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Abstract— Developers deploying web applications in the
cloud often need to determine how changes to service tiers
or runtime load may affect user-perceived page load time.
We devise and evaluate a systematic methodology for ex-
ploring such “what-if” questions when a web application
is deployed. Given a website, a web request, and “what-
if” scenario, with a hypothetical configuration and runtime
conditions, our methodology, embedded in a system called
WebPerf, can estimate a distribution of cloud latency of the
request under the “what-if” scenario. In achieving this goal,
WebPerf makes three contributions: (1) automated instru-
mentation of websites written in an increasingly popular task
asynchronous paradigm, to capture causal dependencies of
various computation and asynchronous I/O calls; (2) an al-
gorithm to use the call dependencies, together with online-
and offline-profiled models of various I/O calls to estimate a
distribution of end-to-end latency of the request; and (3) an
algorithm to find the optimal measurements to take within a
limited time to minimize modeling errors. We have imple-
mented WebPerf for Microsoft Azure. In experiments with
six real websites and six scenarios, the WebPerf’s median
estimation error is within 7% in all experiments.

CCS Concepts
•Networks → Network performance analysis; •Software
and its engineering→ Application specific development en-
vironments;
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1. INTRODUCTION
Many popular web applications have complex cloud ar-

chitectures, with multiple tiers and inter-related compo-
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nents such as compute VMs, SQL and NoSQL storage, file
systems, communication queues, third party services, geo-
replicated resources, load balancers, etc. It is not uncom-
mon for popular web applications to include tens of different
types of off-the-shelf cloud resources [21, 43]. For example,
airbnb.com, alibaba.com, and netflix.com use
six different types of storage components [43].

Cloud providers such as Microsoft Azure and Amazon
Web Services offer developers a large number of configu-
ration choices in terms of alternative resource tiers, flexible
geolocation, redundancy, etc. The choices come at varying
cost and performance. Microsoft Azure offers 10 tiers of
Web Servers (in June 2016), with the highest tier up to sev-
eral orders of magnitude faster, but two orders of magnitude
costlier, than the lowest tier (Table 1) for a website and vari-
ous workloads we evaluate in §6.

While the choices give developers flexibility, choosing a
configuration that optimizes cost and performance is chal-
lenging for various reasons (§2). Developers must carefully
evaluate the application’s performance under various config-
urations. They could try to do this based on cloud provider’s
SLAs, but these are often qualitative and insufficient to pre-
dict quantitative performance. Even if quantitative perfor-
mance of a specific cloud resource under a configuration
were available, they may need to translate that to end-to-end
latency, which would require them to understand application
logic and underlying concurrency. Developers could also try
using data-driven techniques that rely on the application’s
historical performance on various configurations [10, 42];
but these can be slow and expensive, and are not suitable for
first-time deployment.

In this paper, we address this challenge through the de-
sign, implementation, and evaluation of WebPerf, a tool that
estimates the distribution of cloud-side latency of a web re-
quest under hypothetical changes (called what-if scenarios)
to the cloud-side configuration of a web application. By re-
peatedly trying several what-if scenarios, a developer can
quickly determine the best resource tier configuration that
fits her budget.

The key idea behind WebPerf is to combine data-driven,
offline latency models of various cloud APIs with applica-
tion logic abstracted as causal dependency (i.e., execution
order) of various compute and I/O calls to compute the total
cloud latency of a given request. This idea is motivated by



two key insights. First, causal dependencies of compute and
I/O calls for a request remain relatively stable for the large
class of what-if scenarios that WebPerf supports. Thus, it is
possible to determine the dependencies once, and to reuse
it for repeated what-if evaluations. Second, latencies of I/O
calls to many cloud resources can be reliably modeled as
functions of workload parameters such as storage table size
and configuration parameters such as geolocation and re-
source tier, but independent of application logic. Therefore,
WebPerf can build application-independent models of vari-
ous cloud APIs offline, as a function of workload and con-
figuration parameters, and use these models during what-if
estimation.

Implementing the above idea for cloud-based web appli-
cations raises several challenges, which we address. First,
while prior work has explored techniques to track causal
dependencies in asynchronous applications [32, 33], mod-
ern web applications are written using task asynchronous
paradigm [2] that prior work has not considered. We develop
techniques to track causalities in such applications.

Second, predicting overall cloud latency by combining
causal dependencies with latency models of cloud APIs is
challenging for various reasons. Dependencies among com-
pute and I/O calls in real applications can be complex. More-
over, latency models of cloud APIs are best represented as a
distribution rather than as fixed values, and hence the predic-
tion algorithm needs to combine the distributions. WebPerf
uses a novel algorithm that hierarchically convolves these
distributions, in a manner guided by the causal dependence.
Finally, there are many other practical considerations that are
needed for accurate prediction. A request may have nonde-
terministic causal dependency (e.g., due to CDN hit or miss).
Cloud resources can impose concurrency limits and hence
introduce queueing delays. Latencies of some data-centric
APIs (e.g., to a SQL database) may depend on application
and workload properties. WebPerf’s prediction algorithm
uses several techniques to handle such cases.

While WebPerf’s primary goal is to predict an applica-
tion’s cloud-side latency, its prediction can be combined
with network latency and client-side latency (predicted by
existing tools such as WebProphet [25]) to produce an end-
to-end predicted latency distribution. WebPerf proposes a
Monte Carlo simulation-based algorithm to achieve this.

Finally, WebPerf must be fast so that a developer can
quickly explore various what-if scenarios. Given a what-
if scenario, WebPerf needs to build latency models for all
computation and I/O calls in the application to reason about
its baseline performance. To operate within a fixed measure-
ment time limit, WebPerf formulates the measurement prob-
lem as an integer programming problem that decides how
many measurements of various requests should be taken to
optimize total modeling error (the process is similar to op-
timal experiments design [31, 44]). Our experiments show
this can minimize modeling errors by 5× on average.

We have implemented WebPerf for Microsoft Azure and
evaluated it on six websites and six what-if scenarios.
WebPerf’s median estimation error was within < 7% in all
cases.

2. BACKGROUND AND MOTIVATION
Platform as a Service (PaaS) cloud providers such as

Amazon AWS and Microsoft Azure let developers rapidly
build, deploy, and manage powerful websites and web ap-
plications. A typical cloud application has multiple tiers.
(See [21, 43] for example architectures of real-world appli-
cations.) The back-end data tier consists of various data stor-
age services, such as SQL databases, key-value stores, blob
stores, Redis caches [34], etc. The front-end contains the
core application logic for processing client requests. It may
also include various cloud resources such as VMs, commu-
nication queues, analytics services, authentication services,
etc. The front-end of a web application also includes a web
server that generates HTML webpages to be rendered on
browsers.

2.1 The need for what-if analysis
Cloud providers offer multiple resources for computation,

storage, analytics, networking, management, etc. For exam-
ple, Microsoft Azure offers 48 resource types in 10 differ-
ent categories.1 Each resource is usually offered in multiple
tiers at different price, performance, and isolation level—
for a Web server alone, Azure offers 30 different resource
tiers (a few are shown in Table 1). Finally, cloud providers
also permit redundancy and geolocation of resources. A
single website may use multiple resources; for example,
airbnb.com, alibaba.com, and netflix.com each
use six different types of storage components [43]. Thus, a
developer is faced with combinatorially many resource con-
figuration choices in terms of the number of resource tiers,
the degree of performance isolation across these tiers, the
redundancy of resources, and geolocation of resources.

In this paper, we are primarily concerned with cloud la-
tency, the time a user request spends in the cloud. Some
of this latency is due to the network (when the front-end and
back-end are not geographically co-located) and some of this
latency is due to compute and storage access. Not surpris-
ingly, the choice of a web application’s cloud configuration
can significantly impact cloud latency. A developer needs to
be able to efficiently search the space of configurations to
select a configuration that satisfies the developer’s goal such
as minimizing cloud latency of a request given a budget or
meeting a deadline while minimizing the cost.

