
Accurate, Low-Energy Trajectory Mapping for Mobile Devices

Arvind Thiagarajan, Lenin Ravindranath, Hari Balakrishnan, Samuel Madden, Lewis Girod
MIT Computer Science and Artificial Intelligence Laboratory

{arvindt, lenin, hari, madden, girod}@csail.mit.edu

Abstract
CTrack is an energy-efficient system for trajectory map-
ping using raw position tracks obtained largely from
cellular base station fingerprints. Trajectory mapping,
which involves taking a sequence of raw position sam-
ples and producing the most likely path followed by
the user, is an important component in many location-
based services including crowd-sourced traffic monitor-
ing, navigation and routing, and personalized trip man-
agement. Using only cellular (GSM) fingerprints instead
of power-hungry GPS and WiFi radios, the marginal en-
ergy consumed for trajectory mapping is zero. This ap-
proach is non-trivial because we need to process streams
of highly inaccurate GSM localization samples (aver-
age error of over 175 meters) and produce an accurate
trajectory. CTrack meets this challenge using a novel
two-pass Hidden Markov Model that sequences cellu-
lar GSM fingerprints directly without converting them to
geographic coordinates, and fuses data from low-energy
sensors available on most commodity smart-phones, in-
cluding accelerometers (to detect movement) and mag-
netic compasses (to detect turns). We have implemented
CTrack on the Android platform, and evaluated it on 126
hours (1,074 miles) of real driving traces in an urban en-
vironment. We find that CTrack can retrieve over 75%
of a user’s drive accurately in the median. An impor-
tant by-product of CTrack is that even devices with no
GPS or WiFi (constituting a significant fraction of to-
day’s phones) can contribute and benefit from accurate
position data.

1 INTRODUCTION

With the proliferation of sensor-equipped smartphones,
the decades-long promise of location-based mobile ser-
vices and mobile sensing applications is finally becom-
ing real. Many location-based applications periodically
probe the device’s position sensor to obtain a stream of
position samples, and then process this stream to ob-
tain a trajectory. Examples include crowd-sourced traf-
fic and navigation applications [15, 33], personalized
trip management applications [28, 15], fleet manage-
ment applications [21], and mobile object/asset track-
ing [11, 34, 7, 19, 25]. The fundamental problem in these
applications is trajectory mapping, where the goal is to

produce the most likely trajectory—a sequence of map
segments—traversed by the mobile device.

If each device could always use a GPS sensor, this
problem is straightforward because the majority of the
position samples would usually be accurate to within a
small number of meters. For applications that require po-
sitions to be monitored continuously, however, GPS has
some significant practical limitations. First, GPS chipsets
on today’s mobile devices consume a non-trivial amount
of energy, causing a significant reduction in battery life
(§2). Second, in many embedded tracking applications,
objects are packaged deep inside vehicles and do not
have a clear line-of-sight to GPS satellites e.g., anti-theft
systems on vehicles (often hidden under layers of metal),
systems that track couriered packages [11] and systems
like TrashTrack [34] for tracking waste and recycled ma-
terials. Most of these tracking applications also face en-
ergy and cost constraints. Third, antenna limitations on
commodity mobile devices cause poor GPS performance
in “urban canyons” and near high-rise buildings. Finally,
a large number of phones today simply do not have GPS
on them—85% of phones shipped in 2009, and projected
to be over 50% for the next five years [6]. The users of
these devices, a disproportionate number of whom are in
developing regions, are largely being left out of the many
new location-based applications.

This paper describes the design, implementation, and
experimental evaluation of CTrack, a system for map-
ping the trajectory of mobile devices without using GPS.
The noteworthy aspect of CTrack is that it uses much
less energy than current approaches, which use GPS,
WiFi localization [32, 8], or a combination of the two.
CTrack processes a stream of raw, highly inaccurate po-
sition samples from mobile devices obtained by finger-
printing cellular GSM base stations, and matches them
to segments on a known map in a way that achieves high
accuracy. The marginal energy cost of gathering a fin-
gerprint (a list of nearby GSM towers and their signal
strengths) is zero on mobile phones because the cellu-
lar radio is usually always on. CTrack optionally aug-
ments GSM fingerprints with data from one or more of a
phone’s accelerometer, compass, and gyro, all of which
consume tiny amounts of energy, using these sensor hints
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Figure 1: GSM Localization Errors. Raw location sam-
ples are in red and the true driving path is in black.

to identify the kind of movement and improve the accu-
racy of trajectory mapping.

GSM localization using, for example, the Placelab [8]
approach, leads to errors of 100–200 meters in dense ur-
ban areas, and as much as 1 km in some areas. Such er-
rors are too large for many applications, which require
results with sufficient accuracy to pinpoint a specific road
segment or route driven by a user. Figure 1 illustrates the
problem with existing GSM localization. The red points
are raw locations obtained from our implementation of
cellular positioning as used in Placelab [8]. The actual
roads traversed (ground truth) are shown in black. Di-
rectly reporting raw positions or matching locations to
the nearest segments in the road map would result in un-
acceptably low accuracy for the applications mentioned
at the beginning of this section.

CTrack makes it possible to use GSM fingerprints for
accurate trajectory mapping using two novel ideas. Like
previous approaches e.g. VTrack [32], CTrack matches a
sequence of GSM tower observations, rather than a sin-
gle point at a time, using constraints on the transitions a
moving vehicle can make between locations. However,
unlike VTrack, which first converts radio fingerprints to
(lat, lon) coordinates, CTrack matches cellular finger-
prints directly to a map without first converting them
into (lat, lon) coordinates, an insight critical to achiev-
ing high accuracy. Instead, CTrack uses a two-pass algo-
rithm. The first pass is a Hidden Markov Model (HMM)
that divides space into grid cells, and determines the most
likely sequence of traversed grid cells. The second pass
uses a different HMM to match the traversed grid cell
sequence to road segments.

The second idea in CTrack is to (optionally) fuse in-
formation from two low-energy phone sensors: the ac-
celerometer and a compass or gyroscope. CTrack uses
the compass/gyro to detect if the driving path took a turn,
and the accelerometer to determine if the user is stopped
or moving. These sensor hints can correct some common
systematic errors that arise in GSM localization.

