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Image understanding depends critically on learning visual models which can be for-

mulated in terms of probabilistic structured representations. But the two-dimensional

nature of images makes it much hard to design efficient image understanding systems

and the form of the representations is also unclear. The key assumption used to address

these problems in this thesis is that the visual world is recursively compositional. This

enables us to construct representations, by recursively combining elementary stochas-

tic templates, and makes inference and unsupervised learning practical. By introducing

elementary visual constituents of recursion properties, we design recursively composi-

tional systems for two basic image understanding problems, deformable object parsing

and image parsing.

We first propose a recursive deformable template model to represent objects in a hi-

erarchical form. The object template consists of a small number of small sub-templates

which is composed by smaller subsub-templates, and so on. The composition of tem-

plates and their deformation are imposed at different levels to capture both short-range

and long-range correlations. The recursive design enables us to perform rapid parsing

by dynamic programming, efficient unsupervised learning by recursive composition

xxv



and supervised training by structured -perceptron. The learnt model together with the

inference algorithms are capable of performing different vision tasks simultaneously,

such as object detection, segmentation and parsing (e.g. matching/alignment of object

parts).

Next we extend the recursive deformable template model to a novel AND/OR

graph representation for parsing articulated objects into parts and recovering their

poses. The recursion design in the AND/OR graph allows us to handle an enormous

variety of articulated poses with a compact graphical model where the rapid infer-

ence can be performed. We present a novel structure-learning method, Max Margin

AND/OR Graph (MM-AOG), to learn the parameters of the AND/OR graph model

discriminatively.

Finally, we present a recursive segmentation and recognition template model for

2D image parsing. This representation consists of recursive segmentation-recognition

templates which account for image segmentation and object recognition simultane-

ously at multiple layers. The recursive templates result in a coarse-to-fine represen-

tation which is capable of capturing long-range dependency and exploiting different

levels of contextual information. The recursive structure also allows us to design a

rapid inference algorithm, based on dynamic programming, which enables us to parse

the image rapidly in polynomial time, and learn the model efficiently in a discrimina-

tive manner.

We demonstrate the significant benefits of the recursive design on several vision

tasks including deformable articulated object detection, parsing and segmentation, and

image segmentation and scene understanding. Our experiments on the challenging

public datasets show that the recursively compositional systems achieve the state-of-

the-art performance.
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Background
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CHAPTER 1

Overview

1.1 Motivation

Vision is a pre-eminent pattern theoretic problem. The difficulty of vision arises from

the complexity and ambiguity of natural images (notoriously models designed using

synthetic stimuli almost never scale-up to work on realistic images). The importance,

and difficulty, of visual perception can be appreciated by realizing that the optic nerve

is the largest nerve in the body and the visual cortex is estimated to be roughly half the

size of the entire cortex. Hence designing a system that can perform the main tasks of

vision detecting and recognizing objects and interpreting images and scenes is equiv-

alent to a computational understanding of at least half the cortex. Moreover, recent

computational studies suggest that similar underlying principles underly all aspects of

cognition and that a deep understanding of vision will translate to other domains.

But how is vision possible? And, in particular, how can an infant or a robot learn to

decode the complexity of real world images? It has been argued that vision, and other

cognitive tasks, can be formulated in terms of probabilistic inference on structured

representations [5]. But how can these representations and probability distributions

be learnt in an unsupervised way from real images? How can we perform efficient

inference on these probability distributions? How can the system scale to deal with

the large numbers of different objects in the world and the enormous variety of images

and visual scenes? These are critical questions that we address in this thesis.
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This thesis will present a strategy for addressing all of these problems which are

tested on large image datasets. The key assumption is that the visual world is recur-

sively compositional. This enables us to construct representations, by combining ele-

mentary stochastic structures (e.g. templates) enabling scalability, and makes inference

and unsupervised learning practical. By introducing elementary visual constituents of

recursion and composition properties, we design recursively compositional systems

for two basic image understanding problems, deformable object parsing and image

parsing. We note that our approach leads to networks that differ from traditional ar-

tificial neural networks but which can instead propose neural architectures based on

computational requirements, in the spirit of Valiants work on circuits of the mind [6].

We hope, and anticipate, that the techniques we develop can be applied to other pattern

theory problems.

1.2 Thesis Summary

Image understanding depends critically on learning visual models which can be for-

mulated in terms of probabilistic structured representations. But the two-dimensional

nature of images makes it much hard to design efficient image understanding systems

and the form of the representations is also unclear. The key assumption to address

these problems is that the visual world is recursively compositional. This enables us to

construct representations, by recursively combining elementary stochastic templates

, and makes inference and unsupervised learning practical. By introducing elemen-

tary visual constituents of recursion properties, we design recursively compositional

systems for two basic image understanding problems, deformable object parsing and

image parsing.

We first introduce our previous attempt to object modeling. We address the is-

sues of object representation and unsupervised learning. We present a Probabilistic
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Grammar-Markov Model (PGMM) which couples probabilistic context free grammars

and Markov Random Fields. PGMMs are designed so that they can perform rapid in-

ference, parameter learning, and the more difficult task of structure induction. But

PGMMs do not rely on the recursion.

After introducing PGMMs, we propose a recursive deformable template model to

represent objects in a hierarchical form. The object template consists of a small num-

ber of small sub-templates which is composed by smaller subsub-templates, and so

on. See the examples of recursive deformable templates in figure 1.1. The composi-

tion of templates and their deformation are imposed at different levels to capture both

short-range and long-range correlations. The recursive design enables us to perform

rapid inference (parsing) by dynamic programming, efficient unsupervised learning by

recursive composition, supervised training by structured -perceptron. The learnt mod-

els together with the inference algorithms are capable of performing different vision

tasks simultaneously, such as object detection, segmentation and parsing (e.g. match-

ing/alignment of object parts).

Next we extend the recursive deformable template model to a novel AND/OR

graph representation for parsing articulated objects into parts and recovering their

poses. The recursion design in the AND/OR graph allows us to handle an enormous

variety of articulated poses with a compact graphical model where the rapid infer-

ence can be performed. We present a novel structure-learning method, Max Margin

AND/OR Graph (MM-AOG), to learn the parameters of the AND/OR graph model

discriminatively.

Finally, we present a recursive segmentation and recognition template model for

2D image parsing. This representation consists of recursive segmentation-recognition

templates which account for image segmentation and object recognition simultane-

ously at multiple layers. The recursive templates result in a coarse-to-fine represen-
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Level 1

Level 2

Level 3

Level 4

Level 0

Figure 1.1: This figure shows recursive deformable templates for horses at different

levels. The object template consists of a small number of small sub-templates at lower

level. The sub-templates consist of smaller subsub-templates, and so on. Observe how

the vocabulary contains “generic” shapes at low levels, but horse specific parts at the

higher levels. These templates are learnt automatically as described in chapter 5.
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tation which is capable of capturing long-range dependency and exploiting different

levels of contextual information. The recursive structure also allows us to design a

rapid inference algorithm, based on dynamic programming, which enables us to parse

the image rapidly in polynomial time, and learn the model efficiently in a discrimina-

tive manner.

We demonstrate the advantages of the recursive design on several vision tasks in-

cluding deformable articulated object detection, parsing and segmentation, and im-

age segmentation and scene understanding. Our experiments on challenging public

datasets show that the recursively compositional systems achieve the state-of-the-art

performance. We stress that we are using a general approach which is suitable to all

problems, rather than a limited task specific approach.

1.3 Outline of the Thesis

Part I of this thesis consists of Chapters 1 and 2, which are the overview and general

background.

Chapter 2 briefly introduces the vision tasks that we address in this thesis and

their evaluation criteria. We also describe some public datasets which are used for

evaluations.

In Part II, we describe our first attempt to addressing the object modeling and

unsupervised learning which motivates our later development on recursive design.

Part III consists of Chapter 4 to 7 in which we develop the recursion and compo-

sition based framework including the recursive deformable template model, composi-

tional inference, supervised structure-perceptron learning, and unsupervised learning

by recursive composition. We show that our experimental results are superior to those

obtained by many other competing methods in deformable object segmentation and
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parsing. Chapter 7 further extends the representation to a novel AND/OR graph model

and presents max-margin structure learning for estimating the parameters of the model.

The learnt AND/OR model results in significant improvement for the task of articu-

lated object parsing, e.g, human body parsing.

Part IV applies the recursion composition principle to the image parsing problem.

We present a recursive segmentation and recognition template model for 2D image

parsing. The recursive structure naturally leads to a rapid inference algorithm, based

on dynamic programming, which enables us to parse the image rapidly in polynomial

time. We describe the structure-perceptron training of the model in a discriminative

manner. The proposed approach achieves the state-of-the-art performance on the tasks

of image segmentation and scene labeling.

Part V concludes the thesis and suggests future research directions.

1.4 The Track of our Research Program

We started our journey for building hierarchical compositional system in NIPS 2005

[7]. Though it is not presented in this thesis, it was valuable as a starting point. The

system had a compositional form, but had no recursion in the design. Nevertheless,

the idea of non-maximum suppression in this work, which was proposed for rapid

inference, inspired the recursive design in the later models.

Chapter 3 is based on our work in NIPS 2006 [8] and [9] where we abandoned the

spirit of recursion and composition temporarily, but provided a triplet shape descriptor

which is used later in our recursive models as a basic building block for shape repre-

sentation. We also studied the issues occurring in the unsupervised structure induction

which strongly pushed us back to the track of the recursion and composition design.

This lead to additional collaborative work (POMs) [10] that is part of the thesis of
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Chen and is not reported in this thesis.

Chapters 4 and 5 draw from our work in NIPS 2007 [11] and CVPR 08 [12] where

we returned to the hierarchical design, proposed the recursive deformable template

model fully based on the recursion and composition principle, and demonstrated a

successful system for deformable object parsing and segmentation. Chapter 6 is based

on our work to be presented in ECCV 2008 [13] where two learning principles are pro-

posed to overcome the issues in unsupervised learning discovered in our first attempt

[7]. Charter 7 is based on our work in CVPR 2008 [14] which is an extension from the

task of deformable object parsing to articulated object parsing.

Chapter 8 is based on our work to be presented at NIPS 2008 [15] which is another

design following the same recursion and composition principle, but used for a different

task, i.e. image parsing.
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CHAPTER 2

Vision Tasks, Evaluation Criterions and Datasets

In this thesis, we are interested in both object modeling and image understanding.

We study a range of basic vision tasks. In particular, for object modeling, we exploit

the tasks of object categorization, detection, segmentation and parsing. For image

understanding, we focus on the task of image segmentation and scene labeling. This

chapter will introduce these tasks and their evaluation criterions. The datasets used for

testing the algorithms on these tasks will be described.

2.1 Object Categorization, Detection, Segmentation and Parsing

2.1.1 Object Categorization

The task of object categorization is to classify an image containing the object versus

purely background images. In this task, we are not required to predict the position of

the object. The classification rate (=1-error rate) is used to evaluate the categorization

performance.

2.1.2 Object Detection

Object detection is a basic vision task where we are interested in locating the object by

the estimation of the center and size of the object. We use detections rate to quantify

the proportion of successful detections. We rate detection to be successful if the area
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of intersection of the labeled object region (obtained the object detectors) and the true

object region is greater than half the area of the union of these regions.

2.1.3 Object Segmentation

Object segmentation requires the segmentation algorithms to label every pixel in the

input image to be object or non-object (background). We use segmentation accu-

racy to quantify the proportion of the correct pixel labels (object or non-object). Al-

though segmentation accuracy is widely used as a measure for segmentation, it has

the disadvantage that it depends on the relative size of the object and the background.

Therefore, to overcome the shortcoming of segmentation accuracy, we also report pre-

cision/recall, see [16], where precision = P∩TP
P

and recall = P∩TP
TP

(P is the set of

pixels which are classifier as object by the segmentation algorithm and TP is the set of

object pixels in ground truth). We note that segmentation accuracy is commonly used

in the computer vision community, while precision/recall is more standard in machine

learning.

2.1.4 Object Parsing: Matching and Alignment

Object parsing (e.g. matching and alignment) is a task to predict the pose (position,

orientation and orientation) of the object and its parts. To evaluate the performance

of parsing and matching/alignment, we use the average position error measured in

terms of pixels. This quantifies the average distance between the positions of object

parts (e.g. eyes, mouth, nose for face alignment, and head, leg, tail for horse parsing)

of the ground truth and those estimated by the parsing algorithms.

10



2.1.5 Image Parsing: Segmentation and Scene Labeling

In this thesis, image parsing is to perform both image segmentation and object recogni-

tion. More specifically, we want to label every image pixels to one of object classes. To

evaluate the performance of parsing we use the global accuracy measured in terms of

all pixels and the average accuracy over a number of object classes (global accuracy

pays most attention to frequently occurring objects and penalizes infrequent objects).

2.2 Datasets

2.2.1 Caltech-101 Dataset

The Caltech-101 dataset [17] consists of images from 101 object categories and an

additional background class. Each category contains 40 to 800 images (typically less

than 100). Most categories have about 50 images. The size of each image is roughly

300 x 200 pixels. There is significant variation in color, pose and lighting. But the size

and position of objects do not vary a lot. In most cases, objects appear in the center

of the image and occupy one third of the whole image. To make this dataset more

challenging, we randomized the scale and orientation of objects for some experiments.

This dataset is typically used to .levaluate the performance of object categorization.

2.2.2 Weizmann Horse Dataset

The Weizmann Horse dataset [18] was designed for the evaluation of object segmen-

tation. Recently, this dataset has also been used for testing object parsing. There are

328 horse images with cluttered background, shape variations, textured patterns, and

changes in viewing angles. But in most images, the object appears in the center of the

image and the background is relative small. These datasets are designed to evaluate
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segmentation, so the groundtruth only gives the regions of the object and the back-

ground. To supplement this groundtruth, we required students to manually parse the

images by locating the positions of object parts (e.g. head, leg, tail, etc.) in the images.

2.2.3 Multi-view Face Alignment Dataset

We use the dataset [19] for testing algorithm on multi-view face alignment. This

dataset contains 280 image with ground truth of standard 65 key points which lie along

the boundaries of face components with semantic meaning, i.e, eyes, nose, mouth and

cheek.

2.2.4 Berkeley Human Baseball Dataset

The Berkeley Human Baseball dataset [20] is designed for the task of human body

parsing. To supplement this groundtruth, we required students to manually parse the

images by locating the positions of the parts of human body. In the experiment of

human body parsing, Srinivasan and Shi [2] only used 5 joint nodes (head-torso, torso-

left thigh, torso-right thigh, left thigh-left lower leg, right thigh-right lower leg) per

image. In our case, there are 27 nodes along the boundary of human body per image

used to give more detailed parsing. Therefore, we also asked students to label the parts

of the human body as ground truth (i.e. to identify different parts of the human). This

dataset contains a large variance of poses of human body and the appearance of clothes

changes a lot from image to image.

2.2.5 MSRC Dataset

We use a standard public dataset, the MSRC 21-class Image Dataset [21], to perform

experimental evaluations for the image parsing. This dataset is designed to evaluate

12



scene labeling including both image segmentation and multi-class object recognition.

The ground truth only gives the labeling of the image pixels. There are a total of 591

images.
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Part II

Non-Recursive Representation and

Learning
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CHAPTER 3

Probabilistic Grammar-Markov Model

In this chapter, we address the issues of object representation and unsupervised learn-

ing, but abandon the spirit of recursion and composition temporarily. We introduce a

Probabilistic Grammar-Markov Model (PGMM) which couples probabilistic context

free grammars and Markov Random Fields. These PGMMs are generative models

defined over attributed features and are used to detect and classify objects in natural

images. PGMMs are designed so that they can perform rapid inference, parameter

learning, and the more difficult task of structure induction. PGMMs can deal with

unknown 2D pose (position, orientation, and scale) in both inference and learning,

different appearances, or aspects, of the model. The PGMMs can be learnt in an unsu-

pervised manner where the image can contain one of an unknown number of objects

of different categories or even be pure background. We first study the weakly super-

vised case, where each image contains an example of the (single) object of interest,

and then generalize to less supervised cases. The goal of this chapter is theoretical but,

to provide proof of concept, we demonstrate results from this approach on a subset

of the Caltech dataset (learning on a training set and evaluating on a testing set). Our

results are generally comparable with the current state of the art, and our inference is

performed in less than five seconds. PGMMs and structure induction learning meth-

ods discussed in this chapter are out first attempt to the object modeling and learning.

Their limitations of non-recursive design and greedy learning will motivate our later

work.
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3.1 Introduction

Remarkable progress in mathematics and computer science of probability is leading

to a revolution in the scope of probabilistic models. There are exciting new proba-

bility models defined on structured relational systems, such as graphs or grammars

[22, 23, 24, 25, 26, 27]. Unlike more traditional models, such as Markov Random

Fields (MRF’s) [28] and Conditional Random Fields (CRF’s) [23], these models are

not restricted to having fixed graph structures. Their ability to deal with varying graph

structure means that they can be applied to model a large range of complicated phe-

nomena as has been shown by their applications to natural languages [29], machine

learning [27], and computer vision [30].

Our longterm goal is to provide a theoretical framework for the unsupervised learn-

ing of probabilistic models for generating, and interpreting, natural images [30]. This

is somewhat analogous to Klein and Manning’s work on unsupervised learning of nat-

ural language grammars [24]. In particular, we hope that this chaper can help bridge

the gap between computer vision and related work on grammars in machine learn-

ing [29],[22],[27]. There are, however, major differences between vision and natural

language processing. Firstly, images are arguably far more complex than sentences

so learning a probabilistic model to generate natural images is too ambitious to start

with. Secondly, even if we restrict ourselves to the simpler task of generating an im-

age containing a single object we must deal with: (i) the cluttered background (similar

to learning a natural language grammar when the input contains random symbols as

well as words), (ii) the unknown 2D pose (size, scale, and position) of the object, and

(iii) different appearances, or aspects, of the object (these aspect deal with changes

due to different 3D poses of the object, different photometric appearance, different 2D

shapes, or combinations of these factors). Thirdly, the input is a set of image intensi-

ties and is considerably more complicated than the limited types of speech tags (e.g.
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nouns, verbs, etc) used as input in [24].

In this chapter, we address an important subproblem. We are given a set of images

containing one of an unknown number of objects (with variable 2D pose) of different

categories, or even pure background. The object is allowed to have several different

appearances, or aspects. We call this unsupervised learning by contrast to weakly

supervised learning where each image contains an example of a single object (but the

position and boundary of the object are unknown). We represent these images in terms

of attributed features (AF’s). The task is to learn a probabilistic model for generating

the AF’s (both those of the object and the background). We require that the probability

model must allow: (i) rapid inference (i.e. interpret each image), (ii) rapid parameter

learning, and (iii) structure induction, where the structure of the model is unknown

and must be grown in response to the data.

To address this subproblem, we develop a Probabilistic Grammar Markov Model

(PGMM) which is motivated by this goal and its requirements. The PGMM combines

elements of MRF’s [28] and probabilistic context free grammars (PCFG’s) [29]. The

requirement that we can deal with a variable number of AF’s (e.g. caused by different

aspects of the object) motivates the use of grammars (instead of fixed graph models

like MRF’s). But PCFG’s, see figure (3.1), are inappropriate because they make in-

dependence assumptions on the production rules and hence must be supplemented by

MRF’s to model the spatial relationships between AF’s of the object. The requirement

that we deal with 2D pose (both for learning and inference) motivates the use of ori-

ented triangles of AF’s as our basic building blocks for the probabilistic model, see

figure (3.2). These oriented triangles are represented by features, such as the internal

angles of the triangle, which are invariant to the 2D pose of the object in the image.

The requirement that we can perform rapid inference on new images is achieved by

combining the triangle building blocks to enable dynamic programming. The ability
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Figure 3.1: Probabilistic Context Free Grammar. The grammar applies production

rules with probability to generate a tree structure. Different random sampling will

generate different tree structures. The production rules are applied independently on

different branches of the tree. There are no sideways relations between nodes.

to perform rapid inference ensures that parameter estimation and structure learning is

practical.

We decompose the learning task into: (a) learning the structure of the model, and

(b) learning the parameters of the model. Structure learning is the more challenging

task [29],[22],[27] and we propose a structure induction (or structure pursuit) strategy

which proceeds by building an AND-OR graph [25, 26] in an iterative way by adding

more triangles or OR-nodes (for different aspects) to the model. We use clustering

techniques to make proposals for adding triangles/OR-nodes and validate or reject

these proposals by model selection. The clustering techniques relate to Barlow’s idea

of suspicious coincidences [31].

We evaluate our approach by testing it on parts of the Caltech-4 (faces, motorbikes,

airplanes and background) [32] and Caltech-101 database [17]. Performance on this

database has been much studied [32, 33, 34, 35, 36]. But we stress that the goal

here is to develop a novel theory and test it, rather than simply trying to get better
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Figure 3.2: This chapter uses triplets of nodes as building blocks. We can grow the

structure by adding new triangles. The junction tree (the far right panel) is used to

represent the combination of triplets to allow efficient inference.

performance on a standard database. Nevertheless our experiments show three major

results. Firstly, we can learn PGMMs for a number of different objects and obtain

performance results close to the state of the art. Moreover, we can also obtain good

localization results (which is not always possible with other methods). The speed of

inference is under five seconds. Secondly, we demonstrate our ability to do learning

and inference independent of the scale and orientation of the object (we do this by

artificially scaling and rotating images from Caltech 101, lacking a standard database

where these variations occur naturally). Thirdly, the approach is able to learn from

noisy data (where half of the training data is only background images) and to deal

with object classes, which we illustrate by learning a hybrid class consisting of faces,

motorbikes and airplane.

This chapter is organized as follows. We first review the background in sec-

tion (3.2). Section (3.3) describes the features we use to represent the images. In

section (3.4) we give an overview of PGMMs. Section (3.5) specifies the probability

distributions defined over the PGMM. In section (3.6), we describe the algorithms

for inference, parameter learning, and structure learning. Section (3.7) illustrates our

approach by learning models for 38 objects, demonstrating invariance to scale and
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Figure 3.3: Ten of the object categories from Caltech 101 which we learn in this chap-

ter.

rotation, and performing learning for object classes.

3.2 Background

This section gives a brief review of the background in machine learning and computer

vision.

Structured models define a probability distribution on structured relational sys-

tems such as graphs or grammars. This includes many standard models of probability

distributions defined on graphs – for example, graphs with fixed structure, such as

MRF’s [28] or Conditional Random Fields [23], or Probabilistic Context Free Gram-

mars (PCFG’s) [29] where the graph structure is variable. Attempts have been made

to unify these approaches under a common formulation. For example, Case-Factor

Diagrams [22] have recently been proposed as a framework which subsumes both

MRF’s and PCFG’s. In this chapter, we will be concerned with models that combine

probabilistic grammars with MRF’s. The grammars are based on AND-OR graphs

[22, 25, 26], which relate to mixtures of trees [37]. This merging of MRF’s with prob-
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abilistic grammars results in structured models which have the advantages of variable

graph structure (e.g. from PCFG’s) combined with the rich spatial structure from the

MRF’s.

There has been considerable interest in inference algorithms for these structured

models, for example McAllester et al. [22] describe how dynamic programming al-

gorithms (e.g. Viterbi and inside-outside) can be used to rapidly compute properties

of interest for Case-Factor diagrams. But inference on arbitrary models combining

PCFG’s and MRF’s remains difficult.

The task of learning, and particularly structure induction, is considerably harder

than inference. For MRF models, the number of graph nodes is fixed and structure

induction consists of determining the connections between the nodes and the corre-

sponding potentials. For these graphs, an effective strategy is feature induction [38]

which is also known as feature pursuit [39]. A similar strategy is also used to learn

CRF’s [40] where the learning is fully supervised. For Bayesian network, there is work

on learning the structure using the EM algorithm [41].

Learning the structure of grammars in an unsupervised way is more difficult. Klein

and Manning [24] have developed unsupervised learning of PCFG’s for parsing natural

language, but here the structure of grammar is specified. Zettlemoyer and Collins [27]

perform similar work based on lexical learning with lambda-calculus language.

To our knowledge, there is no unsupervised learning algorithm for structure in-

duction for any PGMM. But an extremely compressed version of part of our work

appeared in [8].

There has been a considerable amount of work for learning MRF models for visual

tasks such as object detection. An early attempt was described in [42]. The constella-

tion model [32] is a nice example of a weakly supervised algorithm which represents

objects by a fully connected (fixed) graph. Huttenlocher and collaborators [35, 34]
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Figure 3.4: The oriented triplet is specified by the internal angles β, the orientation of

the vertices θ, and the relative angles α between them.

explore different simpler MRF structures, such as k-fans models, which enable rapid

inference.

There is also a large literature [32, 33, 34, 35, 36] on computer vision models

for performing object recognition many of which have been evaluated on the Caltech

databases [32]. Indeed, there is a whole range of computer vision methods which have

been evaluated on the Caltech database [17]. A review of performance and critiques

of the database are given in [43]. A major concern is that the nature of this dataset

enables over-generalization, for example, the models can use features that occur in the

background of the image and not within the object.

3.3 The Image Representation: Features and Oriented Triplets

In this chapter we will represent images in terms of isolated attributed features, which

will be described in section (3.3.1). A key ingredient of our approach is to use con-

junctions of features and, in particular, triplets of features with associated angles at the

vertices which we call oriented triplets, see figures (3.4,3.5). The advantages of using

conjunctions of basic features is well-known in natural language processing and leads

to unigram, bigram, and trigram features [29].
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Figure 3.5: This figure illustrates the features and triplets without orientation (left two

panels) and oriented triplets (next two panels).

There are several reasons for using oriented triplets in this chapter. Firstly, they

contain geometrical properties which are invariant to the scale and rotation of the

triplet. These properties include the angles between the vertices and the relative angles

at the vertices, see figures (3.4,3.5). These properties can be used both for learning and

inference of a PGMM when the scale and rotation are unknown. Secondly, they lead

to a representation which is well suited to dynamic programming, similar to the junc-

tion tree algorithm [44], which enables rapid inference, see figures (3.6,3.2). Thirdly,

they are well suited to the task of structure pursuit since we can combine two oriented

triplets by a common edge to form a more complex model, see figures (3.2,3.6).

3.3.1 The Image Features

We represent an image by attributed features {xi : i = 1, .., Nτ}, where Nτ is the

number of features in image Iτ with τ ∈ Λ, where Λ is the set of images. Each feature

is represented by a triple xi = (zi, θi, Ai), where zi is the location of the feature in the

image, θi is the orientation of the feature, and Ai is an appearance vector.

These features are computed as follows. We apply the Kadir-Brady [45] operator

Kb to select circular regions {Ci(Iτ ) : i = 1, ..., Nτ} of the input image Iτ such that
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Kb(C
i(Iτ )) > T, ∀ i, where T is a fixed threshold. We scale these regions to a constant

size to obtain a set of scaled regions {Ĉi(Iτ ) : i = 1, ..., Nτ}. Then we apply the SIFT

operator L(.) [46] to obtain Lowe’s feature descriptor Li = L(Ĉi(Iτ )) together with

an orientation θi (also computed by [46]) and set the feature position zi to be the center

of the window Ci. Then we perform PCA on the appearance attributes (using the data

from all images {Iτ : τ ∈ Λ}) to obtain a 15 dimensional subspace (a reduction from

128 dimensions). Projecting Li into this subspace gives us the appearance attribute Ai.