One approach could be to deploy each configuration and
measure cloud latency; but this can be expensive and slow.
Alternatively, the developer could try to determine cloud la-
tency of a request from cloud providers’ SLAs. This is hard
because resource tier SLAs are often described qualitatively.
Microsoft Azure lists performance of Web Server tiers in
terms of CPU core counts, memory sizes, and disk sizes
(Table 1). Redis cache performance is specified as high,
medium or low. Translating such qualitative SLAs to quanti-
tative performance is hard. Performance can also depend on
runtime conditions such as load. Our results in Table 1 show
that under no load, the lowest and the highest tier of Web
Servers, whose prices differ by 100×, have relatively simi-

1All Azure offerings are reported as of June 2016.



Web Server Tier Price Configuration Avg. Response Time/Request (ms)
(USD/month) 1 req. 100 concurrent reqs. 90% CPU

Standard A0 15 1 Core, 0.75 GB Memory, 20 GB Disk 107.51 123837.6 283.6
Standard A1 67 1 Core, 1.75 GB Memory, 70 GB Disk 99.6 15770.8 210.3
Standard D2 208 2 Cores, 7 GB Memory, 100 GB Disk 97.4 2371.0 190.4
Standard A3 268 4 Cores, 7 GB Memory, 285 GB Disk 93.4 1720.70 142
Standard D12 485 4 Cores, 28 GB Memory, 200 GB Disk 96.2 1275.52 130.4
Standard D14 1571 16 Cores, 112GB Memory, 800GB Disk 90.1 752 115

Table 1—A few tiers of Microsoft Azure Web Server: Price, Configuration, and Performance under various conditions. Response times are measured from a
client in California to the index page of the SocialForum website (§ 6), deployed at a Web Server in US West.

lar latency; but with 100 concurrent clients, the lowest tier
is 164× slower than the highest tier. Finally, even if it were
possible to accurately quantify latency of a specific resource
tier, estimating its impact on the total cloud latency requires
understanding how I/O calls to the resource interleave with
other I/O calls and how they affect the critical path of the
web request. This is nontrivial.

To efficiently search the space of resource configurations,
our paper develops WebPerf, a prediction framework that
can perform what-if analyses—given a hypothetical resource
configuration of an application and its workload, it can ac-
curately predict a request’s cloud latency without actually
executing the application under the new configuration, and
without relying on qualitative SLA descriptions, while still
capturing interleavings between different I/O calls within a
given request.

2.2 Key Insights
Unlike common website optimization tools [17, 45] that

focus on webpage optimization, WebPerf enables develop-
ers to find low cloud latency resource configurations. The
cloud latency of an application depends on (1) the causal or-
der (i.e., sequential or parallel) in which various computation
and I/O calls happen, and (2) the latency of each computa-
tion and I/O call. We use the following two key insights to
measure these two components.
I Stable Dependency. Causal dependencies of various
computation and I/O calls of a request in an application re-
main stable over various what-if scenarios that we consider
(Table 2). For example, if a request accesses a key-value
store followed by accessing a blob store, it accesses them in
the same causal order even when the key-value store or the
blob store is upgraded to a different tier. Such determinism
allows WebPerf to compute causal dependency for a request
once and reuse it for repeated what-if analysis.

Of course, there can be nondeterminism in control paths—
e.g., a request may or may not query a database depending
on whether a value is present in the cache. In that case,
WebPerf issues the request repeatedly to stress various con-
trol paths and produces one estimate for each unique causal
dependency. Such non-determinism, however, is relatively
infrequent—in six real applications we evaluate in §6, only
10% requests demonstrate such nondeterminism. In §4.3,
we describe how WebPerf handles variable latencies due to
different control paths inside a cloud resource.
I Application-independent API latency. The performance
of individual I/O calls to many cloud resources can be re-
liably modelled independent of application logic, but as

functions of various workload and configuration parame-
ters. For example, latency of a Redis cache lookup API does
not depend on the application, but on its configuration such
as its geolocation and its resource tier. Similarly, latency
to a NoSQL table query API does not depend on applica-
tion logic, but rather on workload parameters such as query
type (e.g., lookup vs. scan) and table size. Therefore, it is
possible to build application-independent statistical models
(called profiles) of these APIs offline, as functions of rele-
vant workload and configuration parameters, and combine
it with application-specific dependency information to esti-
mate a request’s cloud latency.

To verify application-independence, we measured the la-
tency distribution of various I/O calls made by several real-
world applications, and compared them with those generated
by an application-independent profiler. Given an API and
an application, we compute relative error of the profiler as
|l−l′|/l, where l and l′ are the latencies of the API measured
from the application and the profiler respectively. Figure 1
shows mean and 90th percentile relative errors for all 11 I/O
APIs used by SocialForum, a real Azure application we de-
scribe in §6. The mean error ranges from 0.4% to 6.5% while
the 90th percentile error ranges from 5% to 10%. Overall,
the error is relatively small for other scenarios, confirming
our hypothesis. We observed similar results for four other
applications we evaluate in §6, as well as for two popular
Wordpress plugins for Azure blob storage and Redis cache.

Latency profiles may depend on configuration and work-
load parameters. While required configuration parameters
come directly from a given what-if scenario, workload pa-
rameters need to come from developers and applications.
WebPerf uses several techniques, including application-
specific baseline latencies and developer-specified workload
hints. We describe these in §4.3 and evaluate them in §6.

2.3 WebPerf Overview
WebPerf is designed to satisfy three requirements: it must

estimate the cloud latency distribution of a given request and
a what-if scenario accurately, must do so quickly so that de-
velopers can explore many scenarios in a short time, and
must require minimal developer input.

Figure 3 depicts various components of WebPerf. It takes
as input a workload and a what-if scenario. The workload
consists of (1) a web application, (2) a set of HTTP requests,
and (3) optional workload hints to help WebPerf choose ac-
curate latency models for the application’s workload. Ta-
ble 2 lists various what-if scenarios WebPerf supports.

WebPerf works as follows. WebPerf’s Binary Instru-
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Figure 1— Relative errors of app-independent profiles.

Figure 2—Latency of a Join in Basic and Stan-
dard tier of Azure SQL.
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What-if scenario Example

Location: A resource X is
deployed at location Y

X = A Redis Cache or a
front end, Y = Singapore

Tier: A resource X is
upgraded to tier Y

X = A Redis cache, Y = a
standard tier (from a basic
tier)

Input size: I/O calls to
resource X take inputs of size
Y

X = a blob storage, Y = a
760× 1024 image

Load: X concurrent
requests to resource Y

X = 100 , Y = the
application or a SQL database

Interference: CPU and/or
memory pressure, from
collocated applications, of
X%

X = 50% CPU, 80%
memory

Failure: An instance of a
replicated resource X fails

X = A replicated front-end
or SQL database

Table 2— What-if scenarios supported by WebPerf

menter (§3) automatically instruments the given web appli-
cation. The requests in the workload are then executed on the
instrumented application, generating two pieces of informa-
tion: (1) a dependency graph, showing causal dependencies
of various compute and I/O calls executed by the requests,
and (2) the baseline latency of various compute and I/O calls
for the initial configuration. The number of measurements
collected for the baseline latency is decided by an optimiza-
tion algorithm (§5.2). The instrumentation is disabled after
the measurement finishes. WebPerf also uses a Profiler (§4),
which builds, offline, empirical latency distributions of var-
ious cloud APIs under various what-if scenarios. The core
of WebPerf is the What-If Engine (§4), which combines de-
pendency graphs, baseline latencies, and offline profiles to
predict a distribution of cloud latencies of given requests un-
der what-if scenarios.

WebPerf can also combine its predicted cloud latencies
with network latencies and client-side latencies (e.g., pre-
dicted using WebProphet [25]) to produce a distribution of
end-to-end latencies (§5.1).

3. TRACKING CAUSALITY IN TASK
ASYNCHRONOUS APPLICATIONS

WebPerf’s prediction algorithm uses causal dependencies
between various computation and I/O calls invoked by a re-
quest. Cloud applications are increasingly written using Task
Asynchronous Paradigm, which prior work (§7) on causal
dependency tracking does not consider. WebPerf can track
causal dependency within such applications accurately, in a

async Task<Response> ProcessReq(Request req) {
/* Synchronous process block 1 */
var input = GetInput(req) ;
var task1 = AsyncTask1(input);
var output = await task1 ;
/* Synchronous process block 2 */
var response = GetResponse(output) ;
return response ;

}
async Task<Output> AsyncTask1(Input input) { ... }

Figure 4— Async-await example.

lightweight manner, and with zero developer effort.

