
Semantics-preserving Sharing Actors
Mohsen Lesani{1,2} Antonio Lain2

University of California, Los Angeles1 HP Labs, Palo Alto2

Abstract
Actors interact by asynchronous message passing. A key semantic
property of actors is that they do not share state. This facilitates
data-race freedom, fault isolation and location transparency. On
the other hand, strict avoidance of sharing can lead to inefficiency.
We propose the sharing actor programming model that extends
the actor programming model with single-writer multiple-reader
sharing of data. We define the sharing actor theory and prove its
semantic equivalence to the pure actor theory. We realize the
sharing actor theory with an efficient implementation. The
implementation benefits from sharing data but keeps it transparent
to actors. To increase the confidence that the implementation
complies with the semantics, we have built a checking tool based
on deterministic replay of actor programs.

1. Introduction

1.1. Background

Actors is a well-known model of concurrent programming for
parallel and distributed systems. The term actor was first used by
Hewitt [10] to refer to reflexive agents and later to a model of
concurrent computing. The commonly used semantics of actors is
formalized by Agha [1] in 1986. Since then, many actor languages
and frameworks have been developed. With the growth of parallel
and distributed computing platforms such as multi-core
architectures and cluster computers in recent years, the actor
model has gained popularity. Contemporary actor languages and
frameworks include: Ericsson’s Erlang programming language
[24][19] that supports massively concurrent telecom systems [2],
Akka Actors and the Scala Actors library [8], Ptolemy project
[14], JCoBox [20], SALSA [23], Microsoft Asynchronous Agents
Library, Microsoft Axum, and Microsoft Research Orleans
framework for cloud computing [4] to name a few.

A key semantic property of the pure actor model is
encapsulation of state. Actors do not share state: an actor must
explicitly send a message to another actor in order to affect its
behavior. Most shared memory implementations of actors can
bypass this sharing restriction by including references to mutable
state within messages. As deviation from the non-sharing
philosophy can be troublesome, researches have proposed static
analysis methods and type systems to rule out sharing
[22][9][17][7]. In fact, the growing popularity of the actor model
is largely due to this simple model of data sharing. This restricted
model of sharing provides a uniform framework for exploiting
parallelism both within a server and across a data center. In
addition, it facilitates data-race freedom, fault isolation and
location transparency. Unfortunately, this comes at a price in
terms of the convenience and efficiency of sharing. In particular,
in scenarios where large-scale mutable but read-dominated data is
needed by a large number of actors, a pure message-based
approach can become extremely inefficient.

1.2. Motivating Example

A tangible example is a distributed social graph. Consider Figure
1. A node in the graph is the session of a user and an edge in the
graph is a friendship relation. The dark circle represents the
session of a definite user and the rectangle below it is the session
state. When a user changes her session state, her friends should be
notified. Each session state is a single-writer multiple-readers data
that is written by one user and read by her friends. Typically, the
social graph is too large to fit in the memory of a single computer
and needs to be partitioned across the cluster. Ideally, the
partitioning algorithm minimizes the number of edges that span
two machines while keeping the load balanced. The sessions that
are mapped to the same machine can potentially leverage the
shared memory for efficiency; for example, by avoiding
duplication of session state.

Let’s look at the previous approaches to programming the
single-writer multiple-readers abstraction. Ad-hoc multi-threaded
implementations can share the data of a user session between the
sessions of her friends in each host and control accesses by the
conventional synchronization mechanisms such as locks and
conditional variables. These implementations can be efficient but
are prone to traditional problems of programming shared memory
such as deadlocks or races.

Implementations that use the pure actor model can employ
either full replication or a delegate actor. We consider each one in
turn. Consider Figure 2 where large rectangles represent hosts,
circles represent actors (the darker circle represents the writer
actor) and small rectangles represent state. In the first
implementation, the state is replicated in each reader actor. When
the writer actor finishes updating its state, it sends an update
message to each reader actor. The replica at each reader is updated
when it processes the update message. Unfortunately, this
approach wastes space and more importantly time as the same
update is repeated at each reader actor. The second
implementation employs a delegate actor at each reader host. The
state is replicated and updated once at the delegate actor. The
reader actors communicate with the delegate actor to read the
state. The problem with this approach is the loss of potential
parallelism as the accesses of the readers are serialized in the
delegate actor.

Figure 1. Distributed Social Graph

1.3. Our Approach

We propose sharing actors. In this approach
between a single writer actor and multiple
writer and reader actors see the shared st
internal state. The writer actor can read fro
shared state while the reader actors have a re
This approach merges programmability and e
state-abstraction of actors and the efficiency o

Consider sharing actors depicted in Fi
session views the user session state as part o
state (similar to the full replication case expl
while the implementation shares a single rep
(similar to the ad-hoc sharing mentioned ab
provides the programmer with the high level
of actors and at the same time avoids duplica
updates. As the number of readers increase th

Our Cloud Assistant Framework (CAF
source implementation of Sharing Actors1. C
of distributed computing, and this enable
application programmers to codesign back
JavaScript (using Node.js2). A Cloud Assist
that permanently represents a mobile applic
data center. CAs act as light-weight, s
autonomously interact with other CAs, clo
external world. CAF examples can be tried on

Figure 4 shows code snippets from CAF
from a sample application called moody fr
represented in the cloud by a CA and shares
current mood and place with her friends. C
place are eventually propagated to friends
updated atomically. Therefore, friends will a

1 http://www.cafjs.com/
2 http://www.nodejs.org
3 http://www.cafjs.com/examples.html

Figur

Figure 3. Sharing Acto

2

ch, state can be shared
iple reader actors. The
 state as part of their
 from and write to the
a read-only access to it.
d efficiency, namely the
y of sharing.
Figure 3. Each friend
rt of its private internal
xplained above). This is
replica between friends
 above). This approach
vel programming model
licate state and repeated
 this benefit increases.
AF) provides an open
. CAF abstracts aspects
bles front end mobile
ck end components in
sistant (CA) is an actor
lication instance in the

stateful proxies that
cloud services, or the
 online.3
F Sharing Actors. It is

 friends. Every user is
es a map containing his
Changes to mood and

ds. The shared map is
ll always see consistent

mood and location tuples. Fig
phase where the owner of the s
of the session map (with the
actors register on the session m
friendSession). Figure 4.(B)
to the session map and the reade

