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Abstract

Actors interact by asynchronous message passikgy/Aemantic
property of actors is that they do not share sfahés facilitates
data-race freedom, fault isolation and locatiomgparency. On
the other hand, strict avoidance of sharing cad teanefficiency.
We propose the sharing actor programming model ¢xégnds
the actor programming model with single-writer riplé-reader
sharing of data. We define the sharing actor themy prove its
semantic equivalence to the pure actor theory. d&dize the
sharing actor theory with an efficient implemerdati The
implementation benefits from sharing data but keepansparent
to actors. To increase the confidence that the emphtation
complies with the semantics, we have built a chegkool based
on deterministic replay of actor programs.

1. Introduction
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Actors is a well-known model of concurrent prograimgnfor
parallel and distributed systems. The texwtor was first used by
Hewitt [10] to refer to reflexive agents and latera model of
concurrent computing. The commonly used semanfiestors is
formalized by Agha [1] in 1986. Since then, mantoatanguages
and frameworks have been developed. With the grofvgarallel
and distributed computing platforms such as mutec
architectures and cluster computers in recent ydhes actor
model has gained popularity. Contemporary actoguages and
frameworks include: Ericsson’s Erlang programmimgduage
[24][19] that supports massively concurrent telecgystems [2],
Akka Actors and the Scala Actors library [8], Ptole project
[14], JCoBox [20], SALSA [23], Microsoft Asynchroos Agents
Library, Microsoft Axum, and Microsoft Research &ahs
framework for cloud computing [4] to name a few.

A key semantic property of the pure actor model
encapsulation of state. Actors do not share stateactor must
explicitly send a message to another actor in otdeaffect its
behavior. Most shared memory implementations obractan
bypass this sharing restriction by including refiees to mutable
state within messages. As deviation from the narish
philosophy can be troublesome, researches haveogedpstatic
analysis methods and type systems to rule out rehari
[22][9][17][7]. In fact, the growing popularity ahe actor model
is largely due to this simple model of data sharifigs restricted
model of sharing provides a uniform framework fompleiting
parallelism both within a server and across a daater. In
addition, it facilitates data-race freedom, fausblation and
location transparency. Unfortunately, this comesaaprice in
terms of the convenience and efficiency of sharlngparticular,
in scenarios where large-scale mutable but readrdded data is
needed by a large number of actors, a pure messesge
approach can become extremely inefficient.
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Figure 1. Distributed Social Graph
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A tangible example is a distributed social grapbn§ider Figure
1. A node in the graph is the session of a useraanedge in the
graph is a friendship relation. The dark circle resents the
session of a definite user and the rectangle bél@the session
state. When a user changes her session stateigmetsfshould be
notified. Each session state is a single-writertiple-readers data
that is written by one user and read by her friedgpically, the
social graph is too large to fit in the memory dfiagle computer
and needs to be partitioned across the clusterallygdethe
partitioning algorithm minimizes the number of eslghat span
two machines while keeping the load balanced. Essiens that
are mapped to the same machine can potentiallyrdgeethe
shared memory for efficiency; for example, by aimid
duplication of session state.

Let's look at the previous approaches to prograngmtime
single-writer multiple-readers abstraction. Ad-halti-threaded
implementations can share the data of a user sebsiween the
sessions of her friends in each host and controeésses by the
conventional synchronization mechanisms such ag&slcnd
conditional variables. These implementations carffieient but
are prone to traditional problems of programmingretd memory
such as deadlocks or races.

Implementations that use the pure actor model caplay
either full replication or a delegate actor. Wesider each one in
turn. Consider Figure 2 where large rectanglesessprt hosts,
circles represent actors (the darker circle reptsséhe writer
actor) and small rectangles represent state. In fingt
implementation, the state is replicated in eackdeeactor. When
the writer actor finishes updating its state, ihd® an update
message to each reader actor. The replica at eadprris updated
when it processes the update message. Unfortunately
approach wastes space and more importantly timthesame
update is repeated at each reader actor. The second
implementation employs a delegate actor at eadterd@ost. The
state is replicated and updated once at the delemgbr. The
reader actors communicate with the delegate actaead the
state. The problem with this approach is the lospaiential
parallelism as the accesses of the readers ar@izedli in the
delegate actor.

