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Abstract

Language and image understanding are two major goals of artificial intelligence
which can both be conceptually formulated in terms of parsing the input signal
into a hierarchical representation. Natural language researchers have made great
progress by exploiting the 1D structure of language to design efficient polynomial-
time parsing algorithms. By contrast, the two-dimensional nature of images makes
it much harder to design efficient image parsers and the form of the hierarchical
representations is also unclear. Attempts to adapt representations and algorithms
from natural language have only been partially successful.
In this paper, we propose a Hierarchical Image Model (HIM) for 2D image pars-
ing which outputs image segmentation and object recognition. This HIM is rep-
resented by recursive segmentation and recognition templates in multiple layers
and has advantages for representation, inference, and learning. Firstly, the HIM
has a coarse-to-fine representation which is capable of capturing long-range de-
pendency and exploiting different levels of contextual information. Secondly, the
structure of the HIM allows us to design a rapid inference algorithm, based on dy-
namic programming, which enables us to parse the image rapidly in polynomial
time. Thirdly, we can learn the HIM efficiently in a discriminative manner from
a labeled dataset. We demonstrate that HIM outperforms other state-of-the-art
methods by evaluation on the challenging public MSRC image dataset. Finally,
we sketch how the HIM architecture can be extended to model more complex
image phenomena.

1 Introduction

Language and image understanding are two major tasks in artificial intelligence. Natural language
researchers have formalized this task in terms of parsing an input signal into a hierarchical represen-
tation. They have made great progress in both representation and inference (i.e. parsing). Firstly,
they have developed probabilistic grammars (e.g. stochastic context free grammar (SCFG) [1] and
beyond [2]) which are capable of representing complex syntactic and semantic language phenom-
ena. For example, speech contains elementary constituents, such as nouns and verbs, that can be
recursively composed into a hierarchy of (e.g. noun phrase or verb phrase) of increasing complex-
ity. Secondly, they have exploited the one-dimensional structure of language to obtain efficient
polynomial-time parsing algorithms (e.g. the inside-outside algorithm [3]).

By contrast, the nature of images makes it much harder to design efficient image parsers which are
capable of simultaneously performing segmentation (parsing an image into regions) and recogni-
tion (labeling the regions). Firstly, it is unclear what hierarchical representations should be used to
model images and there are no direct analogies to the syntactic categories and phrase structures that
occur in speech. Secondly, the inference problem is formidable due to the well-known complexity
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and ambiguity of segmentation and recognition. Unlike most languages (Chinese is an exception),
whose constituents are well-separated words, the boundaries between different image regions are
usually highly unclear. Exploring all the different image partitions results in combinatorial explo-
sions because of the two-dimensional nature of images (which makes it impossible to order these
partitions to enable dynamic programming). Overall it has been hard to adapt methods from natural
language parsing and apply them to vision despite the high-level conceptual similarities (except for
restricted problems such as text [4]).

Attempts at image parsing must make trade-offs between the complexity of the models and the
complexity of the computation (for inference and learning). Broadly speaking, recent attempts can
be divided into two different styles. The first style emphasizes the modeling problem and develops
stochastic grammars [5, 6] capable of representing a rich class of visual relationships and conceptual
knowledge about objects, scenes, and images. This style of research pays less attention to the com-
plexity of computation. Learning is usually performed, if at all, only for individual components of
the models. Parsing is performed by MCMC sampling and is only efficient provided effective pro-
posal probabilities can be designed [6]. The second style builds on the success of conditional random
fields (CRF’s) [7] and emphasizes efficient computation. This yields simpler (discriminative) mod-
els which are less capable of representing complex image structures and long range interactions.
Efficient inference (e.g. belief propagation and graph-cuts) and learning (e.g. AdaBoost, MLE)
are available for basic CRF’s and make these methods attractive. But these inference algorithms
become less effective, and can fail, if we attempt to make the CRF models more powerful. For ex-
ample, TextonBoost [8] requires the parameters of the CRF to be tuned manually. Overall, it seems
hard to extend the CRF style methods to include long-range relationships and contextual knowledge
without significantly altering the models and the algorithms.