We formalize the semantic
extension of the pure actor theo
single-writer multiple-reader sta
from the sharing actor theory to
of it is defined. We prove that fo
translated pure actor program ha
that is every interaction by the s
interaction with the translated
that our extension is only seman

Naive implementations of t
inefficiencies in terms of both t
there is a large number of reade
implementation. It benefits from
by all the readers co-located
sharing transparent to the reader

To check that the implement
we have built a checking to
implementation of the semantic
It plays and logs with the optim
a deterministic replay with th
discrepancy between the final
systems suggests a bug in the op

The structure of the paper
sharing actor theory in the next
of the syntax, configurations,

ure 2. (Left) Full Replication (Right) Delegate Actor

tors

if (this.state.admin) {
this.sharing.addMap(
 tru e, MAP_NAME, 'mySe

} else {
var mapName = getFriendM
this.$.sharing.addMap(

 false, mapName, 'fri
}

var self = this;
if (this.state.admin) {
 this.$. sharing.mySessio
 this.$. sharing.mySessio
 // ...
} else {
 var herStatus = this.$. s
 var herPlace = this.$.sh
 // ...
}

Figure 4. Shar

Figure 4.(A) shows an initialization
e session registers as the writer actor
he name mySession) and the other
 map as reader actors (with the name
) shows that the owner actor writes

ader actors read from it.
tics of sharing actor theory as an

heory. The extension is the notion of
state of actors. A program translation
 to the pure subset (without sharing)
for every sharing actor program, the

 has equivalent interaction-semantics
e sharing actor program is a possible
d pure actor program. This justifies
antic-sugar for the pure actor model.
f the sharing semantics can lead to
h time and space, in particular, when
der actors. We describe an optimized
rom a versioned data structure shared
d in the same host but keeps this
ders.
entation complies with the semantics,
tool. The checker uses the direct
tics as the reference implementation.
timized implementation and performs
 the reference implementation. Any
nal configurations of the two actor
 optimized implementation.
er is as follows. We formalize the
ext section. It includes the definition
s, transitions, equivalence, program

ession');

MapName();

iendSession');

(A)

on.status = 'Happy'
on.pla ce = 'Paris'

sharing.friendSession.status
haring.friendSession.p lace

(B)
haring Actors in CAF

3

translation and the theorem of equivalence. Implementation is
described afterwards. Next, we explain the checking tool. Finally,
related works and conclusion sections conclude the paper.

2. Sharing Actor Theory
In this section, we define the sharing actor theory as an extension
of the pure actor theory. In the pure actor theory, each actor has a
message queue. An actor dequeues and processes messages
sequentially. The sharing actor theory allows using single-writer
multiple-reader data. Consider Figure 5.A. The sharing actor
semantics adds an update queue to each reader actor. Consider
Figure 5.B. When the writer actor finishes updating the state, the
state is put at the end of the update queue of each reader actor.
Consider Figure 5.C. A reader actor can take an element from the
update queue before processing a new message.

We define a translation that transforms a sharing actor
program to a pure actor program where the only way to change
the internal state of an actor is to send a message to it. We prove
that each sharing program is interaction-equivalent to the
translated program. The key properties of the sharing actor
semantics that enable the equivalence to the pure actor semantics
are atomicity, isolation and fairness.

• Atomicity means that partial changes of the writer to the
state should not be externalized. In the context of the
above example, each friend either sees all or none of the
state updates of a single user action.

• Isolation means that new updates should not become
visible to an actor while it is processing a message. In the
previous example, each friend always sees a consistent
(but possibly outdated) view of a user session.

• Fairness means that the propagation of an update should
not be delayed arbitrarily. In the context of the above
example, each friend can eventually see the updated

session of the user regardless of how busy the other
friends are.

Our sharing actor theory does not allow multiple-writer data.
The shared state is partitioned into owners with exclusive write
access. When an actor wants to modify a part of the shared state
that it does not own it has to send a message (containing the
update or a closure that will perform the update) to the owner
actor.

We formalize our model in the following subsections. The
definitions and notations are based on the formulation of pure
actors by Mason and Talcott [16].

2.1. Basic definitions

Let ����� denote the power set of � and ����� denote the
multiset power set of �. Let � � 	 denote a sequence of elements
where � is the first element and 	 � � denote a sequence of
elements where � is the last element. We use
��
� � �� �� as a
syntactic sugar for ���. ��� �. We define ���� � ���. � and ��
	� � ���. �.

2.2. Syntax

The syntax is depicted in Figure 6. �� is the set of identifiers
���, ���, … �. is the set of actor names
��, ��, … �. ! " ��#$%&
is the set of message contents. A message content is a method
identifier �� and argument values $%. The set of messages is !	' " (! (that is set isomorphic to) !). � (*: !	'
denotes a message for actor � with contents *.

A program for an actor subsystem declares its interaction
interface with other actor subsystems as Receptionists and
Externals sets of actors. Receptionists is a subset of actors of this
actor subsystem that are visible to the outside world. Externals is
the set of actors that are known from the external world. The

Figure 5. (A) Writer and reader actors (B) Writer changed state (C) The first reader actor installed the update

, �" program���3�4��56�	�	: ��# &, �����6�
	: ��# &,
�7���8: ��#9�:;��&, �3�5�	: ��# < =&, *�		�'�	: ��# (!&, 	:���6': >�?: , @: ��# &A�
where
 B� C : |
�� < �� C �3�5�	 | � C =�| E 1

�?� G @ H �5*��3�5�	�

9�:;�� �" behavior ���N%� !��:;��% !��:;�� �" method ���N%� #enable =& = = �" �N. = | = = | = (��#=%& | readyT���=%�U | self | N | $ $ �" �N. = | N �" �� ! �" ��#$%& �� "
���, ���, … �

Figure 6. Syntax

4

program defines a library of behaviors, a set of initial actors and
messages. There is one sharing group in each actor program. A
sharing group X " >�?, @A, is a writer actor �? and a set of
reader actors @ " Y�@Z[\..]^. The behaviors of the reader actors
are updated with the new behaviors of the writer actor.