3.1 Task Asynchronous Programming
Node.js [28] popularized the notion of non-blocking I/O

in cloud and server applications. Non-blocking APIs greatly
increase an application’s throughput in a lightweight manner
(i.e., with a small thread pool). Today all major program-
ming languages support non-blocking operations.

There are two major flavours of non-blocking I/O. The
Asynchronous Programming Model (APM) uses callbacks
that are invoked on certain events such as completion of an
operation. Many languages including JavaScript, Java, and
C# support APM. A major drawback of APM is that devel-
opers often need to write a large number of callback meth-
ods to sequence their request pipeline, quickly getting into
the problem of callback hell [7]. Moreover, callbacks invert
the control flow, and can obfuscate developer’s intent [41].

These limitations are addressed by the Task Asynchronous
Paradigm (TAP), which allows writing non-blocking asyn-
chronous programs using a syntax resembling synchronous
programs (Figure 4). TAP is supported by many major
languages including .NET languages (C#, F#, VB), Java,
Python, JavaScript, and Scala. For instance, C# supports
TAP with a Task object and async and await constructs
(example code later). TAP has become increasingly popular
for writing cloud applications. Almost all Microsoft Azure
framework libraries today support TAP as the only mecha-
nism for doing asynchronous I/O and processing. Amazon
AWS also provides TAP APIs for .NET [3].

Figure 4 shows an example request pipeline writ-
ten with TAP in C#. ProcessReq method processes
the incoming request, does a non-blocking asynchronous
call (AsyncTask1) to, say, fetch a document from the
store, processes the result, and sends a response back.
AsyncTask1 is an async method that starts the task asyn-
chronously and returns a Task object. To obtain a result for



/* Receive request */
var task1 = AsyncTask1 (...) ;
var task2 = AsyncTask2 (...) ;
var result = await Task.WhenAll(task1, task2 ) ;
/* Send response */ ... /* Receive request */
var task1 = AsyncTask1 (...) ;
var task2 = AsyncTask2 (...) ;
var result = await Task.WhenAny(task1, task2);
/* Send response */

Figure 5— When all and when any example.

an async method, the caller does await on the task object.
When await is used, the execution does not proceed until
the result of the awaiting task is obtained. Note that await
does not block the thread, but returns the thread and adds the
rest of the method as a continuation (implicit callback) to the
task being awaited. In Figure 4, the continuation is the start
of the synchronous block 2. When the task finishes,
its continuation executes on a different logical thread. The
execution trace for ProcessReq is shown in Figure 6.
Synchronization Points. TAP provides explicit abstrac-
tions for developers to synchronize multiple parallel tasks.
.NET provides two such abstractions: Task.WhenAll and
Task.WhenAny. WhenAll accepts multiple tasks as argu-
ment and signals completion only when all tasks complete.
Figure 5 (top) and Figure 7 (left) show an example request
pipeline and its execution trace where the response is re-
turned only when both tasks finish. WhenAny accepts mul-
tiple tasks but signals completion as soon as any one of them
completes. Figure 5 (bottom) and Figure 7 (right) show an
example request pipeline and its execution trace. WhenAll
and WhenAny return tasks that can be awaited or synchro-
nized with other tasks.

3.2 Tracking Causal Dependency
Given a user request in a TAP application, we would like

to extract a causal dependency graph consisting of three
pieces of information: (1) nodes representing synchronous
and asynchronous compute and I/O calls, (2) edges rep-
resenting causal (i.e., happens-before) dependency among
nodes, and (3) WhenAll and WhenAny synchronization
points. All these pieces are required for total cloud latency
estimation. Missing nodes may result in latency underes-
timation. Missing or incorrect edges may imply incorrect
execution orders (serial vs. parallel) of nodes and produce
inaccurate estimates.

Existing causality tracking techniques, however, may not
capture all these necessary pieces of information (§7). A
network-level proxy can externally observe I/O calls and
their timing information [10], but will miss computation
nodes and synchronization points that are not observable at
the network layer. Moreover, inferring dependency based on
timing information can be wrong. Suppose tasks n1 and n2
run in parallel and n3 starts only after n2 finishes. Each node
has an execution time of t, and hence the total execution time
is 2t. Externally observed timing and execution order could
infer that n3 is dependent on both n1 and n2. This can lead
to incorrect estimation in a what-if scenario that considers
the case when n1’s execution time is t/2. The correct de-

pendency graph will estimate a total execution time of 1.5t,
while the externally observed dependency graph could esti-
mate 2t. One might be able to correct some of these am-
biguities by collecting a large amount of data (as in [10]).
WebPerf, however, is designed to be used at deployment
time when not much data is available.

Another way to track causal dependency is to instru-
ment the runtime. Existing .NET profiling tools [40, 22,
1] can capture some dependencies, but fail to capture asyn-
chronous dependencies and synchronization points of async-
await programs. AppInsight [32] can track asynchronous
callback dependencies, but it is designed for APM and does
not support TAP.

The amount of information missed by existing solutions
(and hence the estimation error) can be significant. In work-
loads from six real applications we describe in §6, a depen-
dency graph on average has 182 computation nodes (missed
by a network proxy), 180 async-await edges (missed by all),
and 62 synchronization points (missed by all).

3.3 Capturing an Execution Trace
We now describe how WebPerf captures all the informa-

tion in dependency graphs for TAP. It uses a two-step pro-
cess: it instruments the application binary to capture the ex-
ecution trace of a request, and then analyzes the execution
trace to construct the request’s dependency graph.

WebPerf automatically instruments application binaries to
capture the execution trace that preserves causal dependen-
cies of all async calls. Doing this for a TAP application
presents several unique challenges not addressed by exist-
ing causality tracking solutions (e.g., AppInsight) for APM
applications. We now describe the key challenges and our
solutions. The techniques are described for .NET, but the
general idea can be used for other languages supporting TAP.
Tracking implicit callbacks: To track the lifetime of an
asynchronous call, we need to correlate the start of the call
and its callback. In APM, callbacks are explicitly written by
developers and these callbacks can be instrumented with a
correlation ID to match with the original request. In TAP,
however, there are no such explicit callbacks – upon await
call on a (completed) task, execution starts from its contin-
uation (i.e., rest of the async method after the await call).
Thus, continuations act as implicit callbacks.

Identifying and instrumenting continuations in the source
code may not be obvious; for instance, a task’s creation and
continuation can be in two different methods. To address
this, we observe that an async method executes as a state
machine, which maps continuations to different states, and
state transitions occur as awaited tasks complete. In fact,
.NET compiles async-await source code to binaries contain-
ing state machines. For instance, consider the async method
in Figure 4. The .NET compiler translates the code to a state
machine containing two key states: the first state contains
the synchronous block 1 and starts the await process, and
the second state contains the continuation of the await (i.e.,
synchronous block 2). The state machine also contains a
MoveNext() method that causes transition between states
when awaited tasks complete.
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Figure 6— Execution trace for the code shown
in Figure 4.
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Figure 8— Dependency graphs for the requests
in Figures 4 and 5.

1 class ProcessReq__ {
2 Request req ;
3 int state = −1;
4 TaskAwaiter awaiter ;
5 AsyncTaskMethodBuilder builder;
6 int asyncId = -1;
7 public void MoveNext() {
8 asyncId = asyncId == -1 ? Tracker.AsyncStart() :

asyncId;
9 Tracker.StateStart(asyncId);

10 switch ( state ) {
11 case −1:
12 state = 0;
13 /* Synchronous process block 1 */
14 var input = GetInput(req) ;
15 var task1 = AsyncTask1(input);
16 Tracker.TaskStart(task1, asyncId);
17 awaiter = task1 .GetAwaiter() ;
18 builder .OnCompleted(awaiter, this ) ;
19 Tracker.Await(task1, asyncId);
20 break;
21 case 0:
22 /* Synchronous process block 2 */
23 var output = awaiter .GetResult () ;
24 var response = GetResponse(output) ;
25 builder . SetResult ( response) ;
26 Tracker.StateEnd(asyncId);
27 Tracker.AsyncEnd(asyncId);
28 return ;
29 }
30 Tracker.StateEnd(asyncId);
31 }
32 }

Figure 9— Async state machine for the code in Figure 4. Statements in
bold show the instrumented code. For clarity, we show the C# code instead
of bytecode.

