to sleep. When a thread positions a request

in the request queue, it keeps the requests sorted

by physical frame number, with the first entry the

one nearest the current position of the disk head.

8

PROXY

GROUP

create (url, group #, *data, size)
remove (url, group #)
lookup (url, &group #)��������� 	
���
�������	�����
�������������
�� � !���"
release (url, group #)

FILE

allocatePage (&page #)
readPage (page #, *data)
writePage (page #, *data)

BUFFER

MANAGER

allocatePage (file, &page #)
readPage (file, page #, exclusive / shared?)
unPinPage (file, page #, dirty, loved?)

DISK

enqueue (request)

1 2

Proxy network threads

3 4 5 m

#$#%#
& '�(*)�+%+,&�-*+*.0/%1
2�3%465)$+*.�7,&98;:%<>= 4$4�?5@ &A1 HTTP/1.0 200 OK

Last-modified: Tue, 11 Jul 2000 19:44:26 GMT

Content-Length: 947

Content-Type: image/gif

GIF89aXóÿŒa.....

Group 1 Group 2 Group n

key: md5
value: <page#, slot#>

a

lookup("
#%#$#�& '�(%)�+%+,&B-%+�. 5)�+�.�7,& 8�:*<

", group #)

b

not found

(after querying all groups)

c

d

e

f
GIF89a

Xóÿ...

g

Hashed file table mapping
a url to a position
 within a page (if found)

list of pages
currently
in memory

list of all pages'
free space

probe with
md5("...home.gif")

create ("...home.gif",

 2, &buffer, 947)

new file
descriptor

5

pg5
7kb

group #, page#, pin count, free space, exclusive lock

end of
free list

head of
free list

12345

Slots

2 5 1 7kb

readPage (2, 5, exclusive)

page insert (&buffer, 947)

unPinPage (2, 5, dirty, loved)

947

GIF89aXóÿ...

40

40

Frame buffers

Buffer Descriptors

1 21 0 2kb 7 5 2 9kb
other
reads

Logical to Physical

Page Mapping

21 53

Delete Queue

(one queue per page)

5 69 2 130

File 1 File 2 File n

h

k

i

1 2 3 4 5 k

262 90b4 8 0 12kb

j

Hash map
of <file,page#>
to frame #

Read/Write, Memory Frame #,
Physical Block #

Write, 2, 69

Read, 3, 53

Thread sleeps

on request

Physical Disk

dequeue request

awaken requesting

thread on completion

Request

Queue

writePage (page 5, frame 2)
l

enqueue (memory frame 2,
 disk frame 69)

m

Figure 3: Dámelo’s Internals

9

Please refer to the Appendix for the enumer-

ation of the create steps from Figure 3 and for a

code fragment.

5 Experiments

5.1 Microbenchmarks

We designed several microbenchmarks to test

Dámelo under a web-like workload and then ran

one configuration on a commonly used web proxy

simulator. The experiments reflect our contention

that read latency matters most, because it can-

not be removed from the user’s path. Creates are

streamed into buffers much like a Log File Sys-

tem and, with a multithreaded server, they can be

entirely masked by the actions of other threads.

Deletes are entirely in memory, but can potentially

affect reads as discussed in Future Work. Reads

are the focus of these experiments.

Each microbenchmark consists of three dis-

tinct stages: create, read, and delete. For each

stage, t threads perform n

t
operations, where n is

the number of objects. All threads finish before

any proceed to the next stage. Before the exper-

iment begins, each object is assigned a group in

the Dámelo version, or a directory in the standard

file system. These standard file system directories

are set up as a two-tiered namespace of [a-z]/[a-z].

This mirrors Squid’s directory usage.

To quantify how Dámelo improves read per-

formance while keeping create and delete perfor-

mance good, we have designed five web object or-

derings. Thus, each microbenchmarks is a 〈 stage,

object ordering 〉 pair, giving a total of fifteen mi-

crobenchmarks.

sequential all three operations are performed on

the set of objects in the same order, and in

directory or group order, [a-z] or [1-n] respec-

tively.

random all f files are created, but are done so

in a random order (e.g. a create for group 7

could preceed one for group 3). f number of

reads follow, but each read could be for any

file, with equal probability. Finally, all f files

are deleted, in a different random order than

they were created.

zipf 1:8 Here and for the other zipfs, creates and

deletes are as in random. 1

8
of the objects re-

ceive 7

8
of the requests and the unpopular 7

8

of the objects receive only 1

8
of the requests.