Each behavior definition 9�:;�� defines a behavior with a
behavior identifier ��, initialization parameters N% and a set of
method definitions !��:;��%. A method definition !��:;��
specifies the method parameters N%, the optional selective receive #enable =& and the body expression = of the method. The
selective receive expression (also called guard or synchronization
constraint) of a method is required to be functional i.e. its
evaluation involves no send or ready expression. If the selective
receive is not specified, it is assumed to be ����. For each
candidate message, the selective receive expression is evaluated
under the binding of method parameters to the arguments in the
message. If the selective receive is evaluated to ����, the body
expression is evaluated; otherwise, the message is rejected at this

time and is considered again later. An expression is a lambda
abstraction �N. =, application = =, a variable N, a value $ or an
actor specific expression. Actor specific expressions are sending a
message = (��#=%&, installing a new behavior readyT���=%�U
and the current actor expression self. In a send expression =_ (��`=a, the target of the message is the value of =_ and the

message content has �� as the method name and values of = as

arguments. The ready expression ready b��T=Uc installs the

behavior �� with the values of = as arguments. 	�
� is evaluated
to the name of the executing actor. A value is either a lambda
expression or an actor name. For the sake of simplicity, our syntax
does not support dynamic creation of actors.

2.3. Configuration

An actor configuration is a pool of actors with definite states and
messages. The set of actor states � is defined as follows: � �" �9, d� | �9, d, e� EQ. 19

Definition of f:

�6���6�

: �� g ��h ��, � ijk lf h ��, � ijk EQ. 1

�6 h � ijk mn�_,o�pqqqqr h �, � (* ijG_st�o�uk�k �� �� C v� w ��3x�*� y �6 3���� H v� EQ. 2

5�� h �, � (* ijk z{|�_,o�pqqqqqr h � ijkG�_st�o�uj� �� � } �6 3���� EQ. 3 ��
� h � ijk m~l�pqr h � ijk EQ. 4

Definition of g: ��
������, *� #7�����, ># &, x@A&_, � (* g #7�����, >#*&, x@A&_ EQ. 5 ������	����

#7�����, >* � x{, x@A&_ g #>�s, �� , 7�����A, >*, x{ , x@A&_ �� *��:!��3:���7, 7��, �, *� " >�s , ��A EQ. 6

3:�3����
� f_ ��#>�, �� , 7�����A, >*, x{, x@A&_ g #>��, �� , 7�����A, >*, x{, x@A&_ EQ. 7

��	�7
���� #>�, �� , 7�����A, >*, x{, x@A&_ g #7�����, >x{, x@ � *A&_ �� � � true EQ. 8 �6�7
���� #>true, �� , 7�����A, >*, x{ , x@A&_ g #�� , x{. x@&_ EQ. 9

	�x��� � f_ ��#�, x{&_ g #�, x{&_ EQ. 10

	�6���� #��� (*��#�&�, x{&_ g #��0�, x{&_, � (*��#�& �� � C EQ. 11 ����8��� `��readyT7�����U�, x{a_ g #7�����, >x{, # &A&_ �� 7�:!��3:���7, 7��, �� �6� � � �? EQ. 12

The rules that we add to the pure semantics are:

����8��?�
`��readyT7�����U�, x{a_� , #7, x, �&_�Z[\..� g #7�����, >x{ , # &A&_� , #7, x, � � 7�����&_�Z[\..�

�� 7�:!��3:���7, 7��, �� EQ. 13

: #7, x&_ g #7�, x�&_#7, x, �&_ g #7�, x�, �&_ EQ. 14

�4����T�@, 7�����U �7��� b��c , ># &, x@A, 7����� � ��_� g #7�����, >x@ , # &A, �&_� EQ. 15

Definition of f_: ���

� f_ ������ f_ ����� EQ. 16 7��� ���. �� � f_ �#� � �& EQ. 17 	�
� self f_ � EQ. 18

Figure 7. Semantics

5

9 �" ���$%� | >=, =, ���$%�A | = d �" >!% , !%A | >!, !%, !%A | !% e �" ��T$U%
 9 is the behavior component of an actor state. If 9 is ���$%�, the

behavior �� with arguments $% is installed. If 9 is >=, =, ���$%�A,
a message is being checked for enabledness where the first = is
the guard expression that is being evaluated, the second = is the
body expression and ���$%� is the latest installed behavior. If 9 is
an =, the actor is evaluating the body of a method. d is the queue
component of an actor state. If d is >!% , !%A, the first and second
components represent the unchecked and rejected queues of
messages respectively. If d is >!, !%, !%A, the first component is
the message that is being checked for enabledness and the second
and third components are the unchecked and rejected queues. If d
is !%, it represents the queue of (unchecked) messages to be
checked by the next behavior. e is the sequence of updates for a
reader actor. 	: � denotes an actor state. 7: 9 denotes a behavior
component. x: d denotes a queue component. �: e denotes an
updates list component.

An actor entity is an actor name paired with an actor state.
Actor entities = " #�&� is the set of actor entities. (= is set
isomorphic to) �). #	&_: #�&� denotes an actor named � with
state 	. The interior of an actor configuration is a set of actors and
multiset of messages. The set of configuration interiors is defined
as �� "
� G � | � C ��# =&, � C ��#!	'&� EQ. 20
where B� C ��: B� C : |
#	&_ C � | 	 C ��| E 1. �: �� denotes a
configuration interior.

Internal and external actors of a configuration interior are
defined as follows: �6 3�, =�� 3�: � f ��# & EQ. 21 �6 3���� "
� C | �	 C �: #	&_ C �� EQ. 22 =�� 3���� " �3x��� / �6 3���� EQ. 23
The acquaintance function gives the finite set of actor names
occurring in �. A configuration is defined as follows: � "
h � ijk | v H �6 3���� w =�� 3���� H j w j y �6 3���� " �� EQ. 24

The receptionists set v is a subset of the internal actors of the
interior that are visible from the environment. The externals set j
includes all actors mentioned in the interior that are not internal
actors. Consider the following program 4.

