
Give in to Procrastination and Stop Prefetching

Lenin Ravindranath Sharad Agarwal Jitendra Padhye Christopher Riederer
Microsoft Research & M.I.T. Microsoft Research Microsoft Research Columbia University

Redmond, WA, USA Redmond, WA, USA Redmond, WA, USA New York, NY, USA
lenin@csail.mit.edu sagarwal@microsoft.com padhye@microsoft.com cjr2149@columbia.edu

Abstract – Generations of computer programmers are taught
to prefetch network objects in computer science classes. In prac-
tice, prefetching can be harmful to the user’s wallet when she is
on a limited or pay-per-byte cellular data plan. Many popular,
professionally-written smartphone apps today prefetch large amounts
of network data that the typical user may never use. We present
Procrastinator, which automatically decides when to fetch each net-
work object that an app requests. This decision is made based on
whether the user is on Wi-Fi or cellular, how many bytes are re-
maining on the user’s data plan, and whether the object is needed
at the present time. Procrastinator does not require developer effort,
nor app source code, nor OS changes – it modifies the app binary to
trap specific system calls and inject custom code. Our system can
achieve as little as no savings to 4X savings in bytes transferred,
depending on the user and the app. In theory, we can achieve 17X
savings, but we need to overcome additional technical challenges.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network Ar-
chitecture and Design — Network Communications

General Terms
Design, Measurement, Performance

1. INTRODUCTION
Many smartphone apps rely on network connectivity for

key app functionality. To mitigate the impact of cellular net-
work delays on app performance, app developers often re-
sort to prefetching. They download network content before
the user needs it - for example to populate images that are
off-screen. A typical example is shown in Figure 1. This
popular weather app downloads a large amount of data as
soon as the app is launched, including many images. While
some of the data is necessary to display current weather on
the “main” page of the app, many prefetched images are dis-
played only deep within the app. Our intuition, buttressed
by an informal user study (§4), suggests that many of these
prefetched images are rarely accessed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

Those users that scroll or click through an app to visit that
off-screen content will experience a more responsive app.
However, for those users that do not visit that off-screen con-
tent, the penalty is wasted network consumption. This waste
can harm two sets of users – (1) users that are always con-
scious about data consumption because they are on a pay-
as-you-go plan or limited data bytes plan; (2) users that start
their monthly cellular billing cycle with a large number of
bytes (e.g. 2GB), but eventually run low and want the re-
maining bytes to last them through the end of their cycle.

This problem cannot be solved by producing two versions
of an app – data-light and data-heavy versions – for two dif-
ferent sets of users. A data-rich user can sometimes become
data-poor, or vice-versa temporarily when the user connects
to Wi-Fi (we assume that most Wi-Fi connectivity is free or
significantly cheaper per byte) or starts running out of her
monthly cellular allotment. Alternatively, producing a sin-
gle adaptive app is difficult because it would have to manage
multiple network transfers that affect different parts of the
user interface. Worse, the user can be scrolling around in the
app while some network transfers are ongoing and connec-
tivity changes between cellular and Wi-Fi.

We have embarked on building a system to solve this prob-
lem. Our goal is to automatically delay prefetching of net-
work content when appropriate, to reduce data usage. The
system is (aptly) named Procrastinator. The “delaying” or
“procrastination” is done based on current network connec-
tivity (cellular or Wi-Fi), the status of the user’s cellular data
plan (such as plentiful or in danger of exceeding), where in
the app the user is (such as which parts of the UI are visible),
and impact on other functionality of the app beyond the UI
(such as playing music or vibrating the phone).

In designing Procrastinator, we strive for “immediate de-
ployability” – we do not require changes to the mobile OS,
nor runtime. We also attempt to achieve “zero effort” for
the app developer – we do not require her to write addi-
tional code, nor add code annotations. Procrastination is
done by automatically rewriting app binaries. We also strive
for “zero functionality impact” – beyond appearing as though
the network is occasionally slower, the user should not ex-
perience any other change in the functionality of the app, as
seen in our demo [3].