We implemented CTrack on the Android smartphone
platform, and evaluated it on nearly 125 hours of real

drives (1,074 total miles) from 20 Android phones in the
Boston area. We find that:

1. CTrack is good at identifying the sequence of road
segments driven by a user, achieving 75% precision and
80% recall accuracy. This is significantly better than
state-of-the-art cellular fingerprinting approaches [8] ap-
plied to the same data, reducing the error of trajectory
matches by a factor of 2.5×.

2. Although CTrack identifies the exact segment of
travel incorrectly 25% of the time, trajectories produced
by CTrack are on average only 45 meters away from
the true trajectory. This implies that our system is useful
for applications like route visualization. In this respect,
CTrack is 3.5× better than map-matching raw cellular
fingerprints, which results in 156 meters median error.

3. CTrack has a significantly better energy-accuracy
trade-off than sub-sampling GPS data to save energy, re-
ducing energy cost by a factor of 2.5× for the same level
of accuracy.

2 WHY CELLULAR?
One of the key motivations for CTrack is that it uses sub-
stantially less energy than GPS. This is to be expected
from a theoretical standpoint because of the difference
in effective radiated power (ERP) for the two systems.
GPS satellites fly in an orbit 11,000 miles above the
earth, with a transmission power of 50 W, resulting in
2×10−11 mW/m2 at the receiver; in contrast, typical cel-
lular systems register an ERP of up to 10 mW/m2 [14].
This difference of 117 dB translates directly into energy
consumption at the receiver, as the difference must be
compensated by additional processing gain and amplifi-
cation. The ERP difference also explains why GPS sig-
nals cannot be acquired without relatively unobstructed
line-of-sight to orbiting satellites, and why they are more
sensitive to weather conditions than GSM signals.

2.1 Energy Measurements
We performed a simple experiment to quantify the en-
ergy consumption of each of the sensors of interest —
GPS, WiFi, GSM, the compass and the accelerometer on
an Android G1 phone. For each sensor, we wrote an An-
droid application to continuously sample the sensor at
some given frequency, as well as continuously query the
battery level indicator. We charged the phone to 100%,
configured the screen to turn off automatically when idle
(the default), and started the application. We used the An-
droid telephony API to retrieve nearby cell towers and
their associated signal strength values.

Figure 2 shows the reported battery life as a function
of time for four configurations: GPS sampled every sec-
ond, GPS sub-sampled every two minutes, WiFi scanned
every second, and the configuration used by CTrack —
scanning GSM cell towers every second, and the com-
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Figure 2: Energy Consumption: GPS vs WiFi vs CTrack
on an Android Phone.

pass and accelerometer at 20 Hz. CTrack results in a
saving of approximately 10× in battery life compared to
GPS every second over 6× compared to WiFi every sec-
ond. Also, although sub-sampling GPS ever 2 minutes
saves energy over continuously sampling it, we show
later that sub-sampling also hurts accuracy. The battery
drain curves look irregular because the G1 phone esti-
mates remaining battery life poorly – the same experi-
ment on a Nexus One (a later model) showed a similar
trend, but looked like a straight line for all sensors.

2.2 Other Energy Studies and Discussion
The numbers above are consistent many previous stud-
ies conducted on a range of phones. For example, we
found [32, 31] that continuously sampling GPS on
iPhone 3G and 4 resulted in 3–10 hours total battery life
(iPhone 3G has lower battery life, and screen brightness
varied in the different papers, resulting in different run
times even without GPS). Leaving the phone on (with
screen on) resulted in 10–18 hours of lifetime (this would
be higher if we could turn the phone’s screen off, but at
the time, non-jailbroken iPhones did not support back-
ground applications.)

In [23], the authors showed that Nokia N95 phones
use about 370 mW of power when GPS is left on, versus
60 mW when idling, and that continuous (once a second)
GPS sampling results in 9 hours of total battery life. Sev-
eral other papers [36, 16, 5, 9, 13] suggest similar num-
bers for N95 phones (battery life in the 7–11 hour range)
with regular GPS sampling. On a more recent AT&T Tilt
phone [18], the authors found that continuous GPS sam-
pling used 400 mW, a single GPS fix costs 1.4-5.7 J of
energy (depending on whether previous seen satellite in-
formation is cached or not) and a WiFi scan consumed
about 0.55 J of energy.

The energy cost of GPS is rooted in the need for pro-
cessing gain to acquire the positioning signals. As signal
quality degrades due to obstructions or weather condi-
tions, the energy cost of recovering the signal increases.
In contrast, because phones continuously track cell tow-

ers as a part of normal operation, the marginal energy
cost of CTrack is driven by CPU load. Processing a cell
tower signature might require at most 100,000 instruc-
tions, which costs 5 nJ on a current generation 1 GHz
Qualcomm Snapdragon processor.

In embedded (non-phone) applications that don’t need
the radio on, it is possible to track only the signal qual-
ity and cell ID portions of the GSM protocol. This re-
quires observing only the BCH slots of the GSM beacon
channel, which are 4.6 ms long and are transmitted once
per each 1.8 second cycle. A 10% GSM receiver duty
cycle should be adequate to track the strongest towers.
Assuming a GSM receiver uses 17 mA at 100% duty cy-
cle, this represents an additional power consumption of 5
mW (1.7 mA @ 2.7 V)amortized cost assuming 17 mA
cost for receiver circuitry [1, 30].

Accelerometers and compasses (magnetometers) also
have low overhead—for example ADXL 330 accelerom-
eters use about 0.6 mW when continuously sampling,
and at 10 Hz can be idle about 90% of the time, suggest-
ing a power overhead of around .06 mW for sampling the
accelerometer [2]. The MicroMag3 compass uses about
1.5 mW in continuous sampling, suggesting a power con-
sumption of .15 mW or less at 10 Hz [24].

In summary, the power consumption of cellular scan-
ning plus sensors on phones is less than 5 mW, and the
power consumption of sensors alone if cellular is free—
as is typical—is less than 1 mW, low enough that it does
not reduce the phone’s overall lifetime even when in
standby mode, when it consumes 20–30 mW of power.
In contrast, the best case for GPS is 75 mW in tracking
mode when a fix is already acquired, but in practice is
closer to 400 mW when including the energy to periodi-
cally re-acquire fixes, and is similar for WiFi scans every
second or two. The power differential is thus significant.

2.3 Embedded Low-Power Applications
CTrack can also be applied outside the smartphone con-
text to embedded low-power tagging applications. For
these applications, minimizing cost and battery require-
ments is essential. These applications benefit from using
GSM in place of GPS because of increased flexibility of
antenna placement for cellular systems, and resilience to
obstructed environments.