The motivation for using these operators is as follows. Firstly, the Kadir-Brady

operator is an interest operator which selects the parts of the image which contain

interesting features (e.g. edges, triple points, and textured structures). Secondly, the

Kadir-Brady operator adapts geometrically to the size of the feature, and hence is

scale-invariant. Thirdly, the SIFT operator is also (approximately) invariant to a range

of photometric and geometric transformations of the feature. In summary, the features

occur at interesting points in the image and are robust to photometric and geometric

transformations.

3.3.2 The Oriented Triplets

An oriented triplet of three feature points has geometry specified by (zi, θi, zj, θj, zk, θk)

and is illustrated in figures (3.4,3.5). We construct a 15 dimensional invariant triplet

vector ~l which is invariant to the scale and rotation of the oriented triplet.

~l(zi, θi, zj, θj, zk, θk) = (l1/L, l2/L, l3/L,

cos α1, sin α1, cos α2, sin α2, cos α3, sin α3,

cos β1, sin β1, cos β2, sin β2, cos β3, sin β3), (3.1)

where l1, l2, l3 are the length of the three edges, L = l1 + l2 + l3, α1, α2, α3 are the

relative angles between the orientations θi, θj, θk and the orientations of the three edges
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of the triangle, and β1, β2, β3 are the angles between edges of the triangle (hence β1 +

β2 + β3 = π).

This representation is over-complete. But we found empirically that it was more

stable than lower-dimensional representations. If rotation and scale invariance are not

needed, then we can use alternative representations of triplets such as (l1, l2, l3, θ1, θ2, θ3,

β1, β2, β3). Previous authors [47, 48] have used triples of features but, to our knowl-

edge, oriented triplets are novel.

3.4 Probabilistic Grammar-Markov Model

We now give an overview of the Probabilistic Grammar-Markov Model (PGMM),

which has characteristics of both a probabilistic grammar, such as a Probabilistic Con-

text Free Grammar (PCFG), and a Markov Random Field (MRF). The probabilistic

grammar component of the PGMM specifies different topological structures, as illus-

trated in the five leftmost panels of figure (3.6), enabling the ability to deal with vari-

able number of attributed features. The MRF component specifies spatial relationships

and is indicated by the horizontal connections.

Formally we represent a PGMM by a graph G = (V, E) where V and E denote the

set of vertices and edges respectively. The vertex set V contains three types of nodes,

”OR” nodes, ”AND” nodes and ”LEAF” nodes which are depicted in figure (3.6) by

triangles, rectangles and circles respectively. The edge set E contains vertical edges

defining the topological structure and horizontal edges defining spatial constraints (e.g.

MRF’s).

The leaf nodes are indexed by a and will correspond to AF’s in the image. They

have attributes (za, θa, Aa), where za denotes the spatial position, θa the orientation,

and Aa the appearance. There is also a binary-valued observability variable ua which
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Figure 3.6: Graphical Models. Squares, triangles, and circles indicate AND, OR, and

LEAF nodes respectively. The horizontal lines denote MRF connections. The far right

panel shows the background node generating leaf nodes. The models for O1 for panels

2,3 and 4 correspond to the triplets combinations in figure (3.2). See text for notation.

indicates whether the node is observable in the image (a node may be unobserved

because it is occluded, or the feature detector has too high a threshold). We set y to

be the parse structure of the graph when the OR nodes take specific assignments. We

decompose the set of leaves L(y) = LB(y)
⋃

LO(y), where LB(y) are the leaves due

to the background model, see the far right panel of figure (3.6), and LO(y) are the

leaves due to the object. We order the nodes in LO(y) by ”drop-out”, so that the closer

the node to the root the lower its number, see figure (3.6).

In this chapter, the only OR node is the object category node O. This corresponds

to different aspects of the object. The remaining non-terminal nodes are AND nodes.

They include a background node B, object aspect nodes Oi and clique nodes of form

Na,a+1 (containing points na, na+1). Each aspect Oi corresponds to a set of object

leaf nodes LO(y) with corresponding cliques C(LO(y)). As shown in figure (3.6),

each clique node Na,a+1 is associated with a leaf node na+2 to form a triplet-clique
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Ca{na, na+1, na+2}.

The directed (vertical) edges connect nodes at successive levels of the tree. They

connect: (a) the root node S to the object node and the background node, (b) the

object node to aspect nodes, (c) a non-terminal node to three leaf nodes, see panel (ii)

of figure (3.6), or (d) a non-terminal node to a clique node and a leaf node, see panel

(iii) of figure (3.6). In case (c) and (d), they correspond to a triplet-clique of point

features.

Figure (3.6) shows examples of PGMMs. The top rectangle node S is an AND

node. The simplest case is a pure background model, in panel (1), where S has a

single child node B which has an arbitrary number of leaf nodes corresponding to

feature points. In the next model, panel (2), S has two child nodes representing the

background B and the object category O. The category node O is an OR node which

is represented by a triangle. The object category node O has child node, O1, which has

a triplet of child nodes corresponding to point features. The horizontal line indicates

spatial relations of this triplet. The next two models, panels (3) and (4), introduce new

feature points and new triplets. We can also introduce a new aspect of the object O2,

see panel (5), to allow for the object to have a different appearance.

3.5 The Distribution defined on the PGMM

The structure of the PGMM is specified by figure (3.7). The PGMM specifies the

probability distribution of the AF’s observed in an image in terms of parse graph y and

model parameters Ω, ω for the grammar and the MRF respectively. The distribution

involves additional hidden variables which include the pose G and the observability

variables u = {ua}. We set z = {za}, A = {Aa}, and θ = {θa}. See table (3.1) for

the notation used in the model.
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Table 3.1: The notations used for the PGMM.
Notation Meaning

Λ the set of images

xi = (zi, θi, Ai) an attributed feature (AF)

{xi : i = 1, ..., Nτ} attributed features of image Iτ

Nτ the number of features in image Iτ

zi the location of the feature

θi the orientation of the feature

Ai the appearance vector of the feature

y the topological structure

a the index of the node

na the leaf nodes of PGMM

Ca = {na, na+1, na+2} a triplet clique

~lC() the invariance triplet vector of clique C

u = {ua} observability variables

Ω the parameters of grammatical part

ω (ωg, ωA)

ωg the parameters of spatial relation of leaf nodes

ωA the parameters of appearances of the AF’s

V = {i(a)} the correspondence variables

28



Figure 3.7: This figure illustrates the dependencies between the variables. The vari-

ables Ω specify the probability for topological structure y. The spatial assignments z

of the leaf nodes are influenced by the topological structure y and the MRF variables

ω. The probability distribution for the image features x depends on y, ω and z.

We define the full distribution to be:

P (u, z, A, θ, y, ω, Ω) = P (A|y, ωA)P (z, θ|y, ωg)P (u|y, ωg)P (y|Ω)P (ω)P (Ω).

(3.2)

The observed AF’s are those for which ua = 1. Hence the observed image features

x = {(za, Aa, θa) : s.t. ua = 1}. We can compute the joint distribution over the

observed image features x by:

P (x, y, ω, Ω) =
∑

{(za,Aa,θa) s.t.ua=0}
P (u, z, A, θ, y, ω, Ω). (3.3)

We now briefly explain the different terms in equation (3.2) and refer to the fol-

lowing subsections for details.

P (y|Ω) is the grammatical part of the PGMM (with prior P (Ω)). It generates the

topological structure y which specifies which aspect model Oi is used and the number

of background nodes. The term P (u|y, ωg) specifies the probability that the leaf nodes

are observed (background nodes are always observed). P (z, θ|ωg) specifies the prob-

29



ability of the spatial positions and orientations of the leaf nodes. The distributions on

the object leaf nodes are specified in terms of the invariant shape vectors defined on the

triplet cliques, while the background leaf nodes are generated independently. Finally,

the distribution P (A|y, ωA) generates the appearances of the AF’s. P (ωg, ωA) is the

prior on ω.

3.5.1 Generating the leaf nodes: P (y|Ω)

This distribution P (y|Ω) specifies the probability distribution of the leaf nodes. It

determines how many AF’s are present in the image (except for those which are un-

observed due to occlusion or falling below threshold). The output of y is the set of

numbered leaf nodes. The numbering determines the object nodes LO(y) (and the as-

pects of the object) and the background nodes LB(O). (The attributes of the leaf nodes

are determined in later sections).

P (y|Ω) is specified by a set of production rules. In principle, these production rules

can take any form such as those used in PCFG’s [29]. Other possibilities are Dechter’s

And-Or graphs [25], case-factor diagrams [22], composite templates [26], and com-

positional structures [49]. In this chapter, however, we restrict our implementation to

rules of form:

S → {B, O} with prob 1,

O → {Oj : j = 1, ..., ρ} with prob, ΩO
j , j = 1, ..., ρ

Oj → {na, Na+1,a+2} with prob. 1, a = βj,

Na,a+1 → {na, Na+1,a+2} with prob. 1, βi + 1 ≤ a ≤ βj+1 − 4.

Nβj+1−3,βj+1−2 → {nβj+1−2, nβj+1−1} with prob 1,

B → {nβρ+1 , ..., nβρ+1+m} with prob ΩBe−mΩB

(m = 0, 1, 2...). (3.4)

Here β1 = 1. The nodes βj, ..., βj+1 − 1 correspond to aspect Oj . Note that
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these {βj} are parameters of the model which will be learnt. ρ is the number of as-

pects and {ΩO
j } and ΩB are parameters that specify the distribution (all these will be

learnt). We write Ω = {ΩB, ΩO
1 , ..., ΩO

ρ , β1, ..., βρ+1, ρ}. These rules are illustrated

in figure (3.6) (note that, for simplicity of the figure, we represent the combination

Na,a+1 7→ {na, Na+1,a+2} and Na+1,a+2 by Na,a+1 7→ (na, na+1, na+2)).

3.5.2 Generating the observable leaf nodes: P (u|y, ωg)

The distribution P (u|y, ωg) specifies whether objects leafs are observable in the image

(all background nodes are assumed to be observed). The observation variable u allows

for the possibility that an object leaf node a is unobserved due to occlusion or because

the feature detector response falls below threshold. Formally, ua = 1 if the object leaf

node a is observed and ua = 0 otherwise. We assume that the observability of nodes

are independent:

P (u|y, ωg) =
∏

a∈LO(y)

λua
ω (1− λω)(1−ua) = exp





∑

a∈LO(y)

{δua,1 log λω + δua,0 log(1− λω)}


 ,

(3.5)

where λω is the parameter of the bernoulli distribution and δua,1 are the Kronecker

delta function (i.e. δua,1 = 0 unless ua = 1).

3.5.3 Generating the positions and orientation of the leaf nodes: P (z, θ|y, ωg).

P (z, θ|y, ωg) is the distribution of the spatial positions z and orientations θ of the leaf

nodes. We assume that the spatial positions and orientations of the background leaf

nodes are independently generated from a uniform probability distribution.

The distribution on the position and orientations of the object leaf nodes is required

to satisfy two properties: (a) it is invariant to the 2D pose (position, orientation, and
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scale), and (b) it is easily computable. In order to satisfy both these properties we

make an approximation. We first present the distribution that we use and then explain

its derivation and the approximation involved.

The distribution is given by:

P (z, θ|y, ωg) = K × P (l(z, θ)|y, ωg), (3.6)

where P (l(z, θ)|y, ωg) (see equation (3.7)) is a distribution over the invariant shape

vectors l computed from the spatial positions z and orientations θ. We assume that

K is a constant. This is an approximation because the full derivation, see below, has

K(z, θ).

We define the distribution P (z, θ|y, ωg) over l to be a Gaussian distribution defined

on the cliques:

P (l|y, ωg) =
1

Z
exp





∑

a∈Cliques(y)

ψa(~l(za, θa, za+1, θa+1, za+2, θa+2), ω
g
a)



 , (3.7)

where the triplet cliques are C1, ..., Cτ−2, where Ca = (na, na+1, na+2). The invariant

triplet vector ~l(za, θa, za+1, θa+1, za+2, θa+2) is given by equation (3.1).

The potential ψa(~l(za, θa, za+1, θa+1, za+2, θa+2), ω
g
a) specifies geometric regulari-

ties of clique Ca which are invariant to the scale and rotation. They are of form:

ψa(~l(za, θa, za+1, θa+1, za+2, θa+2), ω
g
a) =

−(1/2)(~l(za, θa, za+1, θa+1, za+2, θa+2)− ~µz
a)

T (Σz
a)
−1

(~l(za, θa, za+1, θa+1, za+2, θa+2)− ~µz
a). (3.8)

where ωg
a = (µz

a, Σ
z
a) and ωg = {ωg

a}.

Now we derive equation (3.6) for P (z, θ|y, ωg) and explain the nature of the ap-

proximation. First, we introduce a pose variable G which specifies the position, orien-
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tation, and scale of the object. We set:

P (z, θ,~l, G|y, ωg) = P (z, θ|l, G)P (l|y, ωg)P (G), (3.9)

where the distribution P (z, θ|l, G) is of form:

P (z, θ|l, G) = δ(z − z(G, l))δ(θ − θ(G, l)). (3.10)

P (z, θ|l, G) specifies the positions and orientations z, θ by deterministic functions

z(l, G), θ(l, G) of the pose G and shape invariant vectors l. We can invert this function

to compute l(z, θ) and G(z, θ) (i.e. to compute the invariant feature vectors and the

pose from the spatial positions and orientations z, θ).

We obtain P (z, θ|y, ωg) by integrating out l, G:

P (z, θ|y, ωg) =

∫
dG

∫
dlP (z, θ, l, G|y, ωg). (3.11)

Substituting equations (3.10) and (3.9) into equation (3.11) yields:

P (z, θ|y, ωz) =

∫
dG

∫
dlδ(z − z(l, G))δ(θ − θ(l, G))P (l|y, ωg)P (G)

=

∫ ∫
dρdγ

∂(l, G)

∂(ρ, γ)
δ(z − ρ)δ(θ − γ)P (l(z, θ)|y, ωg)P (G(z, θ)),

=
∂(l, G)

∂(ρ, γ)
(z, θ)P (l(z, θ)|y, ωg)P (G(z, θ)), (3.12)

where we performed a change of integration from variables (l, G) to new variables

(ρ, γ) with ρ = z(l, G), γ = θ(l, G) and where ∂(l,G)
∂(ρ,γ)

(z, θ) is the Jacobian of this

transformation (evaluated at (z, θ)).

To obtain the form in equation (3.6) we simply equation (3.12) by assuming that

P (G) is the uniform distribution and by making the approximation that the Jacobian

factor is independent of (z, θ) (this approximation will be valid provided the size and

shapes of the triplets do not vary too much).
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3.5.4 The Appearance Distribution P (A|y, ωA).

We now specify the distribution of the appearances P (A|y, ωA). The appearances of

the background nodes are generated from a uniform distribution. For the object nodes,

the appearance Aa is generated by a Gaussian distribution specified by ωA
a = (µA

a , ΣA
a ):

P (Aa|ωA
a ) =

1√
2π|ΣA,a|

exp{−(1/2)(Aa − µA
a )T (ΣA

a )−1(Aa − µA
a )}. (3.13)

3.5.5 The Priors: P (Ω), P (ωA), P (ωg).

The prior probabilities are set to be uniform distributions, expect for the priors on the

appearance covariances ΣA
a which are set to zero mean Gaussians with fixed variance.

3.5.6 The Correspondence Problem:

Our formulation of the probability distributions has assumed an ordered list of nodes

indexed by a. But these indices are specified by the model and cannot be observed

from the image. Indeed performing inference requires us to solve a correspondence

problem between the AF’s in the image and those in the model. This correspondence

problem is complicated because we do not know the aspect of the object and some of

the AF’s of the model may be unobservable.

We formulate the correspondence problem by defining a new variable V = {i(a)}.

For each a ∈ LO(y), the variable i(a) ∈ {0, 1, ..., Nτ}, where i(a) = 0 indicates

that a is unobservable (i.e. ua = 0). For background leaf nodes, i(a) ∈ {1, ..., Nτ}.

We constrain all image nodes to be matched so that ∀j ∈ {1, ..., Nτ} there exists a

unique b ∈ L(y) s.t. i(b) = j (we create as many background nodes as is necessary

to ensure this). To ensure uniqueness, we require that object triplet nodes all have

unique matches in the image (or are unmatched) and that background nodes can only

match AF’s which are not matched to object nodes or to other background nodes. (It
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is theoretically possible that object nodes from different triplets might match the same

image AF. But this is extremely unlikely due to the distribution on the object model

and we have never observed it).

Using this new notation, we can drop the u variable in equation (3.5) and replace

it by V with prior:

P (V |y, ωg) =
1

Ẑ

∏
a

exp{− log{λω/(1− λω)}δi(a),0} (3.14)

This gives the full distribution (see equation (3.2) which is defined over u variable):

P ({zi, Ai, θi}|V, y, ωg, ωA, Ω)P (V |y, ωg)P (y|Ω)P (ω)P (Ω), (3.15)

with

P ({zi, Ai, θi}|V, y, ωg, ωA, Ω)

=
1

Z

∏

a∈LO(y):i(a) 6=0

P (Ai(a)|y, ωA, V )
∏

c∈C(LO(y))

P (~lc({zi(a), θi(a)})|y, ωg, V ). (3.16)

We have the constraint that |LB(y)|+ ∑
a∈LO(y)(1− δi(a),0) = Nτ . Hence P (y|Ω)

reduces to two components: (i) the probability of the aspect P (LO(y)|Ω) and the prob-

ability ΩBe−ΩB |LB(y)| of having |LB(y)| background nodes.

There is one problem with the formulation of equation (3.16). There are variables

on the right hand side of the equation which are not observed – i.e. za, θa such that

i(a) = 0. In principle, these variables should be removed from the equation by in-

tegrating them out. In practice, we replace their values by their best estimates from

P (~lc({zi(a), θi(a)})|y, ωg) using our current assignments of the other variables. For ex-

ample, suppose we have assigned two vertices of a triplet to two image AF’s and decide

to assign the third vertex to be unobserved. Then we estimate the position and orien-

tation of the third vertex by the most probable value given the position and orientation

assignments of the first two vertices and relevant clique potential. This is sub-optimal
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but intuitive and efficient. (It does require that we have at least two vertices assigned

in each triplet).

3.6 Learning and Inference of the model

In order to learn the models, we face three tasks: (I) structure learning, (II) parameter

learning to estimate (Ω, ω), and (III) inference to estimate (y, V ) (from a single image).

Inference requires estimating the parse tree y and the correspondences V = {i(a)}
from input x. The model parameters (Ω, ω) are fixed. This requires solving

(y∗, V ∗) = arg max
y,V

P (y, V |x, ω, Ω)

= arg max
y,V

P (x, ω, Ω, y, V ). (3.17)

As described in section (3.6.1) we use dynamic programming to estimate y∗, V ∗

efficiently.

Parameter learning occur when the structure of the model is known but we have

to estimate the parameters of the model. Formally we specify a set W of parameters

(ω, Ω) which we estimate by MAP. Hence we estimate

(ω∗, Ω∗) = arg max
ω,Ω∈W

P (ω, Ω|x) ∝ P (x|ω, Ω)P (ω, Ω)

= arg max
ω,Ω∈W

P (ω, Ω)
∏
τ∈Λ

∑
yτ ,Vτ

P (xτ , yτ , Vτ |ω, Ω). (3.18)

This is performed by an EM algorithm, see section (3.6.2), where the summation over

the {Vτ} is performed by dynamic programming (the summation over the y’s corre-

sponds to summing over the different aspects of the object). The ω, Ω are calculated

using sufficient statistics.

Structure Learning involves learning the model structure. Our strategy is to grow

the structure of the PGMM by adding new aspect nodes, or by adding new cliques to
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existing aspect nodes. We use clustering techniques to propose ways to grow the struc-

ture, see section (3.6.3). For each proposed structure, we have a set of parameters W

which extends the set of parameters of the previous structure. For each new structure,

we evaluate the fit to the data by computing the score:

score = max
ω,Ω

P (ω, Ω)
∏
τ∈Λ

∑
yτ

∑
Vτ

P (xτ , yτ , Vτ |ω, Ω). (3.19)

We then apply standard model selection by using the score to determine if we

should accept the proposed structure or not. Evaluating the score requires summing

over the different aspects and correspondence {Vτ} for all the images. This is per-

formed by using dynamic programming.

3.6.1 Dynamic Programming for the Max and Sum

Dynamic programming plays a core role for PGMMs. All three tasks – inference,

parameter learning, and structure learning – require dynamic programming. Firstly,

inference uses dynamic programming via the max rule to calculate the most probable

parse tree y∗, V ∗ for input x. Secondly, in parameter learning, the E-step of the EM al-

gorithm relies on dynamic programming to compute the sufficient statistics by the sum

rule and take the expectations with respect to {yτ}, {Vτ}. Thirdly, structure learning

summing over all configurations {yτ}, {Vτ} uses dynamic programming as well.

The structure of a PGMM is designed to ensure that dynamic programming is prac-

tical. Dynamic programming was first used to detect objects in images by Coughlan

et al. [50]. In this chapter, we use the ordered clique representation to use the con-

figurations of triangles as the basic variables for dynamic programming similar to the

junction tree algorithm [44].

We first describe the use of dynamic programming using the max rule for inference

(i.e. determining the aspect and correspondence for a single image). Then we will
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describe the modification to the sum rule used for parameter learning and structure

pursuit.

To perform inference, we need to estimate the best aspect (object model) LO(y)

and the best assignment V . We loop over all possible aspects and for each aspect we

select the best assignment by dynamic programming (DP). For DP we keep a table of

the possible assignments including the unobservable assignment. As mentioned above,

we perform the sub-optimal method of replacing missing values za, θa s.t. i(a) = 0 by

their most probable estimates.

The conditional distribution is obtained from equations (3.4,3.7,3.13,3.14).

P (y, V, x|ω, Ω) =
1

Z
exp{

∑

a∈C(LO(y))

ψa(~l(zi(a), θi(a), zi(a+1), θi(a+1), zi(a+2), θi(a+2)), ω
g
a)

−(1/2)
∑

a∈LO(y)

{1− δi(a),0}(Ai(a) − µA
a )T (ΣA

a )−1(Ai(a) − µA
a )

−
∑

a∈LO(y)

log{λω/(1− λω)}δi(a),0 − ΩB(Nτ − |LO(y)|) +
∑

j∈[1,ρ]

I(βj, LO(y)) log ΩO
j }.

(3.20)

where I(βj, LO(y)) is an indicator which indicates the aspect j is active or not. I(βj, LO(y))

equals one if βj ∈ LO(y), otherwise zero.

We can re-express this as

P (y, V, x|ω, Ω) =

|LO|−2∏
a=1

π̂a[(zi(a), Ai(a), θi(a)), (zi(a+1), Ai(a+1), θi(a+1)),

(zi(a+2), Ai(a+2)θi(a+2))], (3.21)

where the π̂a[.] are determined by equation (3.20).

We maximize equation (3.20) with respect to y and V . The choice of y is the

choice of aspect (because the background nodes are determined by the constraint that

all AF’s in the image are matched). For each aspect, we use dynamic programming to
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maximize over V . This can be done recursively by defining a function ha[(zi(a), Ai(a),

θi(a)), (zi(a+1), Ai(a+1), θi(a+1))] by a forward pass:

ha+1[(zi(a+1), Ai(a+1), θi(a+1)), (zi(a+2), Ai(a+2), θi(a+2))] =

max
i(a)

π̂a[(zi(a), Ai(a), θi(a)), (zi(a+1), Ai(a+1), θi(a+1)), (zi(a+2), Ai(a+2), θi(a+2))]

ha[(zi(a), Ai(a), θi(a)), (zi(a+1), Ai(a+1), θi(a+1))] (3.22)

The forward pass computes the maximum value of P (y, V, x|ω, Ω). The backward

pass of dynamic programming compute the most probable value V ∗. The forward and

backward passes are computed for all possible aspects of the model. As stated earlier

in section (3.5.6), we make an approximation by replacing the values zi(a), θi(a) of

unobserved object leaf nodes (i.e. i(a) = 0) by their most probable values.

We perform the max rule, equation (3.22), for each possible topological structure

y. In this chapter, the number of topological structures is very small (i.e. less than

twenty) for each object category and so it is possible to enumerate them all. The

computational complexity of the dynamic programming algorithm is O(MNK) where

M is the number of cliques in the aspect model for the object, K = 3 is the size of the

maximum clique and N is the number of image features.

We will also use the dynamic programming algorithm (using the sum rule) to help

perform parameter learning and structure learning. For parameter learning, we use

the EM algorithm, see next subsection, which requires calculating sums over different

correspondences and aspects. For structure learning we need to calculate the score,

see equation (3.19), which also requires summing over different correspondences and

aspects. This requires replacing the max in equation (3.22) by
∑

. If points are unob-

served, then we restrict the sum over their positions for computational reasons (sum-

ming over the positions close to their most likely positions).
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3.6.2 EM Algorithm for Parameter Learning

To perform EM to estimate the parameters ω, Ω from the set of images {xτ : τ ∈ Λ}.

The criterion is to find the ω, Ω which maximize:

P (ω, Ω|{xτ}) =
∑

{yτ},{Vτ}
P (ω, Ω, {yτ}, {Vτ}|{xτ}), (3.23)

where:

P (ω, Ω, {yτ}, {Vτ}|{xτ}) =
1

Z
P (ω, Ω)

∏
τ∈Λ

P (yτ , Vτ |xτ , ω, Ω). (3.24)

This requires us to treat {yτ}, {Vτ} as missing variables that must be summed out

during the EM algorithm. To do this we use the EM algorithm using the formulation

described in [51]. This involves defining a free energy F [q, ω, Ω] by:

F [q(., .), ω, Ω] =
∑

{yτ},{Vτ}
q({yτ}, {Vτ}) log q({yτ}, {Vτ})

−
∑

{yτ},{Vτ}
q({yτ}, {Vτ}) log P (ω, Ω, {yτ}, {Vτ}|{xτ}), (3.25)

where q({yτ}, {Vτ}) is a normalized probability distribution. It can be shown [51] that

minimizing F [q(., .), ω, Ω] with respect to q(., .) and (ω, Ω) in alternation is equivalent

to the standard EM algorithm. This gives the E-step and the M-step:

E-step:

qt({yτ}, {Vτ}) = P ({yτ}, {Vτ}|{xτ}, ωt, Ωt), (3.26)

M-step:

(ωt+1, Ωt+1) = arg min
ω,Ω
{−

∑

{yτ},{Vτ}
qt({yτ}, {Vτ}) log P (ω, Ω, {yτ}, {Vτ}|{xτ})}.(3.27)

The distribution q({yτ}, {Vτ}) =
∏

τ∈Λ qτ ({yτ}, {Vτ}) because there is no depen-

dence between the images. Hence the E-step reduces to:

qt
τ ({yτ}, {Vτ}) = P ({yτ}, {Vτ}|{xτ}, ωt, Ωt), (3.28)
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which is the distribution of the aspects and the correspondences using the current esti-

mates of the parameters ωt, Ωt.

The M-step requires maximizing with respect to the parameters ω, Ω after summing

over all possible configurations (aspects and correspondences). The summation can be

performed using the sum version of dynamic programming, see equation (3.22). The

maximization over parameters is straightforward because they are the coefficients of

Gaussian distributions (mean and covariances) or exponential distributions. Hence the

maximization can be done analytically.