Since the underlying state machine separates continua-
tions as explicit states, WebPerf instruments the state ma-
chine (at bytecode level) rather than the original code. This
is in contrast with AppInsight, which can instrument source
code or equivalent binaries to track APM dependencies.

Given a state machine of an async method, WebPerf in-
struments its MoveNext()method (in Figure 9, statements
in bold show the instrumentation code). 1) When an async
method starts, we generate a new async id and save it as part
of the state machine (line 8). 2) For async tasks (I/O, large
compute), we monitor the start of the task (line 16) connect-
ing it to the async method using the async id. 3) We connect
task completion to its continuation by tracking task awaits
(line 19). We use the task object id, thread id and async id
to accurately connect them – this ensures correctness even
if task start and task await are part of different methods and

irrespective of the task completion time. 4) We track the life-
time of a thread by tracking the start and end of a state in the
state machine (line 9, line 20, and line 30). 5) Finally, we
track the completion of an async method by tracking calls to
SetResult, an inbuilt method that triggers the response of
an async method (line 25).
Tracking pull-based continuation: Execution of a con-
tinuation is pull-based – it is invoked only when await is
called and this can happen much later than the actual task
completion. Hence, we need to track task completions inde-
pendently from awaits but also understand their causal de-
pendencies. In contrast, in APM, the framework invokes the
callback as soon the task completes. To accurately track task
completion, we add a continuation to the task (inside the
Tracker.TaskStart method in line 16) and wrap the
completion handler inside an object that saves the async id.
Tracking execution forks and joins: To track synchro-
nization dependencies between tasks, we instrument the
code to intercept Task.WhenAll, Task.WhenAny and
other equivalent primitives. Using object ids of tasks passed
to these calls, we record their dependencies. When tasks
complete, we connect the continuations to the set of parallel
tasks that were synchronized.
Tracking non-TAP calls: Apart from async-await calls,
WebPerf also tracks other types of asynchronous calls (e.g.,
APM with explicit callbacks) and expensive synchronous
calls (e.g., synchronous Azure APIs). For the former,
WebPerf uses similar instrumentation technique as AppIn-
sight. For the latter, it logs start and end of the call and uses
thread ids to track their dependencies with async methods.
Optimizations: We use a few optimizations to reduce
the runtime overhead of instrumentation. First, we track
only (synchronous and asynchronous) APIs having known
method signatures from Azure libraries. Second, within an
async-await method call chain, we instrument only the non-
blocking tasks (with known signatures). In .NET, methods
using await should also be declared as async and can be
awaited by other methods. Hence, when a request involves a
non-blocking async call, all methods in its pipeline including
the entry point are declared as async methods and compiled
into a state machine. Though the intermediate methods are
async, continuations between them are called synchronously
except for the method with the non-blocking call. We signif-
icantly reduce the overhead of tracking without compromis-
ing accuracy by monitoring only non-blocking async tasks,
state machines of methods awaiting them, and the request
entry point method. Our instrumentation overhead is low
and comparable to numbers reported in AppInsight [32, 33].



3.4 Extracting dependency graphs
The dependency graph of a request is a directed acyclic

graph with three types of nodes: Start, End, and Task.
Start and End denote the start and the end of the request.
Task nodes represent async API calls, as well as other syn-
chronous and asynchronous compute and I/O calls that we
want to profile and predict. An edge A→B means that B can
start only after A finishes. Multiple tasks originating from a
single task indicate parallel tasks. Multiple tasks terminating
at a task indicates a WhenAll or WhenAny dependency.

WebPerf processes the execution trace from start to end
to construct a dependency graph. It constructs a Task node
for each unique async call, compute or I/O call with known
signatures, and expensive computation. It constructs an
edge t → t′ when it encounters in the execution trace a
task t′ starting in the continuation of another task t. Note
that the same continuation thread of a task t may con-
tain start of multiple tasks t1, t2, · · · , resulting in parallel
edges t → t1, t → t2, · · · . On encountering WhenAll
or WhenAny method call with tasks (t1, t2, · · · ) as input
Task arguments, WebPerf constructs a synchronization Task
t representing the continuation of the method, and edges
t1 → t, t2 → t, · · · representing synchronization dependen-
cies. Synchronization tasks also contain information about
whether the dependency is WhenAll or WhenAny, the in-
formation is show as an arc over all incoming edges (or no
arc) for WhenAny (or WhenAll respectively).

Figure 8a–c shows dependency graphs for the execution
traces in Figure 6, 7 (left), and 7 (right) respectively. We
put an arc over incoming edges for WhenAny dependency,
to differentiate it from WhenAll dependency. Note that the
execution trace also contains timings for compute threads
(black horizontal lines); hence, WebPerf can profile large
compute components, in addition to synchronous and asyn-
chronous tasks, without knowing their semantics.

4. EVALUATING WHAT-IF SCENAR-
IOS

WebPerf estimates the cloud latency of a request under
a what-if scenario in three steps: (1) building application-
independent and parameterized latency profiles of various
APIs offline; (2) computing the dependency graph of a given
request (§3) and application-specific baseline latency distri-
butions of various tasks in the request; (3) predicting the
cloud latency by combining the dependency graph, baseline
latencies, and latency profiles for the given what-if scenario.

4.1 Application-independent Profiling
WebPerf maintains a profile dictionary, containing pro-

files or statistical models of latencies of different cloud APIs
under various configurations and inputs. In our implementa-
tion, profiles are modeled by nonparametric latency distribu-
tions and are stored as histograms. WebPerf uses two types
of profiles: independent and parameterized, differentiated
by whether they depend on workload parameters or not.
Workload-independent profiles. Independent profiles

model APIs whose performance does not depend on appli-
cations or workloads, but may depend on configurations.

To profile an API for a specific cloud resource R (e.g., a
Redis cache), WebPerf repeatedly calls the API until it gets
a good enough latency distribution (i.e., when the sample
mean is within two standard errors of the true mean with
95% confidence level [37]). For all Microsoft Azure APIs,
WebPerf needs fewer than 100 measurements. To support
various what-if scenarios, WebPerf’s profiler builds profiles
for each API under different configurations of R, input pa-
rameters of the API, system loads, etc., as well as at dif-
ferent times incrementally to capture temporal variabilities.
Table 2 shows various what-if scenarios WebPerf currently
supports. To build profiles for location, tier, input size, and
load, the profiler deploysR at different locations or tiers, and
issues requests to them with different input sizes and concur-
rent loads, respectively. For the CPU interference scenario,
WebPerf builds profiles for client side CPU processing over-
head of calling the APIs. It also empirically builds a map-
ping between CPU time and wall clock time under different
background CPU stresses, which it uses to convert the CPU
time profiles to wall clock time profiles. To profile replica
failure scenarios, WebPerf computes expected increase in
loads on working instances of R and uses the load profiles
to approximate failure profiles.
Parameterized profiles. Performance of a small number of
cloud APIs depends on workloads. For instance, the query
API to Azure SQL exhibits different latencies based on the
specific query (e.g., whether it has a join) and table size. A
cloud resource can also exhibit variable latencies due to dif-
ferent control paths based on an application’s workload (e.g.,
CDN latency for cache hit vs cache miss). WebPerf builds
multiple profiles for each of these APIs, parameterized by
relevant workload parameters. WebPerf allows developers to
provide workload hints, based on which it chooses the right
profile for an API. WebPerf exposes to developers a list of
APIs for which workload hints can be provided.

