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Abstract 
Actors interact by asynchronous message passing. A key semantic 
property of actors is that they do not share state. This facilitates 
data-race freedom, fault isolation and location transparency. On 
the other hand, strict avoidance of sharing can lead to inefficiency. 
We propose the sharing actor programming model that extends 
the actor programming model with single-writer multiple-reader 
sharing of data. We define the sharing actor theory and prove its 
semantic equivalence to the pure actor theory. We realize the 
sharing actor theory with an efficient implementation. The 
implementation benefits from sharing data but keeps it transparent 
to actors. To increase the confidence that the implementation 
complies with the semantics, we have built a checking tool based 
on deterministic replay of actor programs. 

1. Introduction 

1.1. Background 

Actors is a well-known model of concurrent programming for 
parallel and distributed systems. The term actor was first used by 
Hewitt [10] to refer to reflexive agents and later to a model of 
concurrent computing. The commonly used semantics of actors is 
formalized by Agha [1] in 1986. Since then, many actor languages 
and frameworks have been developed. With the growth of parallel 
and distributed computing platforms such as multi-core 
architectures and cluster computers in recent years, the actor 
model has gained popularity. Contemporary actor languages and 
frameworks include: Ericsson’s Erlang programming language 
[24][19] that supports massively concurrent telecom systems [2], 
Akka Actors and the Scala Actors library [8], Ptolemy project 
[14], JCoBox [20], SALSA [23], Microsoft Asynchronous Agents 
Library, Microsoft Axum, and Microsoft Research Orleans 
framework for cloud computing [4] to name a few. 

A key semantic property of the pure actor model is 
encapsulation of state. Actors do not share state: an actor must 
explicitly send a message to another actor in order to affect its 
behavior. Most shared memory implementations of actors can 
bypass this sharing restriction by including references to mutable 
state within messages. As deviation from the non-sharing 
philosophy can be troublesome, researches have proposed static 
analysis methods and type systems to rule out sharing 
[22][9][17][7]. In fact, the growing popularity of the actor model 
is largely due to this simple model of data sharing. This restricted 
model of sharing provides a uniform framework for exploiting 
parallelism both within a server and across a data center. In 
addition, it facilitates data-race freedom, fault isolation and 
location transparency. Unfortunately, this comes at a price in 
terms of the convenience and efficiency of sharing. In particular, 
in scenarios where large-scale mutable but read-dominated data is 
needed by a large number of actors, a pure message-based 
approach can become extremely inefficient. 

1.2. Motivating Example 

A tangible example is a distributed social graph. Consider Figure 
1. A node in the graph is the session of a user and an edge in the 
graph is a friendship relation. The dark circle represents the 
session of a definite user and the rectangle below it is the session 
state. When a user changes her session state, her friends should be 
notified. Each session state is a single-writer multiple-readers data 
that is written by one user and read by her friends. Typically, the 
social graph is too large to fit in the memory of a single computer 
and needs to be partitioned across the cluster. Ideally, the 
partitioning algorithm minimizes the number of edges that span 
two machines while keeping the load balanced. The sessions that 
are mapped to the same machine can potentially leverage the 
shared memory for efficiency; for example, by avoiding 
duplication of session state. 

Let’s look at the previous approaches to programming the 
single-writer multiple-readers abstraction. Ad-hoc multi-threaded 
implementations can share the data of a user session between the 
sessions of her friends in each host and control accesses by the 
conventional synchronization mechanisms such as locks and 
conditional variables. These implementations can be efficient but 
are prone to traditional problems of programming shared memory 
such as deadlocks or races. 

Implementations that use the pure actor model can employ 
either full replication or a delegate actor. We consider each one in 
turn. Consider Figure 2 where large rectangles represent hosts, 
circles represent actors (the darker circle represents the writer 
actor) and small rectangles represent state. In the first 
implementation, the state is replicated in each reader actor. When 
the writer actor finishes updating its state, it sends an update 
message to each reader actor. The replica at each reader is updated 
when it processes the update message. Unfortunately, this 
approach wastes space and more importantly time as the same 
update is repeated at each reader actor. The second 
implementation employs a delegate actor at each reader host. The 
state is replicated and updated once at the delegate actor. The 
reader actors communicate with the delegate actor to read the 
state. The problem with this approach is the loss of potential 
parallelism as the accesses of the readers are serialized in the 
delegate actor. 

 
Figure 1. Distributed Social Graph 
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translation and the theorem of equivalence. Implementation is 
described afterwards. Next, we explain the checking tool. Finally, 
related works and conclusion sections conclude the paper. 

2. Sharing Actor Theory 
In this section, we define the sharing actor theory as an extension 
of the pure actor theory. In the pure actor theory, each actor has a 
message queue. An actor dequeues and processes messages 
sequentially. The sharing actor theory allows using single-writer 
multiple-reader data. Consider Figure 5.A. The sharing actor 
semantics adds an update queue to each reader actor. Consider 
Figure 5.B. When the writer actor finishes updating the state, the 
state is put at the end of the update queue of each reader actor. 
Consider Figure 5.C. A reader actor can take an element from the 
update queue before processing a new message.  