For example, consider a simple exponential distribution P (h|α) = 1
Z(α)

exp{f(α)φ(h)},

where h is the observable, α is the parameters, f(.) and φ(.) are arbitrary functions and

Z(α) is the normalization term. Then
∑

h q(h) log P (h|α) = f(α)
∑

h q(h)φ(h) −
log Z(α). Hence we have

∂
∑

h q(h) log P (h|α)

∂α
=

∂f(α)

∂α

∑

h

q(h)φ(h)− ∂ log Z(α)

∂α
. (3.29)

If the distributions are of simple forms, like the Gaussians used in our models, then the

derivatives of f(α) and log Z(α) are straightforward to compute and the equation can

be solved analytically. The solution is of form:

µ(t) =
∑

h

qt(h)h, σ2(t) =
∑

h

qt(h){h− µ(t)}2. (3.30)

Finally, the EM algorithm is only guaranteed to converge to a local maxima of

P (ω, Ω|{xτ}) and so a good choice of initial conditions is critical. The triplet vocabu-

laries, described in subsection (3.6.3.1), give good initialization (so we do not need to

use standard methods such as multiple initial starting points).

3.6.3 Structure Pursuit

Structure pursuit proceeds by adding a new triplet clique to the PGMM. This is done

either by adding a new aspect node Oj and/or by adding a new clique node Na,a+1.
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This is illustrated in figure (3.6) where we grow the PGMM from panel (1) to panel

(5) in a series of steps. For example, the steps from (1) to (2) and from (4) to (5)

correspond to adding a new aspect node. The steps from (2) to (3) and from (3) to

(4) correspond to adding new clique nodes. Adding new nodes requires adding new

parameters to the model. Hence it corresponds to expanding the set W of non-zero

parameters.

Our strategy for structure pursuit is as follows, see figures (3.8,3.9). We first use

clustering algorithms to determine a triplet vocabulary. This triplet vocabulary is used

to propose ways to grow the PGMM, which are evaluated by how well the modified

PGMM fits the data. We select the PGMM with the best score, see equation (3.19).

The use of these triplet vocabularies reduces the, potentially enormous, number of

ways to expand the PGMM down to a practical number. We emphasize that the triplet

vocabulary is only used to assist the structure learning and it does not appear in the

final PGMM.

3.6.3.1 The appearance and triplet vocabularies

We construct appearance and triplet vocabularies using the features {xτ
i } extracted

from the image dataset as described in section (3.3.1).

To get the appearance vocabulary V ocA, we perform k-means clustering on the

appearances {Aτ
i } (ignoring the spatial positions and orientations {(zτ

i , θτ
i )}). The

means µA,a and covariances ΣA,a of the clusters, define the appearance vocabulary:

V ocA = {(µA,a, ΣA,a) : a ∈ ΛA}. (3.31)

where ΛA is a set of indexes for the appearance (|ΛA| is given by the number of means).

To get the triplet vocabulary, we first quantize the appearance data {Aτ
i } to the

means µA,a of the appearance vocabulary using nearest neighbor (with Euclidean dis-
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a b

c d

Figure 3.8: This figure illustrates structure pursuit. a)image with triplets. b) one triplet

induced. c) two triplets induced. d) three triplets induced. Yellow triplets: all triplets

from triplet vocabulary. Blue triplets: structure induced. Green triplets: possible ex-

tensions for next induction. Circles with radius: image features with different sizes.
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tance). This gives a set of modified data features {(zτ
i , θτ

i , µ
A,a(i,τ)}, where a(i, τ) =

arg mina∈ΛA
|Aτ

i − µA,a|.

For each appearance triplet (µA,a, µA,b, µA,c), we obtain the set of positions and

orientations of the corresponding triplets of the modified data features:

{(zτ
i , θτ

i ), (z
τ
j , θτ

j ), (z
τ
k , θτ

k) : s.t.(µA,a(i,τ), µA,a(j,τ), µA,a(k,τ)) = (µA,a, µA,b, µA,c)}
(3.32)

We compute the ITV ~l of each triplet and perform k-means clustering to obtain a set

of means µg,s
abc and covariances Σg,s

abc for s ∈ dabc, where |dabc| denotes the number of

clusters. This gives the triplet vocabulary:

D = {µg,s
abc, Σ

g,s
abc, (µ

A,a, µA,b, µA,c), (ΣA,a, ΣA,b, ΣA,c) : s ∈ dabc, a ≤ b ≤ c a, b, c ∈ ΛA}.
(3.33)

The triplet vocabulary contains geometric and appearance information (both mean

and covariance) about the triplets that commonly occur in the images. This triplet vo-

cabulary will be used to make proposals to grow the structure of the model (including

giving initial conditions for learning the model parameters by the EM algorithm).

3.6.3.2 Structure Induction Algorithm

We now have the necessary background to describe our structure induction algorithm.

The full procedure is described in the pseudo code in figure (3.9). Figure (3.6) shows

an example of the structure being induced sequentially.

Initially we assume that all the data is generated by the background model. In the

terminology of section (3.6), this is equivalent to setting all of the model parameters Ω

to be zero (except those for the background model). We can estimate the parameters

of this model and score the model as described in section (3.6).
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Input: Training Image τ = 1, .., M and the triplet vocabulary V oc2. Initialize G

to be the root node with the background model, and let G∗ = G.

Algorithm for Structure Induction:

• STEP 1:

– OR-NODE EXTENSION

For T ∈ V oc2

∗ G′ = G
⋃

T (OR-ing)

∗ Update parameters of G′ by EM algorithm

∗ If Score(G′) > Score(G∗) Then G∗ = G′

– AND-NODE EXTENSION

For Image τ = 1, .., M

∗ P = the highest probability parse for Image τ by G

∗ For each Triple T in Image τ

if T
⋂

P 6= ∅

· G′ = G
⋃

T (AND-ing)

· Update parameters of G′ by EM algorithm

· If Score(G′) > Score(G∗) Then G∗ = G′

• STEP 2: G = G∗. Go to STEP 1 until Score(G) − Score(G∗) <

Threshold

Output: G

Figure 3.9: Structure Induction Algorithm
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Next we seek to expand the structure of this model. To do this, we use the triplet

vocabularies to make proposals. Since the current model is the background model, the

only structure change allowed is to add a triplet model as one child of the category node

O (i.e. to create the background plus triple model described in the previous section, see

figure (3.6)). We consider all members of the triplet vocabulary as candidates, using

their cluster means and covariances as initial setting on their geometry and appearance

properties in the EM algorithm as described in subsection (3.6.2). Then, for all these

triples we construct the background plus triplet model, estimate their parameters and

score them. We accept the one with highest score as the new structure.

As the graph structure grows, we now have more ways to expand the graph. We

can add a new triplet as a child of the category node. This proceeds as in the previous

paragraph. Or we can take two members of an existing triplet, and use them to con-

struct a new triplet. In this case, we first parse the data using the current model. Then

we use the triplet vocabulary to propose possible triplets, which partially overlap with

the current model (and give them initial settings on their parameters as before). See

figure (3.8). Then, for all possible extensions, we use the methods in section (3.6) to

score the models. We select the one with highest score as the new graph model. If the

score increase is not sufficient, we cease building the graph model. See the structured

models in figure (3.11).

3.7 Experimental Results

Our experiments were designed to give proof of concept for the PGMM. Firstly, we

show that our approach gives comparable results to other approaches for classification

(testing between images containing the object versus purely background images) when

tested on the Caltech-4 (faces, motorbikes, airplanes and background) [32] and Caltech

101 images [17] (note that most of these approaches are weakly supervised and so are
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given more information than our unsupervised method). Moreover, our approach can

perform additional tasks such as localization (which are impossible for some methods

like bag of key points [36]). Our inference algorithm is fast and takes under five

seconds (the CPU is AMD Opteron processor 880, 2.4G Hz). Secondly, we illustrate a

key advantage of our method that it can both learn and perform inference when the 2D

pose (position, orientation, and scale) of the object varies. We check this by creating

a new dataset by varying the pose of objects in Caltech 101. Thirdly, we illustrate the

advantages of having variable graph structure (i.e. OR nodes) in several ways. We

first quantify how the performance of the model improves as we allow the number of

OR nodes to increase. Next we show that learning is possible even when the training

dataset consists of a random mixture of images containing the objects and images

which do not (and hence are pure background). Finally we learn a hybrid model,

where we are given training examples which contain one of several different types of

object and learn a model which has different OR nodes for different objects.

3.7.1 Learning Individual Objects Models

In this section, we demonstrate the performance of our models for objects chosen from

the Caltech datasets. We first choose a set of 13 object categories (as reported in [8]).

Three classes of faces, motorbikes and airplanes are coming from [32]. We use the

identical splitting for training and testing as used in [32]. The remaining categories are

selected from Caltech-101 dataset [17]. To avoid concerns about selection bias, and

to extend the number of object categories, we perform additional experiments on all

object categories from [17] for which there are at least 80 images (80 is a cutoff factor

chosen to ensure that there are a sufficient amount of data for training and testing).

This gives an additional set of 26 categories (the same parameter settings were used

on both sets). Each dataset was randomly split into two sets with equal size (one for
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training and the other for testing). Note that the Caltech datasets, the objects typically

appear in standardized orientations. Hence rotation invariance is not necessary. To

check this, we also implemented a simpler version of our model which was not rotation

invariant by modifying the ~l vector, as described in subsection (3.3.2). The results of

this simplified model were practically identical to the results of the full model, that we

now present.

K-means clustering was used to learn the appearance and triplet vocabularies where,

typically, K is set to 150 and 1000 respectively. Each row in figure 3.5 corresponds to

some triplets in the same group.

We illustrate the results of the PGMMs in Table (3.2) and Figure (3.10). A score

of 90% means that we get a true positive rate of 90% and a false positive rate of 10%.

This is for classifying between images containing the object and purely background

images [32]. For comparison, we show the performance of the Constellation Model

[32]. These results are slightly inferior to the bag of keypoint methods [36] (which

requires weak supervision). We also evaluate the ability of the PGMMs to localize the

object. To do this, we compute the proportion of AF’s of the model that lie within

the groundtruth bounding box. Our localization results are shown in Table (3.3). Note

that some alternative methods, such as the bag of keypoints, are unable to perform

localization.

The models for individual objects classes, learnt from the proposed algorithm, are

illustrated in figure (3.11). Observe that the generative models have different tree-

width and depth. Each subtree of the object node defines a Markov Random Field

to describe one aspect of the object. The computational cost of the inference, using

dynamic programming, is proportional to the height of the subtree and exponential

to the maximum width (only three in our case). The detection time is less than five

seconds (including the processing of features and inference) for the image with the
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Figure 3.10: We report the classification performance for 26 classes which have at

least 80 images. The average classification rate is 87.6%.

size of 320 ∗ 240. The training time is around two hours for 250 training images. The

parsed results are illustrated in figure (3.12).

3.7.2 Invariance to Rotation and Scale

This section shows that the learning and inference of a PGMM is independent of the

pose (position, orientation, and scale) of the object in the image. This is a key advan-

tage of our approach and is due to the triplet representation.

To evaluate PGMMs for this task, we modify the Caltech 101 dataset by varying

either the orientation, or the combination of orientation and scale. We performed learn-

ing and inference using images with 360-degree in-plane rotation, and another dataset

with rotation and scaling together (where the scaling range is from 60% of the original

size to 150% – i.e. 180 ∗ 120− 450 ∗ 300).

The PGMM showed only slight degradation due to these pose variations. Ta-

ble (3.4) shows the comparison results. The parsing results (rotation+scale) are il-

lustrated in figure (3.13).
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Table 3.2: We have learnt probability grammars for 13 objects in the Caltech database,

obtaining scores over 90% for most objects. A score of 90%, means that we have a

classification rate of 90% and a false positive rate of 10%(10% = (100 − 90)%). We

compare our results with constellation model

Dataset Size Ours Constellation Model

Faces 435 97.7 96.4

Motorbikes 800 92.9 92.5

Airplanes 800 91.8 90.2

Chair 62 90.9 –

Cougar Face 69 90.9 –

Grand Piano 90 96.3 –

Panda 38 90.9 –

Rooster 49 92.1 –

Scissors 39 94.9 –

Stapler 45 90.5 –

Wheelchair 59 93.6 –

Windsor Chair 56 92.4 –

Wrench 39 84.6 –

50



Table 3.3: Localization rate is used to measure the proportion of AF’s of the model

that lie within the groundtruth bounding box.

Dataset Localization Rate

Faces 96.3

Motorbikes 98.6

Airplanes 91.5

Table 3.4: Invariant to Rotation and Scale

Method Accuracy

Scale Normalized 97.8

Rotation Only 96.3

Rotation + Scale 96.3
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...

...

...

Figure 3.11: Individual Models learnt for Faces, Motorbikes, Airplanes, Grand Piano

and Rooster. The circles represent the AF’s. The numbers inside the circles give the a

index of the nodes, see Table (3.1). The Markov Random Field of one aspect of Faces,

Roosters, and Grand Pianos are shown on the right.
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Figure 3.12: Parsed Results for Faces, Motorbikes and Airplanes. The circles represent

the AF’s. The numbers inside the circles give the a index of the nodes, see Table (3.1).

Figure 3.13: Parsed Results: Invariant to Rotation and Scale.
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Figure 3.14: Analysis of the effects of adding OR nodes. Observe that performance

rapidly improves, compared to the single MRF model with only one aspect, as we add

extra aspects. But this improvement reaches an asymptote fairly quickly. (This type of

result is obviously dataset dependent).

3.7.3 The Advantages of Variable Graph Structure

Our basic results for classification and localization, see section (3.7.1), showed that

our PGMMs did learn variable graph structure (i.e. OR nodes). We now explore the

benefits of this ability.

Firstly, we can quantify the use of the OR nodes for the basic tasks of classification.

We measure how performance degrades as we restrict the number of OR nodes, see

figure (3.14). This shows that performance increases as the number of OR nodes gets

bigger, but this increase is jagged and soon reaches an asymptote.

Secondly, we show that we can learn a PGMM even when the training dataset con-

sists of a random mixture of images containing the object and images which do not.

Table (3.5) shows the results. The PGMM can learn in these conditions because it uses

some OR nodes to learn the object (i.e. account for the images which contain the ob-

ject) and other OR nodes to deal with the remaining images. The overall performance

of this PGMM is only slightly worse that the PGMM trained on standard images (see

54



Table 3.5: The PGMM are learnt on different training datasets which consist of a

random mixture of images containing the object and images which do not.

Training Set Testing Set

Dataset Object Background Object Background Classification Rate

Faces 200 0 200 200 97.8

Faces 200 50 200 200 98.3

Faces 200 100 200 200 97.7

Motor 399 0 399 200 93.7

Motor 399 50 399 200 93.2

Motor 399 100 399 200 93.0

Plane 400 0 400 200 92.1

Plane 400 50 400 200 90.5

Plane 400 100 400 200 90.2

section (3.7.1)).

Thirdly, we show that we can learn a model for an object class. We use a hybrid

class which consists of faces, airplanes, and motorbikes. In other words, we know

that one object is present in each image but we do not know which. In the training

stage, we randomly select images from the datasets of faces, airplanes, and motorbikes.

Similarly, we test the hybrid model on examples selected randomly from these three

datasets.

The learnt hybrid model is illustrated in figure (3.15). It breaks down nicely into

OR’s of the models for each object. Table (3.6) shows the performance for the hybrid

model. This demonstrates that the proposed method can learn a model for the class

with extremely large variation.
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Table 3.6: The PGMM can learn a hybrid class which consists of faces, airplanes, and

motorbikes.

Dataset Single Model Hybrid Model

Faces 97.8 84.0

Motorbikes 93.4 82.7

Airplanes 92.1 87.3

Overall – 84.7

Figure 3.15: Hybrid Model learnt for Faces, Motorbikes and Airplanes.
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3.8 Discussion

This chapter introduced PGMMs and showed that they can be learnt in an unsuper-

vised manner and perform tasks such as classification and localization and of objects

in unknown backgrounds. We also showed that PGMMs were invariant to 2D pose

(position, scale and rotation) for both learning and inference. PGMMs could also deal

with different appearances, or aspects, of the object and also learn hybrid models which

include several different types of object.

More technically, PGMMs combine elements of probabilistic grammars and markov

random fields (MRFs). The grammar component enables them to adapt to different as-

pects while the MRF enables them to model spatial relations. The nature of PGMMs

enables rapid inference and parameter learning by exploiting the topological structure

of the PGMM which enables the use of dynamic programming. The nature of PGMMs

also enables us to perform structure induction to learn the structure of the model, in

this case by using oriented triplets as elementary building blocks that can be composed

to form bigger structures.

Our experiments demonstrated proof of concept of our approach. We showed that:

(a) we can learn probabilistic models for a variety of different objects and perform

rapid inference (less than five seconds), (b) that our learning and inference is invariant

to scale and rotation, (c) that we can learn models in noisy data, for hybrid classes, and

that the use of different aspects improves performance.

PGMMs are the first step in our program for unsupervised learning of object mod-

els. There are two critical limitations in PGMMs. I) PGMMs are unable to deal with

large shape deformation. In other words, long-range shape correlation can not be eas-

ily encoded in PGMMs. II) Unsupervised learning of PGMMs is a greedy approach

which highly relies on the good initialization of the triplet. In part II of this thesis, we
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will resort to recursively compositional design to remedy these issues.
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Part III

Object Parsing by Recursive

Deformable Template
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CHAPTER 4

Learning a Recursive Deformable Template Model

In this chapter, we address the problems of detecting, segmenting, parsing, and match-

ing deformable objects. We propose a recursive deformable template model (RDTM)

to represent objects in a hierarchical form. The object template consists of a small

number of small sub-templates which is composed by smaller subsub-templates, and

so on. RDTM represents both shape and appearance features at multiple levels of

a hierarchy. This enables us to combine appearance cues at multiple scales and to

model shape deformations at a range of scales. We provide a bottom-up algorithm

which performs approximate inference for this hierarchical model. The algorithm is

designed to be very fast while maintaining high precision and recall. We introduce

the structure-perceptron algorithm to estimate the parameters of the RDTM in a dis-

criminative way. The learning is able to estimate the appearance and shape parameters

simultaneously. The structure-perceptron learning is able to perform feature selection

(e.g. like AdaBoost) which enables us to specify a large dictionary of appearance and

shape features and allow the algorithm to select which features to use and weight their

importance. We have tested RDTM’s for detection, segmentation, matching (align-

ment) and parsing. We show that the algorithm achieves state of the art performance

for different tasks evaluated on datasets with groundtruth (when compared to algo-

rithms which are specialized to the specific tasks).
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4.1 Introduction

Detecting and parsing deformable objects in cluttered images is an important but un-

solved problem in computer vision. They have many applications including object

recognition, pose estimation and tracking. These tasks are difficult due to four ma-

jor reasons – shape deformation, appearance variation, cluttered backgrounds, and

occlusion. Although there have been some partial successes – see [50, 52, 53, 54]

and others reviewed in section (4.2) – none are close to the performance level and

computational speed achieved for detecting rigid objects by using techniques such as

AdaBoost [55, 56]. In our opinion, serious disadvantages of the current approaches are

that they are based on representations of the object that only use sparse image cues,

short range spatial interactions, or some combination. See figure (4.1). Hence these

representations fail to capture important information about the object, which reduces

their performance and restricts the set of tasks that they can achieve (e.g. you can-

not perform segmentation using only sparse image cues). In practice, the choice of

object representations is strongly restricted by the availability of effective inference

algorithms. For example, the object representations used in [50] and [52] were chosen

so that dynamic programming (DP) and belief propagation (BP) could be used respec-

tively. In addition, current methods do not learn the models. This limitation constrains

the use of richer image features. Hence we argue that progress in this area requires a

strategy that simultaneously develops powerful representations, suitable inference and

learning algorithms.

In this chapter, we propose a new class of object models – Recursive Deformable

Template Model (RDTM) – which represent objects in a hierarchical form. The ob-

ject template consists of a small number of small sub-templates which is composed

by smaller subsub-templates, and so on. RDTM represents a large variety of cues and

spatial interactions at a range of scales. See figure (4.1, 4.2). The RDTM is very versa-
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... ... ...

Figure 4.1: Alternative representations for deformable objects. Left panel: standard

models use “flat” Markov Random Field (MRF) models relying on sparse cues and

with limited spatial interactions. Middle panel: a RDTM has a hierarchical represen-

tation of a large variety of different images cues and spatial interactions at a range of

scales. Right panel: The points along the object boundary correspond to the nodes in

the “flat” MRF models or the leaf nodes of the hierarchical model.

tile since it gives a rich representation of the object which makes it suitable for a range

of visual tasks such as detection, segmentation, parsing, and matching/alignment. We

also describe a novel bottom-up inference algorithm – compositional inference – which

esuriently is a prunded version of DP and enables us to detect and parse the RDTM

rapidly. Finally, we extend the recent structure perceptron learning algorithm [57] in

order to perform supervised learning of the parameters of RDTM.

We perform inference on a RDTM using a bottom-up strategy where the bottom-up

process rapidly makes a number of proposals for the state of the object. The bottom-up

proposals are state representations of subparts of the hierarchy. These proposals are

generated based on the principle of composition by combining local cues for the loca-

tion and pose of different subparts of the object hierarchically. To keep the number of

proposals small, we use a threshold to reject proposals and use surround suppression to

select the local winner and keep the remainder in a cluster suitable for later processing

at upper levels. Proposals at the top level of the hierarchy correspond to complete state

representations of the object. This strategy was inspired by a compositional algorithm
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[7, 8] which did not use a hierarchical model and was only tested on a small number

of images. But we have other algorithm on AND/OR graph [11].

We learn the parameters of the RDTM by adapting the structure-perceptron algo-

rithm [57]. This enables us to learn all the parameters globally in a consistent manner

(i.e. at all levels of the hierarchy simultaneously). It also allows us to select dif-

ferent shape and appearance features from a dictionary and determine ways to opti-

mally weight them (similar to the selection and weighting strategy used in AdaBoost

[55, 56]). Structure-perceptron learning is a discriminative approach that is compu-

tationally simpler than standard methods such as maximum likelihood estimation (as

used, for example for learning Conditional Random Fields [23]). Moreover, there are

advantages to discriminative learning because this strategy focusses attention on esti-

mating parameter values of the model most relevant to decision making (e.g. about

segmentation or matching). We have shown the success of structure-perceptron learn-

ing in [12].

We demonstrate the success and versatility of RDTM’s by applying them to a range

of visual tasks. We show that they are very effective in terms of performance and speed

(less than 5 seconds for a typical 300X200 image, speed increases approximately lin-

early in the size of the image) when evaluated on large datasets which include horses

[18] and cows [58]. In particular, to illustrate versatility, we demonstrate state-of-the-

art results for different tasks of object segmentation (evaluated on the Weismann horse

dataset [18]) and matching/alignemnt (evaluated on the face dataset – [19, 59]). The

results on the alignment task on the face dataset are particularly interesting because we

are comparing to results obtained by methods such as Active Appearance Models [60]

which are specialized for faces and which have been developed over a period of many

years (while we spent one week in total to run this application including the time to

obtain the dataset). Overall, we demonstrate that RDTM’s can perform a large range
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of visual tasks while other computer vision methods typically restrict themselves to

single tasks.

We perform diagnostics to quantify how different components of the system con-

tribute to performance and at what computational cost (i.e. speed). In particular, we

compare the contributions of the bottom-up processes (at all levels of the hierarchy).

We hope that this analysis of the tradeoffs between speed and performance will yield

general principles for optimal design of modeling and inference for computer vision

systems particularly those requiring multi-level processing.

We note that certain aspects of RDTM’s have similarities to the human visual sys-

tem and, in particular, to biologically inspired vision models. The bottom-up process

by its use of surround suppression and its transition from local to global properties is

somewhat analogous to Fukushima’s neocognitron [61] and more recent embodiments

of this principle [62, 63].

4.2 Background

There is a vast literature on techniques for the separate tasks of object detection, seg-

mentation, parsing, and matching/aligning. We give a brief review of the work that is

the most relevant to our approach.

There has been a range of attempts to model deformable objects in order to detect,

register, and recognize them. Many of them can be formulated as maximum a posteri-

ori inference of the position states y of the object parts in terms of the data x. Formally,

they seek to estimate

y∗ = arg max
y

p(y|x) = arg max
y

p(x|y)p(y), (4.1)
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where p(x|y)p(y) = p(x, y) is of form:

p(x, y) =
1

Z
exp{

∑
i

αif(xi, yi) +
∑
i,j

βijg(yi, yj)}. (4.2)

where Z is the normalization constant. The unary potentials f(x, y) model how well

the individual features match to the positions in the image. The binary potentials

g(yi, yj) impose (probabilistic) constraints about the spatial relationships between fea-

ture points. Typically, y is defined on a flat MRF model and the number of its nodes is

considerably small. See figure 4.1.

Coughlan et. al [50] provided one of the first models of this type, using a sparse

representation of the boundary of a hand, and showed that dynamic programming (DP)

could be used to detect the object (without need of initialization). This type of work

was extended by Felzenswalb [64] and by Coughlan using pruned version of BP [52].

The main limitation of this class of model is that it only involves local pairwise inter-

actions between points/features (see the second term in equation (4.2). This restriction

is mainly due to computational reasons (i.e. the types of inference algorithms avail-

able) and not for modeling reasons. For example, the performance of BP is known to

degrade for representations with many closed loops. See figure (4.1)).

Other classes of models are more suitable for matching than detection [53, 52, 65].

Some of these models [52, 65] do use longer range spatial interactions, as encoded

by shape context and other features, and global transformations. But these models are

typically only rigorously evaluated on matching tasks (i.e. tested on large datasets with

groundtruth). They all need good initialization for position, orientation, and scale if

they are required to detect objects in images with background clutter.

Recent work has introduced hierarchical models to represent the structure of ob-

jects more accurately (and enable shape regularities at multiple scales). Shape-trees

were presented [66] to model shape deformations at multiple levels. Chen et. al [11]
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propose an AND/OR graph representation (similar to [26, 49]), which is a multi-level

mixture Markov Random Field, and provide a novel bottom-up and top-down based

inference algorithm. But both of these models concentrate on modeling the shape de-

formation at different scales and use simple appearance models defined at leaf nodes

only.

A major limitation of all these models is that they are not learnt from data. The

image features were manually designed (and hence are comparatively simple), the ge-

ometry models were hand-specified, and the relative weights of appearance and shape

had to be manually tuned.

Object segmentation aims at finding the boundary of the object and typically as-

sumes that the rough location is known. It does not involve recovering the pose (i.e.

position, orientation, and scale) of the object. But work on this topic has used learning

and cues at multiple scales.

Borenstein and Ullman [18] provide a public horse dataset and study the problem

of deformable object segmentation on this dataset. Torr and his colleagues [1] develop

Object-Cut which locates the object via a pictorial model learnt from motion cues and

use the min-cut algorithm to segment out the object of interest. Ren et. al [16] address

the segmentation problem by combining low-, mid- and high-level cues in Conditional

Random Field (CRF). Similarly, Levin and Weiss [4] utilize CRF to segment object

but assuming that the position of the object is roughly given. In contrast to supervised

learning, Locus [67] explores a unsupervised learning approach to learn a probabilistic

object model. Recently, Cour and Shi [68] currently achieve the best performance on

this horse dataset. It is important to note that none of these methods report performance

on matching/alignment.
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4.3 Recursive Deformable Template Model (RDTM)

This section describes the basic structure of the RDTM. Firstly we describe the graphi-

cal structure in subsection (4.3.1). Secondly we specify the state variables and the form

of the probability distribution in subsection (4.3.2). Thirdly, in subsection (4.3.3), we

describe the learning procedure used to determine the graph structure from one ex-

ample. The inference and learning algorithms will be described in sections (4.4,4.5)

respectively.

4.3.1 The Graphical Structure of the RDTM

We represent an object by a hierarchical graph defined by parent-child relationships.