Motivating Example
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Figure 2. (Left) Full Replication (Right) Delegate Actor
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We propose sharing actois. this approah, ¢ate can be shared
between a single writer actor and mue reader éetors. The
writer and reader actors see the shastate as part of the
internal state. The writer actor can resom and write to ths
shared state while the reader actors havear~only access to it.
This approach merggsogrammability ancefficiency, namely the
stateabstraction of actors and the efficierof sharing.

Consider sharing actors depicted kigure 3. Each friend
session views the user session state as<of its private interna
state (similar to the full rdigation case exlained above). This
while the implementation shares a singkplica between frienc
(similar to the adioc sharing mentioneabove). This approac
provides the programmer with the high Il programming mode
of actors and at the sartime avoids dupliate state and repeat
updates. As thnumber of readers increaqis benefit increases.

Our Cloud Assistant Framework (C) provides an ope
source implementation of Sharing ActbrEAF abstracts aspec
of distributed computing, andhis enales front end mobil
application programmers to codesign k end components
JavaScript (using Node?s A Cloud Assistant (CA) is an actc
that permanently represents a mobile gation instance in th
data center. CAs act as light-weighgtateful proxies the
autonomously interact with other CAs.oud services, or th
external worldCAF examples can be triemline®

Figure 4 shows code snippets fr@AF Sharing Actor. It is
from a sample application calledoody riends. Every user is
represented in the cloud by a CA and sk a map containing h
current mood and place with her frien@hanges to mood ar
place are eventually propagd to friend. The shared map is
updated atomically. Therefore, frienddl always see consiste

*.

Our Approach

Figure 3. Sharing Actors

L http://www.cafjs.com/
2 http://www.nodejs.org
% http://www.cafjs.com/examples.html

mood and location tupleszigure 4.(A) shows an initialization
phase where the owner of tlsession registers as writer actor
of the session mapw(th the namemySession ) and the other
actors register on the sessicap as reader actc(with the name
friendSession ). Figure 4(B) shows that the owner actor wri
to the session map and the ller actorread from it.

We formalize he semancs of sharing actor theory as
extension of the pure actor ory The extension is the notion of
single-writer multiple-readestate of actol. A program translation
from the sharing actor theoro the pure subsi(without sharing)
of it is defined. We prove th&br every sharing actor program, the
translated pure act@rogramas equivalent interacti-semantics
that is every interaction by tlsharing actor programa possible
interaction withthe translate pure actor program. This justifies
that our extension is onem:ntic-sugar for the pure actor model.

Naive implementations cthe sharing semantics can lead
inefficiencies in terms dboth time ani space, in particular, when
there is a large number ofackr actors. We describe an optimi:
implementation. It benefits fm a versioned data structure she
by all the readers clocatec in the samehost but keeps this
sharing transparent to the reis.

To checkthat the implematation complies with thsemantics,
we have built achecking bol. The checker uses the dir
implementation of the sema:s as the reference implementati
It plays and logs with the opiized implementation and perforr
a deterministic replay with1e reference implementat. Any
discrepancy between the fil configurations of the two act
systems suggests a bug in tiptimized implementatio

The structure of the pap is asfollows. We formalize the
sharing actor theory in the «t sectionlt includes the definition
of the syntax, configuration transitions, equivalence, program

if (this.state.admin) {
this.sharing.addMap(
tru e, MAP_NAME, 'mySe ession');
}else {
var mapName = getFriendM
this.$.sharing.addMap(
false, mapName, 'fri

MapName();

:ndSession’);

(A)

}

var self = this;
if (this.state.admin) {

this.$. sharing.mySessio  n.status = 'Happy'
this.$. sharing.mySessio  n.pla ce ="'Paris'
...

}else {

var herStatus = this.$.
var herPlace = this.$.sh
...

}

sharing.friendSession.status

aring.friendSession.p lace

(B)
Figure4. Sharing Actorsin CAF
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translation and the theorem of equivalence. Implaat®n is
described afterwards. Next, we explain the checkbog Finally,
related works and conclusion sections concludeéper.