1

Figure 1: Screenshots of a popular weather app. The
first screen is visible immediately after app launch. The
second screen is visible only after two swipes.

We have implemented a preliminary version of Procras-
tinator for the Windows Phone 8 platform. There are two
key challenges in building Procrastinator. First, Procrastina-
tor must automatically identify asynchronous network calls
that are candidates for procrastination. This involves careful
static analysis of the app code (§3.1). Next, Procrastinator
must re-write the app code, so that at run time (§3.2), it can
decide (a) whether to procrastinate each candidate call, and
(b) when to execute a previously procrastinated call.

We evaluate our prototype using lab experiments and a
small study of 9 users with 6 popular Windows Phone apps.
Since Procrastinator does not need app source code, we use
third party app binaries. We find that even this simple pro-
totype can reduce app network usage by as much as a factor
of 4. Informal exit interviews with users suggest that none
of them experienced the loss or change of app functionality
beyond occasional slowdown in loading of images.

While we have built and evaluated our prototype, much
work remains to be done to build a robust practical system.
We describe these open issues in §5.

2. PROBLEM DEFINITION
We analyzed the binary code of a large set of Silverlight

apps in the Windows Phone app store to understand pro-
gramming patterns used by developers to prefetch content.
While diverse, the programming patterns used tend to fall
into three categories. A representative example of each cat-
egory is shown in Figure 2. Even though we analyzed .NET
byte code, for convenience, we show pseudo-code.

Before we describe these examples, we highlight two rel-
evant aspects of the Windows Phone programming frame-
work. First, the framework supports only asynchronous net-
work I/O. Second, images and text are displayed on the screen
by assigning them to special UI widgets.

In Pattern 1, the developer assigns an image to an image
widget that is not yet visible on the screen. One app that
uses this pattern is a news reader app. Each news story has
an associated image. The news stories are displayed as an
“infinitely scrolling” list. When the app is launched, only
the top three or four stories and images are visible to the user.
However, the app continues to fetch images that are “below

Pattern 1
void page_load() {
/* imageWidget not visible on the current screen */
imageWidget.Source = http.fetchImage(url); }

Pattern 2
void page_load() {
http.FetchData(url, callback); }

void callback(result) {
var cleanText = clean(result);
/* textWidget not visible on the current screen */
textWidget.Content = cleanText; }

Pattern 3
void mainpage_load() {
http.FetchData(url, callback); }

void callback(result) {
hurricaneWarnings = parseXML(result); }

/* called when user clicks to navigate to a new page */
void navigate_hurricaneWarningsPage() {

hurricaneWidget.Content = hurricaneWarnings; }

Figure 2: Common prefetching patterns in apps.

the fold” in anticipation of user scrolling down. Note that
the HTTP fetch call executes asynchronously and the image
is populated after the call successfully returns.

Programmers often explicitly account for these asynchronous
fetches, especially if additional processing is required before
displaying the fetched data. This is illustrated in Pattern 2.
The fetched text is “cleaned up”and then displayed by as-
signing it to a text widget box. The text widget box may not
yet be visible on the screen, but once the user scrolls down
to it, it will have the text ready for viewing.

Pattern 3 is similar to Pattern 2, but the assignment to the
UI widget is delayed even further. This pattern is used in a
weather app. At launch, the app fetches data about hurricane
warnings, which it stores in a global variable. The data is
used only if the user navigates to a specific tab (or a “page”)
within the app that displays hurricane warnings.

Our goal is a system that detects such patterns, and delays
network calls until the object in question is actually needed.
We can achieve this by automatically rewriting app code.
For example, in Pattern 1, we can insert code such that the
network call is made only when the image widget is visible.

3. SYSTEM DESIGN
Figure 3 shows an overview of Procrastinator. It has two

main components: the Instrumenter and the Procrastinator
Runtime. The Instrumenter can take any app binary and pro-
duce a procrastinated version. It statically analyzes the app
to look for prefetching patterns and finds candidates for pro-
crastination. It then rewrites the associated binary code and
incorporates the Procrastinator Runtime into the app code.