We define a translation that transforms a sharing actor 
program to a pure actor program where the only way to change 
the internal state of an actor is to send a message to it. We prove 
that each sharing program is interaction-equivalent to the 
translated program. The key properties of the sharing actor 
semantics that enable the equivalence to the pure actor semantics 
are atomicity, isolation and fairness. 

•  Atomicity means that partial changes of the writer to the 
state should not be externalized. In the context of the 
above example, each friend either sees all or none of the 
state updates of a single user action. 

•  Isolation means that new updates should not become 
visible to an actor while it is processing a message. In the 
previous example, each friend always sees a consistent 
(but possibly outdated) view of a user session. 

•  Fairness means that the propagation of an update should 
not be delayed arbitrarily. In the context of the above 
example, each friend can eventually see the updated 

session of the user regardless of how busy the other 
friends are. 

Our sharing actor theory does not allow multiple-writer data. 
The shared state is partitioned into owners with exclusive write 
access. When an actor wants to modify a part of the shared state 
that it does not own it has to send a message (containing the 
update or a closure that will perform the update) to the owner 
actor. 

We formalize our model in the following subsections. The 
definitions and notations are based on the formulation of pure 
actors by Mason and Talcott [16]. 

2.1. Basic definitions 

Let ����� denote the power set of � and ����� denote the 
multiset power set of �. Let � � 	 denote a sequence of elements 
where � is the first element and 	 � � denote a sequence of 
elements where � is the last element. We use 
�� 
� � �� �� as a 
syntactic sugar for ���. ��� �. We define ���� � ���. � and ��
	� � ���. �. 

2.2. Syntax 

The syntax is depicted in Figure 6. �� is the set of identifiers 
���, ���, … �.   is the set of actor names 
��, ��, … �. ! " ��#$%& 
is the set of message contents. A message content is a method 
identifier �� and argument values $%. The set of messages is !	' "  ( ! (that is set isomorphic to  ) !). � ( *: !	' 
denotes a message for actor � with contents *. 

A program for an actor subsystem declares its interaction 
interface with other actor subsystems as Receptionists and 
Externals sets of actors. Receptionists is a subset of actors of this 
actor subsystem that are visible to the outside world. Externals is 
the set of actors that are known from the external world. The 

             
Figure 5. (A) Writer and reader actors   (B) Writer changed state   (C) The first reader actor installed the update 

, �" program���3�4��56�	�	: ��# &, �����6�
	: ��# &,                                
�7���8: ��#9�:;��&,                                �3�5�	: ��# < =&,                                *�		�'�	: ��# ( !&,                                	:���6': >�?:  ,  @: ��# &A� 
where 
   B� C  : |
�� < �� C �3�5�	 | � C =�| E 1 
   
�?� G  @ H �5*��3�5�	� 
 

9�:;�� �" behavior ���N%� !��:;��% !��:;�� �" method ���N%� #enable =& = = �" �N. =        |   = =        |   = ( ��#=%&        |   readyT���=%�U        |   self        |   N   |   $ $ �" �N. =   |     N �" �� ! �" ��#$%& �� " 
���, ���, … � 
 

 

Figure 6. Syntax 
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program defines a library of behaviors, a set of initial actors and 
messages. There is one sharing group in each actor program. A 
sharing group X " >�?,  @A, is a writer actor �? and a set of 
reader actors  @ " Y�@Z[\..]^. The behaviors of the reader actors 
are updated with the new behaviors of the writer actor. 

Each behavior definition 9�:;�� defines a behavior with a 
behavior identifier ��, initialization parameters N% and a set of 
method definitions !��:;��%. A method definition !��:;�� 
specifies the method parameters N%, the optional selective receive #enable =& and the body expression = of the method. The 
selective receive expression (also called guard or synchronization 
constraint) of a method is required to be functional i.e. its 
evaluation involves no send or ready expression. If the selective 
receive is not specified, it is assumed to be ����. For each 
candidate message, the selective receive expression is evaluated 
under the binding of method parameters to the arguments in the 
message. If the selective receive is evaluated to ����, the body 
expression is evaluated; otherwise, the message is rejected at this 

time and is considered again later. An expression is a lambda 
abstraction �N. =, application = =, a variable N, a value $ or an 
actor specific expression. Actor specific expressions are sending a 
message = ( ��#=%&, installing a new behavior readyT���=%�U 
and the current actor expression self. In a send expression =_ ( ��`=a, the target of the message is the value of =_ and the 

message content has �� as the method name and values of = as 

arguments. The ready expression ready b��T=Uc installs the 

behavior �� with the values of = as arguments. 	�
� is evaluated 
to the name of the executing actor. A value is either a lambda 
expression or an actor name. For the sake of simplicity, our syntax 
does not support dynamic creation of actors. 