2. Sharing Actor Theory

In this section, we define the sharing actor thea®yan extension
of the pure actor theory. In the pure actor theeagh actor has a
message queue. An actor dequeues and processeage®ess
sequentially. The sharing actor theory allows usingle-writer
multiple-reader data. Consider Figure 5.A. The isigaractor
semantics adds an update queue to each reader @ciusider
Figure 5.B. When the writer actor finishes updatihg state, the
state is put at the end of the update queue of esadfer actor.
Consider Figure 5.C. A reader actor can take amezie from the
update queue before processing a new message.

We define a translation that transforms a sharintpra

program to a pure actor program where the only teaghange
the internal state of an actor is to send a messageWe prove
that each sharing program is interaction-equivalémt the
translated program. The key properties of the sgamctor
semantics that enable the equivalence to the mioe semantics
are atomicity, isolation and fairness.
Atomicity means that partial changes of the writethe
state should not be externalized. In the contexthef
above example, each friend either sees all or wbrlee
state updates of a single user action.

visible to an actor while it is processing a messég the
previous example, each friend always sees a censist
(but possibly outdated) view of a user session.

Fairness means that the propagation of an updatddsh
not be delayed arbitrarily. In the context of theoee

session of the user regardless of how busy ther othe
friends are.

Our sharing actor theory does not allow multiplétevrdata.
The shared state is partitioned into owners witbliesive write
access. When an actor wants to modify a part ostzeed state
that it does not own it has to send a message dicang the
update or a closure that will perform the updateXte owner
actor.

We formalize our model in the following subsectiofi$ie
definitions and notations are based on the forroraof pure
actors by Mason and Talcott [16].

2.1. Basicdefinitions

Let P,(S) denote the power set ¢f and M, (S) denote the
multiset power set of. Let e :: s denote a sequence of elements
where e is the first element and :: e denote a sequence of
elements where is the last element. We uset {x :=e}e’ as a
syntactic sugar for(Ax.e')e. We define true £ Atf.t and

false £ Atf.f.
2.2.  Syntax

The syntax is depicted in Figure Bl is the set of identifiers
{id,,id,, ... }. A is the set of actor namés,, a,, ... }. M = Id[V*]
is the set of message contents. A message comstentnethod
identifier Id and argument valueB*. The set of messages is

Isolation means that new updates should not become sy = 4 < M (that is set isomorphic td x M). a < m: Msg

denotes a message for aatowith contentsn.

A program for an actor subsystem declares its aotem
interface with other actor subsystems Rsceptionists and
Externals sets of actorsReceptionists is a subset of actors of this
actor subsystem that are visible to the outsidddvé@ixternals is

example, each friend can eventually see the updatedine set of actors that are known from the extemaild. The

P ::= program(receptionists: P, [A], externals: P, [A],
library: P, [BehDef],
actors: P,[A - E],
messages: M,[A < M],
sharing:{a,,: A, A,: P,[A])
where
Va € A:|{(a~ e) Eactors|e € E}| <1
{a,} U A, € dom(actors)

BehDef ::= behavior Id(X*) MethDef*
MethDef ::= method Id(X*) [enable E] E

E = 1X.E
| EE
| E < Id[E*]
| ready(Id(E™))
| self
X |V
Vae=1X.E | A
X==1Id
M = I1d[V*]
Id = {id,, id,, ...}

Figure 6. Syntax




Definition of -:

L=
internal [ EQ.1
K I, I > K L, 1 »%5
i p in(a,m) p . Eo.2
in KI», — KLa<am Y vacq(m)-p) if (a € p) A (acq(m) nInAct(l) € p) Q.
(am) _

out «La<m»h 25« [ 00@am-2 e mace() Ea.3

idle <1 > e« »h EQ.4
Definition of =:

deliver(a,m)  [bid(¥),{[], Mo @ <« m = [bid(®),{[m], q:)]a EQ.5

[bid (), (m :: qu qr)]a = [(ec' €p, bid(v)), (m, qu CIr)]a
traverse(a) if methMatch(Lib, bid, 5, m) = (e, ep) EQ.6
e—g e
check(a) S— a - EQ.7
[(e, ep, bid(V)), (M, qu, @ Mo = [{e’, ey, bid()), (M, qy, g1 )]a
disable(a) [(v, ep, bid(V)), (M, qy, gy )]q = [bid(©),{qy, qr :: M)]q if v # true EQ.8
enable(a) [{true, e, bid(V)), (M, qu, Gr)a = l€p, qu-qr]a EQ.9
e—ge
seqla _— EQ 10
1@ leraule = [ dul

send(a) [RIv <« mid[V]], qula = [RIO], qula, v <@ mid[v] if veEA Eq.11

ready(a) [R[ready(bid(@))] qu], = [pid(@),{qu, [ D]a if behMatch(Lib, bid, V) and a # a,, EQ.12
The rules that we add to the pure semantics are:

[R[[ready(bid(?))]],qu] ,[b,q,ul, ES
ready(a,,) . aw o =ta if behMatch(Lib, bid, v) EQ.13
Y (aw [bid @) (qus [ Ve [b:0, 0 2 bid @y . /
l l: [brq]aﬁ[?l?]a EQ14
[b,Qru]a = [b lq 'u]a

update(a,,bid®)  [bid' (v').([1.4:),bid(@) = u] = [bid@), (g5 [ ula, EQ.15

Definition of - :
e—g e
d A A — EQ.16

rex Rle] >, R[] ©

beta (Ax.e) v -, e[x =] EqQ.17

self self -, a EQ.18

Figure 7. Semantics

program defines a library of behaviors, a set @fahactors and
messages. There is one sharing group in each paigram. A
sharing groupG = {(a,, 4,), is a writer actora,, and a set of
reader actorsd, = {a,,_, .}. The behaviors of the reader actors
are updated with the new behaviors of the writéorac

Each behavior definitiorBehDef defines a behavior with a
behavior identifierld, initialization parameter&* and a set of
method definitionsMethDef*. A method definitionMethDef
specifies the method paramet&rs the optional selective receive
[enable E] and the body expressioA of the method. The
selective receive expression (also called guarsyochronization
constraint) of a method is required to be functiona. its
evaluation involves no send or ready expressiothdfselective
receive is not specified, it is assumed to tvee. For each
candidate message, the selective receive expressievaluated
under the binding of method parameters to the aegusnin the
message. If the selective receive is evaluatetite, the body
expression is evaluated; otherwise, the messaggeisted at this

time and is considered again later. An expressfom lambda
abstractiondX. E, applicationE E, a variableX, a valuel or an
actor specific expression. Actor specific exprassiare sending a
messageE < Id[E*], installing a new behavioready(Id(E*))
and the current actor expressiagelf. In a send expression
E, < Id[E], the target of the message is the valu€paind the
message content had as the method name and valuesEos

arguments. The ready expressimaady(ld(f)) installs the

behavior/d with the values oF as argumentsielf is evaluated
to the name of the executing actor. A value isegith lambda
expression or an actor name. For the sake of giityplour syntax
does not support dynamic creation of actors.

2.3.

An actor configuration is a pool of actors with idée states and
messages. The set of actor st&tésdefined as follows:
S==(B,Q)|(B,QU)

Configuration

Eo.19



B :=1d(V*) | (E,E, 1d(V")) | E

Q = (M*,M:) | (M,M*,M*) | M*

U == 1d(V)

B is the behavior component of an actor stat®. i§ Id(V*), the
behaviorld with argumentd* is installed. IfB is (E, E, Id(V*)),

a message is being checked for enabledness whelfadshE is
the guard expression that is being evaluated, ¢berglE is the
body expression anid (V*) is the latest installed behavior.Bfis
anE, the actor is evaluating the body of a meth@ds the queue
component of an actor state.dfis (M*, M*), the first and second
components represent the unchecked and rejectedesjuef
messages respectively.Qfis (M, M*, M*), the first component is
the message that is being checked for enablednéstha second
and third components are the unchecked and rejectedes. 119

is M*, it represents the queue of (unchecked) messagde t
checked by the next behavidf.is the sequence of updates for a
reader actors: S denotes an actor state.B denotes a behavior
component.q: Q denotes a queue component.U denotes an
updates list component.

An actor entity is an actor name paired with armmastate.
Actor entitiesAE = [S], is the set of actor entitiesdE is set
isomorphic toA x S). [s],: [S], denotes an actor namedwith
states. The interior of an actor configuration is a seactors and
multiset of messages. The set of configuratiorrioie is defined
as
IS={ocUu|oeMy[AE],u € M, [Msgl} EQ. 20
where VI € IS:Va € A: |{[s], €I |s € S}| < 1. I:IS denotes a
configuration interior.