Among each fraction, the requests are ran-

domly distributed.

zipf 1:4 Like Zipf1 : 8 except the ratio of popular

files to unpopular files has been doubled.

zipf 3:8 Again like Zipf1 : 2 except almost half of

the files have been marked “popular.”

[18] and others have found that web objects

follow a Zipf-like popularity distribution, where

some set of objects are requested more frequently

than others. The zipf experiments approximate

this distibution. The ratio of popular files to un-

popular can be thought of as either the actual dis-

tribution of requests or the accuracy of the proxy’s

object interrelation policy. In each of them popu-

lar objects come from the same groups (or directo-

ries in ext2) and these groups have been loved so

they remain in memory. In sequential and random

all of the groups are loved.

In between moving from the create to the read

stage for each microbenchmark, Dámelo’s buffer

pool is flushed; no reads are hits left over from the

create stage. A timestamp is recorded for each op-

eration; the graphs are a sampling of these times-

10

tamps for easier readability. The average and max-

imum latency charts are gathered from all times-

tamps, not a sampling. The hit rates are the ra-

tio of the number of times objects on a page are

requested to the total number of objects on that

page. In sequential read, all objects are accessed

exactly once, making the hits-to-object count ra-

tio always one. In random and zipf1 : n tests, the

same objects can be accessed more than once, so

the hit rate varies.

5.2 Experimental Setup

The experiments were conducted on a dual-

processor 500 MHz Pentium III running Red Hat

Linux version 6.2 with a stock 2.2.16 kernel. The

machine has five IBM Model 9LZX SCSI disk

drives of 9.1 Gigabytes each, and can sustain a

throughput of between 180 and 240 Mbits/sec. It

has 1G of RAM. All logging was done to sep-

arate disks on separate SCSI controllers. Ex-

cept for the raw disk, the remainder were freshly

formated with Linux’s standard ext2 filesystem,

with either 1kb, 2kb, or 4kb block sizes. 4kb is

ext2’s maximum block size. All of the microbench-

marks shown used 131072 objects of a random

size of up to 16kb each: each test’s objects used

8k bytes on average× 128k objects ≈ 1G. Dámelo

used 16 groups, 16 threads, a 128M buffer pool,

and 1.5G of the disk. The buffer pool and disk

were divided into frame sizes of 16kb, 32kb, 64kb,

128kb, and 256kb. At 128M, the buffer pool can

hold 1

8
of the total test size. Ext2 had available

to it all of the 9.1G disk. It ran with 4 threads;

experiments showed that ext2 performed slightly

better with this fewer number of threads. Other

tests, like with a larger buffer pool, showed similar

results and they were omitted for clarity.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2 vs Damelo: Zipf 1:8 Read Operations (128M buffer pool)

Frame Size
ext2 w/4k
d w/16k
d w/32k
d w/64k
d w/128k
d w/256k

Figure 5: Ext2 vs Damelo: Zipf 1:8 Read

5.3 Microbenchmark Results

The results from the five microbenchmark tests

are shown in Figures 8 to 25 in the Appendix.

Dámelo’s sequential performance is consistently

better than ext2’s and Figures 11 and 12 por-

tray the benefit of larger transfer units, especially

when all of each unit is utilized. The sequen-

tial read peaks at an average latency of about

half a millisecond for the 256kb frames, and even

larger frames would perform even better (Figure

6). Even with 16kb frames, Dámelo is five times

faster for this test.

As would be expected, random read perfor-

mance suffers with larger frame sizes in Figure 18.

Even in the worst case, however, the average read

latency is still on par with ext2. The sub-64kb

frames all have clearly better performance on this

metric.