In this paper, we introduce Hierarchical Image Models (HIM)’s for image parsing. HIM’s balance
the trade-off between model and inference complexity by introducing a hierarchy of hidden states.
In particular, we introduce recursive segmentation and recognition templates which represent com-
plex image knowledge and serve as elementary constituents analogous to those used in speech. As
in speech, we can recursively compose these constituents at lower levels to form more complex
constituents at higher level. Each node of the hierarchy corresponds to an image region (whose size
depends on the level in the hierarchy). The state of each node represents both the partitioning of
the corresponding region into segments and the labeling of these segments (i.e. in terms of objects).
Segmentations at the top levels of the hierarchy give coarse descriptions of the image which are
refined by the segmentations at the lower levels. Learning and inference (parsing) are made efficient
by exploiting the hierarchical structure (and the absence of loops). In short, this novel architecture
offers two advantages: (I) Representation – the hierarchical model using segmentation templates is
able to capture long-range dependency and exploiting different levels of contextual information, (II)
Computation – the hierarchical tree structure enables rapid inference (polynomial time) and learning
by variants of dynamic programming (with pruning) and the use of machine learning (e.g. structured
perceptrons [9]).

To illustrate the HIM we implement it for parsing images and we evaluate it on the public MSRC
image dataset [8]. Our results show that the HIM outperforms the other state-of-the-art approaches.
We discuss ways that HIM’s can be extended naturally to model more complex image phenomena.

2 Hierarchical Image Model
2.1 The Model
We represent an image by a hierarchical graph defined by parent-child relationships. See figure 1.
The hierarchy corresponds to the image pyramid (with 5 layers in this paper). The top node of the
hierarchy represents the whole image. The intermediate nodes represent different sub-regions of the
image. The leaf nodes represent local image patches (27 × 27 in this paper). We use a to index
nodes of the hierarchy. A node a has only one parent node denoted by Pa(a) and four child nodes
denoted by Ch(a). Thus, the hierarchy is a quad tree and Ch(a) encodes all its vertical edges. The
image region represented by node a is denoted by R(a). A pixel in R(a), indexed by r, corresponds
to an image pixel. The set of pairs of neighbor pixels in R(a) is denoted by E(a).

A configuration of the hierarchy is an assignment of state variables y = {ya} with ya = (sa, ca)
at each node a, where s and c denote region partition and object labeling, respectively and (s, c) is
called the “Segmentation and Recognition” pair, which we call an S-R pair. All state variables are
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Figure 1: The left panel shows the structure of the Hierarchical Image Model. The grey circles are the nodes of the hierarchy. All nodes,
except the top node, have only one parent nodes. All nodes except the leafs are connected to four child nodes. The middle panel shows a
dictionary of 30 segmentation templates. The color of the sub-parts of each template indicates the object class. Different sub-parts may share
the same label. For example, three sub-parts may have only two distinct labels. The last panel shows that the ground truth pixel labels (upper
right panel) can be well approximated by composing a set of labeled segmentation templates (bottom right panel).

Figure 2: This figure illustrates how the segmentation templates and object labels (S-R pair) represent image regions in a coarse-to-fine
way. The left figure is the input image which is followed by global, mid-level and local S-R pairs. The global S-R pair gives a coarse description
of the object identity (horse), its background (grass), and its position in the image (central). The mid-level S-R pair corresponds to the region
bounded by the black box in the input image. It represents (roughly) the shape of the horse’s leg. The four S-R pairs at the lower level combine
to represent the same leg more accurately.

unobservable. More precisely, each region R(a) is described by a segmentation templates which is
selected from a dictionary DS . Each segmentation template consists of a partition of the region into
K non-overlapping sub-parts, see figure 1. In this paper K ≤ 3, |Ds| = 30, and the segmentation
templates are designed by hand to cover the taxonomy of shape segmentations that happen in images,
such as T-junctions, Y-junctions, and so on. The variable s refers to the indexes of the segmentation
templates in the dictionary, i.e., sa ∈ {1..|Ds|}. c gives the object labels of K sub-parts (i.e. labels
one sub-part as “horse” another as “dog” and another as “grass”). Hence ca is a K-dimension vector
whose components take values 1, ..., M where M is the number of object classes. The labeling of
a pixel r in region R(a) is denoted by or

a ∈ {1..M} and is directly obtained from sa, ca. Any two
pixels belonging to the same sub-part share the same label. The labeling or

a is defined at the level of
node a. In other words, each level of the hierarchy has a separate labeling field. We will show how
our model encourages the labelings or

a at different levels to be consistent.