One such application is cold-chain management where
the focus is on monitoring the temperature of a pack-
age during its shipping. A low-power passive cellular re-
ceiver can be used to record cellular fingerprints during
transport. Upon arrival, CTrack can be run on the fin-
gerprints to compute the shipment’s trajectory and map
temperature readings on to it.

Another embedded application of CTrack is Trash-
Track [34, 7], where items of trash were tagged with
active tags that traced the items through the path along
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Figure 3: CTrack System Architecture.

the “disposal chain”. Because the tag will eventually be
destroyed, this system needs cellular communication ca-
pabilities; using the same technology for trajectory map-
ping consumes lower power, has lower cost, and is more
robust than adding a GPS receiver to the tag.

3 SYSTEM OVERVIEW

We now describe the design of CTrack. Figure 3 shows
the system architecture. It consists of two software com-
ponents, the CTrack Phone Library, and the CTrack Web
Service. The library collects, filters, and scans for GSM
and sensor data on the phones, and transmits it via any
available wireless network (3G, WiFi, etc.) to the web
service, which runs the trajectory mapping algorithm
on batches of sensor data to produce map-matched tra-
jectories. The mapping algorithm runs on the server to
avoid storing complete copies of map data on the mobile
device, and to provide a centralized database to which
phone or web applications can connect to view and an-
alyze matched tracks (e.g., for visualizing road traffic or
the path taken by a package or vehicle).

Phone Library: The phone library collects a list of GSM
towers and optionally, if accelerometer, compass, or gyro
are available on the phone, current sensor hints. These
sensor hints are binary values indicating if the phone
is moving and/or turning; Section 5 describes how we
extract sensor hints. The phone library also filters ac-
celerometer data to detect if the user is stationary or
walking (as in [27, 31]), for applications that want data
only from moving vehicles. The library may also be con-
figured to periodically collect GPS data for use in the
training phase of our algorithm from users who wish to
contribute.

Our implementation collects about 120 bytes/second

of raw ASCII data on average. This quantity varies be-
cause the number of cell towers visible varies with lo-
cation. We use simple gzip compression, which on our
test drives resulted in just 11 bytes/second of data to be
delivered. We batch this data and upload a batch every t
seconds. At 11 bytes/sec, with even small batches, using
a 3G uplink with an upload speed of 30 kBytes/s (typical
of most current 3G networks in the US) results in very
low 3G radio duty cycles—for example, setting t to 60
seconds results in the radio being awake only 0.03% of
the time, which consumes a negligible amount of addi-
tional power. Once-per-minute (t = 60) reporting is suf-
ficient for most applications we are concerned with, in-
cluding traffic reporting, package tracking, and vehicular
theft detection.

We chose not to run trajectory matching on the phone
because it results in a negligible space savings, while
consuming extra CPU overhead and energy. For low data
rates, the primary determinant of 3G or WiFi transmis-
sion energy is the transmitter duty cycle [4], making
batch reports a good idea. However, we do extract sen-
sor hints on the phone because the algorithms for hint
extraction are simple and add negligible CPU overhead,
while significantly reducing data rate. The raw data rate
from sampling the accelerometer/compass without com-
pression or hint extraction is about 1.3 MBytes/hour,
which means that an application collecting this data from
a user’s phone for two hours a day could easily rack up a
substantial bandwidth bill without on-phone filtering.

CTrack Web Service: The web service receives GSM
fingerprints and converts them into map-matched tra-
jectories using the trajectory mapping algorithm. These
matched trajectories are written into a database. Option-
ally, the user’s current segment can be sent directly back
to the phone. A detailed description of the trajectory
mapping algorithm is given in the next section.

4 TRAJECTORY MAPPING ALGORITHM

CTrack’s algorithm for map-matching a sequence of
GSM cell tower observations (“cellular fingerprints”)
differs from previous approaches in two key ways. First,
we do not convert cellular fingerprints into (lat, lon) co-
ordinates before matching them to segments. We find
that reducing a fingerprint to a single geographic loca-
tion loses a lot of information because a given cellular
fingerprint is often seen from multiple locations quite far
apart. This situation is unlike the WiFi map-matching in
VTrack [32], where this spread is small, and the approach
of converting to centroids worked well. Second, CTrack
optionally fuses sensor hints from the accelerometer and
the compass to improve matching accuracy. We show
that turn hints can help remove spurious turns and kinks
from GSM-mapped trajectories, and movement hints can
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help remove loops, a common problem with GSM local-
ization when a vehicle is stationary.

4.1 Algorithm Outline
The goal of the algorithm is to associate a sequence of
cellular fingerprints to a sequence of road segments on a
known map. Our algorithm takes as input:

1. A series of GSM fingerprints from the phone, one
per second in our implementation. In our paper, the
term GSM fingerprint refers to a set of observed IDs of
cell towers and their associated received signal strength
(RSSI) values. In our implementation, the Android OS
gives us the cell ID and the RSSI of up to 6 neighbor-
ing towers in addition to the associated cell tower. Each
RSSI value is an integer on a scale from 0 to 31 (higher
means higher signal-to-noise ratio).

2. If available, time series signals from accelerome-
ter, compass, and gyroscope sampled at 20 Hz or higher.
These are converted to “sensor hints” using on-phone
processing as explained below.

3. A known map database that contains the geogra-
phy of all road segments in the area of interest, such as
OpenStreetMaps [22], NAVTEQ, or TeleAtlas.

The output is the likely sequence of road segments tra-
versed, one for each time instant in the input.

Figure 4 shows the components of the algorithm.
Training builds a training database, which maps ground
truth locations from GPS to observed cell towers and
their RSSI values. Grid Sequencing uses a Hidden
Markov Model (HMM) to determine a sequence of spa-
tial grid cells corresponding to an input sequence of
GSM fingerprints. The output of grid sequencing is
smoothed, interpolated, and fed to Segment Matching,
which matches grid cells to a road map using a differ-
ent HMM.

Figure 5 illustrates our algorithm by example. The in-
put “raw points” in Figure 5(a) are shown only to illus-
trate the extent of noise in the input data. They are not ac-
tually used by CTrack. They are computed by using the
Placelab fingerprinting algorithm [8], where a cell tower

fingerprint is assigned a location equal to the centroid
of the closest k fingerprints in the training database (we
used k = 4).