The top node of the hierarchy represents the position of the center of the object. The

leaf nodes represent points on the object boundary and the intermediate nodes represent

different subparts of the object. This is illustrated in figure (4.2). We use ν to index

nodes of the hierarchy. The set of all nodes is denoted by V . The set of child nodes of

ν is denoted by Tν (i.e. Tν specifies the vertical edges of the graph). In this chapter,

the horizontal dependencies will be built out of the triples of nodes (µ, ρ, τ) in Tν , see

figure (4.3). Each node ν is also connected to image data to encode the appearance of

its corresponding region. Hence the hierarchical graph is specified by {ν, Tν , (µ, ρ, τ)}
(i.e. the nodes, the vertical edges, and the horizontal edges).

4.3.2 The state variables and the potential functions

A configuration of an RDTM is an assignment of state variables y = {yν} to all nodes

{ν} of the hierarchy. The node variable at node ν is written as yν = (Pxν , Pyν , θν , sν)

at each node ν, where (Px, Py), θ and s denote position, orientation, and scale respec-

tively. It is an abstraction of the state variables of its child nodes. All these variables
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Figure 4.2: The hierarchical graph of the RDTM is constructed by a hierarchical clus-

tering algorithm (see text for details). Black dots indicate the positions of the leaf

nodes in the hierarchy. Color dots indicate the subparts which correspond to particular

nodes of the hierarchy. The appearance and shape deformation are modeled at multiple

levels in the hierarchy.
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are unobservable. Intuitively, each node ν corresponds to a sub-region of the image

determined by (Pxν , Pyν , θν , sν) (rectangle region centered at (Pxν , Pyν) with size

of sν). Observe that the state variables take the same form at all levels of the hierarchy

(unlike standard hierarchical representations [8, 11]). This design is what we called

“Recursive Composition Principle”.

We define a conditional probability distribution over these state variables with po-

tentials specified over the horizontal and vertical connections specified of the hierarchi-

cal graph structure. This enables the model to represent geometrical and data relations

at different scales. This differs from standard non-hierarchical models ([4, 16]) and

even some hierarchical models ([8]) which only specify data relations at the lowest

levels of hierarchy (even though they do specify geometric relationships at all scales).

More precisely, the conditional distribution is specified by a log-linear model:

P (y|x; α) =
1

Z(x; α)
exp{Φ(x, y) · α}, (4.3)

where x denotes the input image, y is the state of the RDTM, Φ(x, y) are potential func-

tions, α are the parameters of the distribution (which will be learnt in section (4.5)),

and Z(x; α) is the normalization function. The inner product is of the form:

Φ(x, y) · α =
∑
ν∈V

∑
i

αD
ν,iΦ

D
ν,i(x, y) +

∑
ν∈V

∑

(µ,ρ,τ)∈Tν

αH
ν,(µ,ρ,τ)Φ

H
ν,(µ,ρ,τ)(y) +

∑
ν∈V

αV
ν ΦV

ν (y)

(4.4)

where the summation is calculated on potential functions defined over the hierarchy.

More specifically, Φ(x, y) takes three forms: (i) the data terms ΦD(x, y), (ii) the hor-

izontal terms for spatial relations ΦH(y), and (iii) the vertical terms ΦV (y). These

terms are defined in terms of dictionaries of features from which the learning algo-

rithm selects and weights a restricted subset, see section (4.5). We now describe the

three different forms of potentials.
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The data terms ΦD
ν,i(x, y) = fi(x, yν) determine how the RDTM interacts with the

image feature fi calculated on the image region determined by yν = (Pxν , Pyν , θν , sν).

The image features are defined for the nodes at all levels of the hierarchy (see fig-

ure 4.2). For leaf nodes, ΦD(x, y) are specified by a dictionary of local image features

computed by different operators. This leaf dictionary include the intensity, its gradi-

ent, Canny edge detectors, Difference of Offset Gaussian (DOOG) at different scales

(13*13 and 22*22) and orientations (0, 1
6
π, 2

6
π, ...), and so on (the bottom row of fig-

ure 4.2). There are 27 image features in total for leaf nodes. For non-leaf nodes (the

second row of the right panel of figure 4.2), ΦD(x, y) is specified by a dictionary of

regional features (e.g. mean, variance, histogram of image features) defined over the

sub-regions specified by the node state yν .

The horizontal terms and vertical terms encode the geometrical priors. The hor-

izontal terms impose the horizontal connections at a range of scales (see the top and

third rows in figure 4.2). It is defined over all triples µ, ρ, τ formed by the child nodes

of each parent. See figure 4.3. Its form is given by ΦH
ν,(µ,ρ,τ)(y) = g(yµ, yρ, yτ ), where

g(., ., .) is a logarithm of Gaussian distribution defined on the invariant shape vector

(ITV) l(yµ, yρ, yτ ) constructed from (yµ, yρ, yτ ) [8]. The ITV depends only on vari-

ables of the triple, such as the internal angles, which are invariant to the translation,

rotation, and scaling of the triple. This ensures that the potential is also invariant to

these transformations. The parameters of the Gaussian are learnt from training data as

described in section (4.5).

The vertical terms ΦV (y) are used to hold the structure together by relating the

state of the parent nodes to the state of their children. The state of the parent node

is determined precisely by the states of the child nodes. This is defined by ΦV
ν (y) =

h(yν , {yµ s.t.µ ∈ Tν}), where Tν is the set of child nodes of node ν, h(., .) = 0 if the

average orientations and positions of the child nodes are equal to the orientation and
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Figure 4.3: Representation based on oriented triplet. This gives the cliques for the four

children of a node. In this example, four triplets are computed. Each circle corresponds

to one node in the hierarchy which has a descriptor (indicated by blue line) of position,

orientation and scale. The potentials of the cliques are Gaussians defined over features

extracted from triple nodes, such as internal angles of the triangle and relative angles

between the feature orientation and the orientations of the three edges of the triangle.

These exacted features are invariant to scale and rotation.

position of the parent node. If they are not consistent, then h(., .) = κ, where κ is a

large negative number.

In summary, the hierarchical representation decomposes both the appearance and

shape modeling into multiple levels. At low levels of the hierarchy (the third and fourth

rows of figure 4.2), the short-range shape constraints between small parts are modeled

together with the small-scale appearance cues. At higher levels (the top and second

rows of figure 4.2), the long-range shape regularities between larger parts are imposed

and large scale appearance cues are used.

4.3.3 Constructing the Hierarchy by One-example Learning

In this chapter, we learn the hierarchical graph from a single example of the object. We

call this “one-example learning”. The input is the set (Px, Py, θ) of points on the object

boundary curve together with their orientation (i.e. the normal vector to the curve).

We automatically construct the hierarchical graph by a hierarhical aggregation al-
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gorithm which is partially inspired by the “Segmentation by Weighted Aggregation

(SWA) ” algorithm [69]. The input is a weighted graph G = {V, E, W}where V is the

vertex set, E is the edge set, W is the weights. At the bottom level the vertices are the

edge points along the entire boundary. Wi,j = exp{−β1dist(zi, zj) + β2edge(zi, zj)}
where zi is the position of point i, dist(., .) is the distance function and edge(., .) is an

indicator function to measure if point i, j are neighbors or not. β1 and β2 are set to be

0.5 and 1 respectively (identically in all experiments).

The output is a hierarchical graph structure (the state variables of the example

are thrown out), i.e. a set of nodes and there vertical and horizontal connections.

We observe that the hierarchical graph gives a natural parsing of the exemplar (see

figure 4.2). See the details in [69].

In one-example learning, all the parameters α are manually set to be 1 , i.e. they are

equal to each other. The data terms ΦD(x, y) are only defined at leaf nodes. The image

feature is merely the intensity gradient. There is no region features for non-leaf nodes.

For the horizontal terms ΦH(y), the Gaussian distribution for g(yµ, yρ, yτ ) is defined

according to the single input example. More precisely, the mean is obtained by the

example and the variance parameter is set by hand. We will present how to learn the

parameters α to include more image features and weigh them by structure-perceptron

learning in section 4.5.

4.4 Inference: Parsing the Model

We now describe an inference algorithm suited to the hierarchical structure of the

RDTM. Its goal is to obtain the best state y∗ by estimating y∗ = arg max Φ(x, y) · α
which is defined in equation (4.4). We use a bottom-up strategy which makes propos-

als for the state variables from the bottom level to the top level. The bottom-up process
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works by combining proposals for the states of the lower-levels nodes to form propos-

als for the higher-levels nodes. A snapshot of the algorithm is shown in figure (4.4).

This algorithm has been developed in previous work [8, 11].

The algorithm is an example of approximate inference and, at present, no guaran-

tees can be given for its performance and temporal efficiency. The bottom-up process

can be considered as a form of dynamic programming with a specific form of prun-

ing which exploits the hierarchical structure. In practice, the algorithm performs very

well and runs in polynomial time in terms of the size of input image and the number

of levels of the hierarchy. This time efficiency is required to make learning practical,

see section (4.5), as well as to ensure rapid inference to detect, parse, segment, and

match/align the HLLM.

The bottom-up process is designed to be computationally cheap and to have very

few false negatives so that the objects are almost always found as a variant of one

of the proposals. Cheapness is achieved by keeping the number of proposals small

(avoiding the danger of combinatorial explosion due to composition) while avoiding

false negatives (similar to the motivation for cascades [55, 56]). This is achieved by:

(i) using thresholding to reject proposals whose probability is too small, and (ii) by sur-

round suppression which groups proposals into clusters of similar proposals and repre-

sents them by a single proposal (the one with highest probability). These mechanisms

ensures that the algorithm has linear scaling with image size, as shown in section (4.6).

We will empirically quantify the performance of each component of the hierarchy in

section (4.6.3).

The basic strategy of the bottom-up process is compositional. The algorithm seeks

to find subparts of the object and to combine them to make bigger subparts, until

eventually the whole object is detected. Each node νl at level l has a set of proposals

{P l
ν,a : a = 1, ..., M l

ν}where M l
ν is the number of proposals for node νl. There are also
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Level 4

Level 3

Level 2

Level 1

Figure 4.4: This snapshot illustrates the bottom-up inference algorithm. The bot-

tom-up process starts from level 1 and constructs proposals from children nodes. Only

proposals above threshold are kept. Similar proposals in the same local window de-

fined over space, orientation and scale are grouped together. See the proposals inside

the windows. The proposal with the highest score within this cluster is kept to propa-

gate to upper level.
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max-proposals {MP l
ν,a}, indexed by a, each associated with a local cluster {CLl

ν,a} of

proposals. Each proposal is described by a state vector {yl
ν,a : a = 1, ..., M l

ν}, the state

vectors for it and its descendants {Λl
ν,a : a = 1, ..., M l

ν}, and an energy function score

{El
ν(Λ

l
ν,a) : a = 1, ..., M l

ν} = Φ(x, y) · α where the potential functions Φ(x, y) are

only active for y = Λl
ν,a. Each proposal, or max-proposal, represents a cluster CLl

ν,a of

related proposals – which are above threshold Tl, but which have higher energy (lower

probability) than the max-proposal and so are suppressed.

We obtain the proposals by a bottom-up strategy starting at level l = 0 of the tree

where only image cues are used, i.e. no spacial relationship is considered. Then we

move to level l = 1 to explore all compositions of proposals from level l = 0. For a

node ν1 we define windows {W 1
ν,a} in space, orientation, and scale. We exhaustively

search for all configurations within this window which have a score E1
ν(Λ

1
ν) > T1 ,

where T1 is a fixed threshold. For each window W 1
ν,a, we select the configuration with

largest score to be the maximum proposal MP 1
ν,a and store the remaining proposals

above threshold in the associated cluster CL1
ν,a (of course, many windows will contain

no proposals above threshold – see section (4.6)). This window enforces surround

suppression and, together with the threshold, ensures that we do not obtain too many

proposals in the hierarchy.

The procedure is repeated as we go up the hierarchy. Each parent node νl+1 has

a set of windows {W l
ν,a} and produces proposals {MP l+1

ν,a }, and associated clusters

{CLl+1
ν,a }, by combining the proposals from its children. All proposals are required to

have scores El+1
ν (Λl+1

ν ) > Tl+1, where Tl+1 is a threshold. The results are a set of pro-

posals, and associated clusters of additional proposals, at all nodes in the hierarchical

graph .

In our experiments, the thresholds Tl are set to be certain values such that the recall

in the training data is 95%. In other words, for any object parts corresponding to the
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Input: {MP 1
ν1}. Output:{MPL

νL}

• Bottom-Up(MP 1)

Loop : l = 1 to L, for each node ν at level l

1. Composition: {P l
ν,b} = ⊕ρ∈Tν ,a=1,...,M l−1

ρ
MP l−1

ρ,a

2. Pruning: {P l
ν,a} = {P l

ν,a|Φν(x, Λl
ν,a) · α > Tl}

3. Local Maximum: {(MP l
ν,a, CLl

ν,a)} = LocalMaximum({P l
ν,a}, εW )

where εW is the size of the window W l
ν defined in space, orientation,

and scale.

Figure 4.5: The inference algorithm. ⊕ denotes the operation of combining two pro-

posals.

nodes in the hierarchy, 95% of training examples are correctly detected by using the

thresholds to prune out proposals.

4.5 Structure-Perceptron Learning

We now describe our learning algorithm. This constructs the RDTM probability distri-

bution by selecting and weighting features from the dictionaries. Recall that the graph

structure of the RDTM has already been learnt from one example by the hierarchical

clustering algorithm, see subsection (4.3.3). Thus the task of learning the RDTM is to

estimate the weights of features specified in section (4.3.2).

4.5.1 Background on Perceptron and Structure-Perceptron Learning

Perceptron learning was developed for classification tasks but its theoretical properties,

such as convergence and generalization, have only recently been justified [70]. More

76



recently, Collins [57] developed the structure-perceptron algorithm which applies to

situations where the output is a structure (e.g. a sequence or tree of states). He obtained

theoretical results for convergence, for both separable and non-separable cases, and for

generalization. In addition Collins and his collaborators demonstrated many successful

applications of structure-perceptron to natural language processing, including tagging

[71] (an example of a sequence/chain output), and parsing [72] (an example of tree

output).

Structure-perceptron learning can be applied to learning log-linear models such

as RDTM. The learning proceeds in a discriminative way. By contrast to maximum

likelihood learning, which requires calculating the expectation of features, structure-

perceptron learning only needs to calculate the most probable configurations (parses)

of the model. Therefore structure-perceptron learning is more flexible and computa-

tionally simpler (i.e. the max calculation is usually easier than the sum calculation).

To the best of our knowledge, structure-perceptron learning has never been ex-

ploited in computer vision except our previous work [12] (unlike the perceptron which

has been applied to binary classification and multi-class classification tasks). More-

over, we are applying structure-perceptron to more complicated models (i.e. RDTMs)

than those treated by Collins [71] (e.g. Hidden Markov Models for tagging).

4.5.2 Structure-Perceptron Learning

The goal of structure-perceptron learning is to learn a mapping from inputs x ∈ X

to output structure y ∈ Y . In our case, X is a set of images, with Y being a set

of possible parse trees (i.e. configuration of RDTM’s) which specify the positions,

orientations, scales of objects and their subparts in hierarchical form. We use a set

of training examples {(xi, yi) : i = 1...n} and a dictionary of functions {Φ} which

map each (x, y) ∈ X × Y to a feature vector Φ(x, y) ∈ Rd. The task is to estimate
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a parameter vector α ∈ Rd for the weights of the features. This can be interpreted as

a feature selection process by giving a default value of 0 to each parameter vector, so

that only features that are selected have non-zero weight. The feature vectors Φ(x, y)

can include arbitrary features of parse trees, as we discussed in section 4.3.1.

The loss function used in structure-perceptron learning is of form:

Loss(α) = Φ(x, y) · α−max
y

Φ(x, y) · α, (4.5)

where y is the correct state configuration for input x, and y is a dummy variable.

The basic structure-perceptron algorithm – Algorithm I – is designed to mini-

mize the loss function. Its pseudo-code is given in figure 4.6. The algorithm pro-

ceeds in a simple way (similar to the perceptron algorithm for classification). The

parameters are initialized to zero and the algorithm loops over the training exam-

ples. If the highest scoring parse tree for input x is not correct, then the parameters

α are updated by an additive term. The most difficult step of the method is to find

y∗ = arg maxy Φ(xi, y) · α. But this can be performed by the inference algorithm

described in section (4.5). Hence the performance and efficiency (empirically poly-

nomial complexity) of the inference algorithm is a necessary pre-condition to using

structure-perceptron learning for RDTM’s.

4.5.3 Averaging Parameters

There is a simple refinement to Algorithm I, called “the averaged parameters” method

(Algorithm II), whose pseudo-code is given in figure 4.7. The averaged parameters are

defined to be γ =
∑T

t=1

∑N
i=1 αt,i/NT , where NT is the averaging window. It is

straightforward to store these averaged parameters and output them. The theoretical

analysis in [57] shows that Algorithm II (with averaging) gives better performance and

convergence rate than Algorithm I (without averaging). We will empirically compare
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Input: A set of training images with ground truth (xi, yi) for i = 1..N . Initialize

parameter vector α = 0.

Algorithm I:

For t = 1..T, i = 1..N

• Use bottom-up inference to find the best state of the model on the i’th training

image with current parameter setting, i.e., y∗ = arg maxy Φ(xi, y) · α

• Update the parameters: α = α + Φ(xi, yi)− Φ(xi, y∗)

Output: Parameters α

Figure 4.6: Algorithm I: a simple training algorithm of structure-perceptron learning

Algorithm II:

For t = 1..T, i = 1..N

• Parse: y∗ = arg maxy Φ(xi, y) · α

• Store: αt,i = α

• Update: α = α + Φ(xi, yi)− Φ(xi, y∗)

Output: Parameters γ =
∑

t,i α
t,i/NT

Figure 4.7: Algorithm II: a modification of algorithm I.
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these two algorithms in section (4.6).

4.5.4 Feature Selection

We emphasize that structure-perceptron learning can be considered as a procedure of

feature selection (similar to AdaBoost). We specify a dictionary of features {Φ} and

initialize their parameters {α} to be zero. As the algorithm proceeds, it assigns non-

zero weights to some features thereby selecting them. This ability to perform feature

selection allows us to specify a large dictionary of possible features and enable the

algorithm to select those features which are most effective. This allows us to learn

RDTMs for different objects without needing to specially design features for each

object. In addition, feature selection allows us to automatically select features defined

at different levels.

This ability to automatically select features from a dictionary means that our ap-

proach is more flexible than existing conditional models (e.g., CRF [16, 4, 21]) which

use multi-level features but with fixed scales (i.e. not adaptive to the configuration of

the hidden state). In section 4.6.5, we empirically study what features the structure-

perceptron algorithm judges to be most important for a specific object like a horse.

Section 4.6.6 also illustrates the advantage of feature selection by applying the same

learning algorithm to the different task of face alignment without additional feature

design.

80



Figure 4.8: Examples of the Weizmann horse data set. This figure shows input image,

ground truth of segmentation, parsing (position of leaf nodes) and detection, from left

to right respectively.
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4.6 Experimental Results

4.6.1 Dataset and Evaluation Criterions

We use two standard public datasets, the Weizmann Horse Dataset [18] and cows [58],

to perform experimental evaluations for RDTMs. See some examples in figure 4.8.

These datasets are designed to evaluate segmentation, so the groundtruth only gives

the regions of the object and the background. To supplement this groundtruth, we

required students to manually parse the images by locating the positions of leaf nodes

of the hierarchy in the images. These parse trees are used as ground truth to evaluate

the ability of the RDTM to parse the horses (i.e. to identify different parts of the horse).

To show the generality of our approach, and its ability to deal with different objects

without hand-tuning the appearance features, we apply it to the task of face alignment.

The dataset [19] contains ground truth of standard 65 key points which lie along the

boundaries of face components with semantic meaning, i.e, eyes, nose, mouth and

cheek. We use part of this dataset for training (200 images) and part for testing (80

images).

The measure for parsing/alignment. For a given image x, the parsing results are

obtained by estimating the configuration y of the RDTM. To evaluate the performance

of parsing (for horses) and matching/alignment (for faces) we use the average position

error measured in terms of pixels. This quantifies the average distance between the

positions of leaf nodes of the ground truth and those estimated in the parse tree.

The measure for segmentation. The RDTM does not directly output a full seg-

mentation of the object. Instead the set of leaf nodes gives a sparse estimate for the

segmentation. To enable RDTM to give full segmentation we modify it by a strategy

inspired by grab-cut [73] and obj-cut [1]. We use a rough estimate of the boundary

by sequentially connecting the leaf nodes of the RDTM, to initialize a grab-cut algo-
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rithm (recall that standard grab-cut [73] requires human initialization, while obj-cut

needs motion cues). We use segmentation accuracy to quantify the proportion of the

correct pixel labels (object or non-object). Although segmentation accuracy is widely

used as a measure for segmentation, it has the disadvantage that it depends on the

relative size of the object and the background. For example, you can get 80% seg-

mentation accuracy on the weizmann horse dataset by simply labelling every pixel as

background. Therefore, to overcome the shortcoming of segmentation accuracy, we

also report precision/recall, see [16], where precision = P∩TP
P

and recall = P∩TP
TP

(P is the set of pixels which are classifier as object by RDTM and TP is the set of

object pixels in ground truth). We note that segmentation accuracy is commonly used

in the computer vision community, while precision/recall is more standard in machine

learning.

The measure for detection. We use detection rate to quantify the proportion of

successful detections. We rate detection to be successful if the area of intersection of

the labeled object region (obtained by graph-cut initialized by the RDTM) and the true

object region is greater than half the area of the union of these regions.

The measure for performance analysis. We judge that an object(or part) is cor-

rectly parsed if each subpart (i.e. the location of each node in the hierarchy) is located

close (within k1 × l + k2 pixels where l is the level with k2 = 5 and k1 = 2.5) to the

ground-truth. The thresholds in the distance measure vary proportionally to the height

of levels so that the distance is roughly normalized according to the size of object parts.

We plot the precision-recall curve to study the performance of the components of the

whole model.
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Figure 4.9: This shows the exemplars used for the horse (left) and the cow (right).

Dataset Size Detection Parsing Segmentation Speed

Horse 328 86.0 18.7 81.3% /73.4% 3.1s

Cow 111 88.2 – 81.5% /74.3% 3.5s

Table 4.1: The performance of the RDTM with one-example learning.

4.6.2 Experiment I: One-example Learning

We first report the performance of the RDTM with one-example learning. The two

exemplars needed to obtain the horse and cow hierarchies are shown in figure (4.9).

We use identical parameters for each model (i.e. for the hierarchical aggregation al-

gorithm, for the data terms, and the horizontal and vertical terms, for the proposal

thresholds and window sizes).

We illustrate the segmentation and parsing results in figure (4.10). Observe that the

algorithm is successful even for large changes in position, orientation and scale – and

for object deformations and occlusion. The evaluation results for detection, parsing,

and segmentation are shown in table (4.1). Overall, the performance is very good and

the average speed is under 4 seconds for an image of 320× 240.
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Figure 4.10: Segmentation and parsing results on the horse and cows datasets. The

first column shows the raw images. The second one show the edge maps. The third

one shows the parsed result. The last one shows the segmentation results.
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4.6.3 Experiment II: Contributions of Object Parts: Complexity and Perfor-

mance Analysis

We use the model learnt by one-example learning to analyze the effectiveness of

different components of the hierarchical model in terms of performance and time-

complexity. This is shown in table (4.2)and figure (4.11). We hope that this analysis

of the tradeoffs between speed and performance will yield general principles for opti-

mal design of modeling and inference for computer vision systems particularly those

requiring multi-level processing.

Performance Contributions of Multi-level Object Parts. Figure (4.11) shows

how different components of the hierarchy contribute to performance. It is easy to

note that smaller object parts have worse performance in terms of precision-recall.

More high-level knowledge including both appearance and shape prior makes object

parts more distinct from background and thus improves the overall performance. One

can see that there is a jump in performance when we move from level 2 to level 3,

indicating that the information at level 3 is sufficient to disambiguate the object from

cluttered background.

Computational Complexity Analysis. Table (4.2) shows that the number of pro-

posals scales almost linearly with the level in the hierarchy, and the time cost for each

level is roughly constant. This demonstrates that the pruning and surround suppression

are important factors for making bottom-up processing effective. Overall, this helps

understand the effectiveness of the bottom-up processing at different levels.
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Cluster # / Node Prop. # / Cluster Time / Node Time / Image

Level 4 51 38.7 0.14s 0.14s

Level 3 77 76.3 0.29s 0.88s

Level 2 105 37.3 0.21s 1.05s

Level 1 158 9.3 0.10s 1.22s

Level 0 225 5.8 0.01s 0.18s

Hierarchy 180 10.9 0.08s 3.47s

Table 4.2: Analysis of the Bottom-Up Processing. The numbers of clusters for each

node and proposals for each cluster at different levels are compared in columns 2 and 3.

Time costs for each node and the whole image are listed in the last two columns. The

last row shows the numbers averaged over the nodes of all the levels of the hierarchy.
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Figure 4.11: This figure shows the Precision-Recall curves for different levels. Level

4 is the top level. Level 0 is the bottom level. “Human” curve is provided as an ideal

decision maker for comparison.
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Table 4.3: Comparisons of one-example learning and structure-perceptron learning

Approaches Training / Validation Det. Parsing Segmentation Speed

One-example 1 / – 86.0 % 18.7 81.3% / 73.4% 3.1s

Structure-perceptron 50 / 50 99.1% 16.04 93.6% / 85.3% 23.1s

Table 4.4: Comparisons of Segmentation Performance on Weizmann Horse Dataset

Methods Testing Seg. Accu. Pre./Rec.

Our approach 228 94.7% 93.6% / 85.3%

Ren [16] 172 91.0% 86.2%/75.0%

Borenstein [74] 328 93.0%

LOCUS [67] 200 93.1%

Cour [68] 328 94.2%

Levin [4] N/A 95.0%

OBJ CUT [1] 5 96.0%
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4.6.4 Experiment III: Evaluations of Structure-Perceptron Learning for De-

formable Object Detection, Segmentation and Parsing

In this experiment, we will apply structure-perceptron learning to include all image

features for the leaf nodes and non-leaf nodes, and estimate the parameters α. The

hierarchical structure is obtained by one-example learning. We use the Weizeman

horse dataset [18] for evaluations where a total of 328 images are divided into three

subsets – 50 for training, 50 for validation, and 228 for testing. The parameters learnt

from the training set, and with the best performance on validation set, are selected.

Results. The best parse tree is obtained by performing inference algorithm over

RDTM learnt by structure-percepton learning. Figure 4.12 shows several parsing and

segmentation results. The states of the leaf nodes of parse tree indicate the positions

of the points along the boundary which are represented as colored dots. The points of

same color in different images correspond to the same semantic part. One can see our

model’s ability to deal with shape variations, background noise, textured patterns, and

changes in viewing angles. The performance of detection and parsing on this dataset

is given in Table 4.3. Structure-perceptron learning which include more visual cues

outperforms one-example learning in all tasks. The localization rate is around 99%.

Our model performs well on the parsing task since the average position error is only 16

pixels (to give context, the radius of the color circle in figure 4.12 is 5 pixels). Note no

other papers report parsing performance on this dataset since most (if not all) methods

do not estimate the positions of different parts of the horse (or even represent them).

The time of inference for image with typical size 320× 240 is 23 seconds.