A novel feature of this hierarchical representation is the multi-level S-R pairs which explicitly model
both the segmentation and labeling of its corresponding region, while traditional vision approaches
[8, 10, 11] use labeling only. The S-R pairs defined in a hierarchical form provide a coarse-to-fine
representation which captures the “gist” (semantical meaning) of image regions. As one can see
in figure 2, the global S-R pair gives a coarse description (the identities of objects and their spatial
layout) of the whole image which is accurate enough to encode high level image properties in a
compact form. The mid-level one represents the leg of a horse roughly. The four templates at the
lower level further refine the interpretations. We will show this approximation quality empirically
in section 3.

The conditional distribution over all the states is given by:

p(y|x;α) =
1

Z(x;α)
exp{−E1(x, s, c;α1)− E2(x, s, c;α2)− E3(s, c;α3) (1)

−E4(c;α4)− E5(s;α5)− E6(s, c;α6)}
where x refers to the input image, y is the parse tree, α are the parameters to be estimated, Z(x;α)
is the partition function and Ei(x, y) are energy terms. Equivalently, the conditional distribution can
be reformulated in a log-linear form:

log p(y|x;α) = ψ(x, y) · α− log Z(x;α) (2)
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Each energy term is of linear form, Ei(x, y) = −ψi(x, y) ·αi, where the inner product is calculated
on potential functions defined over the hierarchical structure. There are six types of energy terms
defined as follows.

The first term E1(x, s, c) is an object specific data term which represents image features of regions.
We set E1(x, s, c) = −∑

a α1ψ1(x, sa, ca) where
∑

a is the summation over all nodes at different
levels of the hierarchy, and ψ1(x, sa, ca) is of the form:

ψ1(x, sa, ca) =
1

|R(a)|
∑

r∈R(a)

log p(or
a|x) (3)

where p(or
a|x) = exp{F (xr,or

a)}∑
o′ exp{F (xr,o′)} , xr is a local image region centered at the location of r, and

F (·, ·) is a strong classifier output by multi-class boosting [12]. The image features used by the
classifier (47 in total) are the greyscale intensity, the color (R,G, B channels), the intensity gradient,
the Canny edge, the response of DOG (difference of Gaussians) and DOOG (Difference of Offset
Gaussian) filters at different scales (13*13 and 22*22) and orientations (0,30,60,...), and so on. We
use 55 types of shape (spatial) filters (similar to [8]) to calculate the responses of 47 image features.
There are 2585 = 47 ∗ 55 features in total.

The second term (segmentation specific) E2(x, s, c) = −∑
a α2ψ2(x, sa, ca) is designed to favor

the segmentation templates in which the pixels belonging to the same partitions (i.e., having the
same labels) have similar appearance. We define:

ψ2(x, sa, ca) =
1

|E(a)|
∑

(q,r)∈E(a)

φ(xr, xq|or
a, oq

a) (4)

where E(a) are the set of edges connecting pixels q, r in a neighborhood and φ(xr, xq|or
a, oq

a) has the

form of φ(xr, xq|or
a, oq

a) =
{

γ(r, q) if or
a = oq

a
0 if or

a 6= oq
a

, where γ(r, q) = λ exp{− g2(r,q)
2γ2 } 1

dist(r,q) ,

g(., .) is a distance measure on the colors xr, xq and dist(r, q) measures the spatial distance between
r and q. φ(xr, xq|or

a, oq
a) is so called the contrast sensitive Potts model which is widely used in

graph-cut algorithms [13] as edge potentials (only in one level) to favors pixels with similar colour
having the same labels.

The third term, defined as E3(s, c) = −∑
a,b=Pa(a) α3ψ3(sa, ca, sb, cb) (i.e. the nodes a at all

levels are considered and b is the parent of a) is proposed to encourage the consistency between
the configurations of every pair of parent-child nodes in two consecutive layers. ψ3(sa, ca, sb, cb) is
defined by the Hamming distance:

ψ3(sa, ca, sb, cb) =
1

|R(a)|
∑

r∈R(a)

δ(or
a, or

b) (5)

where δ(or
a, or

b) is the Kronecker delta, which equals one whenever or
a = or

b and zero otherwise. The
hamming function ensures to glue the segmentation templates (and their labels) at different levels
together in a consistent hierarchical form. This energy term is a generalization of the interaction
energy in the Potts model. However, E3(s, c) has a hierarchical form which allows multi-level
interactions.