Next, we describe each stage of the algorithm.

4.2 Training
We divide the geographic area of interest into uniform
square grid cells of fixed size gs. We associate with each
cell an ordered pair of positive integers (x,y), where
(0,0) represents the south-west corner of the area of in-
terest. We use gs = 125 meters, chosen to balance run-
ning time, which increases with smaller grid size, against
accuracy.

We train CTrack for the area of interest using software
on mobile phones that logs a timestamped sequence of
ground truth GPS locations and associated cell tower fin-
gerprints. For each grid G in the road map, our training
database stores FG, the set of distinct fingerprints seen
from G. Training can be done out-of-band using an ap-
proach similar to the Skyhook [29] fleet. Once the train-
ing database is built, it can be used to map-match or
track any drive, and needs to be updated relatively in-
frequently. We can also collect new training data in-band
from consenting participating phones that use the CTrack
web service whenever the user has enabled GPS.

4.3 Grid Sequencing
Grid sequencing uses a Hidden Markov Model (HMM)
to determine the sequence of grid cells corresponding
to a timestamped sequence of cellular fingerprints. An
HMM is a discrete-time Markov process with a set of
hidden states and observables. Each state emits an ob-
servable, whose likelihood is given by an emission score.
An HMM also permits transitions among its hidden
states at each time step. These transitions are governed
by a different set of likelihoods called transition scores.

In our (first) HMM, the hidden states are grid cells
and the observables are GSM fingerprints. The emission
score, E(G,F) captures the likelihood of observing fin-
gerprint F in cell G. The transition score, T (G1,G2), cap-
tures the likelihood of transitioning from cell G1 to G2 in
a single time step.

We first process the input GSM fingerprints using
the windowing technique described below. We then use
Viterbi decoding [35] to find the maximum likelihood
sequence of grid cells corresponding to the windowed
version of the input sequence. The maximum likelihood
sequence is defined to be the sequence that maximizes
the product of emission and transition scores.

We now describe the four parts of this HMM: window-
ing, hidden states, emission score, and transition score.
Windowing. Because it is common for a single cell
tower scan to miss some of the towers near the current
location, we group the fingerprints into windows rather
than use the raw fingerprints captured once per second.
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(a) Raw points before sequencing

(b) After Grid Sequencing

(c) After smoothing

(d) Final map-matched output

Figure 5: CTrack map-matching pipeline. Black lines are
ground truth and red points/lines are obtained from cel-
lular fingerprints.

We aggregate the fingerprints seen over Wscan seconds
of scanning. We chose Wscan = 5 seconds empirically:
the phone typically sees all nearby cell towers within 3
scans, which takes about 5 seconds. In our evaluation, we
show that windowing improves accuracy (Table 1).
Hidden States. The hidden states of our HMM are grid
cells. Given an observed fingerprint F , a grid cell G is a
candidate hidden state for F if there is at least one train-
ing fingerprint in G that has at least one cell tower in
common with F . Note that we might sometimes omit a
valid possible hidden state G if the training data for G is
sparse. To overcome this problem, we use a simple wire-
less propagation model to predict the set of cell towers
seen from cells that contain no training data. The model
computes the centroid and diameter of the set of all ge-
ographic locations from which each cell tower is seen in
the training data. The model draws a “virtual circle” with
this center and diameter and assumes that all cells in the
circle see the tower in question.
Emission Score. Our emission score E(F,G) is intended
to be proportional to the likelihood that a fingerprint F is
observed from grid cell G. A larger emission score means
that a cell is a more likely match for the observed finger-
print. Our emission score uses the following heuristic.
We find Fc, the closest fingerprint to F seen in training
data for G. “Closest” is defined to be the value of Fc that
maximizes a pairwise emission score EP(F,Fc). Our pair-
wise score is inspired by RADAR [3]. It captures both
the number of matching cell IDs, M, between two fin-
gerprints, and the Euclidean distance dR in between the
signal strength vectors of the matching towers:

EP(F1,F2) = Mλmatch +(dmax
R −dR(F1,F2)) (1)

where λmatch is a weighting parameter and dmax
R = 32 is

the maximum possible RSSI distance. A higher number
of matching towers, and a lower value of dR, both cor-
respond to a higher emission score. The maximum value
of the pairwise emission score is normalized (described
below) and assigned as the emission score for F .

As an example, consider the fingerprints {(ID=1,
RSSI=3), (ID=2, RSSI=5)} and {(ID=1, RSSI=6),
(ID=2, RSSI=4), (ID=3, RSSI=10)}. The distance be-

tween them would be 2λmatch + (32−
√

(3−6)2+(5−4)2

2 ).
The weighting parameter affects how much weight is
given to tower matches versus signal-strength matches:
we chose λmatch = 3.

We normalize all our emission scores to the range
(0,1) to ensure that they are in the same range as tran-
sition scores, which we discuss next.
Transition Score. Our transition score is given by:

T (G1,G2) =
{ 1

d(G1,G2) , G1 6= G2

1 , G1 = G2
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where d(G1,G2) is the Manhattan distance between grid
cells G1 and G2 represented as ordered pairs (x1,y1) and
(x2,y2). The transition score is based on the intuition
that, between successive time instants, the user either
stayed in the same cell or moved to an adjacent cell. It
is unlikely that jumps between non-adjacent cells occur,
but we permit them with a small probability to handle
gaps in input data.

Figure 5(b) shows the output of the grid sequencing
step for our running example. As we can see, sequenc-
ing removes a significant amount of noise from the input
data. In our evaluation, we demonstrate that the sequenc-
ing step is critical (Figure 11).

4.4 Smoothing and Interpolation
This component takes a grid sequence as input and con-
verts it into a sequence of (lat, lon) coordinates that are
then processed by the Segment Matching stage.
Smoothing filter. For each grid in the sequence, we cal-
culate the centroid of the training points seen from the
grid. The centroid has the following advantage: if there
is only one road segment in a grid (a frequent occurrence)
and the training points lie on it, so will the centroid.
Typically, centroids from grid sequencing have high fre-
quency noise in the form of back-and-forth transitions
between grids (Figure 5(b)). Hence, we apply a smooth-
ing low-pass filter with a sliding window of size Wsmooth
to the centroids calculated as described above. The fil-
ter computes and returns the centroid of centroids in
each window. This filter helps us to accurately deter-
mine the overall direction of movement and filter out the
high frequency noise. We chose the filter window size,
Wsmooth = 10, empirically.
Interpolation. Earlier, we windowed the input trace and
grouped cellular scans over a longer window of Wscan
seconds. As a result, the smoothing filter produces only
one point every Wscan seconds. We linearly interpolate
these points to obtain points sampled at a 1-second inter-
val, and pass them as input to the Segment Matching step
described in §4.5.