When the app is run, the Procrastinator Runtime dynam-
ically checks the state of the network, tracks the UI, and
delays those network calls whose results are not immedi-
ately needed by the UI. These procrastinated network calls
are then fetched on demand when the user navigates to those
portions of the UI. It delays calls only when the user is on
cellular and low on data bytes.

Since the Instrumenter does not require developer support

2

Instrumenter

App

App
With Procrastinator

App Runtime

Procrastinator
Runtime

Network Requests

Figure 3: Procrastinator design overview.

nor app source code, it can be run as part of the app store,
the OS platform or as a third-party service.

3.1 Instrumenter
The Instrumenter statically analyzes each network call in

the app, to identify network calls that can be procrastinated.
It rewrites these calls to make them go through the Procras-
tinator Runtime as shown in Figure 4. We later describe how
the runtime handles these calls, but first we describe why the
instrumentation process itself is non-trivial.

For network requests that directly update UI widgets, in
addition to passing the parameters of the network call (such
as the URL), the rewritten call also passes along references
to corresponding UI widgets set by the response. Instru-
menting Pattern 1 is relatively straightforward, since only
a single UI widget is updated by the network call, and the
updated widget is evident in the code.

Instrumenting Pattern 2 is more challenging. First, stati-
cally identifying the UI widgets that are updated is not triv-
ial. In the example shown, the callback method itself updates
the UI widget. However, the callback method could call
other methods (perhaps asynchronously!) and the updated
UI widgets may lie deep in this call tree. To address this
problem, we statically construct a conservative call graph
(one that includes all possible code paths) that is rooted in
the callback method, and analyze all code in it to discover
all UI widgets being updated. Second, the callback method
or any code in its call graph may have side effects besides up-
dating the UI. For example, one of the methods may vibrate
the phone or store a current timestamp in a global variable.
We analyze all code in the call graph to ensure that it has no
side effects. If any code in the call tree has any side effects,
the Instrumenter conservatively decides that the call cannot
be procrastinated, and the code is not modified.

Procrastinating code like Pattern 3 is challenging as well.
Here, the result of the network request is stored in memory
and used later. This is may be done to prefetch data for wid-
gets that have not yet been instantiated. As in the previous
pattern, we analyze the call graph of the callback and con-
sider it for procrastination only if the there are no side effects
other than updating a few global variables. We identify these
global variables and instrument both the network request and
access to the global variables as shown in Figure 4.

Pattern 1:
void page_load() {
/* imageWidget not visible on the current screen */
CheckProcrastinate(imageWidget, url); }

Pattern 2:
void page_load() {
CheckProcrastinate(url, callback, textWidget); }

void callback(result) {
var cleanText = clean(result);
/* textWidget not visible on the current screen */
textWidget.Content = cleanText; }

Pattern 3:
void mainpage_load() {

/* 2 is a unique id that identifies
the network request */
Procrastinate(url, callback, 2); }

void callback(result) {
hurricaneWarnings = parseXML(result); }

/* called when user clicks to navigate to a new page */
void navigate_hurricaneWarningsPage() {

/* 2 identifies the network request to fetch */
FetchProcrastinated(2);
/* waits until the network call is complete */
wait();
hurricaneWidget.Content = hurricaneWarnings; }

Figure 4: Rewriting code to add Procrastination.

3.2 Procrastinator Runtime
The Procrastinator Runtime simply executes the given net-

work calls when the user is on Wi-Fi or when there is no
cellular data plan pressure. When the phone is on cellular
and there is data plan pressure, it delays network calls and
executes them when needed. Our runtime uses our Windows
Phone 8 Data Sense feature, which tracks overall data con-
sumption against the user’s data plan, to determine when the
phone is running out of cellular data bytes [1].

For the first two patterns of procrastination shown in Fig-
ure 4, the runtime monitors those UI widgets that are at-
tached to the request. If none of them are visible during the
request, it delays the network call and adds it to the list of
procrastinated requests.