2.3. Configuration 

An actor configuration is a pool of actors with definite states and 
messages. The set of actor states � is defined as follows: � �" �9, d� | �9, d, e�        EQ. 19 

Definition of f: 

�6���6�
 
: �� g ��h ��, � ijk  lf h ��, � ijk    EQ. 1 

�6 h � ijk  mn�_,o�pqqqqr h �, � ( * ijG_st�o�uk�k    �� �� C v� w ��3x�*� y �6 3���� H v�   EQ. 2 

5�� h �, � ( * ijk z{|�_,o�pqqqqqr h � ijkG�_st�o�uj�    �� � } �6 3����   EQ. 3 ��
� h � ijk m~l�pqr h � ijk    EQ. 4 

 
Definition of g: ��
������, *� #7�����, ># &, x@A&_, � ( * g #7�����, >#*&, x@A&_        EQ. 5  ������	���� 

#7�����, >* � x{, x@A&_ g #>�s, �� , 7�����A, >*, x{ , x@A&_                                                                                             �� *��:!��3:���7, 7��, �, *� " >�s , ��A        EQ. 6 
 

3:�3���� 
� f_ ��#>�, �� , 7�����A, >*, x{, x@A&_ g #>��, �� , 7�����A, >*, x{, x@A&_        EQ. 7 

 

��	�7
���� #>�, �� , 7�����A, >*, x{, x@A&_ g #7�����, >x{, x@ � *A&_    �� � � true        EQ. 8  �6�7
���� #>true, �� , 7�����A, >*, x{ , x@A&_ g #�� , x{. x@&_        EQ. 9  

	�x��� � f_ ��#�, x{&_ g #�, x{&_        EQ. 10 
 

	�6���� #��� ( *��#�&�, x{&_ g #��0�, x{&_, � ( *��#�&    �� � C          EQ. 11  ����8��� `��readyT7�����U�, x{a_ g #7�����, >x{, # &A&_    �� 7�:!��3:���7, 7��, �� �6� � � �?        EQ. 12  

The rules that we add to the pure semantics are: 

����8��?� 
`��readyT7�����U�, x{a_� , #7, x, �&_�Z[\..� g #7�����, >x{ , # &A&_� , #7, x, � � 7�����&_�Z[\..�  

�� 7�:!��3:���7, 7��, ��        EQ. 13 
 


 
: #7, x&_ g #7�, x�&_#7, x, �&_ g #7�, x�, �&_         EQ. 14 
 

�4����T�@, 7�����U �7��� b��c , ># &, x@A, 7����� � ��_� g #7�����, >x@ , # &A, �&_�         EQ. 15  

 
Definition of f_: ��� 

� f_ ������ f_ �����        EQ. 16 7��� ���. ��  � f_ �#� � �&        EQ. 17 	�
� self f_ �        EQ. 18 
          

Figure 7. Semantics 
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9 �" ���$%�  |  >=, =, ���$%�A  |  = d �" >!% , !%A  |  >!, !%, !%A  |  !% e �" ��T$U%
 9 is the behavior component of an actor state. If 9 is ���$%�, the 

behavior �� with arguments $% is installed. If 9 is >=, =, ���$%�A, 
a message is being checked for enabledness where the first = is 
the guard expression that is being evaluated, the second = is the 
body expression and ���$%� is the latest installed behavior. If 9 is 
an =, the actor is evaluating the body of a method. d is the queue 
component of an actor state. If d is >!% , !%A, the first and second 
components represent the unchecked and rejected queues of 
messages respectively. If d is >!, !%, !%A, the first component is 
the message that is being checked for enabledness and the second 
and third components are the unchecked and rejected queues. If d 
is !%, it represents the queue of (unchecked) messages to be 
checked by the next behavior. e is the sequence of updates for a 
reader actor. 	: � denotes an actor state. 7: 9 denotes a behavior 
component. x: d denotes a queue component. �: e denotes an 
updates list component. 

An actor entity is an actor name paired with an actor state. 
Actor entities  = " #�&� is the set of actor entities. ( = is set 
isomorphic to  ) �). #	&_: #�&� denotes an actor named � with 
state 	. The interior of an actor configuration is a set of actors and 
multiset of messages. The set of configuration interiors is defined 
as �� " 
� G � | � C ��# =&, � C ��#!	'&�        EQ. 20 
where B� C ��: B� C  : |
#	&_ C � | 	 C ��| E 1. �: �� denotes a 
configuration interior. 

Internal and external actors of a configuration interior are 
defined as follows: �6 3�, =�� 3�: � f ��# &        EQ. 21 �6 3���� " 
� C   | �	 C �: #	&_ C ��        EQ. 22 =�� 3���� " �3x��� / �6 3����        EQ. 23 
The acquaintance function gives the finite set of actor names 
occurring in �. A configuration is defined as follows: � " 
h � ijk  | v H �6 3���� w =�� 3���� H j w                                j y �6 3���� " ��        EQ. 24 

The receptionists set v is a subset of the internal actors of the 
interior that are visible from the environment. The externals set j 
includes all actors mentioned in the interior that are not internal 
actors. Consider the following program 4. 