The reason for interpolation is that segment match-
ing produces a continuous trajectory where each seg-
ment is mapped to at least one input point. The mini-
mum frequency of input to the segment matcher is one
that ensures that even the smallest segment has at least
one point. The smallest segment in the OpenStreetMaps
and NAVTEQ maps is roughly 30 meters; so assuming a
maximum speed of 65 MPH = 105 km/h = 29 m/s, we
need about once-a-second sampling or higher to ensure
this condition. Higher speeds than that generally occur
on freeways where segments are usually longer than 30
meters.

Figure 5(c) shows the example drive after smoothing
and interpolation. This output is free of back-and-forth

transitions and correctly fixes the direction of travel at
each time instant. Our evaluation quantifies the benefit
of smoothing (Table 1).

4.5 Segment Matching
Segment Matching maps sequenced, smoothed grids
from the previous stages to road segments on a map. It
takes as input the sequence of points from the Smoothing
and Interpolation phase, and turn and movement hints
from the phone, to determine the most likely sequence
of segments traversed. We describe how movement and
turn hints are extracted in Section 5.

For segment matching, we use a version of the VTrack
algorithm [32] augmented to process sensor hints. This
step also uses an HMM. In this case, the states are the
set of possible triplets {S,HM,HT}, where S is a road
segment, HM ∈ {0,1} is the current movement hint, and
HT ∈ {0,1} is the current turn hint.

The emission score of a point (lat, lon,HM,HT ) from
a state (S,H ′

M,H ′
T ) is zero if HM 6= H ′

M or HT 6= H ′
T . Oth-

erwise, we make it Gaussian, with the form e−D2
, where

D is the distance of (lat, lon) from road segment S.
The transition score between two triplets {S1,H1

M,H1
T}

and {S2,H2
M,H2

T} is defined as follows. It is 0 if segments
S1 and S2 are not adjacent, disallowing a transition be-
tween them. This restriction ensures that the output of
matching is a continuous trajectory. For all other cases,
the base transition score is 1. We multiply this score
with a movement penalty, λmovement(0 < λmovement < 1),
if H1

M = H2
M = 0 and S1 6= S2, to penalize transitions

to a different road when the device is not moving. We
also multiply with a turn penalty, λturn(0 < λturn < 1) if
the transition represents a turn, but the sensor hints re-
port no turn. We used λmovement = 0.1 and λturn = 0.1.
Our algorithm is not very sensitive to these values, since
the penalties are multiplied together and a small enough
value suffices to correct incorrect turn/movement pat-
terns.

Similar to VTrack, the HMM also includes a speed
constraint that disallows transitions out of a segment if
sufficient time has not been spent on that segment. The
maximum permitted speed can be calibrated depending
on whether we are tracking a user on foot or in a vehicle.

The output of the segment matching stage is a set of
segments, one per fingerprint in the interpolated trace
(which, on average, is the same periodicity as the orig-
inal input). The output for the running example is shown
in Figure 5(d).

When running online as part of the CTrack web ser-
vice, the segment matcher takes turn hints and sequenced
grids as input in each iteration and returns the current
segment to an application querying the web service.
Running time. The run-time complexity of the entire
algorithm, including all stages, is O(mn), where m is
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Figure 6: Movement hint extraction from accelerometer.

the number of input fingerprints and n is the number of
search states (the larger of the number of grid cells and
road segments on the map). Our Java implementation on
a MacBook Pro with 2.33 GHz CPU and 3 GB RAM
map-matched an hour-long trace in approximately two
minutes, approximately 30 times faster than real time. It
is straightforward to reduce the run time by more aggres-
sively pruning the search space, but we have not found
the need to do so yet.

5 SENSOR HINT EXTRACTION

CTrack includes a sensor hint extraction layer that pro-
cesses raw phone accelerometer readings to infer infor-
mation about whether the phone being tracked is moving
or not, and processes orientation sensor readings from a
compass or a gyroscope to heuristically infer vehicular
turns. These hints are transmitted along with the GSM
fingerprint to the server for map matching.

Anomaly detection. Anomaly detection filters out pe-
riods when the user is lifting the phone, speaking on
the phone, texting, waving the phone about, or other-
wise using the phone. We want to use accelerometer and
compass/gyro data only in periods where we have high
confidence that the phone is more or less at rest rela-
tive to the moving object in which it is located (e.g., on
a flat surface or in a user’s pocket). We found empiri-
cally that when driving with the phone at rest in a ve-
hicle or in a pocket, the raw accelerometer magnitude
tends to be smaller than 14 ms−2. Hence, we look for
spikes in the raw accelerometer magnitude that exceed
a threshold of 14 ms−2. Whenever we encounter such a
spike, we ignore all accelerometer and compass data in
the map-matching algorithm until the phone comes back
to a state of rest (this can be detected using standard de-
viation of acceleration, as explained below). On more re-
cent phones such as the iPhone 4, the in-built gyroscope
gives the exact orientation of the phone which can be di-
rectly read to determine if the phone is on a flat surface/in
a user’s pocket.

Having filtered out anomalous periods, the hint extrac-
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Figure 7: Turn hint extraction from compass.

tion processes stable periods to extract movement and
turn hints, as explained below.

Movement Hints. Our algorithm uses accelerometer
data sampled at 20 Hz. We extract a simple “static”
or ”moving” (1-bit hint) rather than integrating the ac-
celerometer data to compute velocities or processing it
in a more complex way, because accelerometer data is
noisy and hard to integrate accurately without accumu-
lating drift. In contrast, it is easy to detect movement
with an accelerometer: within a stable (spike-free) pe-
riod, the accelerometer shows a significantly higher vari-
ance while moving than when stationary.