Comparisons. In table 4.4, we compare the segmentation performance of our

approach with other successful methods. Note that the object cut method [1] was

reported on only 5 images. Levin and Weiss [4] make the strong assumption that

the position of the object is given (other methods do not make this assumption) and
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Figure 4.12: Examples of Parsing and Segmentation. Column 1 , 2 and 3 show the

raw images, parsing and segmentation results respectively. Column 4 to 6 show extra

examples. Parsing is illustrated by dotted points which indicate the positions of leaf

nodes (object parts). Note that the points in different images with the same color

correspond to the same semantical part.

not report how many images they tested on. Overall, Cour and Shi’s method [68]

was the best one evaluated on large dataset. But their result is obtained by manually

selecting the best among top 10 results (other methods output a single result). By con-

trast, our approach outputs a single parse only but yields a higher pixel accuracy of

94.7%. Hence we conclude that our approach outperforms those alternatives which

have been evaluated on this dataset. As described above, we prefer the precision/recall

criteria [16] because the segmentation accuracy is not very distinguishable (i.e. the

baseline starts at 80% accuracy, obtained by simply classifying every image pixel as
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Figure 4.13: The average position errors (y-axis) across iterations (x-axis) are com-

pared between Algorithm-II(average) and Algorithm-I (non-average).

being background). Our algorithm outperforms the only other method evaluated in

this way (i.e. Ren et. al’s [16]). For comparison, we translate Ren et. al’s perfor-

mance ( 86.2%/75.0%) into segmentation accuracy of 91% (note that it is impossible

to translate segmentation accuracy back into precesion/recall).

4.6.5 Experiment IV: Diagnosis of structure-perceptron learning

In this section, we will conduct diagnosis experiments to study the behavior of structure-

perceptron learning.

Convergence Analysis. Figure 4.13 shows the average position error on training

set for both Algorithm II (averaged) and Algorithm I (non-averaged). It shows that the

averaged algorithm converges much more stablely than non-averaged algorithm.

Generalization Analysis. Figure 4.14 shows average position error on training,

validation and testing set over a number of training iterations. Observe that the behav-

ior on the validation set and the testing set are quite similar. This confirms that the
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Figure 4.14: The average positions errors on training, validation and testing dataset are

reported.

selection of parameters decided by the validation set is reasonable.

Feature Selection. We show the features learnt from structure-perceptron learning

in figure (4.15) (features are shown at the bottom level only for reasons of space). The

top 5 features, ranked according to their weights, are listed. The top left, top right and

bottom left panels show the top 5 features for all leaf nodes, the node at the back of

horse and the node at the neck respectively. Recall that structure-perceptron learning

performs feature selection by adjusting the weights of the features.

4.6.6 Experiment V: Multi-view Face Alignment

The task of multi-view face alignment has been much more thoroughly studied than

horse parsing. Our RDTM approach, using identical settings for horse parsing, achieves

an average distance error of 6.0 pixels, comparable with the best result 5.7 pixels, ob-

tained by [59]. Their approach is based mainly on the Active Appearance Models [60]

which were motivated specifically to model faces and which assume that the shape de-
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Figure 4.15: Weights of Features. The most useful features overall are gray value,

magnitude and orientation of gradient, and difference of intensity along horizontal

and vertical directions (Ix and Iy). DooG1 Ch5 means Difference of offset Gaussian

(DooG) at scale 1 (13*13) and channel (orientation) 5 (4
6
π).
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Figure 4.16: Multi-view Face Alignment.

formations are mostly rigid. By contrast, our RDTMs are suitable for both rigid and

deformable objects and required no special training or tuning to apply to this problem.

Figure 4.16 shows the typical parse results for face alignment.

4.7 Conclusion

We developed a Recursive Deformable Template Model (RDTM) for representing ob-

jects which can be learnt by adapting the structure-perceptron algorithm used in ma-

chine learning. Advantages of our approach include the ability to select shape and

appearance features at a variety of scales in an automatic manner.

We demonstrated the effectiveness and versatility of our approach by applying it

to very different problems, evaluating it on large datasets, and giving comparisons to

the state of the art. Firstly, we showed that the RDTM outperformed other approaches

when evaluated for segmentation on the weizmann horse dataset. It also gave good

results for parsing horses (where we supplied the groundtruth), though there are no

other parsing results reported for this dataset. Secondly, we applied RDTMs to the
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completely different task of multi-view face alignment (without any parameter tuning

or selection of features) and obtained results very close to the state of the art.

However, the structure of the RDTM has to require the object template to be in-

put by human. In the next chapter, we will discuss how RDTM can be learnt in an

unsupervised way.
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CHAPTER 5

Unsupervised Learning: Recursive Composition,

Suspicious Coincidence and Competitive Exclusion

In chapter 4, we have discussed how to learn a RDTM in a supervised manner (i.e.

structure-perceptron). In this chapter, we will address the issues of unsupervised learn-

ing. We describe a new method for unsupervised structure learning of a Recursive

Deformable Template model (RDTM) for deformable objects. The learning is unsu-

pervised in the sense that we are given a training dataset of images containing the

object in cluttered backgrounds but we do not know the position or boundary of the

object. The structure learning is performed by a bottom-up and top-down process. The

bottom-up process is a novel form of hierarchical clustering which recursively com-

poses proposals for simple structures to generate proposals for more complex struc-

tures. We combine standard clustering with the suspicious coincidence principle and

the competitive exclusion principle to prune the number of proposals to a practical

number and avoid an exponential explosion of possible structures. The hierarchical

clustering stops automatically, when it fails to generate new proposals, and outputs a

proposal for the object model. The top-down process validates the proposals and fills

in missing elements. We tested our approach by using it to learn a hierarchical com-

positional model for parsing and segmenting horses on Weizmann dataset. We show

that the resulting model is comparable with (or better than) alternative methods. The

versatility of our approach is demonstrated by learning models for other objects (e.g.,
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faces, pianos, butterflies, monitors, etc.). It is worth noting that the low-levels of the

object hierarchies automatically learn generic image features while the higher levels

learn object specific features.

5.1 Introduction

The goal of this chapter is to learn a hierarchical model for deformable objects. The

learning is unsupervised in the sense that we are given a training dataset of images

containing the object in cluttered backgrounds but we do not know the position or

boundary of the object. Unsupervised learning is desirable since it avoids the need for

time consuming hand labeling and prevents implicit biases. We apply the model to

tasks such as object segmentation and parsing (matching of object parts).

Learning a hierarchical compositional model is very challenging since it requires

us to learn the structure of the model (e.g. the relationships between the variables,

and the existence of hidden variables) in addition to the parameters of the model. The

difficulties are visually illustrated in figure 5.1: (i) the objects are deformable so there

is ambiguity in the structure. (ii) there is cluttered background noise. (iii) parts of

the object may be missing, (iv) the input is simple oriented edge features, which is a

simple and highly ambiguous representation.

We now discuss some critical computational issues for unsupervised learning which

motivate our hierarchical approach and contrast it to other unsupervised approaches for

learning object models (e.g. [32], [9]). An abstraction of the structure learning prob-

lem is that we have a dataset of images each of which contain approximately M object

features and N total features. In this chapter, we are considering the case of M = 100

and N = 5000. Learning an object model requires solving a complicated correspon-

dence problem to determine which features are object, which are background, and the
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Figure 5.1: Left:The learning is unsupervised in the sense that we are given a training

dataset of images containing the object in cluttered backgrounds but we do not know

the position or boundary of the object. Right: The hierarchical representation of the

object. The boxes represent non-leaf nodes. The circles denote leaf nodes that directly

relate to properties of the input image. The topology of the structure is not given, but

learnt in an unsupervised way.

spatial relationships between the object features. There are several strategies for ad-

dressing this correspondence problem. The first naive strategy is brute force enumera-

tion which involves testing all NM possibilities. This is only practical if M and N are

small and the appearances of the features are sufficiently distinctive to enable many

possible correspondences to be rejected. The second strategy is to learn the model in

a greedy (non-hierarchical) way by sequentially growing subparts one by one [32, 9].

This is practical in cases where brute force fails, but it still makes two assumptions: 1)

sparseness assumption which requires M and N to be fairly small, e.g., M = 6 and

N = 100 in [32] and 2) small ambiguity assumption which requires the appearances of

the features to be somewhat distinctive. Neither of these two strategies are applicable

if the features are edgelets, because M and N are both large and all edgelets have the

same appearance which leads to big ambiguity. (One strategy is to use more powerful

features, but we argue that this merely postpones the complexity problem). The pur-

pose of this chapter is to develop a more general unsupervised learning method without

making strong assumptions of sparseness and low ambiguity. In other words, we try
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to provide a unified learning scheme for both generic features and object structures.

Hence, we are driven to a third strategy, named as Recursive Composition, that creates

a model by combining elementary structures to build a hierarchy.

Our strategy is based on a novel form of bottom-up recursive clustering. We as-

sume that the object can be expressed in terms of recursive compositions of elemen-

tary structures (see the right panel of figure 5.1). We learn the structure by repeatedly

combining proposals for substructures to make proposals for more complex structures.

This process stops when we cannot generate any more proposals. A huge number of

proposals are examined and stored at every level to avoid ambiguity since small sub-

structures are not necessarily distinct enough between object and background. How-

ever, combining proposals in this way risks a combinatorial explosion (imagine that

the number of combinations will grow exponentially as we go up to the upper lev-

els). We avoid this by the use of two principles: (i) suspicious coincidences, and (ii)

competitive exclusion. Suspicious coincidences eliminates proposals which occur in-

frequently in the image dataset (in less than 90 percent of the images). The competitive

exclusion principle is adapted from ecology community where it prevents two animals

from sharing the same environmental niche. In this chapter, competitive exclusion

eliminates proposals which seek to explain overlapping parts of the image.

The bottom-up clustering is followed by a top-down stage which refines and fills

in gaps in the hierarchy. These gaps can occur for two reasons. Firstly, the compet-

itive exclusion principle sometimes eliminates subparts of the hierarchy because of

small overlaps. Secondly, gaps may occur at low-levels of the hierarchy, for example

at the neck of a horse, because there are considerable local shape variations and so

suspicious coincidences are not found. The top-down process can remove these gaps

automatically by relaxing the two principles. For example, at higher levels the system

discovers more regular relationships between the head and torso of the horse which
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provides context enabling the algorithm to fill in the gaps.

In summary, hierarchical bottom-up and top-down procedure allows us to grow the

structure exponentially (the height of a hierarchy is log(M)) and end up with a nearly

complete structure (the resulting representation is dense and the size M could be big).

We tested our approach by using it to learn a hierarchical compositional model for

parsing and segmenting horses on Weizmann dataset [18]. We show that the resulting

model is comparable with (or better than) alternative methods. The versatility of our

approach is demonstrated by learning models for other objects (e.g., faces, pianos,

butterflies, monitors, etc.).

5.2 Background: Hierarchical Structure Learning

Hierarchical design dates back to Fukushima’s Neocognitron [61]. Recently, there

have been many new developments including new representations and learning algo-

rithms. For example, Geman et al. [49] propose a hierarchical object model designed

by a compositional principle using an AND/OR graph. Inference algorithms have been

invented for this type of model [11], which we will adapt and use to perform inference

in this chapter (Note [11] does not address any learning algorithm). Deep networks

[75], another type of multi-layer system, has recently been proposed by Hinton et al.

[75]. Ullman et al. [76] learns a hierarchical feature representation in a supervised

manner. Poggio and his colleagues’[63] build a hierarchical structure for rapid object

recognition motivated by mimicing the architecture of the visual cortex of the human

brain. Ahuja and Todorovic’s hierarchical representation [77] is based on segmented

image regions. Fleuret and Geman [78] provide a coarse-to-fine strategy which starts

from edgelets. Fidler and Leonardis[79]’s unsupervised learning approach is most re-

lated to our work (the main difference is that they treat rigid objects, have a less dense

representation, and do not have a top-down stage). In summary, in several cases these
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models[49, 11, 63] are not learnt but are specified by the user. Some unsupervised

methods [76] assume that background is clean and the object is roughly aligned. Un-

supervised learning (in the sense of this chapter) has been performed [32, 11] (without

a hierarchy) but for object models with limited number of object features (as discussed

earlier). Most models [32, 63, 76, 49, 9] focus on recognition or categorization, but

not parsing.

5.3 The Recursive Deformable Template Model (RDTM) and the

Inference algorithm

5.3.1 The Recursive Deformable Template Model (RDTM)

In this subsection, we introduce the Recursive Deformable Template Model which is

slightly different from the one in chapter 4. Recall that RDTM represents objects in

a hierarchical form. The object template consists of a small number of small sub-

templates which is composed by smaller subsub-templates, and so on. But in this

chapter, RDTM has no interactions between non-leaf nodes and image features. The

graph structure for the hierarchical model is depicted in the right panel of figure 5.1

and defined as follows. We let Vr be the set of nodes of the graph with root node r.

Each node ν ∈ Vr has a set of child nodes Tν (a node is constrained to have a single

parent), V LEAF
r are the leaf nodes (the only ones which interact with the image). For

any node ν ∈ Vr, we can define a graph Vν with root node ν containing the descendants

of ν. The edges for the graph are of three types: (i) vertical data edges which relate the

leaf nodes to the image, (ii) horizontal edges relating the children of each node to each

other (described below), and (iii) vertical edges relating parents to children (specified

by {Tν}). In this chapter, all vertical edges are directed. The horizontal edges only

connect the child nodes with the same parent. Moreover, we restrict the number of
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child nodes to be less than six, i.e., |Tν | ≤ 6. This ensures that the size of the biggest

clique of the hierarchy is small. We use the notation Ωr to represent the graph (i.e. the

set of nodes Vr and the set of edges).

A configuration of the graph is an assignment of state variables z = {zν} to all

ν ∈ Vr. In this chapter, we set zν = (xν , yν , θν , sν) , where (x, y), θ and s denote

image position, orientation, and scale respectively (the scale is the area of the image

that the node represents). We use the notation Zν = {zµ : µ ∈ Vν} to denote the state

of node ν and all its descendent nodes.

We define a Gibbs distribution P (z, d; ω, Ω) for the probability of the graph as

follows:

P (z, d; ω, Ω) =
1

Z(ω, Ω)
exp{−E(z, d; ω, Ω)}. (5.1)

where Z(ω, Ω) is the partition function, d is the image, ω denotes the parameters of

the distribution and Ω denotes the graph structure (i.e. the nodes and the edges). The

energy function E(z, d; ω, Ω) is the sum of three terms corresponding to the three types

of edges in the graph:

Ed(d, Zr; ω, Ω) + Eh(Zr; ω, Ω) + Ev(Zr; ω, Ω), (5.2)

where Ed, Eh, Ev are energy terms defined at the data, horizontal, and vertical edges.

We now describe the specific choices used in this chapter.

The data term Ed is given by:

Ed(d, Zr; ω, Ω) =
∑

ν∈V LEAF
r

f(dν , zν), (5.3)

where V LEAF
r is the set of the leaf nodes and f(., .) is the (negative) logarithm of a

Gaussian defined over the grey-scale intensity gradient (i.e. dν = ~∇Iν). It biases the

leaf nodes to be located at image locations where the image gradient is large, and for
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their orientations to be perpendicular to the image gradient. This term is fixed and not

learnt.

The horizontal term Eh is given by:

Eh(Zr; ω, Ω) =
∑

ν∈Vr/V LEAF
r

∑

(µ,ρ,τ):µ,ρ,τ∈Tν

g(zµ, zρ, zτ ; ω), (5.4)

where g(zµ, zρ, zτ ; ω) is the (negative) logarithm of Gaussian distribution defined on

the invariant triplet vector (ITV) l(zµ, zρ, zτ ) constructed from (zµ, zρ, zτ ) [9]. (The

ITV is invariant to the translation, rotation, and scaling of the triple, which ensures

that the full probability distribution is also invariant to these transformations). The

summation is over all triples formed by the child nodes of each parent, see the right

panel of figure (5.1). The parameters of the Gaussian are indicated by ω = (µ, σ).

The vertical term Ev is used to hold the structure together by relating the state of

the parent nodes to the state of their children. It is defined by:

Ev(Zr; ω, Ω) =
∑

ν∈Vr/V LEAF
r

h(zν ; {zµ s.t.µ ∈ Tν}), (5.5)

where h(., .) = 0 provided the average orientations and positions of the child nodes

are equal to the orientation and position of the parent node – formally (xν , yν , θν) =

(1/|Tν |)
∑

µ∈Tν
(xµ, yµ, θµ). If this equality does not hold, then h(., .) = κ, where κ

is a large positive number. The scale variable sν =
∑

µ∈Tν
sµ, hence the parent node

represents the sum of the regions in the image represented by its children.

Observe that the nodes of the graph have the same variables at all levels (i.e.

(x, y, θ, s)). This makes use of hierarchical independence assumption–the higher level

interactions depend only on the summarization of all child nodes at the lower levels.

More precisely, the child nodes only propagate a limited summary (center position,

total size and orientation) of their state information to their parents. The choice of

the vertical term Ev means that this information is simply the average of their node

variables (except for size).
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We stress that we can use equations (5.2,5.3,5.4,5.5) to calculate the energy for any

subgraph by specifying the root node of the subgraph. This gives an effective way for

computing the full energy, by combining the energy of the subgraphs, and is exploited

during inference and learning. We can also exploit this hierarchy in order to compute

other important properties, such as the partition function Z(ω, Ω). Note, in figure 5.1,

the vertical edges are directed and horizontal edges only connect the child nodes (less

than six) with the same parent. Therefore, the partition function can be factorized into

several components (corresponding to the cliques) whose sizes are small.

5.3.2 The Inference Algorithm for parsing when RDTM is known

The inference algorithm for the RDTM has been introduced in chapter 4 (see sec-

tion 4.4). This algorithm will be used both when we are learning the model, see sec-

tion (5.4), and when we are applying the model to new images to perform detection,

segmentation, and parsing.

5.4 Unsupervised Structure Learning

We now address the critical issue of how to learn the structure of the hierarchical model

from a set of images which contain an example of the object with varying background.

Formally, this requires us to estimate the structure parameters Ω and the distribution

parameters ω. The task of the unsupervised learning is defined as :

(ω∗, Ω∗) = arg max P (ω, Ω|d) (5.6)

= arg maxP (d|ω, Ω)P (ω, Ω) (5.7)

= arg max
∑

z

P (d|z, ω)P (z|ω, Ω)P (ω, Ω) (5.8)

104



where P (d|z, ω)P (z|ω, Ω) = P (d, z|ω, Ω) is defined in equation (5.1). P (ω, Ω) ac-

counts for the prior distribution of the structure which plays a similar role of structure

regularization. P (ω, Ω) is factorized into P (ω) and P (Ω). The parameters indicated

by ω are µ and σ in the gaussian functions. The prior on σ is of the formN (0, βI). The

prior on µl at certain level l puts hard constraints on the range of the distance allowed

between any two substructures. The prior of Ω is uniform distribution. The summation
∑

z P (d|z, ω)P (z|ω, Ω)P (ω, Ω) is used as a score function to measure the goodness of

the fit of the structure. Intuitively, the score function tells us how frequently a structure

encoded by (Ω, ω) appears in the training set. Our approach is based on a bottom-up

process to propose a set of structures (Ω, ω) followed by a top-down process which

refines the result by adjusting (Ω, ω).

Our algorithm makes several approximations to simplify the learning problem.

Firstly, we will exploit the hierarchical nature of the model to estimate the parame-

ters ω locally. In principle, we could use these local estimates to initialize an EM

algorithm to determine the parameters globally. Secondly, while our algorithm pro-

poses a structure Ω we cannot guarantee that it is the globally optimal structure. But

our experimental results, see section (5.5), provide empirical evidence that these ap-

proximations are reasonable.

5.4.1 The Bottom-Up Process

The bottom-up process constructs hierarchical object models by composing them from

more elementary components. We use two principles to prevent a combinatorial ex-

plosion of compositions and to ensure that our compositions result in desirable object

models. The two principles are: (i) suspicious coincidences where we keep composi-

tions which occur frequently in the images and reject compositions which do not, and

(ii) competitive exclusion where we remove compositions which match to regions of

105



the image which overlap with other compositions. The relative importance of these

different principles is shown empirically in the results section, see table 5.3 and fig-

ure 5.6. For example, observe how competitive exclusion play a small role when the

compositions are small but is of major importance as the compositions get large.

Our strategy proceeds by creating vocabularies of concepts at different levels in the

hierarchy, where each concept is a hierarchical compositional model. See figure 5.2

for visual (symbolic) illustration. The concepts are generated by composing concepts

at lower levels. The basic ideas are to detect all instances of the concepts at level l in

the images (using the inference algorithm for each concept). We form compositions

of these concepts by identifying sets of these concepts that appear in sub-regions of

the images. We cluster these compositions based on the spatial relationships between

their elements (the instances of the concepts at level l − 1) to get a set of concepts at

level l whose distribution parameters ω are estimated from the clusters. We run the

inference algorithm on the images to find the instances of all the concepts. Then we

use the suspicious coincidence principle to remove concepts which occur infrequently

(i.e. have few instances). Next we use the competitive exclusion principle to remove

concepts whose instances overlap with those of other concepts (with better scores).

The remaining concepts form the vocabulary of concepts at level l + 1. The process

repeats until no new concepts are composed. For our applications (e.g. images con-

taining a large object with variable background), it will terminate automatically in a

small number of proposals when the hierarchy has reached a maximum size (i.e. there

is no larger structure to be found).

The full procedure is described more formally in the next few paragraphs and is

summarized by the pseudo-code in figure (5.3) and illustrated visually in figure 5.2.

First we introduce some notation (see table 5.1)). A concept at level l is notated by

P l
ω,ν . It is a RDTM with root node ν and ω represents the parameters of this model. A
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Composition

Competitive 

exclusion

Pruning

Clustering & 

Parsing

Figure 5.2: This figure illustrates the procedure of the unsupervised learning. The first

column shows the responses of the features from the ”vocabulary” at level l. the second

column shows the compositions at step 1). the third column shows the clustering at

step 2. The noise(non-regular) pattern bounded by dotted line is pruned out by step

4. The last column plots the results after step 5. At step 5, the compositions, which

are constructed by different components, but parse the same areas in the image, are

grouped together (the maximum is kept

concept P l
ω,ν

max concept MP l
ω,ν

instance P l
ν

max instance MP l
ν,a

Table 5.1: The table shows the notation for the learning algorithm.
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vocabulary of concepts at level l is the set {P l
ω,ν}. We can parse the training dataset

using the vocabulary of concepts at level l to get a set of instances of each concept

{MP l
ν,a}, where a = 1, ..., N l

ν indexes the set of instances. Each instance is repre-

sented by its state variables Zν .

We define the bottom-up process as follows. At each level l− 1 we have a vocabu-

lary of concepts {P l−1
ω,ν } and a set of instances of the concepts in the images {MP l−1

ν,a }.

We then repeat the following steps.

1. Composition. We search through the images to find instances of triplets of

concepts MP l−1
µ,ω ,MP l−1

ρ,ω ,MP l−1
τ,ω within subregions of size Sl−1 (for all µ, ρ, τ in the

vocabulary). From each triplet instance we construct an instance P l
ν where node ν has

children µ, ρ, τ ∈ Tν .

2. Clustering. We cluster the instances P l
ν by the second order moments of the

shape descriptor (triplet vector) of the positions, scales and orientation (xρ, yρ, θρ, sρ)

of the children of ν (this clustering is done separately for all triples in the concept

vocabulary at level l − 1). The clustering outputs a set of concepts at level l notated

by {P l
ω,ν}. Some of the parameters ω = (µ, σ) of each concept are estimated from the

second order moments (see above) and the remainder are inherited from the underlying

concepts at level l − 1.

3. Parsing. We parse the image dataset using the inference algorithm (see sec-

tion (5.3.2)) for the set of concepts output by the clustering {P l
ω,ν}. This gives a set of

instances of the concepts in the dataset {MP l
ν,a}.

4. Pruning by Suspicious Coincidences. We remove concepts from {P l
ω,ν} if they

do not have sufficient number of instances in the dataset (i.e. if there are instances of

the concept in less than ninety percent of the images).

5. Competitive exclusion. We remove concepts from {P l
ω,ν} if their instances have

significant overlap with instances of other concepts (and the other concepts have better
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scores).

The remaining concepts form the concept vocabulary {P l
ω} at level l. Their in-

stances in the dataset {MP l} have already been calculated (in the parsing step above).

The process repeats itself until no new concepts are generated. In practice, this hap-

pens within 4-5 levels (see experimental section). The process is initialized for the

leaf nodes. The vocabulary of concepts at level 1 {P 1
ω,ν : ν = 1, ..., 4} consists of

four types of edgelets characterized by their orientations θ = mπ/4 for m = 0, 1, 2, 3.

The size s is set to a default value s1. We parse the training set of images to detect

the instances of all the concepts (more precisely, we compute the set of points (x, y) :

Ed(~∇I(x, y), (x, y, mπ/4, s1)) < T1, where T1 is a threshold, for m = 0, 1, 2, 3). This

gives the set of instances of each concept {P 1
ω,ν}.

5.4.2 The Top-Down Process

The top-down process fills in the missing parts of the hierarchy and also adds a dense

representation at the lowest level (to enable segmentation of the image). Missing parts

of the hierarchy can occur for two reasons: (i) competitive exclusion may be too strict

at eliminating proposals which only slightly overlap, (ii) shape variations at certain

parts of the object may be big at small scales (hence rejected by suspicious coinci-

dences) but are more regular at larger scales. For example, there are big variations

locally where the legs of a horse join the torso, which make it hard to detect small

scale regularities by clustering. But there are large scale regularities between the legs

and the torso which are found at higher levels in the bottom-up process. The top-down

process can fill in the gaps at lower level by using the higher levels connections as

“context” which allow the pruning criteria to be relaxed.

A greedy strategy is used to examine every node in the hierarchy. For each node

νl at level l, we seek to add a substructure from the dictionary (the set of proposals
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Input: {MP 1} . Output: {MPω
L}. ⊕ denotes the operation of combining two

proposals.

• Bottom-Up-Structure-Construction(MP 1)

Loop : l = 1 to L

1. Composition: {P l
ν} = ⊕(MP l−1

µ,a ,MP l−1
ρ,b ,MP l−1

τ,c ) and T l
ν =

{µl−1, ρl−1, τ l−1}

2. Clustering: {Pω
l
ν} = Clustering({P l

ν})

3. Parsing: for each Pω
l
ν , {MP l

ν,a} =

Parser(Pω
l
ν , {MP l−1

µ ,MP l−1
ρ ,MP l−1

τ })

4. Suspicious Coincidence (Pruning) : {Pω
l
ν}{Pωl

ν |Score(Pωl
ν) >

Tpruning}

5. Competitive Exclusion: {(MPω
l
ν , CLω

l
ν)} =

CompetitiveExclusion({Pω
l
ν}, εregion) where εregion is the size

of the window Wimage defined in regions which are covered by a set of

images.

• P̃ω = arg maxν Score(MPω
L
ν )

• Top-Down-Structure-Extension

Loop: l = L to 2, for each node ν at level l within P̃ω

– repeat

1. Pω
∗
ρ = arg maxPω

l−1
ρ

Score(P̃ω ⊕ Pω
l−1
ρ )

2. ∆ = Score(P̃ω ⊕ Pω
∗
ρ)− Score(P̃ω)

3. P̃ω = P̃ω ⊕ Pω
∗
ρ; T l

ν = T l
ν ∪ ρl−1

until ∆ < Textension

Figure 5.3: Bottom-up and Top-down Learning.
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obtained in the bottom-up processing) at the lower level l− 1 as the new child of νl so

that the extended structure fits the data best (locally). This extension operation for the

node νl is repeated until the gain is less than some threshold. The extensions corre-

spond to adding more energy terms defined in equation (5.4) and (5.5). In figure (5.5),

one can observe that substructures are added into the hierarchy to capture the details

of the head and hind leg.