For example, WebPerf profiles Azure CDN’s latency as
two distributions, one for cache hits and one for misses, and
allows developers to specify a target cache hit rate as a work-
load hint. WebPerf then appropriately samples from the two
profiles to generate a (bimodal) distribution of latencies un-
der the specified hit rate. §6.6 shows an example. For the
query API to Azure Table storage and SQL, WebPerf builds
multiple profiles, one for each table size (e.g., < 1MB,
< 10MB, etc.) and query complexity (e.g., lookup, scan,
or join). The developer can provide workload hints in terms
of table size and query complexity, and WebPerf chooses ap-
propriate profiles based on those workload parameters.2

Note that building profiles for all APIs under all hypo-
thetical configurations and workload scenarios can be very
expensive and slow. WebPerf therefore seeds its profile dic-
tionary with profiles for only a few popular APIs under a
few common what-if scenarios and workload parameters; it
2WebPerf’s SQL profiles are only crude approximations. SQL query per-
formance can depend on factors such as indexing, query optimization, etc.
that are beyond the scope of the paper. Therefore, WebPerf’s predictions for
scenarios involving SQL are not as accurate as those for other scenarios.
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builds the remaining profiles only on demand, in parallel,
and reuses these in future what-if analysis. Note that, only a
small number of APIs in Azure exhibit workload-dependent
performance, and hence need to be parameterized. Build-
ing parameterized profiles for these small number of APIs is
tractable in practice.

4.2 Application-specific Profiling
In this step, WebPerf executes a given request on an in-

strumented (§3) version of the application to collect its de-
pendency graph. It also executes the request multiple times
to capture an application-specific, baseline latency distribu-
tion of each task of the graph. Again, enough samples are
collected to obtain a good enough latency distribution for
each task. Baseline profiles capture any application-specific
factor that might affect API latencies and hence, in principle,
are more accurate than offline profiles. Therefore, WebPerf
prefers, whenever possible, baseline latencies over offline la-
tencies for prediction.

Measuring baseline latencies is in the critical path of
what-if analysis; WebPerf carefully decides how many mea-
surements to take for each request within a given time bud-
get, as described in §5.2.

4.3 What-if Engine
The What-If Engine of WebPerf takes the following as in-

puts: (1) profiles of various APIs, (2) the dependency graph
and the baseline latency of tasks, (3) a what-if scenario, such
as the one from Table 2. It produces a distribution of esti-
mated cloud latency. The basic idea is as follows: given the
dependency graph, WebPerf first estimates the latency distri-
bution of each task node, and then estimates the distribution
of total latency of the request by combining the per-task la-
tency distributions. The overall process has multiple steps
and challenges; we now describe these challenges and how
we address them.
Profile selection. WebPerf uses the following workflow to
select an appropriate profile for each node in the dependency
graph. (1) If the node (i.e., the API called in the node)
is not affected by the what-if scenario, WebPerf uses the
API’s baseline profile as its estimated latency distribution.
(2) If the node is affected by the what-if scenario, WebPerf
checks whether the API has a parameterized profile and the
developer has provided appropriate workload hints. If so,
WebPerf chooses the correct parameterized profile as its es-
timated latency. Otherwise, it uses the API’s independent
profile as the estimated latency.

For instance, consider a request involving API calls to a
Redis cache and a SQL database. For a what-if scenario
for upgrading the Redis tier, WebPerf uses the application-

Algorithm 1 CLOUD LATENCY PREDICTION

1: INPUT: A node N in a dependency graph, Baseline latency
distribution B, Profile dictionary P , a what-if scenario S)

2: Function CloudLatencyPredict (N,B,P,S)
3: Lany ← {}
4: Lall ← {}
5: for every parent node N ′ of N do
6: if N ′ appears in S then
7: ρ← latency distribution of N ′ from profile dictionary P
8: else
9: ρ← latency distribution of N ′ from baseline latency B

10: D ← ProbAdd( ρ, CloudLatencyPredict (N ′,B,P,S))
11: if the edge N ′ → N is a WaitAny edge then
12: Lany ← Lany ∪D
13: else
14: Lall ← Lall ∪D
15: return ProbMax( ProbMin( Lany), ProbMax(Lall))
OUTPUT: Predicted latency distribution of node N

independent profiles of the target tier of Redis APIs (since
Redis performance prediction does not need developer hints)
and baseline profiles of the SQL APIs (since they are not
affected by the what-if scenario).
Enforcing concurrency limits. Some cloud APIs have im-
plicit or explicit concurrency limits that can change across
tiers. For instance, Azure SQL supports maximum 30 and
60 concurrent connections in Basic and Standard tier respec-
tively. Such limits impose queueing latency when the num-
ber of concurrent connections goes above the limit.

To account for such queueing latency, WebPerf modifies
the given dependency graph to impose concurrency limits.
For a known system-wide limit of maximum n concurrent
calls to a specific I/O and for a load of r concurrent user
requests, WebPerf imposes a limit of n/r concurrent calls
per request. It then traverses the dependency graph of the
request top down and checks if any task reaches the limit of
n/r; if so, it removes the task (along with all its descendants)
from its parent, and adds it as a WhenAny child of its in-
limit siblings. The basic idea is shown in Figure 10. Given
a system limit of two, WebPerf moves task3 with all its
descendants as a WhenAny child of task1 and task2.
Probabilistic estimation. Finally, WebPerf combines (us-
ing Algorithm 1) estimated latency distributions of all tasks
in the (modified) dependency graph to produce one distribu-
tion of total cloud latency. The algorithm works bottom-up
and is invoked with the End node of the dependency graph.
Given a node, it estimates its latency based on baseline la-
tency (if the node is not affected by what-if scenario or if
the node is application-dependent) or offline profile (other-
wise). It then recursively computes latency distribution of
each path to it and combines them based on the semantics of
the synchronization points.

Algorithm 1 would have been simpler if nodes had scalar
latencies. However, WebPerf models node latencies as prob-
abilistic distributions and they need to be combined accord-
ing to how various tasks execute—in sequence or in par-
allel, and whether execution waits for all tasks to finish or
any one to finish. Consider tasks ti, 1 ≤ i ≤ k in the de-
pendency graph. Suppose the latency distribution of task ti



is represented by an i.i.d. random variable Xi with distri-
bution function fi(x). Suppose Z is the random variable
representing the total execution time of all tasks. Z can be
estimated based on how the tasks execute and how the appli-
cation waits for their execution to finish.

If all tasks run sequentially (Figure 8(a)), Z =
∑k
i=1Xi.

Then the distribution function f(z) of Z is given by f(z) =
f1(x) ∗ f2(x) ∗ . . . fk(x), where ∗ denotes the convolu-
tion operator. For k = 2, f(z) = f1(x) ∗ f2(x) and
Pr(Z = z) =

∑
w Pr(X1 = w) Pr(X2 = z − w). Since

convolution is associative and commutative, the computation
can be extended to k > 2.

With parallel execution, there are three cases depending
on whether the application needs to wait for all or any of the
tasks to finish. (1) Wait for all to finish (Figure 8(b)): In this
case Z = maxki=1Xi. The distribution function for Z can
be computed as follows: Pr(Z ≤ w) = Pr(X1 ≤ w,X2 ≤
w, . . . ,Xk ≤ w) =

∏
1≤i≤k Pr(Xi ≤ w). (2) Wait for

any to finish (Figure 8(c)): In this case, Z = minki=1(Xi)
The distribution function of Z can be computed in a sim-
ilar manner to the Max function. (3) A combination of
the above two: Suppose the application waits for any of
X1, . . . , Xm to finish, and all of Xm+1, . . . , Xk to finish;
then Z = max(min(X1, . . . , Xm),max(Xm+1, . . . , Xk).
The distribution function can be computed by combining the
above distributions for Max and Min.

Algorithm 1 implements the computations using three
building blocks that involve operations on discrete distri-
butions: ProbMax, ProbMin and ProbAdd. ProbMax
and ProbMin are computed based on (1) and (2) above.
ProbAdd for adding two distributions is based on convo-
lutions [18] (see associated technical report [23] for details).
Given a node, Algorithm 1 recursively computes the latency
distribution for every path to it (by applying ProbAdd on
latency estimation of nodes on the path), and applies Prob-
Max or ProbMin to those paths, depending on whether the
paths have WhenAny edges or not.

5. WebPerf EXTENSIONS
This section describes two extensions to WebPerf. We

have implemented them, and we evaluate them in §6.