Accordingly, we compute a boolean (true/false) move-
ment hint for each time slot. We divide the data into one-
second slots and compute the standard deviation of the
3-axis magnitude of the acceleration in each slot. Di-
rectly thresholding standard deviation sometimes results
in spurious detections when the vehicle is static and the
signal exhibits a short-lived outlier. To fix this, we ap-
ply an EWMA filter to the standard deviation stream to
remove short-lived outliers. We then apply a threshold
σmovement , on the standard deviation to label each time
slot as “static” or ”moving”. We used a subset of our driv-
ing data across multiple phones as training (where we do
know ground truth from GPS), to learn the optimal value
of σmovement , which turned out to be approximately 0.15
ms−2 for one-second windows. Figure 6 illustrates our
movement hint extraction algorithm on example data.

Turn Hints. The orientation sensor of a smartphone
(compass/gyroscope) provides orientation about three
axes. We are interested in the axis that provides the rela-
tive rotation of the phone about an axis parallel to gravity
(called “yaw” on the iPhone 4).

Because the phone can be in any orientation to start
with in a handbag or pocket, we do not use the abso-
lute orientation in any of our algorithms. We have ob-
served that irrespective of how the phone is situated, a
true change in orientation manifests as a persistent, sig-
nificant, and steep change in the value of the orientation
sensor.

8



Figure 8: Coverage map of our driving data set.

With compass data, the main challenge is that the
orientation reported is noisy because metallic objects
nearby, or because the compass becomes uncalibrated.
We solved this problem by applying a median filter with
a three-second window on the raw orientation values,
which filtered out non-persistent noise with consider-
able success (a mean filter would also remove noise, but
would blur sharp transitions that we do want to observe).
We then find transitions with a magnitude exceeding at
least 20 degrees and slope exceeding a threshold, which
we fixed at 1.5 by experimentation.

Figure 7 illustrates a plot of the compass data with the
turn marked, and the processing steps required to gener-
ate a turn hint. We note that even after filtering, a true
change in orientation can sometimes be produced by the
phone sliding around within a pocket or a bag, or turning
for reasons other than the car actually turning.

6 EVALUATION

In this section, we show that the trajectory matches pro-
duced by CTrack are: (1) accurate enough to be use-
ful for various tracking and positioning applications, (2)
superior to sub-sampled GPS in terms of the accuracy-
energy tradeoff, and (3) significantly better than strate-
gies that reduce cellular fingerprints to point locations
before matching. We investigate how much each of the
four techniques used in CTrack —sequencing, window-
ing, smoothing, and sensor hints—contribute to the gains
in accuracy.

6.1 Method and Metrics
We evaluate CTrack on 126 hours of real driving data in
the Cambridge-Boston area, collected from 15 Android
G1 phones and one Nexus One phone over a period of
4 months. We configured our phone library for the An-
droid OS to continuously log the ground truth GPS loca-
tion and the cell tower fingerprint every second, and the
accelerometer and compass at 20 Hz. Our data set covers
3,747 road segments, amounts to 1,718 km of driving,
and 560 km of distinct road segments driven. The data
set includes sightings of 857 distinct cell towers. Fig-
ure 8 shows a coverage map of the distinct road segments
driven in our data set.

From 312 drives in all, we selected a subset of 53
drives verified manually to have high GPS accuracy as
test drives, amounting to 109 distinct km. We picked
a limited subset as test drives to ensure each test drive
was contained entirely within a small bounding box with
dense training coverage. This is because evaluating the
algorithm in areas of sparse coverage (which many of
the other 259 drives venture into) could bias results in
our favor by reducing the number of candidate paths to
map-match to. For each test drive, we perform leave-one-
out evaluation of the map-matching algorithm: we train
our algorithm on all 311 drives excluding the test drive,
and then map-match the test drive using CTrack. We do
this to ensure enough training data for each drive, and at
the same time to keep the evaluation fair.

We compare CTrack to two other strategies in terms of
energy and accuracy:

1. GPS k gets one GPS sample every k min-
utes (k = 2,4), interpolates, and map-matches it using
VTrack [32].

2. Placelab-VTrack computes the best static local-
ization estimate for each time instant using Placelab’s
technique [8], and matches the static estimates using
VTrack [32]. The VTrack paper shows that its HMM
does much better than just matching each point to the
nearest segment.

We use three metrics in our evaluation of accuracy:
precision, recall, and geographic error. Our precision
and recall are similar to conventional precision and re-
call, but take the order of matched segments in the trajec-
tory into account. We say that a subset of segments in a
trajectory T1 that also appears in trajectory T2 are aligned
if those segments appear in T1 in the same order in which
they appear in T2. Given a ground truth sequence of seg-
ments G and an output sequence X to evaluate (produced
by one of the algorithms), we run a dynamic program to
find the maximum length of aligned segments between G
and X . We define:

Precision =
Total length o f aligned segments

Total length o f X
(2)

Recall =
Total length o f aligned segments

Total length o f G
(3)

We estimated the ground truth sequencing of segments
by map-matching GPS data sampled every second with
VTrack [32], and manually fixing a few minor flaws in
the results.
Geographic Error. Precision and recall are relevant to
applications that care about obtaining information at a
segment-level, such as traffic monitoring. However, ap-
plications such as visualization do not need to know the
exact road segments traversed, but may want to identify
the broad contours of the route followed (e.g., mistaking
a road for a nearby parallel road may be acceptable).
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Figure 9: CDF of Precision: Comparison.

To quantify this notion, we compute a third metric, ge-
ographic error, which captures the spatial distance be-
tween the ground truth and the matched output. We com-
pute the maximum alignment between the ground truth
trajectory G and output trajectory X using dynamic pro-
gramming. This alignment matches each segment S of X
to either the same segment S on G (if CTrack matched
that segment correctly) or to a segment Swrong ∈ G (if
matched incorrectly). Define the segment geographic er-
ror to be the distance between S and Swrong for incor-
rect segments, and 0 for correctly matched segments. The
mean segment geographic error over all segments in X is
the overall geographic error.

6.2 Key Findings
The key findings of our evaluation are:

1. CTrack has 75% precision and 80% recall in both
the mean and median, and a median geographic error of
44.7 meters. We discuss what these numbers mean in the
context of real applications below.

2. CTrack has 2.5× better precision and 3.5× smaller
geographic error than Placelab+VTrack.

3. CTrack is equivalent in precision to map-matching
GPS sub-sampled every 2 minutes while consuming over
2.5× less energy. It also reduces error (1− precision) by
a factor of over 2× compared to sub-sampling GPS ev-
ery 4 minutes, consuming a similar amount of energy.
CTrack is 6× better than continuous WiFi sampling in
terms of battery lifetime on the Android platform.