5.5 Experimental Results

Performance Comparisons for segmentation and parsing. We applied our approach

to learn hierarchical composition models for a number of different objects. We will

first concentrate on the hierarchical model for the horse, learnt from data from the

Weizmann database [18] which is divided to training (12 images without labeling) and

testing (316 images with groundtruth) sets. These images cover many poses (standing,

running, drinking, etc.), changes in viewing angles, different scales, textured body pat-

terns and cluttered background. Our strategy to obtain segmentation, which is inspired

by Grab-Cut [73] , is to obtain the parse by the inference algorithm on the RDTMs

and then segment object by graph-cut using the feature statistics inside the boundary

as initializations (note that, unlike us, Grab-Cut requires initialization by a human).

The comparisons using segmentation accuracy are shown in table 5.2. The methods

in [16, 4] are based on supervised learning. Only two methods [1, 4] reported higher

accuracy than ours: but (i) Obj Cut[1] is tested on only five images while our method is

tested on more than 300 images; (ii) [4] assumes the position of object is given for both

learning and testing (Note our method does not make this assumption). [11] manually

designed the model (no learning) whose performance, i.e., about 91%, is similar to [16]

and inferior to ours. [68] is not listed because they manually select the best among top

results (all other methods output single result). In conclusion, our method achieves
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Method Train Test Segmentation Speed

Our method 12 316 93.3 16.9s

Ren [16] 172 172 91.0 –

Borenstein [74] 64 328 93.0 –

LOCUS [67] 20 200 93.1 –

OBJ CUT [1] N/A 5 96.0 –

Levin [4] N/A N/A 95.0 –

Table 5.2: Results on horse dataset. Columns 2 and 3 give the size of images taken for

training and testing. Column 4 quantifies the segmentation accuracy. The last column

shows the average time taken for one image. Note that [1] is tested on only 5 images

and [4] assumes the position of the object is roughly given.

the comparable (if not the best) performance even though we use far less information

(we only know that the object is present somewhere in the image, while the supervised

methods know the precise location of the boundaries). In addition, our model simul-

taneously performs other tasks such as detection and parsing (labeling different parts

of the horse). See figure 5.4 for the typical segmentation and parsing results (we also

cropped the results from [1] for comparison). Note that the color points indicate iden-

tities of object parts. Our method obtains more complete and stable boundaries than

[1] which learns object models from video where extra motion cues are used to make

learning easier. The average time of our inference algorithm including both parsing

and segmentation is 17 seconds.

Study the Hierarchy. The final hierarchy for horse is depicted in the left panel of

figure 5.5. The mean position and orientation of edgelets of leaf nodes are depicted

to sketch the model learnt by the unsupervised method. The colored rectangles in

the dotted box highlight the parts filled in at the top-down stage. Note that the final
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Figure 5.4: In the top two rows, Columns 1 ,3 and 5 show parse results of our method

followed by segmentation results. The parse result is illustrated by the colored dots

which correspond to the leaf nodes of the object. The correspondences are consistent

for different images. Rows 3 and 4 show the parse results of our method and OBJ CUT

(cropped from [1]) on 5 images used in [1] respectively. Note our method obtains more

complete boundary.
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skeleton of horse is nearly complete while the sketches obtained by the bottom-up

processing miss several parts (head, leg and back). The responses of subparts of the

hierarchy is depicted in the right panel of figure 5.5. One can see that the numbers of

proposals decrease from low level to high level.

Complexity Analysis. Our experiments also show the relative effectiveness of

our two principles as we form compositions at different levels of the hierarchy, see

table (5.3). The reduction in compositions by clustering is fairly large (a reduction

factor of 10) at level 1 but becomes negligible at higher levels as the compositions

get more distinct. Suspicious coincidences causes major reductions in compositions

with reduction factors ranging from 60 to 2000. This is because the vast number of

compositions occur infrequently. Competitive exclusion has little effect at level 1 (a

reduction factor of 5) but increases rapidly at higher levels to a reduction factor of 15

at level 4. This is because larger compositions are more likely to overlap and compete

for the same niches in the images. Competitive exclusion principle is the main factor

that causes the bottom-up process to stop at a specific level.

Analyze the Hierarchical Dictionary. It seems plausible that our algorithm will

learn generic features (e.g., oriented straight lines, single curves, double edges, Y-

junctions, T-junctions, etc.) at low-level of the hierarchy and more specific object

features at the higher-levels. This is confirmed by observing the vocabularies that are

extracted at different levels, see the left panel of figure (5.6). Recall that all these

features are encoded by the same hierarchical composition principle. In the right panel

of figure (5.6), we also plot the distribution of the concepts at the different levels of

the dictionary. The peaks of levels 4, 3, 2 and 1 appear from right to left. Note that the

concepts at level 1 have only one instance per image.

More objects. To demonstrate the generality of our approach, we apply it to learn

models for a range of other objects collected from Caltech 101 [17], MIT LabelMe [80]
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Top-down 

Processing

BackHeadLeg

Figure 5.5: Top: The hierarchy shows the learnt hierarchical model. The colored rect-

angles highlight the identities of the structures. All parts are obtained at the bottom-up

stage except that the rectangles in the dotted boxes show the parts of the model that

were learnt in the top-down stage. Bottom: The rows illustrate structures at levels

4,3,3,2,2 (i.e. top row is level 4, next row is level 3,...). The first column gives the

structure (with three children colour coded). The second column shows the structure

detected on a specific image. The third, fourth, and fifth columns show the proposals

for the sub-structure – colour coded.
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Figure 5.6: Top: This figure shows elements of the vocabulary for horses at different

levels (mean values only). Observe how the vocabulary contains “generic” shapes at

low levels, but finds horse specific parts at the higher levels. Bottom: This figure shows

the histogram of concepts at the different levels of the dictionary. A point in a curve

quantifies the number of concepts which have a certain number of instances.
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L Composition Clusters Suspic. Coincid. Compet. Exclus. Time

0 4 1s

1 167431 14684 262 48 117s

2 2034851 741662 995 116 254s

3 2135467 1012777 305 53 99s

4 236955 72620 30 2 9s

Table 5.3: Columns from 2 to 5 show the numbers of proposals after composition

(step 1), clusters after clustering (step 2), after pruning (step 4) and after competitive

exclusion (step 5) respectively. The next column shows the time (seconds) taken for

each level. Level 0 shows the results of the grouping of the edge points(360 degrees

are divided into 4 angle ranges). all numbers are calculated over 12 real images in the

training dataset.

and internet, see figure (5.7). These images cover different types of shapes (man-made

structure and animal), cluttered background (monitor, face and deer) and rotation (vi-

olin). These models were learnt using a small amount of training data (12 images per

object). The dictionaries learnt from different objects have similar elementary struc-

tures at low levels. They can be applied to parse images using the inference algorithm.

This experiment shows the versatility of our approach while modeling different types

of shapes of objects.

5.6 Conclusion

We described a new method for unsupervised structure learning of a recursively com-

positional model for deformable objects. The structure learning was performed by a

bottom-up and top-down process. We tested our approach by using it to learn hierar-
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Figure 5.7: This figure illustrates the generality of our approach. We show some typ-

ical training images which contain cluttered background, different shapes and defor-

mations. The red-sketch images show the learnt models.

chical models for horses and other objects (e.g. watches, purses, faces, grand pianos,

violins, revolvers, butterflies). We evaluated the resulting models by comparing their

performance to alternative methods.
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CHAPTER 6

AND/OR Graph Learning

In this chapter we formulate a novel AND/OR graph representation for parsing ar-

ticulated objects into parts and recovering their poses. The AND/OR graph extends

the recursive deformable template model to to handle an enormous variety of artic-

ulated poses with a compact graphical model. We also extend inference algorithm,

compositional inference, that uses a bottom-up compositional process for proposing

configurations for the object. The strategy of surround suppression is applied to en-

sure that the inference time is polynomial in the size of input data. We present a

novel structure-learning method, Max Margin AND/OR Graph (MM-AOG), to learn

the parameters of the AND/OR graph model discriminatively. Max-margin learning is

a generalization of the training algorithm for support vector machines (SVMs). The

parameters are optimized globally, i.e. the weights of the appearance model for in-

dividual nodes and the relative importance of spatial relationships between nodes are

learnt simultaneously. The kernel trick can be used to handle high dimensional features

and to enable complex similarity measures to discriminate between object configura-

tions. We applied our approach – the AND/OR graph representation, compositional

inference and max-margin learning – to the tasks of detecting, segmenting and parsing

horses and human body. We demonstrate that the inference algorithm is fast and an-

alyze its computational complexity empirically. To evaluate max margin learning, we

perform comparison experiments on the horse and human baseball datasets, showing

significant improvements over state of the art methods on benchmarked datasets.
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6.1 Introduction

In this chapter, we address the problem of detecting, segmenting and parsing articu-

lated deformable objects, such as horses and human body, in cluttered backgrounds.

Parsing articulated object like human body (i.e. pose estimation of body parts) in

static image has recently received a lot of attention. Such problems arise in many

applications including human action analysis, human body tracking, and video analy-

sis. But the major difficulties of parsing the human body, which arise from the large

appearance variations (e.g. different clothes) and enormous number of poses, have

not been fully solved. There are three aspects to addressing these problems. Firstly,

what representation is capable of modeling the large variation of both shape and ap-

pearance? Secondly, how can we learn a probabilistic model defined on this repre-

sentation? Thirdly, if we have a probabilistic model, how can we perform inference

efficiently (i.e. rapidly search over all the possible configurations of the object in order

to estimate poses for novel images). These three aspects are clearly related to each

other. Intuitively, the greater the representational power, the bigger the computational

complexity of learning and inference. Most works in the literature, e.g. [2, 20, 11], fo-

cus on only one or two aspects, and not on all of them (see section (6.2.2) for a review

of the literature). In particular, the representations used have been comparatively sim-

ple. Moreover, those attempts which do use complex representations tend to specify

their parameters by hand and do not learn them from training data. The recursive de-

formable template model described in chapters 4 and 5 is also limited to handle a large

number of articulated poses. In this chapter, we adapt the AND/OR graphs [26, 49]

representation for articulated objects. AND/OR graphs offer a far richer more deeply

structured representation for objects and scenes but are only useful provided efficient

inference and learning algorithms can be found.

In this chapter, we represent the different poses of the human body and horse by the
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Figure 6.1: The AND/OR representation allows us to model enormous poses of the

object. A parse tree which is an instantiation of the AND/OR graph represents a spe-

cific pose of the human body. The nodes and edges in red indicate one parse tree. In

this chapter, there are 98 poses which can be modeled by the parse trees of the whole

AND/OR graph.

form of AND/OR graphs proposed for modeling deformable articulated objects [11],

see figure (6.1). The design of this graph uses the principle of recursive composition, so

that lower level nodes in the graph only pass on summary statistics (as an abstraction)

to the higher level nodes. More precisely, the nodes of the AND/OR graph specify

the position, orientation and scale of sub-configurations of the object (together with

an index variable which specifies which sub-configurations of the object are present).

The probability distribution defined on this representation is built using local potentials

and hence obeys the Markov condition. It is designed to be invariant to the position,

pose, and size of the object. The advantages of this AND/OR graph (see figure (6.1))

is that it can represent an enormous number of different poses (98 for human body and

40 for horse in this chapter) in a compact form (i.e. only a small number of nodes are

required), enforce (probabilistic) spatial relations on the configuration, and use many
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image features as input (to address the large appearance variations).

We next describe an algorithm for performing inference over this representation.

This is a challenging task since the space of possible configurations is enormous. But

the use of the summarization principle in our design of the AND/OR graph enables

us to use (pruned) dynamic programming for inference. This is a modification of the

inference algorithm described in chapter 4.

Finally, we learn the model parameters, which specify the geometry and the ap-

pearance, by a novel extension of the max-margin algorithm for structure learning [82,

83, 84]. This learning is global in the sense that we learn all the parameters simulta-

neously (by an algorithm that is guaranteed to find the global minimum) rather than

learning local subsets of the parameters independently. Max-margin learning has been

shown to be more effective than standard maximum likelihood estimation when the

overall goal is classification (e.g. into different poses). It also has some technical

advantages such as: (i) avoiding the computation of the partition function of the distri-

bution, and (ii) the use of the kernel trick to extend the class of features.

In summary, our method makes contributions to both machine learning and com-

puter vision. The contribution to machine learning is to extend max-margin learning

to AND/OR graphs (max-margin has previously been applied to simpler models, see

section (6.2)). The contribution to computer vision is the combination of the AND/OR

representation, the max-margin learning, and compositional inference [11] to model

articulated object (horse and human body) parsing. Moreover, our results, see section

(6.6), show that our approach significantly outperforms the state of the art on bench-

marked datasets.
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6.2 Background

6.2.1 Object Representation

Detection, segmentation and parsing are all challenging problems. Most computer

vision systems only address one of these tasks. There has been influential work on

detection [52] and on the related problem of registration [53],[54]. Work on segmenta-

tion includes [1], [58], [74], [68], [4], [67], and [16]. Much of this work is formulated,

or can be reformulated, in terms of probabilistic inference. But the representations are

fixed graph structures defined at a single scale. This restricted choice of representation

enables the use of standard inference algorithms (e.g. the hungarian algorithm, belief

propagation) but it puts limitations on the types of tasks that can be addressed (e.g. it

makes parsing impossible), the number of different object configurations that can be

addressed, and on the overall performance of the systems.

In the broader context of machine learning, there has been a growing use of prob-

abilistic models defined over variable graph structures. Important examples include

stochastic grammars which are particularly effective for natural language processing

[29]. In particular, vision researchers have advocated the use of probability models

defined over AND/OR graphs [26],[49] where the OR nodes enable the graph to have

multiple topological structures. Similar AND/OR graphs have been used in other ma-

chine learning problems [25].

But the representational power of AND/OR graphs comes at the price of increased

computational demands for performing inference (and learning). For one dimensional

problems, such as natural language processing, this can be handled by dynamic pro-

gramming. But computation becomes considerably harder for vision problems and it

is not clear how to efficiently search over the large number of configurations of an

AND/OR graph. The inference problem simplifies significantly if the OR nodes are
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restricted to lie at certain levels of the graph (e.g. [37], [8]), but these simplifications

are not suited to the problem we are addressing.

6.2.2 Human Body Parsing

There has been considerable recent interest in human body parsing. Sigal and Black

[85] address the occlusion problem by enhancing appearance models. Triggs and his

colleagues [86] learn more complex models for individual parts by SVM and combine

them by an extra classifier. Mori [20] use super-pixels to reduce the search space and

thus speed up the inference. Ren et al. [87] present a framework to integrate multiple

pairwise constraints between parts, but their models of body parts are independently

trained. Ramanan [88] proposes a tree structured CRF to learn a model for parsing

human body. Lee and Cohen [89] and Zhang et al. [90] use MCMC for inference.

In summary, these methods involve representations of limited complexity (i.e. with

less varieties of pose than AND/OR graphs). If learning is involved, it is local but not

global (i.e. the parameters are not learnt simulateously) [87, 85, 86, 20]. Moreover,

the performance evaluation is performed by the bullseye criterion: outputting a list of

poses and taking credit if the groundtruth result is in this list [20, 90, 2].

The most related work is by Srinivasan and Shi [2] who introduced a grammar for

dealing with the large number of different poses. Their model was manually defined,

but they also introduced some learning in a more recent paper [91]. Their results are

the state of the art, so we make comparisons to them in section (6.6).

By contrast, our model uses the AND/OR graph in the form of Chen et al. [11]

which combines a grammatical component (for generating multiple poses) with a

markov random field (MRF) component which represents spatial relationships be-

tween components of the model (see [49, 26] for different types of AND/OR graph

models). We perform global learning of the model parameters (both geometric and
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appearance) by max-margin learning. Finally, our inference algorithm outputs a only

a single pose estimate which, as we show in section (6.6), is better than any of the

results in the list output by Srinivasan and Shi [2] (and their output list is better than

that provided by other algorithms [20]).

6.2.3 Max Margin Structure Learning

The first example of max-margin structure learning was proposed by Altun et al. [82]

to learn Hidden Markov Models (HMMs) discriminatively. This extended the max

margin criterion, used in binary classification [92] and multi-class classification [93],

to learning structures where the output can be a sequence of binary vectors (hence

an extension of multi-class classification to cases where the number of classes is 2n,

where n is the length of the sequence). We note that there have been highly successful

examples in computer vision of max-margin applied to binary classification, see SVM-

based face detection [94].

Taskar et al. [83] generalized max margin structure learning to general markov

random fields (MRF’s), referred to a max margin markov network (M3). Taskar et

al. [84] also extended this approach to probabilistic context-free grammar (PCFG)

for language parsing. But max-margin learning has not, until now, been extended to

learning AND/OR graph models which can be thought of as combinations of PCFG’s

with MRF’s.

This literature on max-margin structure learning shows that it is highly competitive

with conventional maximum likelihood learning methods as used, for example, to learn

conditional random fields (CRF’s) [23]. In particular, max-margin structure learning

avoids the need to estimate the partition function of the probability distribution (which

is major technical difficulty of maximum likelihood estimation). Max-margin struc-

ture learning essentially learns the parameters of the model so that the groundtruth
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states are those with least energy (or highest probability) and states which are close to

groundtruth also have low energy (or high probability). See section (6.5) for details.

6.3 The AND/OR Graph Representation

6.3.1 The Topological Structure of the AND/OR Graph

The structure of an AND/OR graph is represented by a graph G = (V, E) where V and

E denote the set of vertices and edges respectively. The vertex set V contains three

types of nodes,“OR”,“AND” and “LEAF” nodes which are depicted in figure (6.1) by

circles, rectangles and triangles respectively. See two examples in figures (6.2) and

(6.3). These nodes have attributes including position, scale, and orientation. The edge

set E contains vertical edges defining the topological structure and horizontal edges

defining spatial constraints on the node attributes. For each node ν ∈ V , the set of

its child nodes is defined by Tν . Hence {Tν} denotes all possible vertical edges of the

AND/OR graph (the presence of OR nodes means that not all child nodes will appear

in a parse, see next subsection). The horizontal edges are defined on triplets (µ, ρ, τ)

of the children of AND nodes. The structure of the AND/OR graph is represented by

the set of nodes and the edge set {(ν, Tν , (µ, ρ, τ))}.

The directed (vertical) edges connect nodes at successive levels of the tree. They

connect: (a) the AND nodes to the OR nodes, (b) the OR nodes to the AND nodes,

and (c) the AND nodes to the LEAF nodes. The LEAF nodes correspond directly to

points in the image. Connection types (a) and (c) have fixed parent-child relationships,

but type (b) has switchable parent-child relationship (i.e. the parent is connected to

only one of its children, and this connection can switch). The horizontal edges only

appear relating the children of the AND nodes. They correspond to Markov Random

Fields (MRF’s) and define spatial constraints on the node attributes (implemented by
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potentials). These constraints are defined to be invariant to translation, rotation, and

scaling of the attributes of the children.

The AND/OR graph we use in this chapter to represent the poses of human body

and horse is shown in figures (6.2) and (6.3). In figure (6.2), the top node shows all

the 98 possible configurations (i.e. parse trees of the human body). These config-

urations are obtained by AND-ing sub-configurations such as the torso, the left leg,

and the right leg of the body (see circular nodes in the second row). Each of these

sub-configurations has different aspects as illustrated by the AND nodes (rectangles

in the third row). These sub-configurations, in turn, are composed by AND-ing more

elementary configurations (see fourth row) which can have different aspects (see fifth

row). The overall structure of this representation was hand-specified by the authors.

Future work will attempt to learn it from examples.

6.3.2 The Representational Power of the AND/OR Graph Representation

The representational power of AND/OR graph is given by the number of topological

configurations of the graph which we call parse trees and which correspond to different

poses. Each parse tree corresponds to a specification of which AND nodes are selected

by the OR nodes (i.e. each OR node is required to select a unique child). Hence the

number of different parse trees is bounded above by WCh , where C is the maximum

number of children of AND nodes (in this chapter we restrict C ≤ 4), W denotes the

maximum number of possible children of OR nodes, and h is the number of levels

containing OR nodes with more than one child node. The total number of parameters

associated with the potential functions, which are defined on the edges of an AND/OR

graph, is bounded above by MWC where M is the number of AND nodes connecting

to OR nodes. Hence the AND/OR graph can represent an exponentially large number

of articulated poses, corresponding to different topologies, but with a compact form of
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Figure 6.2: The AND/OR graph is an efficient way to represent different appearances

of an object. The graph was hand specified.. The bottom level of the graph indicates

points along the boundary of human body. The higher levels indicate combinations of

elementary configurations. The graph that we used contains eight levels (three lower

levels are not depicted here due to lack of space). Color points distinguish different

body parts. The arms are not modeled in this chapter (or in related work in the litera-

ture).

...

... ......

Figure 6.3: The AND/OR graph for horses. There are 40 poses allowed in this chapter.

The first (typical) pose in the top node will be used for single hierarchy by fixing the

child of all OR nodes.
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polynomial size. This property of the AND/OR graph representation is very desirable

for learning because it requires few training images to achieve good generalization. In

the experiments reported in this chapter we have M = 35, C = 4,W = 3, h = 4.

There are 98 poses modeled by the AND/OR graph.

6.3.3 The State Variables

A configuration (parse tree) of the AND/OR graph is an assignment of state variables

y = {zν , tν}with the state variable zν = (zx
ν , zy

ν , z
θ
ν , z

s
ν) to each node ν, where (zx, zy),

zθ and zs denote image position, orientation, and scale respectively. The t = {tν}
variable defines the specific topology of the parse tree, where tν denotes the children

of node ν. More precisely, tν defines the vertical parent-child relations by indexing

the children of node ν. tν is fixed and tν = Tν if ν is an AND node (because the

node is always connected to all its children – recall that Tν is the set of child nodes of

ν), but tν is a variable for an OR node ν (to enable sub-configurations to switch their

appearances and shapes), see figure (6.2). We use the notation Λν to denote the state

yν at node ν, together with the states of all the descendent nodes of ν (i.e. the children

of ν, their children, and so on). The input to the graph is the image x = {xν} defined

on the image lattice (at the lowest level of the graph).

We define V LEAF (t), V AND(t),V OR(t) to be the set of LEAF, AND, and OR nodes

which are active for a specific choice of the topology t of a parse tree. These sets can

be computed recursively from the root node, see figure (6.2). The AND nodes in the

second row (i.e. the second highest level of the graph) are always activated and so are

the OR nodes in the third row. The AND nodes activated in the fourth row, and their

OR node children in the fifth row, are determined by the t variables assigned to their

parent OR nodes. This process repeats till we reach the lowest level of the graph.

A novel feature of this AND/OR representation is that the node variables are the
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same at all levels of the hierarchy. We call this the summarization principle which

make use of the compositionality. It means that the state of an AND node will be a

simple deterministic function of the state variables of the children (see section (6.3.4)).

This differs from other AND/OR graphs [26],[49] where the node variables at differ-

ent levels of the graph are typically at different levels of abstraction. The use of the

summarization principle helps us to define a successful inference algorithm.

6.3.4 The Potential Functions for the AND/OR Graph

The conditional distribution on the states and the data is given by:

P (y|x;w) =
1

Z(x;w)
exp 〈w, Ψ(x, y)〉 . (6.1)

where x is the input image, y is the parse tree, and Z(x,w) is the partition function.

P (y|x;w) is a (conditional) exponential model which is defined by an inner product

〈w, Ψ(x, y)〉 between features Ψ(x, y) and model parameters w (to be learnt). The

features Ψ(x, y) are of three types: (i) appearance features ΨD(x, y), (ii) horizontal

spatial relationship features ΨH(y), and (iii) vertical relationship features ΨV (y). Note

that only the appearance features depend on the data x (the other features are like prior

distributions). The inner product 〈w, Ψ(x, y)〉 can be decomposed into three energy

terms:

〈w, Ψ(x, y)〉 = −ED(x, y)− EH(y)− EV (y) (6.2)

The data term ED(x, y) is given by:

ED(x, y) =
∑

ν∈V LEAF (t)

wD
ν ΨD

ν (x, y) (6.3)

where the appearance features ΨD
ν (x, y),∀ν ∈ V LEAF (t) are data dependent and

model the appearance of the object. They relate the appearance of the active leaf
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nodes to properties of the local image. More formally, y in ΨD
ν (x, y) refers to zν =

(zx, zy, zs, zθ) for the active nodes ν ∈ V LEAF . ΨD
ν (x, zν) represent the local image

features including the grey intensity, the gradient, canny edge map, the responses of

Gabor filters at different scales and orientations, and related features. We use a total

of 101 features of this type (i.e. the vector ΨD(x, y) has 101 dimensions). But not

all these features will be used (the max-margin learning will typically set some of the

parameters wD to be zero).

The next two terms in r.h.s of equation (6.2) make use of the hierarchical structure.

The horizontal component EH(y) of the hierarchical shape prior is used to impose the

horizontal connections at a range of scales and defined by

EH(y) =
∑

ν∈V AND(t)

∑

(µ,ρ,τ)∈tν

wH
ν,µ,ρ,τΨ

H
ν,µ,ρ,τ (y) (6.4)

where the horizontal spatial relationship features ΨH(y) specify the horizontal rela-

tionships (which correspond to geometric constraints at a range of scales). They are

defined by ΨH
ν,µ,ρ,τ (y) = g(zµ, zρ, zτ ),∀ν ∈ V AND(t) where g(., ., .) is a logarithm of

Gaussian distribution defined on the invariant shape vector l(zµ, zρ, zτ ) (see section

3.3.2) constructed from triple child nodes (zµ, zρ, zτ ) of node ν. This shape vector

models the shape deformation and depends only on variables of the triple, such as the

internal angles, which are invariant to the translation, rotation, and scaling of the triple.

This type of feature is defined over all triples formed by the child nodes of each parent.

The parameters of the Gaussians are estimated from the labeled training data (this is

local learning, but max-margin will learn their parameters wH globally).

The vertical component EV (y) is used to hold the structure together by relating the

state of the parent nodes to the state of its children. EV (y) is divided into three vertical

energy terms denoted by EV,A(y), EV,B(z) and EV,C(z) which correspond to type(A),
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type(B) and type(C) vertical connections respectively. Hence we have

EV (y) = EV,A(y) + EV,B(y) + EV,C(y) (6.5)

EV,A(y) specifies the coupling from the AND node to the OR node. This coupling

is deterministic – the state of the parent node is determined precisely by the states of

the child nodes. This is defined by:

EV,A(y) =
∑

ν∈V AND(t)

wV,A
ν ΨV,A

ν (y) (6.6)

where ΨV,A
ν (y) = h(zν , {zµ s.t.µ ∈ tν}),∀ν ∈ V AND(t), where h(., .) = 0 if the

average orientations and positions of the child nodes are equal to the orientation and

position of the parent node (i.e. the vertical constraints are “hard”). If they are not

consistent, then h(., .) = κ, where κ is a large negative number.

EV,B(y) accounts for the probability of the assignments of the connections from

OR nodes to AND nodes. We define:

EV,B(y) =
∑

ν∈V OR(t)

wV,B
ν ΨV,B

ν (y) (6.7)

where ΨV,B
ν (y) is an indicator function which equals one while the node ν is active and

zero otherwise. wV,B
ν encodes the weights of the assignments determined by tν .

The energy term EV,C(y) defines the connection from the lowest AND nodes to

the LEAF nodes. This is similar to the definition of EV,A(y), and EV,C(y) is given by

EV,C(y) =
∑

tν∈V LEAF (t)

wV,C
ν ΨV,C

ν (y) (6.8)

where ΨV,C
ν (y) = h(zν ; ztν ) where h(., .) = 0 if the orientation and position of the

child (LEAF) node is equal to the orientation and position of the parent (AND) node.