4 � program���3�4��56�	�	: v, �����6�
	: j,                             
�7���8: ��7,                              �3�5�	: 
�m < �m���m�o,                              *�		�'�	: 
�m� ( *m���m�n,                              	:���6': >�?,  @A� where  @ � Y�@Z[\..]^ 
�?� G  @ H 
�m��..o� 
       EQ. 25

The initial configuration for 4 is denoted by �4� and is defined as 
follows: �4� � h � ijk  where � � 
��m , 6�
���m�o,_Z}�� , ��m , 6�
, 6�
���m�o,_ZC�� , ��m� ( *m���m�n�        EQ. 26 

2.4. Semantics 

The semantics of sharing actors is defined in Figure 7. The 
reduction context and the helper functions are defined in Figure 8. 
The internal transition relation g defines steps of actor 
computation inside the current subsystem. The internal transition �
: � g ��� denotes the transition of � to �� by g with label 
. �6 3���� is called the old actors of 
 and �6 3�����/�6 3���� are 
called the new actors of 
. We explain each internal transition in 
turn. 

To maintain fairness for processing of messages that are 
rejected by previous behaviors of the actor, a new message is 
delivered only after all the messages in the unchecked queue are 
checked and rejected by the current behavior. If the unchecked 
queue is empty, the ��
������, *� rule receives message * and 
puts it in the unchecked queue. 

The ������	���� rule takes a message * from the head of the 
unchecked queue and uses *��:!��3: to check whether the 
method name and the argument list of the message match a 
method name and parameter list of the current behavior. If there is 
a matching method, *��:!��3: returns the pair of the guard and 
body expressions that are instantiated with the passed arguments. 
The resulting behavior tuple contains the guard and body 
expressions and the current behavior. Later, the guard expression 
may be evaluated to a normal expression other than true by the 3:�3���� rule and then the message should be put to the rejected 
queue. Thus, the message * is kept as the first element of the 
queue tuple. 

The 3:�3���� rule evaluates the guard expression. If the guard 
expression is evaluated to a value other than true, the ��	�7
���� 
rule drops the tentative body expression, restores the current � �" � �       |    � =    |    $ �       |    � ( ��#=%&    |    $ ( ��#$%, �, =%&       |    ����8T���$%, �, =%�U 

 4���:�3���, �� iff � and � are of the same length.        EQ. 27 7�:!��3:���7, 7��, �� iff T��, *��:5�;��: Tbehavior 7����� *��:5�;��U C ��7U w 4���:�3���, ��.        EQ. 28 *��:5�!��3:T��7, 7��, �, *��`��aU " 

���
��>�#� � �&`�� � ��a, ��#� � �&`�� � ��aA �� T��, *��:5�;��: Tbehavior 7����� *��:5�;��U C ��7U w     Tmethod *��T��U #enable �& �� C *��:5�;��U w     b4���:�3�T��, ��Uc��
	� 5�:�� �	�

¡        EQ. 29 

           
Figure 8. Reduction Context and Helper Functions 
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behavior and puts the message at the tail of the rejected queue. If 
the guard expression is evaluated to true, the body expression is 
installed, the backed-up message is dropped and the concatenation 
of the unchecked and rejected queues is stored as the unchecked 
queue for the next behavior. The 	�x��� rule evaluates the body 
expression. 

The 	�6���� rule checks if the recipient expression of the 
message is an actor name and emits the message. 

The ����8��� rule (where � is not the writer actor) uses 7�:!��3: to check whether the behavior name exists in the 
library and the argument and parameter lists match. If there is a 
match, the new behavior is installed and the tuple of the 
unchecked queue and an empty rejected queue is stored as the 
queue component. The ����8��?� rule (where �? is the writer 
actor) does the same and in addition, adds the new behavior to the 
tail of the update list of each reader actor. To maintain atomicity, 
the updates are propagated only when the writer has finished 
processing a message. 

A rule mirrors all transitions possible for non-reader actors 
(without an update list) for reader actors. So, reader actors can 
have any type of transition that other normal actors can. A reader 
actor �@ can specifically do �4������@� transition. The �4������@� rule takes the behavior at the head of the update list 
and installs it as the current behavior. To maintain isolation, an 
update is installed only when the actor is not processing a 
message. To maintain fairness, similar to the ��
������, *� rule, 
an update can be performed only if all the messages in the 
unchecked queue are checked and rejected by the current 
behavior. 

2.5. Computation and Interaction Semantics 

2.5.1. Computation Path Semantics 

The set of computation paths � is the set of sequences of the form ¢ " ��m lZf �m£� | � C N�    
m C � G �6� , !� G 5��� , !� 
           EQ. 30 

where � is the set of internal transition labels and the paths with 
the initial configuration � are defined as ���� " 
¢ C � | � is the source of ¢�0��        EQ. 31 
A finite computation is a path in which all but a finite number of 
the transition labels are ��
�. A label 
 is enabled in � if 
 C � G5��� , !� and � has a transition with label 
� where (1) 
� is the 
same as 
 up to choice of names for new actors or (2) � has a 
transition with label 
� " �4������@ , 7�����¥� and #7, x, 7�����m�¥..n&_� C � and 
 " �4������@ , 7�����m�, � "1. . 6. In other words, if the first update is enabled to be installed, 
all the other pending updates are enabled to be installed in 
sequence after that. =6�7
���¢, �� is the set of labels that are 
enabled in the source �m of ¢���. ¦�����¢, �� " 
 if ¢��� has the 

form �m lZf �m£� where 
m differs from 
 only in the names of new 
actors. 