The fourth term E4(c) is designed to model the co-occurrence of two object classes (e.g., a cow is
unlikely to appear next to an aeroplane):

E4(c) = −
∑

a

∑

i,j=1..M

α4(i, j)ψ4(i, j, ca, ca)−
∑

a,b=Pa(a)

∑

i,j=1..M

α4(i, j)ψ4(i, j, ca, cb) (6)

where ψ4(i, j, ca, cb) is an indicator function which equals one while i ≡ ca and j ≡ cb (i ≡ ca

means i is a component of ca) hold true and zero otherwise. α4 is a matrix where each entry α4(i, j)
encodes the compatibility between two classes i and j. The first term on the r.h.s encodes the classes
in a single template while the second term encodes the classes in two templates of the parent-child
nodes. It is worth noting that class dependency is encoded at all levels to capture both short-range
and long-range interactions.
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The fifth term E5(s) = −∑
a α5ψ5(sa), where ψ5(sa) = log p(sa) encode the generic prior of

the segmentation template. Similarly the sixth term E6(s, c) = −∑
a

∑
j≡ca

α6ψ6(sa, j), where
ψ6(sa, j) = log p(sa, j), models the co-occurrence of the segmentation templates and the object
classes. ψ5(sa) and ψ6(sa, j) are directly obtained from training data by label counting. The pa-
rameters α5 and α6 are both scalars.

Justifications. The HIM has several partial similarities with other work. HIM is a coarse-to-fine
representation which captures the “gist” of image regions by using the S-R pairs at multiple levels.
But the traditional concept of “gist” [14] relies only on image features and does not include segmen-
tation templates. Levin and Weiss [15] use a segmentation mask which is more object-specific than
our segmentation templates (and they do not have a hierarchy). It is worth nothing that, in contrast
to TextonBoost [8], we do not use “location features” in order to avoid the dangers of overfitting to
a restricted set of scene layouts. Our approach has some similarities to some hierarchical models
(which have two-layers only) [10],[11] – but these models also lack segmentation templates. The
hierarchial model proposed by [16] is an interesting alternative but which does not perform explicit
segmentation.

2.2 Parsing by Dynamic Programming
Parsing an image is performed as inference of the HIM. More precisely, the task of parsing is to
obtain the maximum a posterior (MAP):

y∗ = arg max
y

p(y|x;α) = arg max
y

ψ(x, y) · α (7)

The size of the states of each node is O(MK |Ds|) where K = 3,M = 21, |Ds| = 30 in our case.
Since the form of y is a tree, Dynamic Programming (DP) can be applied to calculate the best parse
tree y∗ according to equation 7. Note that the pixel label oa is determined by (s, c), so we only
need consider a subset of pixel labelings. It is unlike flat MRF representation where we need to do
exhaustive search over all pixel labels o (which would be impractical for DP). The final output of
the model for segmentation is the pixel labeling determined by the (s, c) of the lowest level.

It is straight forward to see that the computational complexity of DP is O(M2K |Ds|2H) where H is
the number of edges of the hierarchy. Although DP can be performed in polynomial time, the huge
number of states make exact DP still impractical. Therefore, we resort to a pruned version of DP
similar to the method described in [17]. For brevity we omit the details.

2.3 Learning the Model
Since HIM is a conditional model, in principle, estimation of its parameters can be achieved by
any discriminative learning approach, such as maximum likelihood learning as used in Conditional
Random Field (CRF) [7], max-margin learning [18], and structure-perceptron learning [9]. In this
paper, we adopt the structure-perceptron learning which has been applied for learning the recursive
deformable template (see paper [19]). Note that structure-perceptron learning is simple to imple-
ment and only needs to calculate the most probable configurations (parses) of the model. By con-
trast, maximum likelihood learning requires calculating the expectation of features which is difficult
due to the large states of HIM. Therefore, structure-perceptron learning is more flexible and compu-
tationally simpler. Moreover, Collins [9] proved theoretical results for convergence properties, for
both separable and non-separable cases, and for generalization.