5.1 End-to-end Latency Prediction
WebPerf’s cloud latency estimates can be extended to es-

timate end-to-end latency of a web request. End-to-end la-
tency consists of three components: (1) cloud-side latency
given by the prediction algorithm above, (2) network latency
between an application’s cloud frontend and the client, and
(3) client-side latency within client’s browser, which can be
predicted by tools such as WebProphet [25]. Accurately
modeling network latency is outside the scope of the pa-
per. For simplicity, we model network latency using the RTT
distribution between the client’s browser and the application
frontend. WebPerf uses a combination of two techniques to
estimate end-to-end latencies: end-to-end tracking and prob-
abilistic estimation.
End-to-end tracking. To match a client side webpage re-

Algorithm 2 END-TO-END LATENCY PREDICTION

1: INPUT: A webpage W and a latency vector L̄ of all objects in
W )

2: Function E2ELatencyPrediction (W, L̄)
3: DG← dependency graph of objects in W
4: S ← {}
5: while more sample to collect do
6: for every object O in W do
7: if O involves web request from cloud frontend then
8: ωNet ← a Monte Carlo sample from RTTDistribu-

tion
9: ωCloud ← a Monte Carlo sample from CloudLaten-

cyPredict() for O
10: ω ← ωCloud + ωNet

11: else
12: ω ← a Monte Carlo sample from FetchTime(O)
13: Update O’s latency in L̄ with ω
14: S ← S∪ ClientPrediction(DG, L̄)
15: return Distribution of S
OUTPUT: Predicted latency distribution of W

quest with corresponding HTTP requests seen by the cloud
frontend, WebPerf automatically instruments the webpage
so every HTTP request from it contains a unique id. WebPerf
also instruments the HTTP module at the webserver to match
the request with the cloud-side processing.
Probabilistic estimation. WebPerf uses Monte Carlo sim-
ulation to add cloud, network, and client latency distribu-
tions to produce an end-to-end latency distribution. It uses
a WebProphet-like tool called ClientPrediction that, given
a client-side dependency graph DGclient with causal depen-
dencies of various objects downloaded by the browser and
a latency vector L̄ of download latency of all objects in the
webpage, can estimate the page load time.

Algorithm 2 uses ClientPrediction for end-to-end predic-
tion as follows. It performs the following steps until a suf-
ficient number of end-to-end latency samples are collected
(e.g., until the confidence bound is within a target). For each
object O in the webpage, if it comes from a frontend HTTP
call, it samples a random value from the cloud-side latency
distribution and a random value from the network RTT dis-
tribution and adds them to estimate the download time for
O. On the other hand, if O comes from external sources
or if it is a static object, its download time is sampled from
a FetchTime distribution. (The FetchTime distribution is
profiled offline. If no such distribution is available for an ob-
ject, its value in L̄ can be used as the sampled value.) The
sampled download time is then updated in L̄ and passed to
ClientPrediction to produce a sample of end-to-end latency.
Finally, the algorithm returns the distribution of all samples.

5.2 Optimal Profiling
WebPerf’s primary bottleneck is estimating baseline la-

tencies of I/O calls appearing in the target workload (i.e.,
set of requests). Given a time budget T for measuring n re-
quests, one straightforward way is to allocate T/n time for
each request. However, this is not optimal since modeling
some APIs would need more samples than modeling others,
due to their different variabilities in latencies. WebPerf uses



an algorithm to decide how to allocate the time budget op-
timally to measure different APIs. The process is similar to
optimal experiments design [31], a statistical technique that
allows us to select the most useful training data points, and
has been used for performance prediction for large-scale ad-
vanced analytics [44].

Suppose the developer is interested in what-if analysis of
her application for n different requests: r1, r2, . . . , rn. Let
us first start with the simplified assumption that each request
ri contains exactly one I/O call ci. We need to determine
ni, 1 ≤ i ≤ n, the number of times ri should be measured
to build a profile of its I/O call ci. We have two goals. First,
the total measurement time3 for all requests must be within
a given budget T . Suppose executing request ri takes ti sec-
onds; then

∑n
i=1 niti ≤ T . Second, the total (or average)

standard error of measurements is minimized. Suppose ex-
ecuting request ri takes ti seconds on average, with a stan-
dard deviation of σi. Then, the standard error of ni measure-
ments of ri is given by σi/

√
ni. Thus, we want to minimize∑n

i=1 σi/
√
ni. In addition to the above two goals, we also

want each request to be measured at least k times, in order
to get meaningful statistics. The above problem can be for-
mulated as the following integer program:

min
∑

1≤i≤n

σi√
ni

s.t.
∑

1≤i≤n

niti ≤ T, ni ≥ k ∀i = 1, . . . , n

The problem is in NP, since a simpler version of the prob-
lem can be reduced to the Knapsack problem. We propose
a linear analytical approximation algorithm based on La-
grange multipliers [6] to solve it. We can derive the value
for each ni = (T ( σi

2ti
)

2
3 )/(

∑
i (σi

√
ti

2 )
2
3 ), which is a real

number larger than 0. The intuition behind this is that we
need more samples for those APIs with higher variance but
take less time. We approximate them by rounding to closest
integers, which gives the optimal number of requests.

We have generalized our solution [23] to the more realistic
setting where a request can contain multiple I/O calls and an
I/O call can appear in multiple requests.
6. EVALUATION

We have implemented WebPerf for Microsoft Azure web
apps, and we use this to evaluate WebPerf.

6.1 Methodology
Implementation. The WebPerf binary instrumenter is im-
plemented as a NuGet package [29] that a developer can ob-
tain from Azure Site Extension Gallery [4] and install to her
web app as a site extension. The Profiler is implemented as
a collection of web applications and the profile dictionary
is stored in an Azure table. The WebPerf What-if Engine
is implemented as a cloud service with a web interface that
allows the developer to specify her web app, workload, and
what-if scenarios. The engine communicates with the Instru-
menter (included in the target web app by the developer) and
the Profiler through HTTP requests. The WebPerf prediction
component is written in python (∼ 20K LOC).
3The problem can also be formulated with other costs.

Experimental Setup. We have evaluated WebPerf with six
third party Azure web applications, listed in Table 3, for
which we could find cloud-side source code or binaries.
The key application for which we provide detailed results
is SocialForum,4 a production-ready Microsoft web appli-
cation. It provides Instagram-like social network functional-
ity and allows users to create new accounts, create/join fo-
rums, post/share/tag/search pictures and comments, etc. It
uses five different Azure services: Azure Blob Storage for
storing large data such as images; Azure Table for storing
relational data; Azure Redis Cache for caching and storing
key-value pairs; Azure Service Bus for queueing background
processing tasks and Azure Search Service for searching fo-
rums. The index page of the SocialForum website consists
of more than 20 objects, and the corresponding HTTP re-
quest at the cloud side has a dependency graph consisting of
116 async I/O calls to Redis Cache, Table storage, and Blob
storage, with many executing in parallel.

For lack of space we omit the detailed architecture of re-
maining five applications in Table 3; these are discussed in
[23]. They all are of modest complexity, as hinted by various
Azure resources they use. The requests that we use to all six
applications are also fairly complex, with large dependency
graphs. On average, a dependency graph has 182 nodes, 180
async-await edges, and 62 synchronization points.

6.2 Cloud Latency Prediction
We first evaluate accuracy of WebPerf’s predicted cloud

latency under six what-if scenarios. For each scenario and
for each application, WebPerf predicts a distribution of the
cloud latency of loading the index page. To quantify the
accuracy of WebPerf’s prediction, we compare predicted
latency distribution with ground truth latency distribution
measured by actually deploying the applications under tar-
get what-if configurations. Given predicted and ground
truth latency CDFs F1 and F2, we compute the relative
error distribution—the distribution of vertical deviations
(|F1(x) − F2(x)|) of two CDFs, and report statistics such
as maximum, mean, and median of the deviations. (Note
that the maximum of the relative error distribution is the D
statistic used for Kolmogorov–Smirnov test for comparing
two distributions.) Ideally, the relative error statistics should
be close to zero.