With Dámelo, random creations (Figure 17) do

not penalize the time per operation nearly as much

as for ext2 (Figure 14), because Dámelo’s objects

append to each group’s stream just the same as in

sequential, whereas ext2 must seek to each direc-

11

0

5

10

15

20

Sequential Zipf 1:8 Zipf 1:4 Zipf 3:8 Random

A
ve

ra
ge

 R
eq

ue
st

 T
im

e
(m

s)

Access Pattern

Average Latency for Reads

D 16K
D 32K
D 64K

D 128K
D 256K
ext2 1K
ext2 2K
ext2 4K

Figure 4: Average Read Latency

tory. With its delayed deletions, Dámelo’s delete

performance is one order of magnitude faster than

ext2 (Figures 10 and 13). This speed is especially

significant in a caching proxy context where dele-

tions, even when handed off to a separate process,

are often a great burden on the system [22].

The zipf experiments convey the power of

Dámelo’s two proxy-controlled knobs, the relation

and “hit” mechanisms. When a proxy’s relation

algorithm has successfully placed popular objects

into the same groups and loved them, we see a huge

performance gain over ext2. Figure 4 and 5 por-

tray a sixfold speedup over ext2 for zipf1 : 8 and

between two and three times for zipf1 : 4. These

two workloads benefit from good hit rates for the

32kb and 64kb frames (Figure 6).

The experiments show the tradeoff between

large frames and hit rates. Clearly if only 8kb

out of 256kb is used per I/O, like in Random,

we get poor performance. With 16kb buffers, we

are guaranteed a hit rate of at least 50% on av-

erage (because of the ≈8kb objects). A happy

medium seems to emerge as the ability to discern

the more popular objects becomes more accurate

and the frame size increases. The beginnings of

this trend are with 32kb having the best latency

for zipf1 : 8. These results show that an accurate

grouping mechanism leads to lower read latency.

5.4 Web Proxy Simulation

Due to time constraints, we were not able to ex-

plore the web proxy simulator as thoroughly as we

would have liked. Still, we were able to set up and

12

50%

100%

150%

200%

250%

0 50 100 150 200 250 300

A
ve

ra
ge

 H
it

R
at

e

Frame Size in kilobytes

Damelo: Average Hit Rate vs Frame Size per Read Operations (smoothed)

Read Operation
Sequential
Zipf 1:8
Zipf 1:4
Zipf 3:8
Random

Figure 6: Hit Rate over varying Page Sizes

run some preliminary tests with Web Polygraph

[19].

Web Polygraph’s environment has c virtual

clients and s virtual servers utilizing one or more

proxies in between. In this experiment, we had one

of each. We used three different proxies: Squid,

a multithreaded proxy backed by ext2 (mt-ext2),

and a multithreaded proxy backed by Dámelo (mt-

Dámelo). The tests were run on the same hard-

ware as above with the exception that each unit

(the client, the server, and the proxy) was on a

different machine. mt-Dámelo mapped objects to

groups randomly. Both Squid and mt-ext2 ’s di-

rectories were cleaned before each test. The tests

results show the average throughput (requests per

second) as measured by the client in responses.

The test has 80% of the data be cacheable, based

on the header, and 55% of the data is revisited.

The web object sizes are exponentially distibuted

over a 13kb maximum. Dámelo was given 128M

for its buffer pool and used 64kb frames and 16

groups. Each test was run for five minutes.

Proxy Avg Requests/sec

mt-ext2 363

Squid 545

mt-Dámelo 617

Figure 7: Web Proxy Simulation Results

Although the sample proxy we built for this

project was fairly primative and, therefore, could

not cache much content as Squid could, it gets

about a 13% improvement. The performance gain

of 69% of the simple proxy using Dámelo vs. the

one with ext2 (which used a directory structure

like Squid’s) suggests that with an better proxy

the speedup of mt-Dámelo over Squid would be

magnified.

6 Future Work

Beyond a more precise equation for determining

the best page size based on the average object size

and on the popularity of certain requests, there are

several other items this project has left for future

work.

One difficulty with the current implemenation

of deletions is that it conflicts with our focus on

read latency. In the worst case, a compaction,

two I/Os and another compaction all could happen

while a client is waiting. A relatively simple solu-

tion to this would be a garbage collecting thread

which performs deletes in the background. These

compacted pages could then be scheduled for the

disk in a low priority queue.