All procrastinated requests are reevaluated every time the
UI changes. We rewrite the app to add event handlers to
UI manipulation events and UI update events to detect UI
changes. When the UI changes, the runtime traverses each
of the procrastinated requests and checks if any of the UI
widgets associated with the request is visible. If any are vis-
ible, it makes the network call and removes it from the list.

For the third pattern in Figure 4, the runtime delays the
network call by default during the request and adds it to a
list with the unique id passed with the request as the key.
The call is delayed until one of the global variables modified
by the callback is accessed. We intercept all accesses to the
identified global variables and pass the same unique id to
inform the Procrastinator Runtime to fetch the request before
the global variable is first accessed. Access to the variable is
blocked until the procrastinated network call completes.

4. EVALUATION
To test the effectiveness of Procrastinator, we pick 6 apps

from the top 50 in the marketplace, listed in Table 1. We are
not allowed to publicly disclose the identities of the apps.

3

app functionality action
App1 cooking recipes read top daily recipe
App2 movie times see details of top movie
App3 movie times see details of top movie
App4 news aggregator read top news story
App5 news paper read top news story
App6 weather reports see current weather and forecast

Table 1: The 6 popular Windows Phone 8 apps we eval-
uate and the action we perform in each run of the app
in lab experiments. Each app is authored by the relevant
company (e.g. Facebook by Facebook).

Using controlled lab experiments and a small scale user study,
we demonstrate how Procrastinator can reduce data usage in
these apps. In our evaluation, we use Procrastinator only
on prefetching code that uses Pattern 1 (Figure 2). Patterns
2 and 3 often process non-media network objects in com-
plex ways before displaying them to the user. Our current
implementation is not yet robust enough to handle all such
scenarios. We believe that focusing on images in Pattern 1
should get us the bulk of the savings with less complexity
and risk of unintentionally altering app behavior.

4.1 Lab experiments
We installed the 6 original apps from Table 1, as well as

their procrastinated versions on a Nokia Lumia 920 phone.
The procrastinated apps have different app IDs and hence are
completely isolated from their original version – they do not
share any state, storage, or web caches. The phone had only
Wi-Fi connectivity. All of the phone’s traffic was intercepted
by a server running the Fiddler [2] proxy.

We ran both versions of each app, performing the action
listed in Figure 1, and captured traces of network activity
from the Fiddler proxy. We ensured that there was no back-
ground activity from other apps and OS features. Normally,
Procrastinator would not procrastinate network calls if the
user is connected to Wi-Fi. For the purposes of our evalua-
tion, we turned off this feature.

We manually inspected the Fiddler traces and compared
the content that was fetched to what was displayed on the
screen. We then classified each web object that was fetched
by the original app into one of three buckets. A web object
is considered “necessary” if the contents were used to show
something to the user on the main screen of the app or any of
the subsequent screens when performing the action listed in
Table 1. In cases where we cannot deduce whether the con-
tent of web objects are used in the screen (typically when
we cannot decipher the contents), we conservatively assume
them to be “necessary”. If a web object is not necessary,
then it is either “skipped” or “prefetched” – if the Procras-
tinated version of the same app does not download this ob-
ject, then it is “skipped”, otherwise it is “prefetched”. This
classification is not subjective. Apart from verifying what
appeared on the screen, we also carefully looked through the
app’s binary source code to determine whether the object
was needed to render the page that the user saw.