We present detailed results only for SocialForum; results
for other applications are summarized in Figure 12. Unless
indicated otherwise, SocialForum is deployed in an Azure
US West datacenter and clients load its specified page in a
Chrome browser from California.
Scenario 1: What-if the Redis cache is upgraded from
the original Standard C0 tier to Standard C2 tier? Fig-
ure 11(a) shows distributions of original latency (with C0
Redis), ground truth latency (with C2 Redis), and predicted
latency (for C2 Redis). The result shows that upgrading Re-
dis from C0 to C2 significantly changes cloud latency, and
hence simply using the baseline performance of C0 tier as

4A pseudonym for the actual product.



Application Description Azure services used

SocialForum
A production-ready Microsoft application that provides Instagram-like
social functionalities and allows users to create new accounts, create/join
forums, post/share/tag/search pictures and comments, etc.

Blob storage, Redis cache, Service
bus, Search, Table

SmartStore.Net [39]

An open source e-commerce solution that includes all essential features to
easily create a complete online shopping website. It offers a rich set of
features to handle products, customers, orders, payments, inventory,
discounts, coupons, newsletter, blogs, news, boards and much more.

SQL

ContosoAds [12] A classified advertisement website, similar to craigslist.org Blob storage, Queue, SQL, Search

EmailSubscriber [15] An email subscription service, similar to mailchimp.com, that allows
users to subscribe, unsubscribe, and send mass emails to mailing lists Blob storage, Queue, Table

ContactManager [11] An online contact management web application, similar to
zoho.com/contactmanager, that allows users organize to contacts Blob storage, SQL

CourseManager [13] A course management website, similar to coursera.org, that allows
instructor course creation, student admission and homework assignments. Blob storage, SQL

Table 3— Third party applications used in our case studies and the Azure services they talk to.

a prediction for the new tier will be inaccurate. As shown,
WebPerf’s prediction is very accurate: median, average, and
maximum relative errors are 0.8% , 2.7% , and 18.3% re-
spectively. We also used WebPerf to predict performance
for two additional scenarios: upgrading Redis tier from C0
to C6 and upgrading the front-end web server tier from A1
to A3. The median relative errors of predictions for these
two scenarios are 0.8% and 1.7% respectively.
Scenario 2: What-if the front-end of SocialForum is repli-
cated to two locations: US East and Asia East? The backend
still remains at US West. We configured WebPerf’s profile
dictionary with latency models for SocialForum’s backend
APIs when frontend and backend are deployed in the same
datacenter (e.g., US West). The models were then added
with RTT distribution between backend and new frontend
location (e.g., US East). This helped us avoid profiling la-
tency models for all possible combinations of frontend and
backend locations. WebPerf’s end-to-end prediction is quite
accurate for both the locations, with median, mean, and max-
imum relative errors < 4%, < 2%, and < 15% respectively.
Scenario 3: What-if SocialForum’s reads/writes data of size
X from/to blob storage? We used X = 14KB, 134KB,
6.8MB, 12MB and 20MB. We configured WebPerf with of-
fline profiles of blob storage API latencies for contents of
different sizes. Figure 11(c) shows the CDFs of predicted
and ground truth latency distributions forX = 6.8MB. The
median errors for all values of X are below 9%.
Scenario 4: What-if other collocated applications interfere
with SocialForum? Azure does not guarantee performance
isolation for free tiers. We deployed SocialForum in a free
tier and let other collocated applications create CPU pres-
sure, using CPU loads of 10%, 20%, . . . , 80%. The median
relative errors for all the scenarios were < 9%.
Scenario 5: What-if N users concurrently load SocialFo-
rum webpage? For this scenario, we configured WebPerf
with profiles for API latencies for n concurrent API calls, for
different values of n. WebPerf uses the dependency graph
of the web request to determine nc, the maximum number
of concurrent execution of a I/O call c during each web re-
quest. Then, WebPerf uses c’s latency profile under N × nc
concurrent calls. We used WebPerf to predict latency under
N = 10, 20, 30, 40, 50, and 60 concurrent requests. Fig-

ure 11(d) shows the CDFs of distributions of ground truth
and predicted cloud latencies for 30 concurrent requests. For
all values of N , median prediction errors were < 10%. end-
to-end median prediction errors were < 8%.
Scenario 6: What-if a replicated frontend fails? For this
scenario, we replicated SocialForum’s front end on two web
servers and placed them behind a load balancer. We then
used WebPerf to predict cloud latencies if one of the web
servers dies. WebPerf assumes that when one web server
fails, all user requests are routed to the live web server and
hence its load effectively doubles. Thus, WebPerf predicts
response times under a 2× concurrent user requests (similar
to the last scenario). We conducted the experiments with 10,
30, and 60 concurrent user requests. In all the cases, median
relative prediction error was < 9%.
Other applications: We conducted the above predictions
for all the applications in Table 3. For consistency, we used
the same set of scenarios across apps. In Scenario 1, we
upgraded their frontends from the lowest tier to a mid tier.
In Scenario 2, we replicated the frontend to Asia East. In
Scenario 3, front-end retrieves 6MB data from backend blob
storage. In Scenario 4, background CPU load is 70%. Sce-
nario 5 uses 30 concurrent connections. Scenario 6 uses 60
concurrent connections and one of the two frontend fails.

Figure 12(a) shows the median relative prediction errors
for all applications and scenarios. Overall, errors are small
(< 7%), indicating that WebPerf is able to predict cloud la-
tencies of a wide range of applications under the what-if sce-
narios we considered.

6.3 End-to-end Latency Prediction
We now evaluate how well WebPerf predicts end-to-end

latency (§ 5.1). We used all applications and scenarios
used for cloud latency prediction above. To quantify pre-
diction error, we obtained ground truth end-to-end latencies
by accessing the index page of the applications in a Chrome
browser from California. The cloud application was hosted
in an Azure US West datacenter, and we used the network
RTT distribution between the client and server as the net-
work latency model. The relative error of the predictions
(Figure 12(b)) for all applications and scenarios is, overall,
small (median error < 7%). Thus, WebPerf can also predict
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Figure 11—Distributions of predicted and ground truth latencies for SocialForum under various what-if scenarios.
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Figure 12—Median prediction errors for 5 apps and 6 scenarios.

end-to-end latency, given a good model for network latency
between client and server and a WebProphet-like tool that
can predict client-side latency.

Interestingly, WebPerf’s end-to-end prediction is slightly
more accurate than cloud-side prediction. This is because all
the what-if scenarios we considered affect cloud-side laten-
cies only, and offline cloud-side latency profiles have higher
uncertainty than baseline latencies. In contrast, client-side
prediction relies on baseline HTTP request latencies only,
and hence is more accurate.

6.4 Comparative Analysis
Across all applications and scenarios, WebPerf is accurate

when dependency graphs are small, and latency profiles are
less variable and mostly application-independent.
Dependency graph complexity. The more I/O nodes in a
dependency graph, the more the potential prediction errors.
ContactManager has simple dependencies, and hence pre-
diction for it is more accurate.
Profile variability. Profile variabilities manifest as predic-
tion errors. In all the apps we evaluated, SocialForum’s
baseline profiles had the least variability (since only this
app was deployed in dedicated VMs with performance iso-
lation). This helped WebPerf generate a better prediction
for SocialForum, despite its highly complicated dependency
graph (each request had 100+ I/O calls). Over all the sce-
narios, Scenario 4 and 6 had higher prediction errors due to
high variabilities in latency profiles used for these scenarios.
In Scenario 6, frontend latency was highly variable under a
large number of concurrent connections.
Application independence of profiles. Almost all APIs in
our applications were application-independent. The only ex-
ceptions were ContosoAds and CourseManager, which use
expensive SQL queries on medium sized tables. Other ap-
plications use small SQL tables, so latency does not change
much with tier change (Figure 2). Latencies of queries to
medium/large SQL table change as tiers change, and hence
using baseline latencies as estimates resulted in large errors.
The problem can be avoided by using workload hints, as

shown next.