The ability to use large files (≥ 2G) was not

compiled into the Linux kernel we were using and

this limited how large a disk we could seek over,

even though it was unbuffered by the kernel. An

easy-to-use solution to this would allow multiple

13

partitions from the same disk. We felt this to be a

cludge, however, and decided that large files would

be commonly available soon enough.

Two items which were left unimplemented are

checkpointing and the placement of groups as de-

picted in Figure 2. Checkpointing and recovery

would be relatively simple due to the fact that

any inconsistent data can be discarded. Adjust-

ing each group’s offset should not be difficult but,

because turning the current one-way disk eleva-

tor algorithm into two-way was felt to be poten-

tially complex and bug-prone, this was left unim-

plemented due to lack of time.

Two longer-term extensions are multiple disks

and multiple pages sizes. Multiple disks would al-

low parallel access, especially to popular groups.

Multiple page sizes would permit larger objects,

like active cache tables, and potentially better hit

rates based on the popularity of the group.

7 Conclusion

Dámelo achieves its goal of being a fast, easy-to-

use object cache where its prime tuneables, group-

ing and memory usage, work effectively. Even un-

der tests accessing objects randomly, it doubles the

performance of ext2, a common example of a Fast

File System. With better grouping, it bests ext2’s

average read latency by six times. It gains this

speed primarily by keeping its meta-data in mem-

ory, which it can do because of its data’s cache-

only nature, and by placing related files adjacently

on disk.

Hopefully, Dámelo will become the file system

for the next popular web cache. Check it out at

www.damelo.org !

8 Thanks

This thesis has been an extremely interesting,

challenging, and rewarding project, and I would

like to thank Remzi for all of his great ideas and

good guidance!

References

[1] T. Blackwell, J. Harris, and M. Seltzer.

Heuristic cleaning algorithms for log-

structured file systems, 1995.

[2] C. Bowman, P. Danzig, D. Hardy, U. Manber,

and M. Schwartz. The harvest information

discovery and access system, 1994.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and

S. Shenker. Web caching and zipf-like distri-

butions: Evidence and implications, 1999.

[4] CacheFlow. Cacheos technology overview,

2000.

[5] David Dewitt and Jussi Myllymaki. Minirel

database project, 1990.

[6] A. Fox, S. Gribble, Y. Chawathe, E. Brewer,

and P. Gauthier. Clusterbased scalable net-

work services, 1997.

[7] G. Ganger and M. Kaashoek. Embedded in-

odes and explicit grouping: Exploiting disk

bandwidth for small files, 1997.

[8] Marshall Kirk. A fast file system for unix*.

[9] Q. Luo, R. Krishnamurthy, Y. Li, P. Cao,

and J. Naughton. Active query caching for

database web servers, 1999.

[10] A. Luotonen. Henrik frystyk nielsen, 1996.

14

[11] Carlos Maltzahn. Reducing the disk i/o of

web proxy server caches.

[12] E. Markatos, M. Katevenis, D. Pnev-

matikatos, and M. Flouris. Secondary storage

management for web proxies, 1999.

[13] J. Matthews, D. Roselli, A. Costello,

R. Wang, and T. Anderson. Improving the

performance of log-structured file systems

with adaptive methods, 1997.

[14] Matthew McCormick and Jonathan Ledlie. A

fast file system for caching web objects, 2000.

[15] Rodney Van Meter. Observing the Effects of

Multi-Zone Disks. In Proceedings of the 1997

USENIX Conference, 1997.

[16] Calton Pu, Tito Autrey, Andrew Black,

Charles Consel, Crispin Cowan, Jon Inouye,

Lakshmi Kethana, Jonathan Walpole, and

Ke Zhang. Optimistic incremental special-

ization: Streamlining a commercial operating

system. In Proc. 15th ACM Symposium on

Operating Systems Principles, Copper Moun-

tain CO (USA), 1995.

[17] Mendel Rosenblum and John K. Ousterhout.

The design and implementation of a log-

structured file system. In Proceedings of 13th

ACM Symposium on Operating Systems Prin-

ciples, pages 1–15. Association for Computing

Machinery SIGOPS, 1991.

[18] A. Rousskov and V. Soloviev. A performance

study of the squid proxy on http, 1999.