The structure-perceptron learning will not compute the partition function Z(x;α). Therefore we do
not have a formal probabilistic interpretation. The goal of structure-perceptron learning is to learn
a mapping from inputs x ∈ X to output structure y ∈ Y . In our case, X is a set of images, with
Y being a set of possible parse trees which specify the labels of image regions in a hierarchical
form. It seems that the ground truth of parsing trees needs all labels of both segmentation template
and pixel labelings. In our experiment, we will show that how to obtain the ground truth directly
from the segmentation labels without extra human labeling. We use a set of training examples
{(xi, yi) : i = 1...n} and a set of functions ψ which map each (x, y) ∈ X × Y to a feature vector
ψ(x, y) ∈ Rd. The task is to estimate a parameter vector α ∈ Rd for the weights of the features.
The feature vectors ψ(x, y) can include arbitrary features of parse trees, as we discussed in section
2.1. The loss function used in structure-perceptron learning is usually of form:

Loss(α) = ψ(x, y) · α−max
y

ψ(x, y) · α, (8)
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Input: A set of training images with ground truth (xi, yi) for i = 1..N . Initialize parameter vector α = 0.
For t = 1..T, i = 1..N

• find the best state of the model on the i’th training image with current parameter setting, i.e., y∗ = arg maxy ψ(xi, y) ·α
• Update the parameters: α = α + ψ(xi, yi)− ψ(xi, y∗)

• Store: αt,i = α

Output: Parameters γ =
∑

t,i αt,i/NT

Figure 3: Structure-perceptron learning

where y is the correct structure for input x, and y is a dummy variable.

The basic structure-perceptron algorithm is designed to minimize the loss function. We adapt “the
averaged parameters” version whose pseudo-code is given in figure 3. The algorithm proceeds in
a simple way (similar to the perceptron algorithm for classification). The parameters are initialized
to zero and the algorithm loops over the training examples. If the highest scoring parse tree for
input x is not correct, then the parameters α are updated by an additive term. The most difficult
step of the method is finding y∗ = arg maxy ψ(xi, y) · α. This is precisely the parsing (inference)
problem. Hence the practicality of structure-perceptron learning, and its computational efficiency,
depends on the inference algorithm. As discussed earlier, see section 2.2, the inference algorithm
has polynomial computational complexity for an HIM which makes structure-perceptron learning
practical for HIM. The averaged parameters are defined to be γ =

∑T
t=1

∑N
i=1 αt,i/NT , where T

is the number of epochs, NT is the total number of iterations. It is straightforward to store these
averaged parameters and output them as the final estimates.

3 Experimental Results
Dataset. We use a standard public dataset, the MSRC 21-class Image Dataset [8], to perform exper-
imental evaluations for the HIM. This dataset is designed to evaluate scene labeling including both
image segmentation and multi-class object recognition. The ground truth only gives the labeling of
the image pixels. To supplement this ground truth (to enable learning), we estimate the true labels
(states of the S-R pair ) of the nodes in the five-layer hierarchy of HIM by selecting the S-R pairs
which have maximum overlap with the labels of the image pixels. This approximation only results
in 2% error in labeling image pixels. There are a total of 591 images. We use the identical splitting
as [8], i.e., 45% for training, 10% for validation, and 45% for testing. The parameters learnt from
the training set, with the best performance on validation set, are selected.

Implementation Details. For a given image x, the parsing result is obtained by estimating the best
configuration y∗ of the HIM. To evaluate the performance of parsing we use the global accuracy
measured in terms of all pixels and the average accuracy over the 21 object classes (global accuracy
pays most attention to frequently occurring objects and penalizes infrequent objects). A computer
with 8 GB memory and 2.4 GHz CPU was used for training and testing. For each class, there are
around 4, 500 weak classifiers selected by multi-class boosting. The boosting learning takes about
35 hours of which 27 hours are spent on I/O processing and 8 hours on computing. The structure-
perceptron learning takes about 20 hours to converge in 5520(T = 20, N = 276) iterations. In the
testing stage, it takes 30 seconds to parse an image with size of 320× 200 (6s for extracting image
features, 9s for computing the strong classifier of boosting and 15s for parsing the HIM).