Internal and external actors of a configurationeiir are
defined as follows:

InAct, ExtAct:1 — P, [A] Eq.21
InAct(I) ={a € A|3s € S:[s], € I} EQ.22
ExtAct(I) = acq(I) / InAct(I) EqQ.23

The acquaintance function gives the finite set cfoa names
occurring inl. A configuration is defined as follows:
K ={<I>»% | p € InAct() AExtAct(I) € X A

X nInAct(l) = 0}
The receptionists st is a subset of the internal actors of the
interior that are visible from the environment. Ternals seX’
includes all actors mentioned in the interior theg not internal
actors. Consider the following program

Eo.24

fR:::[[]]
| RE | VR
| R < Id[E*] | V< Ild[V*R,E*]

| ready(ld(V*,R, E*))

parCheck(x,v) iff x andv are of the same length.

behMatch(Lib, bid, v) iff (EIE, methodDef: (behavior bid(x) methodDef) € Lib) AparCheck(x,v).

methodMatch(Lib, bid, v, mid[v']) =

p £ program(receptionists: p, externals: X,
library: Lib,
actors:{a; = e;}1<i<m»
messages: {a} < mi}1<ien,
sharing:{a,,, A,)) where
AT = {a"'i:L.R}
{aw} U AT S {ai=1..m}
The initial configuration fop is denoted byfp] and is defined as
follows:
[p] & < I % where
=
{(ei, niD)1zismaea, (€1, nil, nil)1<ismaea,
(aj < mM;)1<isn}

EQ.25

EQ. 26

2.4. Semantics

The semantics of sharing actors is defined in FKgiédr The
reduction context and the helper functions arengefiin Figure 8.
The internal transition relationr= defines steps of actor
computation inside the current subsystem. The nateransition
(I:1 > I') denotes the transition df to I' by = with label L.
InAct(1) is called the old actors éfandinAct(I")/InAct(I) are
called the new actors @f We explain each internal transition in
turn.

To maintain fairness for processing of messages$ #he
rejected by previous behaviors of the actor, a meessage is
delivered only after all the messages in the uriebdtqueue are
checked and rejected by the current behavior. df thchecked
queue is empty, thédeliver(a, m) rule receives message and
puts it in the unchecked queue.

Thetraverse(a) rule takes a messagefrom the head of the
unchecked queue and usesthMatch to check whether the
method name and the argument list of the messagehnaa
method name and parameter list of the current behdf/there is
a matching methodnethMatch returns the pair of the guard and
body expressions that are instantiated with thegghsrguments.
The resulting behavior tuple contains the guard dudly
expressions and the current behavior. Later, tledgaxpression
may be evaluated to a normal expression other thanby the
check(a) rule and then the message should be put to tkete€j
queue. Thus, the messageis kept as the first element of the
queue tuple.

Thecheck(a) rule evaluates the guard expression. If the guard
expression is evaluated to a value other tiras, thedisable(a)
rule drops the tentative body expression, restdhes current

EoQ.27
Eo.28

if (3%, methodDef: (behavior bid (x) methodDef) € Lib) A
(method mid(?) [enable e] e’ € methodDef) A EQ.29

(e[ = T = 7] ¢'[F = 7 = 7]

(parCheck(?, 7))

false otherwise

Figure 8. Reduction Context and Helper Functions




behavior and puts the message at the tail of fleetezl queue. If
the guard expression is evaluatedoe, the body expression is
installed, the backed-up message is dropped ancbtimatenation
of the unchecked and rejected queues is storedeasrichecked
queue for the next behavior. Theg(a) rule evaluates the body
expression.

The send(a) rule checks if the recipient expression of the
message is an actor name and emits the message.

The ready(a) rule (wherea is not the writer actor) uses
behMatch to check whether the behavior name exists in the
library and the argument and parameter lists mdfcthere is a
match, the new behavior is installed and the tuplethe
unchecked queue and an empty rejected queue sds&w the
queue component. Theeady(a,,) rule (wherea,, is the writer
actor) does the same and in addition, adds thebedavior to the
tail of the update list of each reader actor. Tontaén atomicity,
the updates are propagated only when the writer fiméshed
processing a message.