Actor computations are required to be fair. A computation path 
is fair if whenever a transition is enabled, either it eventually fires 
or it becomes permanently disabled. §��� is the set of fair paths 
with the initial configuration �. ¦����¢� ¨ B�, 
:    
 C =6�7
���¢, �� g       T�© ª �: 
 " ¦�����¢, ©�U «       T�� ¬ �: B© ¬ �: 
 } =6�7
���¢, ©�U 

       EQ. 32 

§��� " 
¢ C ���� | ¦����¢��        EQ. 33 

2.5.2. Interaction Semantics 

An actor system is considered as a black box characterized by the 
set of possible interactions with its environment. Two actor 
systems are equivalent if they cannot be distinguished by 
interacting with other actor systems. 

Interaction path �	�*�¢� of a computation path ¢ is the 
sequence of its message input and output actions and is defined as 
follows: �	�*�¢� " ­j®k® iff  ¢��� " h �m ijZkZ lZf h �m£� ijZ¯\kZ¯\  and ­��� " �	�*�
m� for � C N 

       EQ. 34 

�	�*�
� " °± �� 
 C � G 
��
��
 �� 
 C �6� , !� G 5��� , !�¡        EQ. 35 

Two interaction paths are equivalent if and only ig 
they differ only by insertion or deletion of ±%.        EQ. 36 ± stands for possible internal activity. 

The interaction semantics �	�*��� of a configuration � is 
defined as follows: �	�*��� " 
�	�*�¢� | ¢ C §����        EQ. 37 

Consider two adjacent steps �¥ l®f �� l\f ��. The two steps can 
be legally commuted if 
(1) The old and new actors of 
¥ are disjoint from the 
old actors of 
�. 

       EQ. 38 

(2) The messages produced in the 
¥ rule do not 
participate in the 
� rule. 

       EQ. 39 

(3) 
¥ and 
� are not both interaction labels.        EQ. 40 
Computation paths that differ only by legal permutations result in 
the same interaction path [16]. Consider a computation path ¢. 
Consider a computation path ¢� that differs from ¢ only by legal 
permutations. If an actor system produces ¢, it produces ¢� and �	�*�¢� " �	�*�¢��. 
2.6. Interaction Equivalence 

A configuration � is equivalent to the configuration �� if and 
only if  �	�*��� " �	�*����. In other words, a configuration � 
is equivalent to the configuration �� if and only if B¢ C §���: �¢� C §����: �	�*�¢� " �	�*�¢�� w B¢� C §����: �¢ C §���: �	�*�¢�� " �	�*�¢� 

       EQ. 41 

In order to show the interaction equivalence of sharing actors 
to pure actors, we define a program translation 	24 that removes 
sharing and translates automatic updates to pure message passing. 
To reason about intermediate configurations, we lift the program 
translation to configuration translation. We present the formal 
definitions of the translation in the appendix [15] and briefly 
explain it in the following paragraphs. 

The interesting part of translation is the translation of ����8 
for the writer and the addition of �!��:5� to behaviors for the 
readers. The reduction of ����8 for �? (EQ. 13), installs the new 
behavior for �? and stores it at the tail of the update store � of 
each �@. Later, in �4������@� transitions (EQ. 15), the behavior at 
the head of � is taken and installed as the current behavior of �@. 
To process updates in order, new behaviors are added at the tail 
and removed from the head of the update store.  

The translation simulates the update mechanism with message 
passing. A ����8 expression of �? is translated to sending e4���� messages to reader actors �@ and then installing the new 
behavior for �?. e4���� messages contain the new behavior for 
the reader actors. At the reader actors, �!��:5� receives e4���� 
messages. To preserve the order of updates, the update messages 
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should be processed in the same order as they are sent. The 
translation adds a counter parameter to the definition of the writer 
and readers behaviors. The writer actor maintains a counter 3? 
that holds the number of the next update to send and each reader 
actor �@ maintains the number of the next update message to 
receive 3@. The selective receive feature of the language is used to 
check the number of the messages. The e4���� messages that �? 
sends contain a pair of expressions. The first element of the pair is 
the number of the update message and the second element is the 
new behavior. The guard of the �!��:5� checks the equality of 
the first element of the pair (that is the number of the message) to 3@ (that is the number of the next update message to receive). If 
the check succeeds, the ����8 expression that installs the new 
behavior is obtained from the second element of the message and 
is evaluated. 

The following theorem states the interaction equivalence of 
sharing actors and pure actors. We show that every sharing actor 
system can be translated to a pure actor system such that any 
interaction of the sharing actor system could be resulted from the 
pure actor system. 
 
THEOREM 1. B4 C ,: �	�*��4�� " �	�*��	24�4��� 
 
Please see the appendix [15] for the proof. 

3. Implementation 

As we mentioned in the introduction, CAF provides an open 
source implementation of Sharing Actors using server-side 
JavaScript. JavaScript execution model is single-threaded, but 
asynchronous calls during the processing of a message introduce 
task interleaving. We have also experimented with multi-threaded 
garbage collected (Erlang and Scala) and non-garbage collected 
(C) implementations of the same concepts as HP Labs proprietary 
libraries. 