[19] Alex Rousskov and Duane Wessels. Web poly-

graph, 1996.

[20] Thorsten von Eicken, Anindya Basu, Vineet

Bush, and Werner Vogels. U-net: A user-

level network interface for parallel and dis-

tributed computing. In Proceedings of 15th

ACM Symposium on Operating Systems Prin-

ciples, pages 40–53. Association for Comput-

ing Machinery SIGOPS, 1995.

[21] D. Wessels. Squid internet object cache.

[22] D. Wessels. Squid internet object cache faq.

15

9 Appendix

9.1 Create Steps from Figure 3

a client makes request which proxy intercepts.

b proxy probes Dámelo groups for object’s existence.

c Dámelo responds that it is not found.

d proxy forwards request to web server.

e web server responds with header and web object.

f proxy creates a buffer to copy web object into.

g proxy copies data from web server port to buffer and client’s port. Note that this finishes the client’s

latency.

h proxy chooses a group (group 2) and calls Dámelo’s create.

i group 2 picks a page with enough free space which is in memory. It picks logical page 5 which is in

memory frame 2. It locks this page exclusively, adds the new web object, and unpins the exclusive lock.

j the internal slot array in the page notes the location of the new object.

k the group creates a new in memory file descriptor for the object. This thread is now finished with the

create.

l sometime later when another thread needs a frame and frame 2 is at the head of the free list, it gets an

exclusive lock on frame 2 and initiates writePage().

m after logical-to-physical frame translation, the request gets queued. After the disk has completed the

request, it wakes up this second thread.

16

9.2 Code Fragment

#include <iostream>

#include "status.h"

#include "damelo.h"

int main () {

Status status;

int groupCount = 16;

int memoryUsage = 128;

Damelo *damelo = new Damelo ("/raw/raw/raw4", groupCount, memoryUsage, status);

damelo->love (3);

char fileName[20];

sprintf (fileName, "somefile.gif");

char dataIn[100];

memset (&dataIn, ’a’, 100);

status = damelo->create (fileName, 3, dataIn, 100);

int groupNumber;

status = damelo->lookup (fileName, groupNumber);

char *dataOut;

int length;

status = damelo->read (fileName, groupNumber, dataOut, length);

status = damelo->release (fileName, groupNumber);

damelo->hate (groupNumber);

status = damelo->remove (fileName, groupNumber);

delete damelo;

return 0;

}

17

0

100000

200000

300000

400000

500000

600000

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: Sequential Create Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 8: Ext2: Sequential Create

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: Sequential Read Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 9: Ext2: Sequential Read

0

20000

40000

60000

80000

100000

120000

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: Sequential Delete Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 10: Ext2: Sequential Delete

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: Sequential Create Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 11: Dámelo: Sequential Create

0

50000

100000

150000

200000

250000

300000

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: Sequential Read Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 12: Dámelo: Sequential Read

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: Sequential Delete Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 13: Dámelo: Sequential Delete

18

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: Random Create Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 14: Ext2: Random Create

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: Random Read Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 15: Ext2: Random Read

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: Random Delete Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 16: Ext2: Random Delete

0

100000

200000

300000

400000

500000

600000

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: Random Create Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 17: Dámelo: Random Create

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: Random Read Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 18: Dámelo: Random Read

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: Random Delete Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 19: Dámelo: Random Delete

19

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: Zipf 1:8 Read Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 20: Ext2: Zipf 1:8 Read

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: Zipf 1:4 Read Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 21: Ext2: Zipf 1:4 Read

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Ext2: 3-8 Read Operations

ext2 w/1k
ext2 w/2k
ext2 w/4k
Damelo w/64k frames

Figure 22: Ext2: Zipf 3:8 Read

0

50000

100000

150000

200000

250000

300000

350000

400000

0 20000 40000 60000 80000 100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: Zipf 1:8 Read Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 23: Dámelo: Zipf 1:8 Read

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: Zipf 1:4 Read Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 24: Dámelo: Zipf 1:4 Read

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 20000 40000 60000 80000100000120000140000

M
ill

is
ec

on
ds

Operations

Damelo: 3-8 Read Operations (128M buffer pool)

Frame Size
16k
32k
64k
128k
256k

Figure 25: Dámelo: Zipf 3:8 Read

20