The results are summarized in Figure 5. For all tested

314 KB 165 KB 620 KB 2193 KB 262 KB 906 KB

0%

20%

40%

60%

80%

100%

App1 App2 App3 App4 App5 App6

b
y

te
s

d
o

w
n

lo
ad

ed

skipped

prefetched

necessary

Figure 5: Bytes consumed when running each of the 6
original apps, and their Procrastinated versions.

object type bytes
ad xml 6,226
weather js 6,096
alerts xml 54
weather detail js 6,562
forecast xml 3,466
weather js 880
weather js 640
weather detail js 5,622
sun rise/set js 43
storm info xml 572
weather detail js 458
ad text 6,700
ad js 223
ad oml 6,546
ad gif 8,493
ad gif 1,097
ad gif 43

object type bytes
video list xml 302,940
photo list js 107,463
photo status js 84
regional weather xml 26,778
photo list js 11,616
national forecast xml 4,614
national forecast xml 12,065
tropical forecast xml 2,837
weather news xml 96,810
radar map† png 280,933
video screenshot† jpeg 9,965
video screenshot† jpeg 11,192
video screenshot† jpeg 2,817
video screenshot† jpeg 3,681

Table 2: Breakdown of 31 objects fetched by a single run
of the unmodified App6. We manually classify the left
17 items as “necessary” objects, and the right 14 items
as “prefetched” objects. The objects marked with † are
those that Procrastinator did not fetch. The bytes ex-
clude TCP/IP and HTTP headers.

apps, the non-necessary content dominates the number of
bytes downloaded. For example, the original App6 down-
loads 31 web objects, for a total of 906 KB. Our inspec-
tion shows that that 52 KB of those were necessary. We
briefly describe these objects in Table 2. Of the remain-
ing 853 KB that the original app downloaded, Procrastinator
correctly identified 301 KB of images as not necessary and
did not download them. However, there was an additional
552 KB of non-image content that our current implementa-
tion of Procrastinator does not identify as wasted and allows
the app to download them immediately. Hence in this situa-
tion, Procrastinator saved 33% of the total bytes, but ideally
could have saved as much as 94% of the 906 KB total.

To understand what objects Procrastinator is skipping, we
present screenshots of the original App6 in Figure 6. The left
picture is the first screen presented to the user. The current
weather and the forecast is shown, along with some icons
and occasionally ads will be shown to the user on the top of
the screen. If the user swipes to the right, she is shown the
middle picture, which has a large radar map. If user swipes
again to the right, a list of four weather videos is presented
with images for each of the videos. If the user remains on
the first screen and then quits the app, then the radar map
and the video images are all wasted downloads. Procrasti-
nator is able to correctly identify those as wasted because

4

Figure 6: Screenshots of App6.

the screen coordinates for those images are off-screen, and
hence does not download those 5 objects listed at the bottom
right of Table 2. The app also downloads some large XML
files that describe photos that users have taken of weather
phenomenon across the US and detailed weather news for
other parts of the US. These are shown to the user if the
user swipes three times over to the right and clicks on a
menu item. Our current implementation of Procrastinator
only handles image procrastination, and hence does not han-
dle this situation.

Other apps are similar. App1 downloads 40 objects. Many
of these objects are small, and contain text descriptions of
recipes. The largest objects are photos of recipes, which
Procrastinator automatically targets. App3 downloads 110
web objects (wow!), most of which are small XML blobs
describing each movie, review details, news and user com-
ments. Approximately 700 KB of images are downloaded,
and Procrastinator targets those. App4 downloads news ar-
ticles and news images, of which the latter is targeted by
Procrastinator. App5 downloads relatively few objects, but
does prefetch images, all of which Procrastinator correctly
procrastinates.

4.2 User trial
Our lab experiments show that Procrastinator can substan-

tially reduce data consumption. However, the savings expe-
rienced by real users in the wild will depend on multiple
factors including network conditions, specific user interac-
tions, and app caching. We also did not evaluate in the lab
the additional delay experienced by the user when a procras-
tinated object has to be fetched, such as in the weather app,
if the user swipes to see the radar image. To evaluate these
aspects, we deployed the procrastinated versions of these 6
apps to 9 colleagues for 6 weeks. We asked the users to use
any of these apps that they like as normally as they would if
they discovered it in the app marketplace.