If they are not consistent, then h(., .) = κ.
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Finally, we can compute the energy of the sub-tree for a particular node ν as root

node. The sub-tree energy is useful when performing inference, see section (6.4). This

is computed by summing over all the potential functions associating to the node ν and

its descendants. This energy is defined by:

Eν(Λν) = ED(x, y) + EH(y) + EV (y). (6.9)

where y ∈ Λν and V LEAF (t), V AND(t), V OR(t) in the summation of each term are

defined in the set of the node ν and its descendants.

6.4 The Inference/Parsing Algorithm

We use the inference algorithm first reported in [11] (an modification of the algorithm

described in section 4.4) to obtain the best parse tree y∗ of an image x by computing

y∗ = arg maxy 〈w, Ψ(x, y)〉 where the inner product is defined in equation (6.2). This

algorithm runs in polynomial time in terms of the size of input image and the number

of levels of the AND/OR graph (no other algorithm has this level of inference perfor-

mance on AND/OR graphs). This rapid inference is necessary to make max margin

learning practical.

The algorithm has a bottom-up stage which makes proposals for the configuration

of the AND/OR graph. This proceeds by combining proposals for sub-configurations

to build proposals for larger configuration. For AND nodes, we combine proposals for

the child nodes to form a proposal for the parent node. For OR nodes, we enumerate all

proposals from all branches without composition. To prevent a combinatorial explo-

sion we prune out weak proposals which have low fitness score (〈w, Ψ(x, y)〉 evaluated

for the configuration) and use clustering which selects a small set of max-proposals

(each representing a cluster).

The pseudo-code for the algorithm is shown in figure 6.4. We use the follow-
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ing notation. Each node νl at level l has a set of proposals {P l
ν,a} where a indexes

the proposals (see table (6.2) for the typical number of proposals). There are also

max-proposals {MP l
ν,a}, indexed by a, each associated with a local cluster {CLl

ν,a}
of proposals (see table (6.2) for the typical number of max-proposals). Let S denote

the number of clusters. Each proposal, or max-proposal, is described by a state vec-

tor {yl
ν,a : a = 1, ..., M l

ν}, the state vectors for it and its descendants {Λl
ν,a : a =

1, ..., M l
ν}, and an energy function score {El

ν(Λ
l
ν,a) = 〈w, Ψ(x, y)〉 : a = 1, ..., M l

ν}.

We obtain the proposals by a bottom-up strategy starting at level l = 2 (AND

node) of the tree. For a node ν2 we define windows {W 2
ν,a} in space, orientation, and

scale. We exhaustively search for all configurations within this window which have a

score (goodness of fit criterion) E2
ν(Λ

2
ν,a) < K2, where K2 is a fixed threshold. For

each window W 2
ν,a, we select the configuration with largest score to be the proposal

MP 2
ν,a and store the remaining proposals below threshold in the associated cluster

CL2
ν,a. This window enforces surround suppression which performs clustering to keep

the proposal with the maximum score in any local window. Surround suppression

grantees the number of the remaining proposals at each level is proportional to the size

of image (input data). Note that the potential functions associated with the nodes at

level l only rely on the position, orientation and scale at level l, but not on the states of

its descendants at level l− 1, l− 2, .., 1. Therefore, different detailed configurations of

subparts with the same global pose will have identical energies for the higher levels.

This strategy essentially is (pruned) dynamic programming and ensures that we do not

obtain too many proposals in the hierarchy and avoid a combinatorial explosion of

proposals. We will analyze this property empirically in section 6.6. The procedure is

repeated as we go up the hierarchy. Each parent node νl+1 produces proposals {P l+1
ν,a },

and associated clusters {CLl+1
ν,a }, by combining the proposals from its children. All

proposals are required to have scores El+1
ν (Λl+1

ν ) < Kl+1, where Kl is a threshold.
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Input: {MP 1
ν1}. Output:{MPL

νL}. ⊕ denotes the operation of combining two pro-

posals.

Loop : l = 1 to L, for each node ν at level l

• IF ν is an OR node

1. Union: {MP l
ν,b} =

⋃
ρ∈Tν ,a=1,...,M l−1

ρ
MP l−1

ρ,a

• IF ν is an AND node

1. Composition: {P l
ν,b} = ⊕ρ∈Tν ,a=1,...,M l−1

ρ
MP l−1

ρ,a

2. Pruning: {P l
ν,a} = {P l

ν,a|E(Λl
ν,a) > Kl}

3. Local Maximum: {(MP l
ν,a, CLl

ν,a)} = LocalMaximum({P l
ν,a}, εW )

where εW is the size of the window W l
ν defined in space, orientation,

and scale.

Figure 6.4: The inference algorithm. The operation LocalMaximum implements sur-

round suppression.
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Recall that the cluster is defined over image position, orientation and scale. Thus,

the number S of proposals of each node at different levels is linearly proportional

to the size of the image. It is straight forward to conclude that the complexity of

our algorithm is bounded above by M × WC × SC . Recall that C is the maximum

number of children of AND nodes (in this chapter we restrict C ≤ 4), W denotes the

maximum number of possible children of OR nodes and M is the number of AND

nodes connecting to OR nodes. This shows that the algorithm speed is polynomial

in W and S (and hence in the image size). The complexity for our experiments is

reported in section (6.6).

In practice, the thresholds Kl are not explicitly defined. Instead, we keep top K

proposals for each node whose energy scores are greater than those of any other pro-

posals. K is empirically set to be 300 in our experiments. In very rare situations

we may find no proposals for the state of one node of a triplet. In this case, we use

the states of the other two nodes together with the horizontal potentials (geometrical

relationship) to propose states for the node. A similar technique was used in [8].

6.5 Max Margin AND/OR Graph Learning

6.5.1 Primal and Dual Problems

The task of AND/OR graph learning is to estimate the parameters w from a set of

training samples (x1, y1),...,(xn, yn) ∈ X × Y drawn from some fixed, but unknown

probability distribution. In this chapter, x is the image and y is the configurations of

the AND/OR graph.

We formulate this learning task in terms of the max-margin criterion which is de-

signed to learn the parameters which are best for classification (i.e. to estimate y)

rather than use the standard maximum likelihood criterion (see [92] for a justification
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for this strategy). But observe that the classification is over the set of valuesY , which is

exponentially large, and hence differs greatly from simple binary classification. Effec-

tively max-margin learning seeks to find values of the parameters w which ensure that

the energies 〈Ψ(x, y),w〉 are smallest for the ground-truth states y and for states close

to the ground-truth. A practical advantages of max-margin learning is that it gives a

computationally tractable learning algorithm (which avoids the need to compute the

partition function of the distribution).

The main idea of the max margin approach is to forego the probabilistic interpre-

tation of equation (6.1). Instead we concentrate on the discriminative function:

F (x, y,w) = 〈Ψ(x, y),w〉 . (6.10)

We define the margin γ of the parameter w on example i as the difference between the

true parse yi and the best parse y∗:

γi = F (xi, yi,w)−max
y 6=yi

F (xi, y,w) (6.11)

= 〈w, Ψi,yi
−Ψi,y∗〉 (6.12)

where Ψi,yi
= Ψ(xi, yi) and Ψi,y = Ψ(xi, y).

Intuitively, the size of margin quantifies the confidence in rejecting the incorrect

parse y using the function F (x, y,w). Larger margins [92] leads to better generaliza-

tion and prevents over-fitting.

The goal of max margin AND/OR graph learning is to maximize the margin:

max
γ

γ (6.13)

s.t. 〈w, Ψi,yi
−Ψi,y〉 ≥ γLi,y,∀y; ‖w‖2 ≤ 1; (6.14)

where Li,y = L(yi, y) is a loss function (note there are an exponential number |Y|
of constraints in equation (6.14). The purpose of the loss function is to give partial

137



credit to states which differ from the groundtruth by only small amounts (i.e. it will

encourage the energy to be small for states near the groundtruth).

The loss function is defined as follows:

L(yi, y) =
∑

ν∈V AND

4(zi
ν , zν) +

∑

ν∈V LEAF

4(zi
ν , zν) (6.15)

where 4(zi
ν , zν) = 1 if dist(zi

ν , zν) ≥ σ. Otherwise, we have 4(zi
ν , zν) = 0. dist(., .)

is a measure of the spacial distance between two image points and σ is a threshold.

Note that the summations are defined over the active nodes. This loss function, which

measures the distance/cost between two parse trees, is calculated by summing over

individual parts. This ensures that the computational complexity of the loss function

is linear in the size of the LEAF and AND nodes of the hierarchy.

By standard manipulation, the optimization can be reformulated as minimizing the

constrained quadratic cost function of the weights:

min
w

1

2
‖w‖2 + C

∑
i

ξi (6.16)

s.t. 〈w, Ψi,yi
−Ψi,y〉 ≥ Li,y − ξi,∀y; (6.17)

where C is a fixed penalty parameter which balances the trade-off between margin size

and outliers. Outliers are training samples which are only correctly classified after us-

ing a slack variable ξi to “move them” to the correct side of the margin. The constraints

are imposed by introducing Lagrange parameters αi,y (one α for each constraint).

The solution to this minimization can be found by differentiation and expressed in

form:

w∗ = C
∑
i,y

α∗i,y (Ψi,yi
−Ψi,y) , (6.18)
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where the α∗ are obtained by maximizing the dual function:

max
α

∑
i,y

αi,yLi,y−

1

2
C

∑
i,j

∑
y,z

αi,yαj,z

〈
Ψi,yi

−Ψi,y, Ψj,yj
−Ψj,z

〉
(6.19)

s.t.
∑

y

αi,y = 1,∀i; αi,y ≥ 0,∀i, y; (6.20)

Observe that the solution will only depend on the training samples (xi, yi) for which

αi,y 6= 0. These are the so-called support vectors. They correspond to training samples

that either lie directly on the margin or are outliers (that need to use slack variables).

The concept of support vectors is important for the optimization algorithm that we will

use to estimate the α∗ (see next subsection).

It follows from equations (6.18,6.19), that the solution only depends on the data

by means of the inner product Ψ · Ψ′ of the potentials. This enables us to use the

kernel trick [95] which replaces the inner product by a kernel K(, ) (interpreted as

using features in higher dimensional spaces). In this chapter, the kernels K(, ) take

two forms, the linear kernel, K(Ψ, Ψ′) = Ψ · Ψ′ for image features ΨD and the radial

basis function (RBF) kernel, K(Ψ, Ψ′) = exp (−r‖Ψ−Ψ′‖2) for shape features ΨH

where r is a parameter of RBF.

6.5.2 Optimization of the Dual

The main diificulty with optimizing the dual, see equation (6.19), is the exponential

number of constraints (and hence the exponential number of {αi,y} to solve for). We

risk having to enumerate all the parse trees y ∈ Y which is almost impractical for an

AND/OR graph. Fortunately, in practice only a small number of support vectors will be

needed (equivalently, only a small number of the {αi,y} will be non-zero). This moti-

vates the working set algorithm [82, 96] to optimize the objective function in equation
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(6.19). The algorithm aims at finding a small set of active constraints that ensure a suf-

ficiently accurate solution. More precisely, it sequentially creates a nested working set

of successively tighter relaxations using a cutting plane method. It is shown [82, 96]

that the remaining (exponentially many) constraints are guaranteed to be violated by no

more than ε, without needing to explicitly add them to the optimization problem. The

pseudocode of the algorithm is given in figure (6.5). Note that the inference algorithm

is performed at the first step of each loop. Therefore, the efficiency of the training

algorithm highly depends on the computational complexity of the inference algorithm

(recall that we show in section (6.4) that the complexity of the inference algorithm is

polynomial in the size of the AND/OR graph and the size of the input image). Thus,

the efficiency of inference makes the learning practical. The second step is to create

the working set sequentially and then estimate the parameter α on the working set. The

optimization over the working set is performed by Sequential Minimal Optimization

(SMO) [97]. This involves incrementally satisfying the Karush-Kuhn-Tucker (KKT)

conditions which are used to enforce the constraints. The pseudo-code of the SMO

algorithm is depicted in figure (6.6). This procedure consists of two step. The first step

selects a pair of data points not satisfying the KKT conditions. The pseuod-code of

pair selection is shown in figure (6.7). Two KKT conditions are defined by:

αi,y = 0 ⇒ H(xi, y) ≤ H(xi, y
∗) + ε; (KKT1)

αi,y > 0 ⇒ H(xi, y) ≥ H(xi, y
∗)− ε; (KKT2)

where H(xi, y) = 〈w, Ψi,y〉 + L(yi, y), y∗ = arg maxy H(xi, y) and ε is a tolerance

parameter.

The second step is a local ascent step which attempts to update the parameters
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Loop over i

1. y∗ = arg maxy H(xi, y) where H(xi, y) = 〈w, Ψi,y〉+ L(yi, y).

2. if H(xi, y
∗; α)−maxy∈Si

H(xi, y; α) > ε

Si ← Si

⋃
y∗

αs ←optimize dual over S, S = S
⋃

Si

Figure 6.5: Working Set Optimization

given the selected pair. The updating equations are defined as:

αnew
xi,y′ = αxi,y′ + δ

αnew
xi,y′′ = αxi,y′′ − δ (6.21)

The dual optimization problem in equation (6.19) becomes a simple problem on δ:

max
δ

[H(xi, y
′)−H(xi, y

′′)]δ − 1

2
C‖Ψi,y′ −Ψi,y′′‖2δ2 (6.22)

s.t. αxi,y′ + δ ≥ 0, αxi,y′′ − δ ≥ 0 (6.23)

Equivalently we have :

max
δ

aδ − b

2
δ2 (6.24)

s.t. c ≤ δ ≤ d (6.25)

where a = H(xi, y
′)−H(xi, y

′′), b = C‖Ψi,y′ −Ψi,y′′‖2, c = −αxi,y′ , d = αxi,y′′ .

Hence, the analytical solution for two data points can be easily obtained by

δ∗ = max(c, min(d, a/b)). (6.26)

Up to now, we have the solutions for the updating equations in (6.21). More details

can be found in [97] and [83].
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Given a training set S and parameter α

Repeat

1. select a pair of data points (y′, y′′) not satisfying the KKT conditions.

2. solve optimization problem on (y′, y′′)

Until all pairs satisfy the KKT conditions.

Figure 6.6: Sequential Minimal Optimization (SMO)

1. V iolation = False

2. For each xi, y′, y′′ ∈ Si

(a) If H(xi, y′) > H(xi, y′′) + ε and αxi,y′ = 0 (KKT 1)

V iolation = TRUE; Goto step 3.

(b) If H(xi, y′) < H(xi, y′′)− ε and αxi,y′ > 0 (KKT 2)

V iolation = TRUE; Goto step 3.

3. Return y′, y′′, v

Figure 6.7: Pair Selection in SMO
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6.6 Experiments

In this section, we first study the performance of the AND/OR graph with max-margin

learning on the horse dataset [18] and analyze the computational complexity of the

inference. Next we apply the AND/OR graph for parsing the human body which has

more poses and compare its performance with alternative methods.

6.6.1 Datasets and Implementation Details.

Datasets. We performed the experimental evaluations on two datasets, i.e. the Weiz-

mann Horse Dataset [18] and Mori’s Human Baseball dataset [20]. There are many re-

sults reported for comparisons ([16, 68, 4, 1, 67] for horse segmentation and [2, 98, 20]

for human body parsing). The Weizmann horse dataset is designed to evaluate segmen-

tation, so the groundtruth only gives the regions of the object and the background. To

supplement this groundtruth, we required students to manually parse the images by lo-

cating the positions of active leaf nodes (about 24 to 36 nodes) of the AND/OR graph

in the images. These parse trees are used as ground truth to evaluate the ability of

the AND/OR graph to parse the horses. In the experiment of human body parsing,

Srinivasan and Shi [2] only used 5 joint nodes (head-torso, torso-left thigh, torso-right

thigh, left thigh-left lower leg, right thigh-right lower leg) per image. In our case, there

are 27 nodes along the boundary of human body per image used to give more detailed

parsing than those [2, 98, 20]. Therefore, we also asked students to label the parts of

the human body as ground truth (i.e. to identify different parts of the human). There

are 328 horse images in [18] of which 100 images are used for testing. The AND/OR

model has 40 possible configurations to cover horse poses. For human body parsing,

we used 48 human baseball images in Mori’s dataset [20] as the testing set. Some

examples of the dataset are shown in figures (6.8) and (6.9) (The parsing and segmen-
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tations results are obtained by our method). The AND/OR graph for human body is

capable of modeling 98 poses. In figure (6.9), observe that the dataset contains a large

variance of poses of human body and the appearance of clothes changes a lot from im-

age to image. We created a training dataset by collecting 156 human baseball images

from the internet and got students to manually label the parse tree for each image.

Parameter Settings. The AND/OR graph learnt by max-margin was used to obtain

the parse y (i.e. to locate the body parts). We used max-margin on the training dataset

to learn the parameters of the max-margin model. During learning, we set C = 0.1 in

equation (6.19), used the radial basis function kernel with r = 0.1, set the parameter

in the loss function equation (6.15) to be σ = 12, and set ε = 0.01 in figure (6.5). Our

strategy to obtain segmentation, which is inspired by Grab-Cut [73], is to obtain the

parse by the inference algorithm on the AND/OR graph and then segment object by

graph-cut using the feature statistics inside the boundary as initializations (note that,

unlike our approach, Grab-Cut requires initialization by a human).

The Criterion for Parsing. The average position error [2] is used as the measure

of the quality of parsing. The position error means the distance at pixel level between

the positions of groundtruth and the parsing result. The smaller the position error, the

better the quality of the parsing. For horse, there are 24 to 36 leaf nodes used to cover

the boundary of a horse. In the experiment of human body parsing, Srinivasan and Shi

[2] only used 5 joint nodes (head-torso, torso-left thigh, torso-right thigh, left thigh-left

lower leg, right thigh-right lower leg) per image. In our case, there are 27 nodes along

the boundary of human body per image used to give more detailed parsing.

The Criterions for Segmentation. Two evaluation criterions are used to measure

the performances of segmentation. We use segmentation accuracy to quantify the pro-

portion of the correct pixel labels (object or non-object). For performance comparisons

of human body parsing, we use the segmentation measure, “overlap score” named by
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[2], to quantify the performance of segmentation of human body. The overlap score is

defined by area(P∩G)
area(P∪G)

, where P is the area which the algorithm outputs as the segmen-

tation and G is the area of ground-truth. The bigger the overlap score, the better the

segmentation.

The Criterion for Detection. We rate detection as a success if the area of inter-

section of the detected object region and the true object region is greater than half the

area of the union of these regions.

6.6.2 Performance of the AND/OR graph on the Horse dataset

Results. In table (6.1) we compare the performances between the AND/OR graph

with 40 configurations and a simple hierarchical model with a fixed configuration (i.e.

we fix the states of the OR nodes). This configuration (the first one in the top node in

figure (6.3)) was chosen to be the typical pose that most frequently occurred. Column

3 gives the parsing accuracy – the average position error of leaf node of the AND/OR

graph is 10 pixels. Column 4 quantifies the segmentation accuracy. Column 5 quan-

tifies the detection rate. Column 6 lists the training time. The last column shows the

average time of inference taken for one image. A computer with 4 GB memory and

2.4 GHz CPU was used for training and testing. The time costs are 150 minutes for

learning a hierarchy and 180 minutes for AND/OR graph. For a new image, the testing

(inference) time is 20 seconds for the hierarchy model and 27 second for the AND/OR

model. The AND/OR graph outperforms the simple hierarchical model in the tasks of

parsing, detection and segmentation with only 30% more computational cost. In fig-

ure (6.8), we show the parse and segmentation results obtained by the single hierarchy

model and the AND/OR graph model. The states of the leaf nodes of parse tree indi-

cate the positions of the points along the boundary which are represented as colored

dots. In different images, the same color corresponds to the same object parts. Both
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models learnt by max-margin learning are able to deal with large shape deformation

and appearance variations. See the top four examples which contains the white, black

and textured body with cluttered background. The hierarchical model was only capa-

ble of reliably locating the main body but the AND/OR graph is able to reliably capture

more details such as the legs and heads (despite their variability under different poses).

See the last four examples in figure (6.8) where the legs and heads appear at different

poses. The hierarchical model succeeds in segmentation in most cases even though its

parse results are not accurate. In the last example, the incorrect parsing, where the hi-

erarchical model locates the head at a wrong position with similar appearance, results

in wrong segmentation. In this case, the AND/OR graph model performs well on both

parsing and segmentation tasks.

Comparisons. In table (6.1), we compare the segmentation performance of our

approach with other successful methods. Note that the object cut method [1] was

reported on only 5 images. Levin and Weiss [4] make the strong assumption that the

position of the object is given (other methods do not make this assumption) and not

report how many images they tested on. Overall, Cour and Shi’s method [68] was the

best one evaluated on large dataset. But their result is obtained by manually selecting

the best among top 10 results (other methods output a single result). By contrast,

our approach outputs a single parse only but yields a higher pixel accuracy of 95.2%.

Hence we conclude that our approach outperforms those alternatives which have been

evaluated on this dataset. Note no other papers report parsing performance on this

dataset since most (if not all) methods do not estimate the positions of different parts

of the horse (or even represent them).
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Figure 6.8: This figure is best viewed in color. Columns from (a) to (d) show the

parsing and segmentation results obtained by hierarchy and AND/OR graph models

respectively. The colored dots correspond to the leaf nodes of the object.
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Table 6.1: Performance for parsing, segmentation and detection. The table compares

the results for the hierarchial model (without OR nodes), AND/OR graph and other

alternative methods.

Models Testing Size Parsing Seg. Det. Training Testing

Hierarchical Model 100 15.6 94.5% 99% 150 m 20s

AND/OR Graph 50 9.7 95.2% 100% 180 m 27s

Ren et. al[16] 172 – 91% – – –

Borenstein [74] 328 – 93.0% – – –

LOCUS [67] 200 – 93.1% – – –

Cour [68] 328 – 94.2% – – –

Levin [4] N/A – 95.0% – – –

OBJ CUT [1] 5 – 96.0% – – –

6.6.3 Computational Complexity Analysis

Table (6.2) shows the complexity properties of the algorithm. We described the AND

levels only (the model has 8 levels). The computation for the OR-nodes is almost

instantaneous (you just need to list the proposals from all its children AND nodes)

so we do not include it. Column 2 gives the number of nodes at each level. Column

3 states the average number of aspects 1 of the AND nodes at each level. Column 4

states the average number of max-proposals for each node. Column 5 gives the average

number of proposals. Column 6 gives the time. Observe that the number of proposals

increases by an order of magnitude from level 6 to level 8. This is mostly due to the

similar increase in the number of aspects (the more the number of aspects, the more

1Here is the definition of aspects. Let AND node ν have children OR nodes {ρi : i ∈ tν}. This
gives a set of grandchildren AND nodes

⋃
i∈tν

tρi . The aspect of ν is
∏

i∈tν
|tρi |. The aspect of an AND

node is an important concept because when passing proposals up to an AND node we must take into
account the number of aspects of this node. We can, in theory, have proposals for all possible aspects.
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Table 6.2: Complexity Analysis. This table shows the numbers of proposals and time

costs at different levels.

L Nodes Aspects Max-Proposals Proposals Time

8 1 12 11.1 2058.8 1.206s

6 8 1.5 30.6 268.9 1.338s

4 27 1 285.1 1541.5 1.631s

2 68 1 172.2 1180.7 0.351s

the number of proposals needed to cover them). But surround suppression is capable

of reducing the number of proposals greatly (compare the numbers of Max-proposals

and proposals in Table (6.2)).

6.6.4 Human Body Parsing

Parsing Results. We illustrate our parsing and segmentation results of human body

in figure (6.9). The dotted points indicate the positions of the leaf nodes of parse

tree which lie along the boundary of human body. The same parts in different images

share the same color. For example, yellow and red points correspond to the left and

right shoulder respectively. Light blue and dark blue points correspond to the left and

right legs respectively. Observe that the variation of poses are extremely large, but

our AND/OR graph is capable of covering the articulated poses of body parts and

segmenting the body nicely. The time cost of training the AND/OR graph is 20 hours.

The inference takes 2 minutes for image with size 640× 480.

Performance Comparisons. We compare the performance obtained by our ap-

proach to those reported by Srinivasan and Shi [2], which are the best results achieved

so far on this dataset (e.g. better than Mori et al. ’s [20]). Firstly, we compare the
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Figure 6.9: The first column shows the parse results of the human body. Color points

indicate the positions of body parts. The same color points in different images corre-

spond to the same parts. The second column show the segmentations of human body.

The next four columns show extra examples.
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average position errors in figure (6.10). Observe that our best parse gives performance

slightly better than the best (manually selected) of the top 10 parses output by [2] and

significantly better than the best (manually selected) of their top three parses. Sec-

ondly, we compare the average overlap scores in figure (6.10). The difference of per-

formance measured by overlap score is more significant. Observe that our result is

significantly better than the best (manually selected) of their top 10 parses.

Convergence Analysis. We study the convergence behavior of max-margin AND/OR

graph learning in figure (6.11). The left figure shows the convergence curve in terms

of objective function defined in equation (6.19). There is a big jump before iteration

200. The right figure plots the convergence curves of the average position error on the

training and testing data. One can see that the trends of two curves are very similar.

6.7 Discussion

We formulated a novel AND/OR graph representation capable of describing the differ-

ent configurations of deformable articulated objects. The representation makes use of

the summarization principle which distinguishes it from other type of AND/OR graph

[26]. We developed a novel compositional inference algorithm for proposing config-

urations. Surround suppression ensures that the inference time is polynomial in the

size of image. We demonstrated that the algorithm was fast and effective as evalu-

ated by performance measures on two public datasets. We learn the parameters of the

AND/OR graph in a globally optimal way by extending max-margin structure learning

technique developed in machine learning. Advantages of our approach include (i) the

ability to model the enormous number of poses that occur for articulated objects such

as humans, (ii) the discriminative power provided by max-margin learning (by contrast

to MLE), and (iii) the use of the kernel trick to make use of high-dimensional features.

We gave detailed experiments on the Weizmann horse and human baseball datasets,
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Figure 6.10: We compare our results with that of Srinivasan and Shi [2]. The perfor-

mance of parsing (position error) and segmentation (overlap score) are shown in the

top and bottom figures respectively. Note that [2] select the best one (manually)of the

top parses.
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Figure 6.11: Convergence Analysis. We study the behavior of max margin training.

The first panel shows the convergence curve in terms of the objective function defined

in equation (6.19). The second panel shows the converge curves of the average position

error evaluated on training and testing set.
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showing significant improvements over the state-of-the-art methods. We are currently

working on improving the inference speed of our algorithm by using a cascade strat-

egy. We are also extending the model to represent humans in more details.
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Part IV

Image Parsing by Recursive

Segmentation - Recognition Template
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CHAPTER 7

Image Understanding by Recursive Segmentation and

Recognition Template

In this chapter, we will move from object modeling to image modeling and understand-

ing, and apply the same recursive composition principle to the design of image parser.

Particularly, we are interested in the task of image segmentation and scene labeling.

Our solutions are partially influenced by natural language processing.

Language and image understanding are two major goals of artificial intelligence

which can both be conceptually formulated in terms of parsing the input signal into

a hierarchical representation. Natural language researchers have made great progress

by exploiting the 1D structure of language to design efficient polynomial-time parsing

algorithms. By contrast, the two-dimensional nature of images makes it much harder

to design efficient image parsers and the form of the hierarchical representations is also

unclear. Attempts to adapt representations and algorithms from natural language have

only been partially successful.