4. The first step of CTrack, grid sequencing, is criti-
cal. Without sequencing, CTrack effectively reduces to
computing a (lat, lon) estimate from the best finger-
print match, ignoring all other data. The median preci-
sion without sequencing is only 50%. See Section 6.4
for more detail.

5. We can extract movement and turn hints from raw
sensor data with approximately 75% precision and re-
call. These hints improve accuracy by removing spurious
loops and turns in the output. Using hints improves pre-
cision by 6% and recall by 3%. See Section 6.5 for more
detail.
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Figure 10: CDF of Recall: Comparison.

6.3 Accuracy Results
Figure 9 shows a CDF of the map-matching precision
for CTrack, GPS k (for k = 2,4 minutes) and Place-
lab+VTrack. CTrack has a median precision of 75%,
much higher than the both the energy-equivalent strat-
egy of sub-sampling GPS every 4 minutes (48%), and
Placelab+VTrack (42%). In effect, CTrack has over 2×
lower error (1− precision) than sub-sampling GPS ev-
ery 4 minutes, and over 2.5× lower error than map-
matching cellular localization estimates output by the
Placelab method. Also, CTrack has equivalent precision
to map-matching GPS sub-sampled every two minutes,
while reducing energy consumption by approximately
2.5× compared to this approach (Figure 2).

Figure 10 shows a CDF of the recall. All the strate-
gies except GPS 4 min are equivalent in terms of re-
call. Sub-sampling GPS every four minutes has poor re-
call (median only 41%) because a four-minute sampling
interval misses significant turns in our input drives and
finds the wrong path. The fact that Placelab+VTrack has
identical recall shows that simple static cellular localiza-
tion does manage to recover a significant part of the in-
put drive. However, converting cellular fingerprints di-
rectly to points results in significant noise and long-lived
outliers, and hence produces a large number of incorrect
segments when map-matched directly (i.e., has low pre-
cision).

To understand what 75% precision might mean in
terms of a an actual application, we refer readers to
our work on VTrack [32], which studies the relation-
ship between map-matching accuracy and the accuracy
of two end-to-end applications: traffic delay monitor-
ing and traffic hot-spot detection. We found that a me-
dian precision of 85% was still useful for accurate traf-
fic delay estimation. Our results for cellular (75%) are
only somewhat worse, and while not directly compara-
ble, they suggest a significant portion of delay data from
CTrack would be useful.

For applications such as route visualization, or those
that aggregate statistics over paths (e.g., to compute his-
tograms over which of n possible routes is taken), or
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Figure 11: Precision with and without grid sequencing.

those that simply show a user’s location on a map, getting
most segments right with a low overall error is likely suf-
ficient. Our median geographic error is quite low—just
45 meters—suggesting CTrack would have sufficient ac-
curacy for such applications. In contrast, the median ge-
ographic error of the Placelab+VTrack approach is 156
meters, over 3.5× worse than CTrack.
Filtering using a confidence predictor. We investigated
whether a confidence metric could be used to filter out
drives on which CTrack does poorly, thereby trading-
off some recall for substantially better precision, which
would be useful for accuracy-sensitive applications. We
found two predictors, both weakly correlated with map-
matching accuracy: (a) the 90th percentile distance of
smoothed grids from the segments they are matched to,
and (b) the mean difference (over all points P) in emis-
sion score between the segment that P is matched to
in the output, and the segment closest to P. The intu-
ition is that a point far away from the road segment it is
matched to, or closer to a different road segment, implies
lower confidence in the match. When applying these con-
fidence filters to our output drives, we currently improve
the median precision from 75% to 86%, but lose sub-
stantially in terms of recall, whose median reduces from
80% to 35%). In future work, we plan to explore whether
boosting [12] can combine these weak confidence pre-
dictors into a stronger one.

6.4 Benefit of Sequencing
We elaborate on one of our key technical contributions:
the idea that the first pass of grid sequencing before con-
verting fingerprints to geographic locations is crucial to
achieving good matching accuracy. We provide experi-
mental evidence supporting this idea. We also show that
windowing and smoothing help improve matching accu-
racy, though to a lower degree.
Impact of Sequencing. Figure 11 is a CDF that com-
pares the precision of CTrack with and without the first
pass of grid sequencing. This figure shows that sequenc-
ing is critical to achieving reasonable accuracy: with-
out sequencing, the median precision drops from 75%
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Figure 12: Geographic spread of exact matches. The
dashed line shows the 80th percentile.

to 50%. The reason is that running CTrack without se-
quencing amounts to reducing each fingerprint to its best
match in the training database, ignoring the sequence of
points.

As mentioned earlier, reducing a fingerprint to a single
geographic location loses information because a given
cellular fingerprint is seen from multiple locations quite
far apart. Figure 12 illustrates the CDF of this geographic
spread. We selected 1000 fingerprints at random from our
training data. For each fingerprint F , we found all the
exact matches for F , i.e. fingerprints F ′ with the exact
same set of towers in the training data as F . We ordered
the matches by similarity in signal strength, most similar
first, and computed the geographic diameter of the top k
matches for each fingerprint (using k = 4).

The figure shows that over 20% of matching sets have
a diameter exceeding 150 meters, and at least 10% have
a diameter exceeding 400 meters. Recall that the meth-
ods in Placelab (and RADAR, if applied to cellular data)
would simply compute the centroid of the top k matches.
This approach does not work well for sets with a large
geographic spread, and motivates the need for the funda-
mentally different approach used in CTrack in which we
keep track of all possible likely locations, and then use a
continuity constraint to sequence these locations in two
steps.

Windowing and Smoothing. Table 1 shows the preci-
sion and recall of CTrack with and without windowing
and smoothing, two other heuristics used in CTrack. We
see that each of these features improves the precision by
approximately 10%, which is a noticeable quantity. The
recall does not improve because the algorithm without
windowing/smoothing is good enough to identify most
of the segments driven: the heuristics mainly help elimi-
nate loops in the output.

6.5 Do Sensor Hints Help?
Figure 13 illustrates by example how turn hints extracted
from the phone compass help in trajectory matching.
Without using turn hints (Figure 13(a)), our algorithm
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With Without
Prec. Recall Prec. Recall

Windowing 75.4% 80.3% 65.6% 82.3%
Smoothing 75.4% 80.3% 66.5% 82.5%

Table 1: Windowing and smoothing improve median tra-
jectory matching precision.

finds the overall path quite accurately but includes sev-
eral spurious turns and kinks, owing to errors in cellular
localization. After including turn hints in the HMM, the
false turns and kinks disappear (Figure 13(b)).