Results. Figure 4 (best viewed in color) shows several parsing results obtained by the HIM and by
the classifier by itself (i.e. p(or

a|x) learnt by boosting). One can see that the HIM is able to roughly
capture different shaped segmentation boundaries (see the legs of the cow and sheep in rows 1 and
3, and the boundary curve between sky and building in row 4). Table 1 shows that HIM improves
the results obtained by the classifier by 6.9% for average accuracy and 5.3% for global accuracy. In
particular, in rows 6 and 7 in figure 4, one can observe that boosting gives many incorrect labels.
It is impossible to correct such large mislabeled regions without the long-range interactions in the
HIM, which improves the results by 20% and 32%.

Comparisons. In table 1, we compare the performance of our approach with other successful meth-
ods [8, 20, 21]. Our approach outperforms those alternatives by 6% in average accuracy and 4%
in global accuracy. Our boosting results are better than Textonboost [8] because of image features.
Would we get better results if we use a flat CRF with our boosting instead of a hierarchy? We argue
that we would not because the CRF only improves TextonBoost’s performance by 3 percent [8],
while we gain 5 percent by using the hierarchy (and we start with a higher baseline). Some other
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Figure 4: This figure is best viewed in color. The colors indicate the labels of 21 object classes as in [8]. The columns (except the fourth
“accuracy” column) show the input images, ground truth, the labels obtained by HIM and the boosting classifier respectively. The “accuracy”
column shows the global accuracy obtained by HIM (left) and the boosting classifier (right). In these 7 examples, HIM improves boosting by
1%, -1% (an outlier!), 1%, 10%, 18%, 20% and 32% in terms of global accuracy.

Textonboost[8] PLSA-MRF [20] Auto-context [21] Classifier only HIM
Average 57.7 64.0 68 67.2 74.1
Global 72.2 73.5 77.7 75.9 81.2

Table 1: Performance Comparisons for average accuracy and global accuracy. “Classifier only” are the results where the pixel labels are
predicted by the classifier obtained by boosting only.

methods [22, 11, 10], which are worse than [20, 21] and evaluated on simpler datasets [10, 11] (less
than 10 classes), are not listed here due to lack of space. In summary, our results are significantly
better than the state-of-the-art methods.

Diagnosis on the function of S-R Pair. Figure 5 shows how the S-R pairs (which include the
segmentation templates) can be used to (partially) parse an object into its constituent parts, by the
correspondence between S-R pairs and specific parts of objects. We plot the states of a subset of S-R
pairs for some images. For example, the S-R pair consisting of two horizontal bars labeled “cow”
and “grass” respectively indicates the cow’s stomach consistently across different images. Similarly,
the cow’s tail can be located according to the configuration of another S-R pair with vertical bars.
In principle, the whole object can be parsed into its constituent parts which are aligned consistently.
Developing this idea further is an exciting aspect of our current research.

4 Conclusion
This paper describes a novel hierarchical image model (HIM) for 2D image parsing. The hierarchical
nature of the model, and the use of recursive segmentation and recognition templates, enables the
HIM to represent complex image structures in a coarse-to-fine manner. We can perform inference
(parsing) rapidly in polynomial time by exploiting the hierarchical structure. Moreover, we can learn
the HIM probability distribution from labeled training data by adapting the structure-perceptron
algorithm. We demonstrated the effectiveness of HIM’s by applying them to the challenging task of
segmentation and labeling of the public MSRC image database. Our results show that we outperform
other state-of-the-art approaches.
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Figure 5: The S-R pairs can be used to parse the object into parts. The colors indicate the identities of objects. The shapes (spacial layout)
of the segmentation templates distinguish the constituent parts of the object. Observe that the same S-R pairs (e.g. stomach above grass, and
tail to the left of grass) correspond to the same object part in different images.

The design of the HIM was motivated by drawing parallels between language and vision processing.
We have attempted to capture the underlying spirit of the successful language processing approaches
– the hierarchical representations based on the recursive composition of constituents and efficient
inference and learning algorithms. Our current work attempts to extend the HIM’s to improve their
representational power while maintaining computational efficiency.
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