4 � program���3�4��56�	�	: v, �����6�
	: j,
�7���8: ��7, �3�5�	:
�m < �m���m�o, *�		�'�	:
�m� (*m���m�n, 	:���6': >�?, @A� where @ � Y�@Z[\..]^
�?� G @ H
�m��..o�
 EQ. 25

The initial configuration for 4 is denoted by �4� and is defined as
follows: �4� � h � ijk where � �
��m , 6�
���m�o,_Z}�� , ��m , 6�
, 6�
���m�o,_ZC�� , ��m� (*m���m�n� EQ. 26

2.4. Semantics

The semantics of sharing actors is defined in Figure 7. The
reduction context and the helper functions are defined in Figure 8.
The internal transition relation g defines steps of actor
computation inside the current subsystem. The internal transition �
: � g ��� denotes the transition of � to �� by g with label
. �6 3���� is called the old actors of
 and �6 3�����/�6 3���� are
called the new actors of
. We explain each internal transition in
turn.

To maintain fairness for processing of messages that are
rejected by previous behaviors of the actor, a new message is
delivered only after all the messages in the unchecked queue are
checked and rejected by the current behavior. If the unchecked
queue is empty, the ��
������, *� rule receives message * and
puts it in the unchecked queue.

The ������	���� rule takes a message * from the head of the
unchecked queue and uses *��:!��3: to check whether the
method name and the argument list of the message match a
method name and parameter list of the current behavior. If there is
a matching method, *��:!��3: returns the pair of the guard and
body expressions that are instantiated with the passed arguments.
The resulting behavior tuple contains the guard and body
expressions and the current behavior. Later, the guard expression
may be evaluated to a normal expression other than true by the 3:�3���� rule and then the message should be put to the rejected
queue. Thus, the message * is kept as the first element of the
queue tuple.

The 3:�3���� rule evaluates the guard expression. If the guard
expression is evaluated to a value other than true, the ��	�7
����
rule drops the tentative body expression, restores the current � �" � � | � = | $ � | � (��#=%& | $ (��#$%, �, =%& | ����8T���$%, �, =%�U

 4���:�3���, �� iff � and � are of the same length. EQ. 27 7�:!��3:���7, 7��, �� iff T��, *��:5�;��: Tbehavior 7����� *��:5�;��U C ��7U w 4���:�3���, ��. EQ. 28 *��:5�!��3:T��7, 7��, �, *��`��aU "

���
��>�#� � �&`�� � ��a, ��#� � �&`�� � ��aA �� T��, *��:5�;��: Tbehavior 7����� *��:5�;��U C ��7U w Tmethod *��T��U #enable �& �� C *��:5�;��U w b4���:�3�T��, ��Uc��
	� 5�:�� �	�

¡ EQ. 29

Figure 8. Reduction Context and Helper Functions

6

behavior and puts the message at the tail of the rejected queue. If
the guard expression is evaluated to true, the body expression is
installed, the backed-up message is dropped and the concatenation
of the unchecked and rejected queues is stored as the unchecked
queue for the next behavior. The 	�x��� rule evaluates the body
expression.

The 	�6���� rule checks if the recipient expression of the
message is an actor name and emits the message.

The ����8��� rule (where � is not the writer actor) uses 7�:!��3: to check whether the behavior name exists in the
library and the argument and parameter lists match. If there is a
match, the new behavior is installed and the tuple of the
unchecked queue and an empty rejected queue is stored as the
queue component. The ����8��?� rule (where �? is the writer
actor) does the same and in addition, adds the new behavior to the
tail of the update list of each reader actor. To maintain atomicity,
the updates are propagated only when the writer has finished
processing a message.

A rule mirrors all transitions possible for non-reader actors
(without an update list) for reader actors. So, reader actors can
have any type of transition that other normal actors can. A reader
actor �@ can specifically do �4������@� transition. The �4������@� rule takes the behavior at the head of the update list
and installs it as the current behavior. To maintain isolation, an
update is installed only when the actor is not processing a
message. To maintain fairness, similar to the ��
������, *� rule,
an update can be performed only if all the messages in the
unchecked queue are checked and rejected by the current
behavior.

2.5. Computation and Interaction Semantics

2.5.1. Computation Path Semantics

The set of computation paths � is the set of sequences of the form ¢ " ��m lZf �m£� | � C N�
m C � G �6� , !� G 5��� , !�
 EQ. 30

where � is the set of internal transition labels and the paths with
the initial configuration � are defined as ���� "
¢ C � | � is the source of ¢�0�� EQ. 31
A finite computation is a path in which all but a finite number of
the transition labels are ��
�. A label
 is enabled in � if
 C � G5��� , !� and � has a transition with label
� where (1)
� is the
same as
 up to choice of names for new actors or (2) � has a
transition with label
� " �4������@ , 7�����¥� and #7, x, 7�����m�¥..n&_� C � and
 " �4������@ , 7�����m�, � "1. . 6. In other words, if the first update is enabled to be installed,
all the other pending updates are enabled to be installed in
sequence after that. =6�7
���¢, �� is the set of labels that are
enabled in the source �m of ¢���. ¦�����¢, �� "
 if ¢��� has the

form �m lZf �m£� where
m differs from
 only in the names of new
actors.

Actor computations are required to be fair. A computation path
is fair if whenever a transition is enabled, either it eventually fires
or it becomes permanently disabled. §��� is the set of fair paths
with the initial configuration �. ¦����¢� ¨ B�,
:
 C =6�7
���¢, �� g T�© ª �:
 " ¦�����¢, ©�U « T�� ¬ �: B© ¬ �:
 } =6�7
���¢, ©�U

 EQ. 32

§��� "
¢ C ���� | ¦����¢�� EQ. 33

2.5.2. Interaction Semantics

An actor system is considered as a black box characterized by the
set of possible interactions with its environment. Two actor
systems are equivalent if they cannot be distinguished by
interacting with other actor systems.