The implementation provides a set of commonly used ADTs 
(Abstract Data Types) such as Map and Set that actors can share. 
There is one actor that owns the shared abstraction. The owner is 
the only actor that can mutate the abstraction. Each host 
containing a sharing actor holds one copy of the abstraction. All 
the sharing actors can transparently access the abstraction as part 
of their internal state. We use the term epoch to refer to the 
execution period of an actor that services a single message. After 
each epoch of the owner actor that mutates the shared abstraction, 
an update message is sent to sharing hosts. This pushes updates to 
hosts before they are needed and hence hides communication 
latency. An epoch by the owner may involve multiple updates on 
the abstraction. To preserve the atomicity property, one update 
message containing all the updates that were performed on the 
abstraction is sent. Serialization of updates is obtained by 
numbering the update messages at the owner and considering 
them in order at other hosts. 

To provide the isolation property, an actor that is in the middle 
of processing a message should not see an update. On the other 
hand, to support the fairness property, other sharing actors on the 
same host should not wait indefinitely for the update. To meet 
both of these requirements, the implementation maintains multiple 
versions of the abstraction at each host. While the old versions are 
retained for the actively processing actors, new epochs can see 
new versions. The implementation maintains multiple versions 
efficiently as follows. We use a simple semi-persistent data 
structure [6]. See Figure 9.(A). Each copy of the shared 
abstraction is represented as a reference to the head of the list of 

update messages. The tail of the update list points to a base object. 
The base object is an instance of a conventional linearizable 
implementation of the abstraction. We can benefit from existing 
high performance data structure implementations. See Figure 
9.(B). The update list is initially empty. Received update 
messages are prepended to the update list and the reference to the 
head of the list is updated. Obviously, in the multi-threaded 
implementation, the reference is updated atomically. References 
to different elements of the update list represent different versions 
of the abstraction. The head of the update list is the most recent 
version of the abstraction.  

Upon a read request on the abstraction using a handle (that 
references possibly the middle of the list), the list is traversed 
starting from the update message that the reference points to. The 
result of the access may be determined according to an update 
message that is visited in the traversal. Otherwise the access is 
finally performed on the base object.  

It is obvious that concurrent update and read operations do not 
block each other. It is notable that this representation avoids 
memory overhead of replication for each actor and at the same 
time the synchronization bottleneck of a single delegate actor. 
Visiting update messages in the traversal is dependent on and can 
be optimized according to the abstraction type. For example, 
consider accessing the value of a key in the map abstraction. 
Having a bloom filter [3] on the keys in each update message can 
accelerate skipping update messages that are irrelevant to the 
accessed key. 

References of user code to the abstraction are objects of type 
handle. To have the fairness property, if a handle is accessed for 

 
Figure 9. Implementation 
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the first time in an epoch, we want the reference in the handle to 
be updated to the current head of the update list. To have the 
isolation property, we want the handle to stay unchanged if the 
handle is accessed again in an epoch. The strategy for keeping 
track of references influences the performance of the list 
compaction. We first describe the structure of handles and then 
the compaction mechanism. 

In the single-threaded implementation, a handle has a validity 
state in addition to a reference to an element of the update list. 
Each element of the list maintains a reference count. During an 
epoch, if an invalidated handle is accessed, it is updated to 
reference the head of the update list and the reference count of the 
head element is incremented. At the end of the epoch, we 
decrement the count of the element that the handle references and 
set the handle state to invalid. Due to single-threaded execution, 
no synchronization is needed for updates to the reference counts. 

On the other hand in the multi-threaded implementation, a 
handle contains an epoch number in addition to a reference to an 
element of the update list. A unique epoch number is assigned to 
each message when it is being processed. This epoch number 
helps discriminate two cases. Upon accessing a handle during 
processing of a message, the epoch number of the message that is 
being processed and the epoch number of the accessed handle are 
compared. If the epoch numbers are different, the handle is being 
accessed for the first time in the current epoch. Hence, the 
reference in the handle is updated to the current head of the update 
list and the epoch number in the handle is updated to the epoch 
number of the message. If the two epoch numbers are the same, 
the handle is being accessed again in the current epoch and hence 
the reference in the handle is not updated. 

As an access to the shared abstraction includes a traversal of 
the update list, the access time is a linear function of the length of 
the update list plus the access time of the base object. To make the 
performance of accesses as close as possible to the performance of 
accesses on the base object, we need to keep the length of the 
update list small. Consider a reference to an element of the update 
list and that it divides the list to two sublists that we call the head 
list and the tail list. The tail list can be compacted as follows. We 
want to apply the updates of the tail list to the base object in the 
reverse order of the list and then update the last element of the 
head list to the base object. See Figure 9.(C) and Figure 9.(D). But 
consider a tail list and an epoch that is accessing the abstraction 
using a handle that references the middle of the tail list. To 
preserve the isolation property, the epoch should not observe the 
updates that are added to list after the handle of this epoch. If we 
compact this tail list, its updates are applied to the base object. 
The base object is accessible starting from the handle too. This 
can lead the epoch observe the updates that are after the handle 
and therefore, isolation is violated. To prevent violation of the 
isolation property, we need to compact a list only if no handle 
references the middle of it. 