All 9 users had unlimited data on their cellular plans. Since
the phones are never in danger of exceeding their data lim-
its, the procrastinated apps always fetch all web requests by
the apps. However, we also record in a log file when each
web request is made, whether it would have been procras-
tinated, when the transfer finishes, how many bytes it con-
sumed, and when it is displayed to the user (if at all). These

0

50

100

150

200

App1 App2 App3 App4 App5 App6

to
ta

l
#

 o
f

ru
n

s

Figure 7: Total number of user sessions per app.

0

100

200

300

400

App1 App2 App3 App4 App5 App6

K
B

fetched delayed skipped

Figure 8: Average KB fetched and saved per session, with
25th and 75th percentiles, across all sessions.

logs are transferred in the background, when over Wi-Fi, to
an Azure database in the cloud. In this way, we can calculate
the number of bytes that were fetched, skipped, and delayed.

Figure 7 shows the number of app launches across all
users for each app. Apparently our users check the weather
more frequently than they cook with a new recipe. Figure 8
shows the number of bytes spent on average per user session
of each app. The bytes are split into three categories. The
“fetched” bytes are those that the app requested where either
the object was not an image, or was an image that Procras-
tinator detected was visible to the user. The “skipped” bytes
are for those images that the app fetched, but Procrastinator
would have skipped if the user was low on their data plan,
and were never shown to the user. The “delayed” bytes are
for those images that the app fetched, Procrastinator would
have skipped, but then would have to fetch because the user
was later shown that image.

We see that in the case of App6, Procrastinator reduces
the number of bytes by over 4X on average. In the other
extreme, for App2, Procrastinator almost never saves any
bytes, perhaps because users scroll through all available movies
before leaving the app. We also note that for some apps, such
as App3 (which shows the user more photos of each movie),
there is huge variance in the number of bytes saved.

We contrast this with Figure 9, where we observe that for
App6, a small number of objects are skipped, but those ob-
jects contribute a lot to the number of bytes. This matches
our original intuition of images consuming a lot of bytes, and
hence our current focus on procrastinating those objects. In
contrast, App3 has a lot of small images (stills from movies),
and procrastinating many of those small images adds up.

In some cases, the user would incur no delay in using a
procrastinated app because she does not scroll to a part of the
app where a previously skipped image is shown. For other

5

0

10

20

30

40

App1 App2 App3 App4 App5 App6

#
 o

f
w

eb
 o

b
je

ct
s

fetched delayed skipped

Figure 9: Average number of web objects fetched per ses-
sion, with 25th and 75th percentiles, across all sessions.

0

200

400

600

800

1000

1200

App1 App2 App3 App4 App5 App6

ad
d

it
io

n
al

 m
s

fo
r

"d
el

ay
ed

"
o

b
je

ct
s

Figure 10: Average additional delay incurred per de-
layed image, with 25th and 75th percentiles, across those
images incorrectly procrastinated in user trial.

cases where the user is shown a skipped image, we calculate
the delay that she incurs. This is the smaller value of either
the download time for that image, or the difference between
when the app originally requests the image and when Pro-
crastinator detects the image is visible. Figure 10 shows this
additional delay for only those images that were “delayed”
in the previous figures. We find that the additional delay is
under 1 second, and typically below 500ms. We believe this
is small enough that users will only occasionally notice it,
and when the user is running low on their cellular data plan,
will be willing to tolerate for the cost savings.

While our set of users is small and may not necessarily
be representative of typical users, our findings are at least
indicative of the potential savings that users can get from
Procrastinator. Today, we can achieve as much as 4X savings
for a particular app, to as little as no savings for another app.
If we go beyond images to also Procrastinating other web
objects, the potential there can be as much as 17X savings.