Interaction path �	�*�¢� of a computation path ¢ is the
sequence of its message input and output actions and is defined as
follows: �	�*�¢� " ­j®k® iff ¢��� " h �m ijZkZ lZf h �m£� ijZ¯\kZ¯\ and ­��� " �	�*�
m� for � C N

 EQ. 34

�	�*�
� " °± ��
 C � G
��
��
 ��
 C �6� , !� G 5��� , !�¡ EQ. 35

Two interaction paths are equivalent if and only ig
they differ only by insertion or deletion of ±%. EQ. 36 ± stands for possible internal activity.

The interaction semantics �	�*��� of a configuration � is
defined as follows: �	�*��� "
�	�*�¢� | ¢ C §���� EQ. 37

Consider two adjacent steps �¥ l®f �� l\f ��. The two steps can
be legally commuted if
(1) The old and new actors of
¥ are disjoint from the
old actors of
�.

 EQ. 38

(2) The messages produced in the
¥ rule do not
participate in the
� rule.

 EQ. 39

(3)
¥ and
� are not both interaction labels. EQ. 40
Computation paths that differ only by legal permutations result in
the same interaction path [16]. Consider a computation path ¢.
Consider a computation path ¢� that differs from ¢ only by legal
permutations. If an actor system produces ¢, it produces ¢� and �	�*�¢� " �	�*�¢��.
2.6. Interaction Equivalence

A configuration � is equivalent to the configuration �� if and
only if �	�*��� " �	�*����. In other words, a configuration �
is equivalent to the configuration �� if and only if B¢ C §���: �¢� C §����: �	�*�¢� " �	�*�¢�� w B¢� C §����: �¢ C §���: �	�*�¢�� " �	�*�¢�

 EQ. 41

In order to show the interaction equivalence of sharing actors
to pure actors, we define a program translation 	24 that removes
sharing and translates automatic updates to pure message passing.
To reason about intermediate configurations, we lift the program
translation to configuration translation. We present the formal
definitions of the translation in the appendix [15] and briefly
explain it in the following paragraphs.

The interesting part of translation is the translation of ����8
for the writer and the addition of �!��:5� to behaviors for the
readers. The reduction of ����8 for �? (EQ. 13), installs the new
behavior for �? and stores it at the tail of the update store � of
each �@. Later, in �4������@� transitions (EQ. 15), the behavior at
the head of � is taken and installed as the current behavior of �@.
To process updates in order, new behaviors are added at the tail
and removed from the head of the update store.

The translation simulates the update mechanism with message
passing. A ����8 expression of �? is translated to sending e4���� messages to reader actors �@ and then installing the new
behavior for �?. e4���� messages contain the new behavior for
the reader actors. At the reader actors, �!��:5� receives e4����
messages. To preserve the order of updates, the update messages

7

should be processed in the same order as they are sent. The
translation adds a counter parameter to the definition of the writer
and readers behaviors. The writer actor maintains a counter 3?
that holds the number of the next update to send and each reader
actor �@ maintains the number of the next update message to
receive 3@. The selective receive feature of the language is used to
check the number of the messages. The e4���� messages that �?
sends contain a pair of expressions. The first element of the pair is
the number of the update message and the second element is the
new behavior. The guard of the �!��:5� checks the equality of
the first element of the pair (that is the number of the message) to 3@ (that is the number of the next update message to receive). If
the check succeeds, the ����8 expression that installs the new
behavior is obtained from the second element of the message and
is evaluated.

The following theorem states the interaction equivalence of
sharing actors and pure actors. We show that every sharing actor
system can be translated to a pure actor system such that any
interaction of the sharing actor system could be resulted from the
pure actor system.

THEOREM 1. B4 C ,: �	�*��4�� " �	�*��	24�4���

Please see the appendix [15] for the proof.

3. Implementation

As we mentioned in the introduction, CAF provides an open
source implementation of Sharing Actors using server-side
JavaScript. JavaScript execution model is single-threaded, but
asynchronous calls during the processing of a message introduce
task interleaving. We have also experimented with multi-threaded
garbage collected (Erlang and Scala) and non-garbage collected
(C) implementations of the same concepts as HP Labs proprietary
libraries.

The implementation provides a set of commonly used ADTs
(Abstract Data Types) such as Map and Set that actors can share.
There is one actor that owns the shared abstraction. The owner is
the only actor that can mutate the abstraction. Each host
containing a sharing actor holds one copy of the abstraction. All
the sharing actors can transparently access the abstraction as part
of their internal state. We use the term epoch to refer to the
execution period of an actor that services a single message. After
each epoch of the owner actor that mutates the shared abstraction,
an update message is sent to sharing hosts. This pushes updates to
hosts before they are needed and hence hides communication
latency. An epoch by the owner may involve multiple updates on
the abstraction. To preserve the atomicity property, one update
message containing all the updates that were performed on the
abstraction is sent. Serialization of updates is obtained by
numbering the update messages at the owner and considering
them in order at other hosts.

To provide the isolation property, an actor that is in the middle
of processing a message should not see an update. On the other
hand, to support the fairness property, other sharing actors on the
same host should not wait indefinitely for the update. To meet
both of these requirements, the implementation maintains multiple
versions of the abstraction at each host. While the old versions are
retained for the actively processing actors, new epochs can see
new versions. The implementation maintains multiple versions
efficiently as follows. We use a simple semi-persistent data
structure [6]. See Figure 9.(A). Each copy of the shared
abstraction is represented as a reference to the head of the list of

update messages. The tail of the update list points to a base object.
The base object is an instance of a conventional linearizable
implementation of the abstraction. We can benefit from existing
high performance data structure implementations. See Figure
9.(B). The update list is initially empty. Received update
messages are prepended to the update list and the reference to the
head of the list is updated. Obviously, in the multi-threaded
implementation, the reference is updated atomically. References
to different elements of the update list represent different versions
of the abstraction. The head of the update list is the most recent
version of the abstraction.