6.5 Using Workload Hints
We now show a few scenarios where workload hints from

developer help WebPerf to improve its prediction.
Queries to large SQL tables. CourseManager issues a
Join query on medium-sized SQL tables (10K rows). Us-
ing baseline latencies, WebPerf’s prediction had a large er-
ror (median error 28.9%), because baseline latencies are not
good estimates across tiers for large tables (Figure 2). How-
ever, with workload hints on specific query and table size,
WebPerf could reactively build profiles for the given query
and table size and lower error to 4.6%.
Nondeterministic caching behavior. Latency distributions
of some APIs can be highly bimodal due to item popularity.
For example, latency of accessing an item in Azure CDN
depends on whether it is already in the cache, which in turn
depends on application’s workload. WebPerf’s profiling rec-
ognizes such bimodal latency and maintains multiple (two in
the CDN example) latency distributions as the profile for the
API. Using a workload hint on the cache miss rate, WebPerf
can combine these different distributions (using Monte Carlo
simulation [26]). We profiled Azure CDN’s data access API
and evaluated a scenario with 1% cache miss rate. Median
prediction error was 3.2%. Without the miss rate hints, the
error was > 40%.
Sharding Table storage. For SocialForum, we considered
“what-if the Table is sharded into two”. By default (without
workload hints), WebPerf’s prediction algorithm assumes
that sharding will result in half the load on each shard, and
predicts total latency based on Table storage’s latency under
half the load. We considered two workloads: (1) uniform
workload where requests access both shards with roughly
equal probability, in which case WebPerf’s prediction was
very accurate (median error 1.7%) (2) skewed workload
where all requests accessed one shard, and since it received
the full load. Without workload hints, WebPerf’s estimation
(assuming half load on each shard) has a median error of
90.1%; however, with the hint that the workload is highly
skewed towards only one shard, prediction became fairly ac-
curate (median error 5.9%).

6.6 Additional Results
Effect of concurrency limits. For ContosoAds, we consid-
ered “what-if we downgrade the SQL server from Standard
to Basic tier, with 50 concurrent requests”. The Basic tier
only supports a maximum of 30 concurrent connections, and
additional connections are queued. WebPerf’s prediction is



Figure 13—Prediction for ContosoAds with concurrency limit.

aware of such limits (§ 4.3) and in our experiment, it could
make accurate prediction, as shown in Figure 13 (median
error 2.1%); in contrast, ignoring such limit would have pro-
duced a median error of 87.3%.
Sources of prediction errors. At a high level, WebPerf has
two sources of errors: API latency models and the prediction
algorithm. To isolate errors introduced by the prediction al-
gorithms alone, we start with execution trace of a request
and use the prediction algorithm with true latencies of com-
pute and I/O calls in the trace. We then compute the relative
error of the predicted latency and the true total latency of
execution trace. We repeat this for all requests used in our
case studies. We find the average error to be 0.4% across all
requests, with 0.3% median and 1.1% maximum error. The
error is very small compared to the errors of the statistical
models (mean and median errors ranging from 0.4%-6.5%
and 0.5%-4.4% respectively), as shown in Figure 1. This
suggests that WebPerf’s prediction latency might be further
improved by using more sophisticated models or more data
on which models are built.
Impacts of measurement optimization. Finally, we evalu-
ate our optimization algorithms described in §5.2. We use 3
distinct requests for the SocialForum website, containing 9
distinct API calls to 5 different cloud services. The average
time for three requests are 1.3s, 3.8s, and 0.5s respectively.
We use a time budget of 2 minutes for all measurements.

We compare our algorithm with two baseline schemes: 1)
Round Robin (RR): all requests are repeated in round robin
fashion for 2 minutes, 2) Equal Time (ET): all requests are
allocated an equal time of 40 seconds each. For RR, each
request was executed 22 times. For ET, requests 1, 2, and
3 are executed 30, 10, and 80 times. On the other hand,
with our optimization algorithm, requests 1, 2, and 3 are ex-
ecuted 31, 19, and 15 times respectively. It collected more
samples for APIs with high latency variability. For each
API, we compared all predicted latency distributions with
the ground truth latency distributions. The (mean, median,
maximum) relative errors of our optimized algorithm for all
APIs were (1.8%, 1.68%, 10.1%), while for RR and ET, the
errors are (5.55%, 2.8%, 21.0%) and (6.68%, 2.4%, 18.4%)
respectively. To achieve a similar accuracy as WebPerf, RR
and ET need 2.6 min and 3.4 min respectively, more than
30% over the designated time. The results demonstrate a
significant benefit of our optimization algorithm.
WebPerf overhead. To quantify the overhead, we fix the
web applications’ web server tier. In our experiment, our
web server tier is standard tier. The average instrumentation
time for all the six applications is 3.1s. WebPerf’s instru-

mentation runtime overhead is lightweight - on average, it
increases the run time by 3.3%. In the prediction stage, the
overhead of obtaining the profile data is negligible as the
profiling data are stored in Azure table. We expect some
moderate overhead for the prediction algorithm’s operation
on the distribution; the average prediction time for all six ap-
plications’ what-if scenarios is around 5.6s. We believe these
overheads are reasonable: within tens of seconds, WebPerf
is able to predict the performance for web applications under
various scenarios quite accurately.

7. RELATED WORK
Performance prediction. Ernest [44] can accurately pre-
dict the performance of a given analytics job in the cloud.
In contrast, WebPerf focuses on web applications that, un-
like analytical jobs, are I/O intensive and are increasingly
written using the task asynchronous paradigm. WISE [42]
predicts how changes to CDN deployment and configura-
tion affect service response times. Unlike WebPerf, WISE
targets CDNs. Mystery Machine [10] uses extensive cloud-
side logs to extract the dependency and identify the critical
paths. It targets cloud providers, and hence uses extensive
platform instrumentation. In contrast, WebPerf targets third-
party developers, and relies on instrumenting app binaries
alone. Both WISE and Mystery Machine use purely data-
driven techniques In contrast, WebPerf has less data when
an application is being deployed, and hence it uses a combi-
nation of instrumentation and modeling for prediction.

WebProphet [25] can predict webpage load time, but it
focuses only on end-to-end prediction. In contrast, WebPerf
considers both cloud-side prediction and end-to-end predic-
tion. WebProphet extracts (approximate) dependencies be-
tween web objects through client-side measurements, while
WebPerf extracts accurate dependencies by instrumentation.
CloudProphet [24] is a trace-and-replay tool to predict a
legacy application’s performance if migrated to a cloud in-
frastructure. CloudProphet traces the workload of the appli-
cation when running locally, and replays the same workload
in the cloud for prediction. Unlike WebPerf, it does not con-
sider what-if scenarios involving changes in configurations
and runtime conditions of web applications. Herodotou et
al. [20] propose a system to profile and predict performance
of MapReduce programs; however, the technique is tightly
integrated to MapReduce and cannot be trivially generalized
to a web application setting.
Dependency analysis. Closest to our work is AppInsight
[32, 33], which can automatically instrument .NET appli-
cation binaries to track causality of asynchronous events.
However, it does not support the Async-Await program-
ming paradigm. To our knowledge, no prior instrumentation
framework can accurately track the dependency graphs for
applications written in this paradigm.

Significant prior work has focused on dependency graph
extraction [36, 16, 8, 38, 35, 5, 27, 47]. Systems that use
black-box techniques [36, 47] fail to characterize the accu-
rate dependencies between I/O, compute, and other compo-
nents, and hence can result in poor prediction accuracy. Sys-



tems that modify the framework [16, 8, 38, 35] are hard to
deploy in cloud platforms. And techniques that require de-
veloper effort [5, 27] are hard to scale. There are also sys-
tems that track dependencies of network components [46, 9].
WebPerf differs from these frameworks in its target system
(cloud-hosted web application).
Webpage Analysis. [17, 45, 14, 19, 30] measure web-
site performance by analyzing the request waterfall. Page-
speed [17] analyzes the webpage source and proposes con-
tent optimization. Unlike WebPerf, these systems only focus
on the client-side view and not the server-side.

8. CONCLUSION
We presented WebPerf, a system that systematically ex-

plores what-if scenarios in web applications to help devel-
opers choose the right configurations and tiers for their tar-
get performance needs. WebPerf automatically instruments
the web application to capture causal dependencies of I/O
and compute components in the request pipeline. Together
with online- and offline-profiled models of various compo-
nents, it uses the dependency graphs to estimate a distribu-
tion of cloud and end-to-end latency. We have implemented
WebPerf for Microsoft Azure. Our evaluation with six real
web application shows that WebPerf can be highly accurate
even for websites with complex dependencies.
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