In this chapter, we propose a Hierarchical Image Model (HIM) for 2D image pars-

ing which outputs image segmentation and object recognition. This HIM has mul-

tiple layers and has advantages for representation, inference, and learning. Firstly,

the HIM has a coarse-to-fine representation which is capable of capturing long-range

dependency and exploiting different levels of contextual information. Secondly, the

structure of the HIM allows us to design a rapid inference algorithm, based on dy-
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namic programming, which enables us to parse the image rapidly in polynomial time.

Thirdly, we can learn the HIM efficiently in a discriminative manner from a labeled

dataset. We demonstrate that HIM outperforms other state-of-the-art methods by eval-

uation on the challenging public MSRC image dataset. Finally, we sketch how the

HIM architecture can be extended to model more complex image phenomena.

7.1 Introduction

Language and image understanding are two major tasks in artificial intelligence. Nat-

ural language researchers have formalized this task in terms of parsing an input signal

into a hierarchical representation. They have made great progress in both representa-

tion and inference (i.e. parsing). Firstly, they have developed probabilistic grammars

(e.g. stochastic context free grammar (SCFG) [99] and beyond [100]) which are ca-

pable of representing complex syntactic and semantic language phenomena. For ex-

ample, speech contains elementary constituents, such as nouns and verbs, that can be

recursively composed into a hierarchy of (e.g. noun phrase or verb phrase) of increas-

ing complexity. Secondly, they have exploited the one-dimensional structure of lan-

guage to obtain efficient polynomial-time parsing algorithms (e.g. the inside-outside

algorithm [101]).

By contrast, the nature of images makes it much harder to design efficient image

parsers which are capable of simultaneously performing segmentation (parsing an im-

age into regions) and recognition (labeling the regions). Firstly, it is unclear what hier-

archical representations should be used to model images and there are no direct analo-

gies to the syntactic categories and phrase structures that occur in speech. Secondly,

the inference problem is formidable due to the well-known complexity and ambiguity

of segmentation and recognition. Unlike most languages (Chinese is an exception),

whose constituents are well-separated words, the boundaries between different image
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regions are usually highly unclear. Exploring all the different image partitions results

in combinatorial explosions because of the two-dimensional nature of images (which

makes it impossible to order these partitions to enable dynamic programming). Over-

all it has been hard to adapt methods from natural language parsing and apply them

to vision despite the high-level conceptual similarities (except for restricted problems

such as text [102]).

Attempts at image parsing must make trade-offs between the complexity of the

models and the complexity of the computation (for inference and learning). Broadly

speaking, recent attempts can be divided into two different styles. The first style em-

phasizes the modeling problem and develops stochastic grammars [103, 30] capable

of representing a rich class of visual relationships and conceptual knowledge about

objects, scenes, and images. This style of research pays less attention to the com-

plexity of computation. Learning is usually performed, if at all, only for individual

components of the models. Parsing is performed by MCMC sampling and is only

efficient provided effective proposal probabilities can be designed [30]. The second

style builds on the success of conditional random fields (CRF’s)[23] and emphasizes

efficient computation. This yields simpler (discriminative) models which are less ca-

pable of representing complex image structures and long range interactions. Efficient

inference (e.g. belief propagation and graph-cuts) and learning (e.g. AdaBoost, MLE)

are available for basic CRF’s and make these methods attractive. But these inference

algorithms become less effective, and can fail, if we attempt to make the CRF models

more powerful. For example, TextonBoost [21] requires the parameters of the CRF to

be tuned manually. Overall, it seems hard to extend the CRF style methods to include

long-range relationships and contextual knowledge without significantly altering the

models and the algorithms.

In this chapter, we introduce Hierarchical Image Models (HIM)’s for image pars-
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ing. HIM’s balance the trade-off between model and inference complexity by intro-

ducing a hierarchy of hidden states. In particular, we introduce segmentation templates

which represent complex image knowledge and serve as elementary constituents anal-

ogous to those used in speech. As in speech, we can recursively compose these con-

stituents at lower levels to form more complex constituents at higher level. Each node

of the hierarchy corresponds to an image region (whose size depends on the level in the

hierarchy). The state of each node represents both the partitioning of the correspond-

ing region into segments and the labeling of these segments (i.e. in terms of objects).

Segmentations at the top levels of the hierarchy give coarse descriptions of the image

which are refined by the segmentations at the lower levels. Learning and inference

(parsing) are made efficient by exploiting the hierarchical structure (and the absence

of loops). In short, this novel architecture offers two advantages: (I) Representation –

the hierarchical model using segmentation templates is able to capture long-range de-

pendency and exploiting different levels of contextual information, (II) Computation –

the hierarchical tree structure enables rapid inference (polynomial time) and learning

by variants of dynamic programming (with pruning) and the use of machine learning

(e.g. structured perceptrons[57]).

To illustrate the HIM we implement it for parsing images and we evaluate it on the

public MSRC image dataset [21]. Our results show that the HIM outperforms the other

state-of-the-art approaches. We discuss ways that HIM’s can be extended naturally to

model more complex image phenomena.
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7.2 Hierarchical Image Model

7.2.1 The Model

We represent an image by a hierarchical graph defined by parent-child relationships.

See figure 7.1. The hierarchy corresponds to the image pyramid (with 5 layers in this

chapter). The top node of the hierarchy represents the whole image. The intermediate

nodes represent different sub-regions of the image. The leaf nodes represent local

image patches (27 × 27 in this chapter). We use a to index nodes of the hierarchy. A

node a has only one parent node denoted by Pa(a) and four child nodes denoted by

Ch(a). Thus, the hierarchy is a quad tree and Ch(a) encodes all its vertical edges.

The image region represented by node a is denoted by R(a). A pixel in R(a), indexed

by r, corresponds to an image pixel. The set of pairs of neighbor pixels in R(a) is

denoted by E(a).

A configuration of the hierarchy is an assignment of state variables y = {ya} with

ya = (sa, ca) at each node a, where s and c denote region partition and object labeling,

respectively and (s, c) is called the “Segmentation and Recognition” pair, which we

call an S-R pair. All state variables are unobservable. More precisely, each region R(a)

is described by a segmentation templates which is selected from a dictionary DS . Each

segmentation template consists of a partition of the region into K non-overlapping

sub-parts, see figure 7.1. In this chapter K ≤ 3, |Ds| = 30, and the segmentation

templates are designed by hand to cover the taxonomy of shape segmentations that

happen in images, such as T-junctions, Y-junctions, and so on. The variable s refers to

the indexes of the segmentation templates in the dictionary, i.e., sa ∈ {1..|Ds|}. c gives

the object labels of K sub-parts (i.e. labels one sub-part as “horse” another as “dog”

and another as “grass”). Hence ca is a K-dimension vector whose components take

values 1, ..., M where M is the number of object classes. The labeling of a pixel r in
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Figure 7.1: The left panel shows the structure of the Hierarchical Image Model. The

grey circles are the nodes of the hierarchy. All nodes, except the top node, have only

one parent nodes. All nodes except the leafs are connected to four child nodes. The

middle panel shows a dictionary of 30 segmentation templates. The color of the sub-

-parts of each template indicates the object class. Different sub-parts may share the

same label. For example, three sub-parts may have only two distinct labels. The last

panel shows that the ground truth pixel labels (upper right panel) can be well approxi-

mated by composing a set of labeled segmentation templates (bottom right panel).
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region R(a) is denoted by or
a ∈ {1..M} and is directly obtained from sa, ca. Any two

pixels belonging to the same sub-part share the same label. The labeling or
a is defined

at the level of node a. In other words, each level of the hierarchy has a separate labeling

field. We will show how our model encourages the labelings or
a at different levels to

be consistent.

A novel feature of this hierarchical representation is the multi-level S-R pairs which

explicitly model both the segmentation and labeling of its corresponding region, while

traditional vision approaches [21, 104, 105] use labeling only. The S-R pairs defined

in a hierarchical form provide a coarse-to-fine representation which captures the “gist”

(semantical meaning) of image regions. As one can see in figure 7.2, the global S-

R pair gives a coarse description (the identities of objects and their spatial layout)

of the whole image which is accurate enough to encode high level image properties

in a compact form. The mid-level one represents the leg of a horse roughly. The

four templates at the lower level further refine the interpretations. We will show this

approximation quality empirically in section 7.3.

The conditional distribution over all the states is given by:

p(y|x; α) =
1

Z(x; α)
exp{−E1(x, s, c; α1)− E2(x, s, c; α2)− E3(s, c; α3) (7.1)

−E4(c; α4)− E5(s; α5)− E6(s, c; α6)}

where x refers to the input image, y is the parse tree, α are the parameters to be esti-

mated, Z(x; α) is the partition function and Ei(x, y) are energy terms. Equivalently,

the conditional distribution can be reformulated in a log-linear form:

log p(y|x; α) = ψ(x, y) · α− log Z(x; α) (7.2)

Each energy term is of linear form, Ei(x, y) = −ψi(x, y) · αi, where the inner product

is calculated on potential functions defined over the hierarchical structure. There are

six types of energy terms defined as follows.
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Figure 7.2: This figure illustrates how the segmentation templates and object labels

(S-R pair) represent image regions in a coarse-to-fine way. The left figure is the input

image which is followed by global, mid-level and local S-R pairs. The global S-R pair

gives a coarse description of the object identity (horse), its background (grass), and

its position in the image (central). The mid-level S-R pair corresponds to the region

bounded by the black box in the input image. It represents (roughly) the shape of the

horse’s leg. The four S-R pairs at the lower level combine to represent the same leg

more accurately.
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The first term E1(x, s, c) is a object specific data term which represents image

features of regions. We set E1(x, s, c) = −∑
a α1ψ1(x, sa, ca) where

∑
a is the sum-

mation over all nodes at different levels of the hierarchy, and ψ1(x, sa, ca) is of the

form:

ψ1(x, sa, ca) =
1

|R(a)|
∑

r∈R(a)

log p(or
a|x) (7.3)

where p(or
a|x) = exp{F (xr,or

a)}∑
o′ exp{F (xr,o′)} , xr is a local image region centered at the location

of r, and F (·, ·) is a strong classifier output by multi-class boosting [106]. The image

features used by the classifier (47 in total) are the greyscale intensity, the color (R,G,

B channels), the intensity gradient, the Canny edge, the response of DOG (difference

of Gaussians) and DOOG (Difference of Offset Gaussian) filters at different scales

(13*13 and 22*22) and orientations (0,30,60,...), and so on. We use 55 types of shape

(spatial) filters [21] to calculate the responses of 47 image features. There are 2585 =

47 ∗ 55 features in total.

The second term (segmentation specific) E2(x, s, c) = −∑
a α2ψ2(x, sa, ca) is

designed to favor the segmentation templates in which the pixels belonging to the

same partitions (i.e., having the same labels) have similar appearance. We define:

ψ2(x, sa, ca) =
1

|E(a)|
∑

(q,r)∈E(a)

φ(xr, xq|or
a, o

q
a) (7.4)

where E(a) are the set of edges connecting pixels q, r in a neighborhood and φ(xr, xq|or
a, o

q
a)

has the form of φ(xr, xq|or
a, o

q
a) =





γ(r, q) if or
a = oq

a

0 if or
a 6= oq

a

, where γ(r, q) = λ exp{−g2(r,q)
2γ2 }

1
dist(r,q)

, g(., .) is a distance measure on the colors xr, xq and dist(r, q) measures the

spatial distance between r and q. φ(xr, xq|or
a, o

q
a) is so called the contrast sensitive

Potts model which is widely used in graph-cut algorithms [107] as edge potentials

(only in one level) to favors pixels with similar colour having the same labels.
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The third term, defined as E3(s, c) = −∑
a,b=Pa(a) α3ψ3(sa, ca, sb, cb) (i.e. the

nodes a at all levels are considered and b is the parent of a) is proposed to encourage

the consistency between the configurations of every pair of parent-child nodes in two

consecutive layers. ψ3(sa, ca, sb, cb) is defined by the Hamming distance:

ψ3(sa, ca, sb, cb) =
1

|R(a)|
∑

r∈R(a)

δ(or
a, o

r
b) (7.5)

where δ(or
a, o

r
b) is the Kronecker delta, which equals one whenever or

a = or
b and zero

otherwise. The hamming function ensures to glue the segmentation templates (and

their labels) at different levels together in a consistent hierarchical form. This energy

term is a generalization of the interaction energy in the Potts model. However, E3(s, c)

has a hierarchical form which allows multi-level interactions.

The fourth term E4(c) is designed to model the co-occurrence of two object classes

(e.g., a cow is unlikely to appear next to an aeroplane):

E4(c) = −
∑

a

∑
i,j=1..M

α4(i, j)ψ4(i, j, ca, ca)−
∑

a,b=Pa(a)

∑
i,j=1..M

α4(i, j)ψ4(i, j, ca, cb)

(7.6)

where ψ4(i, j, ca, cb) is an indicator function which equals one while i ≡ ca and j ≡ cb

(i ≡ ca means i is a component of ca) hold true and zero otherwise. α4 is a matrix

where each entry α4(i, j) encodes the compatibility between two classes i and j. The

first term on the r.h.s encodes the classes in a single template while the second term

encodes the classes in two templates of the parent-child nodes. It is worth noting that

class dependency is encoded at all levels to capture both short-range and long-range

interactions.

The fifth term E5(s) = −∑
a α5ψ5(sa), where ψ5(sa) = log p(sa) encode the

generic prior of the segmentation template. Similarly the sixth term E6(s, c) = −∑
a∑

j≡ca
α6ψ6(sa, j), where ψ6(sa, j) = log p(sa, j), models the co-occurrence of the
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segmentation templates and the object classes. ψ5(sa) and ψ6(sa, j) are directly ob-

tained from training data by label counting. The parameters α5 and α6 are both scalars.

Justifications. The HIM has several partial similarities with other work. HIM is a

coarse-to-fine representation which captures the “gist” of image regions by using the

S-R pairs at multiple levels. But the traditional concept of “gist” [108] relies only on

image features and does not include segmentation templates. HIM also looks slightly

like a hierarchical version of the jigsaw puzzle approach [109] which does not have

segmentation templates (or a hierarchy). Levin and Weiss [4] use a segmentation mask

which is more object-specific than our segmentation templates (and they do not have

a hierarchy). It is worth nothing that, in contrast to TextonBoost [21], we do not use

“location features” in order to avoid the dangers of overfitting to a restricted set of

scene layouts. Our approach has some similarities to some hierarchical models (which

have two-layers only) [104],[105] – but these models also lack segmentation templates.

The hierarchial model proposed by [110] is an interesting alternative but which does

not perform explicit segmentation.

7.2.2 Parsing by Dynamic Programming

Parsing an image is performed as inference of the HIM. More precisely, the task of

parsing is to obtain the maximum a posterior (MAP):

y∗ = arg max
y

p(y|x; α) = arg max
y

ψ(x, y) · α (7.7)

The size of the states of each node is O(MK |Ds|) where K = 3,M = 21, |Ds| =
30 in our case. Since the form of y is a tree, Dynamic Programming (DP) can be

applied to calculate the best parse tree y∗ according to equation 7.7. Note that the pixel

label oa is determined by (s, c), so we only need consider a subset of pixel labelings.

It is unlike flat MRF representation where we need to do exhaustive search over all
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pixel labels o (which would be impractical for DP). The final output of the model for

segmentation is the pixel labeling determined by the (s, c) of the lowest level.

It is straight forward to see that the computational complexity of DP is O(M2K |Ds|2H)

where H is the number of edges of the hierarchy. Although DP can be performed in

polynomial time, the huge number of states make exact DP still impractical. There-

fore, we resort to a pruned version of DP similar to the method described in section 4.4

in chapter 4. Pruned DP has also been applied to language parsing [111] as a standard

way to deal with large state spaces. For brevity we omit the details.

7.2.3 Learning the Model

Since HIM is a conditional model, in principle, estimation of its parameters can be

achieved by any discriminative learning approach, such as maximum likelihood learn-

ing as used in Conditional Random Field (CRF)[23], max-margin learning [84], and

structure-perceptron learning[57]. In this chapter, we adopt the structure-perceptron

learning which has applied for learning the recursive deformable template (see chapter

4). Note that structure-perceptron learning is simple to implement and only needs to

calculate the most probable configurations (parses) of the model. By contrast, maxi-

mum likelihood learning requires calculating the expectation of features which is dif-

ficult due to the large states of HIM. Therefore, structure-perceptron learning is more

flexible and computationally simpler. Moreover, Collins [57] proved theoretical re-

sults for convergence properties, for both separable and non-separable cases, and for

generalization.

The structure-perceptron learning will not compute the partition function Z(x; α).

Therefore we do not have a formal probabilistic interpretation. The goal of structure-

perceptron learning is to learn a mapping from inputs x ∈ X to output structure y ∈ Y .

In our case, X is a set of images, with Y being a set of possible parse trees which
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specify the labels of image regions in a hierarchical form. It seems that the ground truth

of parsing trees needs all labels of both segmentation template and pixel labelings. In

our experiment, we will show that how to obtain the ground truth directly from the

segmentation labels without extra human labeling. We use a set of training examples

{(xi, yi) : i = 1...n} and a set of functions ψ which map each (x, y) ∈ X × Y to a

feature vector ψ(x, y) ∈ Rd. The task is to estimate a parameter vector α ∈ Rd for

the weights of the features. The feature vectors ψ(x, y) can include arbitrary features

of parse trees, as we discussed in section 7.2.1. The loss function used in structure-

perceptron learning is usually of form:

Loss(α) = ψ(x, y) · α−max
y

ψ(x, y) · α, (7.8)

where y is the correct structure for input x, and y is a dummy variable.

The basic structure-perceptron algorithm is designed to minimize the loss function.

We adapt “the averaged parameters” version whose pseudo-code is given in figure

7.3. The algorithm proceeds in a simple way (similar to the perceptron algorithm for

classification). The parameters are initialized to zero and the algorithm loops over

the training examples. If the highest scoring parse tree for input x is not correct,

then the parameters α are updated by an additive term. The most difficult step of the

method is finding y∗ = arg maxy ψ(xi, y) · α. This is precisely the parsing (inference)

problem. Hence the practicality of structure-perceptron learning, and its computational

efficiency, depends on the inference algorithm. As discussed earlier, see section 7.2.2,

the inference algorithm has polynomial computational complexity for an HIM which

makes structure-perceptron learning practical for HIM. The averaged parameters are

defined to be γ =
∑T

t=1

∑N
i=1 αt,i/NT , where T is the number of epochs, NT is the

total number of iterations. It is straightforward to store these averaged parameters and

output them as the final estimates.
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Input: A set of training images with ground truth (xi, yi) for i = 1..N . Initialize

parameter vector α = 0.

For t = 1..T, i = 1..N

• find the best state of the model on the i’th training image with current param-

eter setting, i.e., y∗ = arg maxy ψ(xi, y) · α

• Update the parameters: α = α + ψ(xi, yi)− ψ(xi, y∗)

• Store: αt,i = α

Output: Parameters γ =
∑

t,i α
t,i/NT

Figure 7.3: Structure-perceptron learning

7.3 Experimental Results

Dataset. We use a standard public dataset, the MSRC 21-class Image Dataset [21],

to perform experimental evaluations for the HIM. This dataset is designed to evaluate

scene labeling including both image segmentation and multi-class object recognition.

The ground truth only gives the labeling of the image pixels. To supplement this

ground truth (to enable learning), we estimate the true labels (states of the S-R pair

) of the nodes in the five-layer hierarchy of HIM by selecting the S-R pairs which

have maximum overlap with the labels of the image pixels. This approximation only

results in 2% error in labeling image pixels. There are a total of 591 images. We

use the identical splitting as [3], i.e., 45% for training, 10% for validation, and 45%

for testing. The parameters learnt from the training set, with the best performance on

validation set, are selected.

Implementation Details. For a given image x, the parsing result is obtained by

estimating the best configuration y∗ of the HIM. To evaluate the performance of parsing
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we use the global accuracy measured in terms of all pixels and the average accuracy

over the 21 object classes (global accuracy pays most attention to frequently occurring

objects and penalizes infrequent objects). A computer with 8 GB memory and 2.4

GHz CPU was used for training and testing. For each class, there are around 4, 500

weak classifiers selected by multi-class boosting. The boosting learning takes about 35

hours of which 27 hours are spent on I/O processing and 8 hours on computing. The

structure-perceptron learning takes about 20 hours to converge in 5520(T = 20, N =

276) iterations. In the testing stage, it takes 30 seconds to parse an image with size of

320 × 200 (6s for extracting image features, 9s for computing the strong classifier of

boosting and 15s for parsing the HIM).

Results. Figure 7.4 (best viewed in color) shows several parsing results obtained

by the HIM and by the classifier by itself (i.e. p(or
a|x) learnt by boosting). One can see

that the HIM is able to roughly capture different shaped segmentation boundaries (see

the legs of the cow and sheep in rows 1 and 3, and the boundary curve between sky

and building in row 4). Table 7.1 shows that HIM improves the results obtained by the

classifier by 7.3% for average accuracy and 5.5% for global accuracy. In particular,

in rows 6 and 7 in figure 7.4, one can observe that boosting gives many incorrect

labels. It is impossible to correct such large mislabeled regions without the long-range

interactions in the HIM, which improves the results by 20% and 32%.

Comparisons. In table 7.1, we compare the performance of our approach with

other successful methods [3, 112, 113]. Our approach outperforms those alternatives

by 10% in average accuracy and 6% in global accuracy. Note that no other method

perform consistently in both measures. Our boosting results are better than Texton-

boost [3] because of image features. Would we get better results if we use a CRF

with our boosting instead of a hierarchy? We argue that we wouldn’t because the CRF

only improves TextonBoost’s performance by 3 percent [3], while we gain 6 percent
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Figure 7.4: This figure is best viewed in color. The colors indicate the labels of 21

object classes as in [3]. The columns (except the fourth “accuracy” column) show

the input images, ground truth, the labels obtained by HIM and the boosting classifier

respectively. The “accuracy” column shows the global accuracy obtained by HIM

(left) and the boosting classifier (right). In these 7 examples, HIM improves boosting

by 1%, -1% (an outlier!), 1%, 10%, 18%, 20% and 32% in terms of global accuracy.
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Textonboost[3] PLSA-MRF [112] Mspatch [113] Classifier HIM

Average 57.7 64.0 61.8 67.2 74.5

Global 72.2 73.5 75.1 75.9 81.4

Table 7.1: Performance Comparisons for average accuracy and global accuracy. “Clas-

sifier only” are the results where the pixel labels are predicted by the classifier obtained

by boosting only.

by using the hierarchy (and we start with a higher baseline). Some other methods

[114, 105, 104], which are worse than [112, 113] and evaluated on simpler datasets

[104, 105] (less than 10 classes), are not listed here due to lack of space. In summary,

our results are significantly better than the state-of-the-art methods.

Diagnosis on the function of S-R Pair. Figure 7.5 shows how the S-R pairs (which

include the segmentation templates) can be used to (partially) parse an object into

its constituent parts, by the correspondence between S-R pairs and specific parts of

objects. We plot the states of a subset of S-R pairs for some images. For example,

the S-R pair consisting of two horizontal bars labeled “cow” and “grass” respectively

indicates the cow’s stomach consistently across different images. Similarly, the cow’s

tail can be located according to the configuration of another S-R pair with vertical bars.

In principle, the whole object can be parsed into its constituent parts which are aligned

consistently. Developing this idea further is an exciting aspect of our current research.

7.4 Conclusion

This chapter describes a novel hierarchical image model (HIM) for 2D image parsing.

The hierarchical nature of the model, and the use of segmentation templates, enables

the HIM to represent complex image structures in a coarse-to-fine manner. We can
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Figure 7.5: The S-R pairs can be used to parse the object into parts. The colors indicate

the identities of objects. The shapes (spacial layout) of the segmentation templates

distinguish the constituent parts of the object. Observe that the same S-R pairs (e.g.

stomach above grass, and tail to the left of grass) correspond to the same object part in

different images.

perform inference (parsing) rapidly in polynomial time by exploiting the hierarchi-

cal structure. Moreover, we can learn the HIM probability distribution from labeled

training data by adapting the structure-perceptron algorithm. We demonstrated the ef-

fectiveness of HIM’s by applying them to the challenging task of segmentation and

labeling of the public MSRC image database. Our results show that we outperform

other state-of-the-art approaches.

The design of the HIM was motivated by drawing parallels between language and

vision processing. We have attempted to capture the underlying spirit of the successful

language processing approaches – the hierarchical representations based on the recur-

sive composition of constituents and efficient inference and learning algorithms. Our

current work attempts to extend the HIM’s to improve their representational power

while maintaining computational efficiency.
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Part V

Concluding Remarks
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CHAPTER 8

Conclusions and Future Directions

In this thesis, we have shown how the recursion and composition principle can be

applied to the deformable object modeling and image understanding. For deformable

object modeling, we proposed the recursive deformable template model, and presented

both supervised and unsupervised methods for learning the model. We also extended

this model to an AND/OR graph for articulated object parsing. For image understand-

ing, we proposed the recursive segmentation and recognition template model. We

demonstrated the effectiveness and versatility of our framework by applying it to very

different problems (deformable object detection, segmentation, parsing, and image

segmentation and scene labeling), evaluating it on large datasets, and giving compar-

isons to the state of the art.

The key idea behind our approaches is the the recursion and composition which

results in a hierarchical representation. The hierarchies are capable of modeling both

short- and long- range visual relationship. The hierarchical design also allows us to

apply dynamic programming for polynomial-time inference and supervised machine

learning. Recursive Composition combined with suspicious coincidence and competi-

tive exclusion leads to efficient supervised learning.

In the future work, we are interested to extend our recursive and compositional

system to learn deep-structured visual vocabulary for multiple objects simultaneously,

and design a new image parser based on the unified visual representation.
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dom fields for image labeling,” in Proceedings of IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2004, pp. 695–702.

[105] S. Kumar and M. Hebert, “A hierarchical field framework for unified context-
based classification,” in Proceedings of IEEE International Conference on Com-
puter Vision, 2005, pp. 1284–1291.

184



[106] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to binary:
A unifying approach for margin classifiers,” Journal of Machine Learning Re-
search, vol. 1, pp. 113–141, 2000.

[107] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary and
region segmentation of objects in n-d images,” in Proceedings of IEEE Interna-
tional Conference on Computer Vision, 2001, pp. 105–112.

[108] A. Oliva and A. Torralba, “Building the gist of a scene: the role of global image
features in recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 155, pp. 23–36, 2006.

[109] A. Kannan, J. M. Winn, and C. Rother, “Clustering appearance and shape by
learning jigsaws,” in Advances in Neural Information Processing Systems, 2006,
pp. 657–664.

[110] E. B. Sudderth, A. B. Torralba, W. T. Freeman, and A. S. Willsky, “Learning
hierarchical models of scenes, objects, and parts,” in Proceedings of IEEE In-
ternational Conference on Computer Vision, 2005, pp. 1331–1338.

[111] E. Charniak and M. Johnson, “Coarse-to-fine n-best parsing and maxent dis-
criminative reranking,” in Proceedings of Annual Meeting on Association for
Computational Linguistics, 2005.

[112] J. Verbeek and B. Triggs, “Region classification with markov field aspect mod-
els,” in Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2007.

[113] L. Yang, P. Meer, and D. J. Foran, “Multiple class segmentation using a unified
framework over mean-shift patches,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2007.

[114] J. Verbeek and B. Triggs, “Scene segmentation with crfs learned from par-
tially labeled images,” in Advances in Neural Information Processing Systems,
vol. 20, 2008.

185