Upon a read request on the abstraction using a handle (that
references possibly the middle of the list), the list is traversed
starting from the update message that the reference points to. The
result of the access may be determined according to an update
message that is visited in the traversal. Otherwise the access is
finally performed on the base object.

It is obvious that concurrent update and read operations do not
block each other. It is notable that this representation avoids
memory overhead of replication for each actor and at the same
time the synchronization bottleneck of a single delegate actor.
Visiting update messages in the traversal is dependent on and can
be optimized according to the abstraction type. For example,
consider accessing the value of a key in the map abstraction.
Having a bloom filter [3] on the keys in each update message can
accelerate skipping update messages that are irrelevant to the
accessed key.

References of user code to the abstraction are objects of type
handle. To have the fairness property, if a handle is accessed for

Figure 9. Implementation

8

the first time in an epoch, we want the reference in the handle to
be updated to the current head of the update list. To have the
isolation property, we want the handle to stay unchanged if the
handle is accessed again in an epoch. The strategy for keeping
track of references influences the performance of the list
compaction. We first describe the structure of handles and then
the compaction mechanism.

In the single-threaded implementation, a handle has a validity
state in addition to a reference to an element of the update list.
Each element of the list maintains a reference count. During an
epoch, if an invalidated handle is accessed, it is updated to
reference the head of the update list and the reference count of the
head element is incremented. At the end of the epoch, we
decrement the count of the element that the handle references and
set the handle state to invalid. Due to single-threaded execution,
no synchronization is needed for updates to the reference counts.

On the other hand in the multi-threaded implementation, a
handle contains an epoch number in addition to a reference to an
element of the update list. A unique epoch number is assigned to
each message when it is being processed. This epoch number
helps discriminate two cases. Upon accessing a handle during
processing of a message, the epoch number of the message that is
being processed and the epoch number of the accessed handle are
compared. If the epoch numbers are different, the handle is being
accessed for the first time in the current epoch. Hence, the
reference in the handle is updated to the current head of the update
list and the epoch number in the handle is updated to the epoch
number of the message. If the two epoch numbers are the same,
the handle is being accessed again in the current epoch and hence
the reference in the handle is not updated.

As an access to the shared abstraction includes a traversal of
the update list, the access time is a linear function of the length of
the update list plus the access time of the base object. To make the
performance of accesses as close as possible to the performance of
accesses on the base object, we need to keep the length of the
update list small. Consider a reference to an element of the update
list and that it divides the list to two sublists that we call the head
list and the tail list. The tail list can be compacted as follows. We
want to apply the updates of the tail list to the base object in the
reverse order of the list and then update the last element of the
head list to the base object. See Figure 9.(C) and Figure 9.(D). But
consider a tail list and an epoch that is accessing the abstraction
using a handle that references the middle of the tail list. To
preserve the isolation property, the epoch should not observe the
updates that are added to list after the handle of this epoch. If we
compact this tail list, its updates are applied to the base object.
The base object is accessible starting from the handle too. This
can lead the epoch observe the updates that are after the handle
and therefore, isolation is violated. To prevent violation of the
isolation property, we need to compact a list only if no handle
references the middle of it.

In the single-threaded implementation, the list can be
compacted efficiently based on reference counting. If the
reference count of all elements of a list is zero, it can be merged
into the base object. On decrementing a counter at the end of an
epoch, if the counter reaches zero, the sublist staring from the
element is checked and if all the reference counts in it are zero, it
is merged. If the reference count of an element reaches zero, it
will not be referenced again. Therefore, checking the reference
counts can be optimized by skipping the previously visited
sublists. Again, note that sequential processing precludes
synchronization.

Unfortunately, compaction based on reference counting
introduces contention that limits the scalability of multi-threaded
implementations. Instead, we employ a technique inspired by
RCU (Read-Copy-Update) [13]. To compact the update list, we
first read the current head. The goal is to compact the list that the
first element points to which we call the target list. As handles
used in processing of new messages are updated to reference the
head of the update list, no new epoch will reference an element in
the target list. We need to make sure that all the currently active
epochs that have a handle to the target list are finished. We
schedule a dummy message in each thread of the thread pool that
executes the epochs. As threads process messages non-
preemptively, the new messages are processed after the currently
active epochs. Therefore, once all the threads finish the processing
of the dummy messages, all the epochs that were active at the
time of scheduling the dummy messages are already finished. At
this point, it is certain that no epoch has or will have a handle that
references the middle of the target list. Thus, the target list is
merged to the base object. While the updates are being applied to
the base object, concurrent readers may access the base object.
These readers do not experience any inconsistency because the
base object is a linearizable implementation of the abstraction and
also viewing the updates both in the list and in the base object
does not affect the values that the readers read.

A single thread is used for compaction. The compaction
procedure does not affect the progress of the actors. The
compaction procedure at each host is independent of other hosts
and thus there is no global synchronization overhead.

Older elements tend to have no reference sooner so that the list
is typically very short. In average, only a small window of active
versions is needed to be maintained. We bound the maximum size
of the list by a small constant. In pathological cases that the size
of the list exceeds the limit, we create a new compacted object
that will be used for all the new epochs. This technique mitigates
the worst case access time.

An optimization to lower pressure on garbage collector and
improve cache locality is to reuse cells of the list that is removed
during compaction. A subtle point is that in the compaction, even
after updating the pointer to the base object, there may be readers
that are still traversing the removed list. Thus, we need to wait for
the next RCU cycle before reusing the cells of the old list.

The implementation maintains one writer or multiple
concurrent readers of the shared state. Thus, it preserves race-
freedom of the encapsulated state. Due to independence of the
versioning mechanism in reader hosts, fault isolation is preserved
at the granularity of hosts. Both writer and reader actors can move
between hosts. Therefore, sharing actors preserves the location
transparency property as well.