In the single-threaded implementation, the list can be 
compacted efficiently based on reference counting. If the 
reference count of all elements of a list is zero, it can be merged 
into the base object. On decrementing a counter at the end of an 
epoch, if the counter reaches zero, the sublist staring from the 
element is checked and if all the reference counts in it are zero, it 
is merged. If the reference count of an element reaches zero, it 
will not be referenced again. Therefore, checking the reference 
counts can be optimized by skipping the previously visited 
sublists. Again, note that sequential processing precludes 
synchronization. 

Unfortunately, compaction based on reference counting 
introduces contention that limits the scalability of multi-threaded 
implementations. Instead, we employ a technique inspired by 
RCU (Read-Copy-Update) [13]. To compact the update list, we 
first read the current head. The goal is to compact the list that the 
first element points to which we call the target list. As handles 
used in processing of new messages are updated to reference the 
head of the update list, no new epoch will reference an element in 
the target list. We need to make sure that all the currently active 
epochs that have a handle to the target list are finished. We 
schedule a dummy message in each thread of the thread pool that 
executes the epochs. As threads process messages non-
preemptively, the new messages are processed after the currently 
active epochs. Therefore, once all the threads finish the processing 
of the dummy messages, all the epochs that were active at the 
time of scheduling the dummy messages are already finished. At 
this point, it is certain that no epoch has or will have a handle that 
references the middle of the target list. Thus, the target list is 
merged to the base object. While the updates are being applied to 
the base object, concurrent readers may access the base object. 
These readers do not experience any inconsistency because the 
base object is a linearizable implementation of the abstraction and 
also viewing the updates both in the list and in the base object 
does not affect the values that the readers read.  

A single thread is used for compaction. The compaction 
procedure does not affect the progress of the actors. The 
compaction procedure at each host is independent of other hosts 
and thus there is no global synchronization overhead. 

Older elements tend to have no reference sooner so that the list 
is typically very short. In average, only a small window of active 
versions is needed to be maintained. We bound the maximum size 
of the list by a small constant. In pathological cases that the size 
of the list exceeds the limit, we create a new compacted object 
that will be used for all the new epochs. This technique mitigates 
the worst case access time. 

An optimization to lower pressure on garbage collector and 
improve cache locality is to reuse cells of the list that is removed 
during compaction. A subtle point is that in the compaction, even 
after updating the pointer to the base object, there may be readers 
that are still traversing the removed list. Thus, we need to wait for 
the next RCU cycle before reusing the cells of the old list. 

The implementation maintains one writer or multiple 
concurrent readers of the shared state. Thus, it preserves race-
freedom of the encapsulated state. Due to independence of the 
versioning mechanism in reader hosts, fault isolation is preserved 
at the granularity of hosts. Both writer and reader actors can move 
between hosts. Therefore, sharing actors preserves the location 
transparency property as well. 

4. Checking Tool 

The translation of sharing programs to pure programs explained in 
Section 2.6 gives a direct method of implementing the semantics. 
While this translation is an essential part of the interaction 
equivalence result, a direct implementation of this translation is 
inefficient in terms of both time and space. Our optimized 
implementation benefits from sharing data and applies different 
techniques to implement the semantics efficiently. Thus, the 
optimized implementation is quite involved. To increase the 
confidence that the optimized implementation complies with the 
semantics, we have built a testing tool. 

The testing tool executes a test program with the optimized 
implementation and logs the execution. It uses a direct 
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implementation of the semantics as the reference implementation. 
Using the log, the checker replays the execution with the 
reference implementation and compares the configurations 
resulted from the two executions. A difference in the results 
suggests a bug in the optimized implementation. Variability in 
interleaving of independent actors can expose bugs. If the same 
procedure is repeated for a large number of times and the resulting 
configurations are the same, the confidence in the correctness of 
the implementation is increased. 

We assume that the process of each actor in the test programs 
is a deterministic function of the current state of the actor and the 
input message. To have a deterministic replay of the execution, 
we want each actor to process the exact same sequence of 
messages that it has processed in the play. A unique id is assigned 
to each actor. The id of each actor is assigned when its parent 
creates it. The id of a child actor is the id of the parent actor 
concatenated with  a  child number. As the execution of each actor 
is serial, the messages that an actor sends can be serially 
numbered. The id of a message is the pair of the id of its sender 
actor and the number of the message in the sender. For each actor, 
we log an entry for each epoch. The entry is a pair of the 
processed message id and the version of the shared abstraction 
with which the processing is started. During the replay, the 
checker reads the log and makes sure that each actor processes the 
same sequence of messages with the same version of the shared 
abstraction. Out of order messages and updates are cached and 
applied at a later time. 