5. FUTURE WORK
Programming Support: A major limitation of auto-
matic procrastination as we describe in § 3 is that we are
forced to be highly conservative. A network request can
be procrastinated only if the entire call graph rooted in its
callback method is side-effect free in all possible execution
paths, except for updating UI widgets or a few global vari-
ables. Hence, we are unable to procrastinate many network
calls, and hence our focus on images in our evaluation. If
app developers cooperate, they could structure their code to
allow for more procrastination. To this end, we are consid-
ering building a Visual Studio plugin which monitors app
code during compile time, and identifies whether each net-

work call is procrastinatable. If necessary, it points to the
appropriate portion of the code that has side-effects that are
preventing procrastination for each network call. The app
developer can then re-factor the code.
Balancing speed and cost: The user experiences a de-
lay when a procrastinated network object has to be fetched,
such as in the weather app, if the user swipes to see the
radar image. One way to minimize this delay is to predict
which objects the user may view, and not procrastinate those
prefetches. For each app, the procrastinator runtime could
keep a log of which procrastinated network objects had to
be eventually fetched, and use this log to “learn” individual
user behavior, and then adapt.

6. RELATED WORK
Prefetching is a well-studied problem in many areas of

computer systems. We focus only on recent work on prefetch-
ing and code analysis of mobile apps. In [8], the authors
propose an API that allows the developer to intelligently
prefetch app contents. Our system does not require devel-
opers to use new APIs. Moreover, when data is plentiful,
we ensure that the user gets the best possible performance –
something that all app developers naturally strive for.

Several researchers have focused on modifying mobile
apps to improve performance and reduce battery consump-
tion [4, 5, 7]. Reduction in battery consumption may be a
side benefit of Procrastinator, but our primary goal is to re-
duce data consumption.

Researchers have also looked at automatic static and dy-
namic analysis of call graphs and data flows in mobile apps
for various purposes. A well known system is TaintDroid [6],
which dynamically monitors the data flow of apps to find
privacy leaks. A recently proposed system called ADEL [9]
finds energy leaks in mobile apps by dynamically monitor-
ing the data flow in the app. ADEL identifies network calls
that are not useful and reports them as energy leaks. In com-
parison, Procrastinator not only identifies these calls but also
automatically delays them to reduce data consumption.

7. SUMMARY
As more cellular operators transition from unlimited data

plans to tiered plans, more users will find themselves need-
ing to conserve cellular data consumption. However, many
smartphone apps are designed to prefetch network content,
in an effort to improve user-perceived latency. Thus, we de-
signed Procrastinator to automatically decide for each net-
work transfer whether it should continue to be prefetched or
delayed, based on current need and network cost. This sig-
nificantly reduces the burden on the app developer, and can
significantly reduce the cost for the user. On professionally
written apps, our current prototype can achieve as much as
4X savings in bytes transferred, with minimal cost to perfor-
mance when the user visits non-prefetched content.

6

8. REFERENCES
[1] Data Sense. http://msdn.microsoft.com/

en-us/library/windowsphone/develop/
jj207005(v=vs.105).aspx.

[2] Fiddler. http://fiddler2.com/.
[3] Procrastinator demo video.

http://research.microsoft.com/apps/
video/default.aspx?id=202479.

[4] B. Chun, S. Ihm, P. Maniatas, and M. Naik.
CloneCloud: Boosting Mobile Device Applications
Through Cloud Clone Execution. In Eurosys, 2011.

[5] E. Cuervo and et. al. MAUI: making smartphones last
longer with code offload. In MobiSys, 2010.

[6] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In OSDI, 2010.

[7] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao,
and X. Chen. Comet: Code offload by migrating
execution transparently. In OSDI, 2012.

[8] B. D. Higgins, J. Flinn, T. Giuli, B. Noble, C. Peplin,
and D. Watson. Informed mobile prefetching. In
Mobisys, 2012.

[9] L. Zhang, M. Gordon, R. Dick, Z. M. Mao, P. Dinda,
and L. Yang. Adel: An automatic detector of energy
leaks for smartphone applications. In CODES+ISSS,
2012.

7

http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207005(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207005(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207005(v=vs.105).aspx
http://fiddler2.com/
http://research.microsoft.com/apps/video/default.aspx?id=202479
http://research.microsoft.com/apps/video/default.aspx?id=202479

	Introduction
	Problem definition
	System design
	Instrumenter
	Procrastinator Runtime

	Evaluation
	Lab experiments
	User trial

	Future work
	Related work
	Summary
	References