4. Checking Tool

The translation of sharing programs to pure programs explained in
Section 2.6 gives a direct method of implementing the semantics.
While this translation is an essential part of the interaction
equivalence result, a direct implementation of this translation is
inefficient in terms of both time and space. Our optimized
implementation benefits from sharing data and applies different
techniques to implement the semantics efficiently. Thus, the
optimized implementation is quite involved. To increase the
confidence that the optimized implementation complies with the
semantics, we have built a testing tool.

The testing tool executes a test program with the optimized
implementation and logs the execution. It uses a direct

9

implementation of the semantics as the reference implementation.
Using the log, the checker replays the execution with the
reference implementation and compares the configurations
resulted from the two executions. A difference in the results
suggests a bug in the optimized implementation. Variability in
interleaving of independent actors can expose bugs. If the same
procedure is repeated for a large number of times and the resulting
configurations are the same, the confidence in the correctness of
the implementation is increased.

We assume that the process of each actor in the test programs
is a deterministic function of the current state of the actor and the
input message. To have a deterministic replay of the execution,
we want each actor to process the exact same sequence of
messages that it has processed in the play. A unique id is assigned
to each actor. The id of each actor is assigned when its parent
creates it. The id of a child actor is the id of the parent actor
concatenated with a child number. As the execution of each actor
is serial, the messages that an actor sends can be serially
numbered. The id of a message is the pair of the id of its sender
actor and the number of the message in the sender. For each actor,
we log an entry for each epoch. The entry is a pair of the
processed message id and the version of the shared abstraction
with which the processing is started. During the replay, the
checker reads the log and makes sure that each actor processes the
same sequence of messages with the same version of the shared
abstraction. Out of order messages and updates are cached and
applied at a later time.

Figure 10 shows an example of the play and replay procedure.
The first two actors are readers and the third actor is the writer of
the shared abstraction. Each block shows an epoch. Dark blocks
show epochs that their execution time is different in the play and
the replay. The upper diagram Figure 10.(A) shows a play with
the optimized implementation and the lower diagram Figure
10.(B) shows the replay with the reference implementation. The
arrows show sending of messages. In the lower diagram, dashed
arrows show sending of updates to reader actors in the reference
implementation. In the optimized implementation, the reader
actors are transparently updated. The first reader actor processes
message ((a2, n1), v1) and then message ((a2, n3), v2). This
means that the first actor processes the message number 1 of actor
2 with version 1 of the abstraction and then processes the message
number 3 of the actor 2 with version 2 of the abstraction. In the
replay, the second epoch of the second actor executes later
(moved to the right). Now, the first actor receives a message from
the third actor before receiving the message of the second actor.
Furthermore, the third epoch of the third actor is executed sooner

(moved to the left). The first actor has received the third version
of the shared abstraction before its second epoch. Despite these
reorderings, the checker caches out-of-order messages and makes
sure that the first actor processes the message number 3 from
actor 2 with version 2 the shared abstraction.

We have written our checking tool on top of Akka4, an actors
library written in Scala5. The checker exposes the same interface
as the Akka actors interface. Thus, the checker interface can be
used during development and a single import statement needs to
be changed for deployment. As Figure 11 shows, three modes are
possible during the development. The play mode logs the
execution, the replay mode replays the log and the detached mode
performs an execution without logging. Switching between the
play, replay and detached modes are as easy as commenting and
uncommenting a couple of lines.

5. Related Works

Erlang's ETS (Erlang Term Storage)6 tables can be shared
among actors. Similar to our shared maps and sets, ETS tables
provides atomicity for updates to a single key. On the other hand,
they do not provide atomicity for accesses involving multiple
keys. Therefore, these tables do not provide isolation. Moreover,
they also have no notion of versioning and distribution.

Axum programming language introduced domains as nesting
classes that enclose statically declared reader and writer actors.
The state of the domain can be accessed by a single writer actor or
concurrently by multiple reader actors. De Koster et al. [11]
emphasized the need for a sharing mechanism as a compliment to
the pure actor model and revisited domains. They defined a
domain as an object that actors can have a view to. An actor can
asynchronously request shared or exclusive view to a domain at
runtime. Once the access right is granted to an actor, it keeps it
during the epoch and can synchronously access the objects in the
domain. Domains are a proposal for the same problem that this
paper tackles. Both models extend the actor programming model
with single-writer multiple-reader abstractions. Domains are
introduced as an extra design element while sharing actors keep
actors as the only one. In sharing actors, shared data appears as
traditional encapsulated state. Domains allow two concurrent
reads while sharing actors not only allow two concurrent reads but
also concurrent write and read due to maintaining multiple

4 http://akka.io/
5 http://www.scala-lang.org/
6 http://www.erlang.org/doc/man/ets.html

Figure 10. Play and Replay

import akka.sharing.checker.core.Actor._
 def main(args: Array[String]) {
 play({
 import akka.sharing.map.optimized.MapImp
// replay({
// import akka.sharing.map.reference.MapImp
// detached({
// import akka.sharing.map.optimized.MapImp

 val map = new MapImp[Int, Int]()
 val readMap = map.newReadRef()
 val writer = actorOf(new Writer(map))
 val reader = actorOf(new Reader(readMap))
 readMap.setReader(reader)
 writer.start()
 reader.start()
 })
 }

Figure 11. Sample Checker Code

10

versions. Consistency is maintained by locking in domains. On
the other hand, it is maintained by multiple versions in sharing
actors. Therefore, sharing actors are amenable to distribution
across nodes. Domains although preserve many properties are not
formalized. The access level to a domain can be decided at
runtime. On the other hand, our current sharing actors have fixed
ownership.

The idea of accessing a shared object with different views is
seen not only for the actors programming model but also in the
context of sharing programming models. Demsky and Lam [5]
define views as a partial object interface. The user can define
several views of an object and their incompatibilities. A Code
region declares its views to the objects that it accesses. Using
view declarations, data-races can be found and locking
implementations can be synthesized.