Figure 10 shows an example of the play and replay procedure. 
The first two actors are readers and the third actor is the writer of 
the shared abstraction. Each block shows an epoch. Dark blocks 
show epochs that their execution time is different in the play and 
the replay. The upper diagram Figure 10.(A) shows a play with 
the optimized implementation and the lower diagram Figure 
10.(B) shows the replay with the reference implementation. The 
arrows show sending of messages.  In the lower diagram, dashed 
arrows show sending of updates to reader actors in the reference 
implementation. In the optimized implementation, the reader 
actors are transparently updated. The first reader actor processes 
message ((a2, n1), v1) and then message ((a2, n3), v2). This 
means that the first actor processes the message number 1 of actor 
2 with version 1 of the abstraction and then processes the message 
number 3 of the actor 2 with version 2 of the abstraction. In the 
replay, the second epoch of the second actor executes later 
(moved to the right). Now, the first actor receives a message from 
the third actor before receiving the message of the second actor. 
Furthermore, the third epoch of the third actor is executed sooner 

(moved to the left). The first actor has received the third version 
of the shared abstraction before its second epoch. Despite these 
reorderings, the checker caches out-of-order messages and makes 
sure that the first actor processes the message number 3 from 
actor 2 with version 2 the shared abstraction. 

We have written our checking tool on top of Akka4, an actors 
library written in Scala5. The checker exposes the same interface 
as the Akka actors interface. Thus, the checker interface can be 
used during development and a single import statement needs to 
be changed for deployment. As Figure 11 shows, three modes are 
possible during the development. The play mode logs the 
execution, the replay mode replays the log and the detached mode 
performs an execution without logging. Switching between the 
play, replay and detached modes are as easy as commenting and 
uncommenting a couple of lines. 

5. Related Works 

Erlang's ETS (Erlang Term Storage)6 tables can be shared 
among actors. Similar to our shared maps and sets, ETS tables 
provides atomicity for updates to a single key. On the other hand, 
they do not provide atomicity for accesses involving multiple 
keys. Therefore, these tables do not provide isolation. Moreover, 
they also have no notion of versioning and distribution. 

Axum programming language introduced domains as nesting 
classes that enclose statically declared reader and writer actors. 
The state of the domain can be accessed by a single writer actor or 
concurrently by multiple reader actors. De Koster et al. [11] 
emphasized the need for a sharing mechanism as a compliment to 
the pure actor model and revisited domains. They defined a 
domain as an object that actors can have a view to. An actor can 
asynchronously request shared or exclusive view to a domain at 
runtime. Once the access right is granted to an actor, it keeps it 
during the epoch and can synchronously access the objects in the 
domain. Domains are a proposal for the same problem that this 
paper tackles. Both models extend the actor programming model 
with single-writer multiple-reader abstractions. Domains are 
introduced as an extra design element while sharing actors keep 
actors as the only one. In sharing actors, shared data appears as 
traditional encapsulated state. Domains allow two concurrent 
reads while sharing actors not only allow two concurrent reads but 
also concurrent write and read due to maintaining multiple 

                                                                    
4 http://akka.io/ 
5 http://www.scala-lang.org/ 
6 http://www.erlang.org/doc/man/ets.html 

 
Figure 10. Play and Replay 

import akka.sharing.checker.core.Actor._ 
  def main(args: Array[String]) { 
    play({ 
      import akka.sharing.map.optimized.MapImp 
//  replay({ 
//    import akka.sharing.map.reference.MapImp 
//  detached({ 
//    import akka.sharing.map.optimized.MapImp 
 
      val map = new MapImp[Int, Int]() 
      val readMap = map.newReadRef() 
      val writer = actorOf(new Writer(map)) 
      val reader = actorOf(new Reader(readMap)) 
      readMap.setReader(reader) 
      writer.start() 
      reader.start() 
    }) 
  } 

Figure 11. Sample Checker Code 



 

10 
 

versions. Consistency is maintained by locking in domains. On 
the other hand, it is maintained by multiple versions in sharing 
actors. Therefore, sharing actors are amenable to distribution 
across nodes. Domains although preserve many properties are not 
formalized. The access level to a domain can be decided at 
runtime. On the other hand, our current sharing actors have fixed 
ownership. 

The idea of accessing a shared object with different views is 
seen not only for the actors programming model but also in the 
context of sharing programming models. Demsky and Lam [5] 
define views as a partial object interface. The user can define 
several views of an object and their incompatibilities. A Code 
region declares its views to the objects that it accesses. Using 
view declarations, data-races can be found and locking 
implementations can be synthesized. 

The pure actor theory requires sequential processing for an 
actor. Although this simplifies programming and reasoning, it can 
limit scalability. To allow parallelism inside an actor, Scholliers et 
al. [21] proposed parallel actor monitors (PAM) and Imam and 
Sarkar [12] proposed integration of the async-finish model. The 
former allows parallel processing of messages by a user-defined 
scheduler object. The latter allows parallel processing of a single 
message by launching asynchronous light-weight tasks. These 
works target intra-actor parallelism. On the other, sharing actors 
allow inter-actor parallel read and write. 

Similar to our shared abstractions, a class of STM algorithms 
maintain multiple versions [18]. On the other hand, they neither 
directly provide incremental updates for distribution nor exploit 
the single-writer multiple-reader assumption of our scenario. 

6. Conclusion 

The proposed sharing actor theory extends the pure actor theory 
with single-writer multiple-reader sharing of state. It is proved 
that our added sharing is only semantic sugar for the pure actor 
model. We described an optimized implementation of the sharing 
actor theory. We presented a tool that checks the compliance of 
the implementation with the semantics. We are currently 
evaluating the performance of sharing against replication and 
delegation. 
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