(a) Without turn hints (b) With turn hints

(c) Without movement hints (d) With movement hints

Figure 13: Sensor hints from the compass and accelerom-
eter aid map-matching. Red points show ground truth and
the black line is the matched trajectory.

In Figure 13(c), the driver stopped at a gas station to
refuel, which can be seen from the cluster of ground-truth
GPS points. Before using movement hints, errors from
cellular localization were spread out, causing the map-
matching to introduce a loop not present in the ground
truth (Figure 13(c)). After incorporating movement hints,
the speed constraint in our HMM eliminates this loop be-
cause it detects that the car would not have had sufficient
time to complete the loop (Figure 13(d)). We note a lim-
itation of the movement hint: this kind of stop detection
works because the phone was placed on the dashboard:
if it had been in the driver’s pocket during refueling, the
movement hints would not have helped had the driver
gotten out of the car and been moving about.

Figure 14 is a CDF that compares the precision of
CTrack with and without sensor hints (both movement
and turn). This figure shows that sensor hints improve
the median precision of matching by approximately 6%.
While this may not seem huge, there exist several trajec-
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tories for which the hints do help significantly, suggest-
ing that using them is a good idea when available. In our
experience, the main benefit of the hints is in eliminat-
ing the several “kinks” and spurious turns in the matched
trajectory, which our metrics don’t adequately capture.

We used the ground truth GPS to measure how accu-
rately our CTrack is able to extract individual movement
and turn hints. We found that the median precision and
recall of both motion and turn hint extraction exceeds
75%.

6.6 How Much Training?
To quantify the amount of training data essential
to achieving good trajectory mapping accuracy with
CTrack, we picked a pool of test drives at random,
amounting to 5% of our data set (8 hours of data), and
designated the remaining 95% as the training pool. We
picked subsets of the training pool of increasing size, i.e.
first using fewer drives for training, then using more. In
each run, the training subset was used to train CTrack
and then evaluated on the test pool. Figure 16 shows the
mean precision and recall of CTrack on the test pool as
a function of the number of drive hours of training data
used to train the system. The accuracy is poor for very
small training pools, as expected, but encouragingly, it
quickly increases as more training data is available. The
algorithm performs almost as accurately with 40 hours
of training data as with 120, suggesting that 40 hours of
training is sufficient for our data set.
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The 40-hour number, of course, is specific to the ge-
ographic area we covered in and around Boston, and to
the test pool. To gain more general insight, we measure
the drive count for each road segment in the test pool, de-
fined as the number of times the segment is traversed by
any drive in the training pool. Figure 17 shows the dis-
tribution of test segment drive counts corresponding to
40 hours of training data. While the mean drive count is
approximately 3, this does not mean each road segment
on the map needs to be driven thrice to achieve good ac-
curacy. As the graph shows, about 60% of the test seg-
ments were not traversed even once in the training pool,
but we can still map-match many of these segments cor-
rectly. The reason is that they lie in the same grid cell
as some nearby segment that was driven in the training
pool. This result promising because it suggests that train-
ing does not have to cover every road segment on the map
to achieve acceptable accuracy.

7 RELATED WORK

Placelab performed a comprehensive study of GSM lo-
calization and used a fingerprinting scheme for cellular
localization [8]. RADAR used a similar fingerprinting
heuristic for indoor WiFi localizations [3], and our map-
matching emission score is inspired by these methods.
However, neither Placelab nor RADAR address the prob-
lem of trajectory matching, and are concerned with the
accuracy of individual localization estimates, rather than

finding the optimal sequencing of estimates. As shown
by our results, this sequencing step is critical: applying a
map-matching algorithm directly to Placelab-style loca-
tion estimates results in significantly worse accuracy (by
a factor of over 2×) compared to CTrack.

Letchner et al. [17] and our previous work on
VTrack [32] use HMMs for map-matching. However,
these previous algorithms use and process (lat, lon) co-
ordinates as input and use a Gaussian noise model for
emissions, and are hence unsuitable and inaccurate for
map-matching cellular fingerprints, as shown by our re-
sults. Nor do they use sensor hints.

CompAcc [10] proposes to use smartphone compasses
and accelerometers to find the best match for a walking
trail by computing directional “path signatures” for these
trails. They do not use cell towers. However, from our
understanding, the paper uses absolute values of compass
readings. This approach did not work in our experiments,
because the absolute orientation of a phone can be quite
different depending on whether it is in a driver’s pocket,
on a flat surface, or held in a person’s hand. For this rea-
son, we chose to use boolean turn hints instead, which
are more robust and can be accurately computed regard-
less of changes in the phone’s initial orientation or posi-
tion. For extracting motion hints and detecting walking
and driving using the accelerometer, we use algorithms
similar to those in [27, 31, 26].

Some previous papers [9, 23, 16] have proposed
energy-efficient localization schemes that reduce re-
liance on continuously sampling GPS by using a more
energy-efficient sensor, such as the accelerometer, to
trigger sampling GPS. RAPS [23] also uses cell towers to
“blacklist” areas where GPS accuracy is low and hence
GPS should be switched off, to save energy. However,
none of these papers address trajectory matching or pro-
pose a GPS-free, accurate solution for map-matching.

Skyhook [29] and Navizon [20] are two commercial
providers for WiFi and Cellular localization, providing
databases and APIs that allow programmers to submit
WiFi access point(s) or cell tower(s) and look up the
nearest location. However, to the best of our knowl-
edge, they do not use any form of sequencing or map-
matching, and focus on providing the best static local-
ization estimate.

8 CONCLUSION

We described CTrack, an energy-efficient, GPS-free sys-
tem for trajectory mapping using cellular tower finger-
prints. The key lesson we learned was that sequencing
cellular fingerprints before matching them is critical to
achieving good accuracy. On smartphones, our CTrack
implementation uses close to zero extra energy while
achieving good mapping accuracy, making it a good way
to distribute collaborative trajectory-based applications
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like traffic monitoring to a huge number of users without
any associated energy consumption or battery drain con-
cerns. A GPS-free approach to trajectory matching also
opens up the possibility of providing more fine-grained
location services on the world’s most popular, cheapest
phones that do not have GPS, but that do have GSM con-
nectivity.
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