The pure actor theory requires sequential processing for an
actor. Although this simplifies programming and reasoning, it can
limit scalability. To allow parallelism inside an actor, Scholliers et
al. [21] proposed parallel actor monitors (PAM) and Imam and
Sarkar [12] proposed integration of the async-finish model. The
former allows parallel processing of messages by a user-defined
scheduler object. The latter allows parallel processing of a single
message by launching asynchronous light-weight tasks. These
works target intra-actor parallelism. On the other, sharing actors
allow inter-actor parallel read and write.

Similar to our shared abstractions, a class of STM algorithms
maintain multiple versions [18]. On the other hand, they neither
directly provide incremental updates for distribution nor exploit
the single-writer multiple-reader assumption of our scenario.

6. Conclusion

The proposed sharing actor theory extends the pure actor theory
with single-writer multiple-reader sharing of state. It is proved
that our added sharing is only semantic sugar for the pure actor
model. We described an optimized implementation of the sharing
actor theory. We presented a tool that checks the compliance of
the implementation with the semantics. We are currently
evaluating the performance of sharing against replication and
delegation.

7. References

[1] Gul A. Agha. ACTORS: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Cambridge, Massachusetts, 1986.

[2] Joe Armstrong. Erlang - a survey of the language and its industrial
applications. 1996. In Proceedings of The 9th Exhibitions and
Symposium on Industrial Applications of Prolog (INAP), 16–18.

[3] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM 13, 7 (July 1970), 422-426.

[4] Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi
Pandya, and Jorgen Thelin, 2010. Orleans: A Framework for Cloud
Computing, no. MSR-TR-2010-159, Microsoft Research.

[5] Brian Demsky and Patrick Lam. 2010. Views: object-inspired
concurrency control. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1
(ICSE '10), Vol. 1. ACM, New York, NY, USA, 395-404.

[6] Sylvain Conchon and Jean-Christophe Filliatre. 2008. Semi-
persistent data structures. In Proceedings of the Theory and practice
of software, 17th European conference on Programming languages
and systems (ESOP'08/ETAPS'08), Sophia Drossopoulou (Ed.).
Springer-Verlag, Berlin, Heidelberg, 322-336.

[7] Gruber, Olivier and Boyer, Fabienne. 2013. Ownership-based
Isolation for Concurrent Actors on Multi-Core Machines. In
Proceedings of the 27th European conference on Object-oriented
programming (ECOOP'13), 281-301.

[8] Philipp Haller and Martin Odersky. 2009. Scala Actors: Unifying
thread-based and event-based programming. Theor. Comput. Sci.
410, 2-3 (February 2009), 202-220.

[9] Philipp Haller and Martin Odersky. 2010. Capabilities for
uniqueness and borrowing. In Proceedings of the 24th European
conference on Object-oriented programming (ECOOP'10), Theo
D'Hondt (Ed.). Springer-Verlag, Berlin, Heidelberg, 354-378.

[10] Carl Hewitt. 1969. PLANNER: a language for proving theorems in
robots. In Proceedings of the 1st international joint conference on
Artificial intelligence (IJCAI'69). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 295-301.

[11] Joeri De Koster, Tom Van Cutsem, and Theo D'Hondt. 2012.
Domains: safe sharing among actors. In Proceedings of the 2nd
edition on Programming systems, languages and applications based
on actors, agents, and decentralized control abstractions (AGERE!
'12). ACM, New York, NY, USA, 11-22.

[12] Shams M. Imam and Vivek Sarkar. 2012. Integrating task
parallelism with actors. In Proceedings of the ACM international
conference on Object oriented programming systems languages and
applications (OOPSLA '12). ACM, New York, NY, USA, 753-772.

[13] H. T. Kung and Philip L. Lehman. 1980. Concurrent manipulation of
binary search trees. ACM Trans. Database Syst. 5, 3 (September
1980), 354-382.

[14] Edward A. Lee. 2003. Overview of the ptolemy project. Technical
Report UCB/ERL M03/25, University of California, Berkeley.

[15] Mohsen Lesani and Antonio Lain. Semantics-preserving Sharing
Actors (Appendices)
 http://www.cs.ucla.edu/~lesani/companion/agere13/

[16] Ian A. Mason and Caroyln L. Talcott. 1999. Actor languages. their
syntax, semantics, translation, and equivalence. Theor. Comput. Sci.
220, 2 (June 1999), 409-467.

[17] Stas Negara, Rajesh K. Karmani, and Gul Agha. 2011. Inferring
ownership transfer for efficient message passing. In Proceedings of
the 16th ACM symposium on Principles and practice of parallel
programming (PPoPP '11). ACM, New York, NY, USA, 81-90.

[18] Dmitri Perelman, Rui Fan, and Idit Keidar. 2010. On maintaining
multiple versions in STM. In Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed
computing (PODC '10). ACM, New York, NY, USA, 16-25.

[19] Krishna Sankar. 2009. Programming Erlang - Software for a
Concurrent World by Joe Armstrong, Pragmatic Bookshelf, 2007, p.
536. J. Funct. Program. 19, 2 (March 2009), 259-261.

[20] Jan Schafer and Arnd Poetzsch-Heffter. 2010. JCoBox: generalizing
active objects to concurrent components. In Proceedings of the 24th
European conference on Object-oriented programming (ECOOP'10),
Theo D'Hondt (Ed.). Springer-Verlag, Berlin, Heidelberg, 275-299.

[21] C. Scholliers, E. Tanter, and W. De Meuter. Parallel actor monitors.
Technical report, 2010. vub-tr-soft-10-05.

[22] Sriram Srinivasan and Alan Mycroft. 2008. Kilim: Isolation-Typed
Actors for Java. In Proceedings of the 22nd European conference on
Object-Oriented Programming (ECOOP '08), Jan Vitek (Ed.).
Springer-Verlag, Berlin, Heidelberg, 104-128

[23] Carlos Varela and Gul Agha. 2001. Programming dynamically
reconfigurable open systems with SALSA. SIGPLAN Not. 36, 12
(December 2001), 20-34

[24] Robert Virding, Claes Wikström, Mike Williams. 1996. Concurrent
Programming in ERLANG (2nd Ed.). Joe Armstrong (Ed.). Prentice
Hall International (UK) Ltd., Hertfordshire, UK, UK