A rule mirrors all transitions possible for non-tlea actors
(without an update list) for reader actors. Sodegaactors can
have any type of transition that other normal actan. A reader
actor a, can specifically doupdate(a,) transition. The
update(a,) rule takes the behavior at the head of the upéste
and installs it as the current behavior. To maintablation, an
update is installed only when the actor is not pssing a
message. To maintain fairness, similar to de&ver(a, m) rule,
an update can be performed only if all the messagethe
unchecked queue are checked and rejected by theentur
behavior.

2.5. Computation and I nteraction Semantics

251.
The set of computation patf#sis the set of sequences of the form
= [Kiikm lie N]

l; € LUin(A,M) U out(A, M)
wherelL is the set of internal transition labels and théhp with
the initial configuratiork are defined as

P(K) = {m € P |Kisthesource om(0)} EQ.31

A finite computation is a path in which all butiaife number of
the transition labels anglle. A labell is enabled irK if l € LU
out(4, M) andK has a transition with lab&! where (1)l is the
same ad up to choice of names for new actors or K2has a
transition  with label ' = update(a,, bid(v),) and
[b,q,bid(V)i=o.n]la, € K and [ =update(a,,bid(v);), i=
1..n. In other words, if the first update is enabledéoinstalled,
all the other pending updates are enabled to bwllied in
sequence after thaEnabled(m, i) is the set of labels that are
enabled in the sourd§; of n(i). Fired(m,i) =l if n(i) has the

form K; iKHl wherel; differs from! only in the names of new
actors.

Actor computations are required to be fair. A cotagion path
is fair if whenever a transition is enabled, eitherventually fires
or it becomes permanently disablé{K) is the set of fair paths
with the initial configuratiork.

Fair(m) © Vi, l:
l € Enabled(m,i) =

Computation Path Semantics

Eq.30

(3j = i:l = Fired(m,j)) v Eo.32
(3k > i:Vj > k:1 & Enabled(m, )))
F(K) = {m € P(K) | Fair(m)} Eq.33

25.2. Interaction Semantics

An actor system is considered as a black box ctexiaed by the
set of possible interactions with its environmeftvo actor
systems are equivalent if they cannot be distifmgds by
interacting with other actor systems.

Interaction pathisem(rw) of a computation pathr is the
sequence of its message input and output actichssatefined as
follows:
isem(m) = UJ@:: iff

L .
(i) = < I; Bt > & Iy »5* and Eq.34
v (i) = isem(l;) fori €N
. _(t ifleLuf{idle}
isem() = {l if L € in(A, M) U out(A, M) EQ-35
Two interaction paths are equivalent if and only ig Eo.36

they differ only by insertion or deletion of.
T stands for possible internal activity.

The interaction semanticsem(K) of a configurationK is
defined as follows:
Isem(K) = {isem(n) |t € F(K)} EQ.37

Iy I,

Consider two adjacent stefig — K; — K,. The two steps can
be legally commuted if

(1) The old and new actors hf are disjoint from the

old actors of;. EQ.38
(2) The messages produced in therule do not

o ) EqQ.39
participate in the, rule.
(3) [, andl, are not both interaction labels. EQ. 40

Computation paths that differ only by legal perntiotss result in
the same interaction path [16]. Consider a commrtgbath .
Consider a computation path that differs fromm only by legal
permutations. If an actor system produaest producest’ and
isem(m) = isem(n’).

2.6.

A configuration K is equivalent to the configuratiok’ if and
only if Isem(K) = Isem(K"). In other words, a configuratidi
is equivalent to the configuratidfY if and only if
v € F(K): An' € F(K'):isem(n) = isem(w') A Eo. 41
vr' € F(K'):3m € F(K):isem(n') = isem(m) Q-

In order to show the interaction equivalence ofrisigaactors
to pure actors, we define a program translatidp that removes
sharing and translates automatic updates to pussage passing.
To reason about intermediate configurations, wethié program
translation to configuration translation. We prastre formal
definitions of the translation in the appendix [1&}d briefly
explain it in the following paragraphs.

The interesting part of translation is the transtabf ready
for the writer and the addition afMethod to behaviors for the
readers. The reduction eéady for a,, (EQ. 13), installs the new
behavior fora,, and stores it at the tail of the update storef
eacha,. Later, inupdate(a,) transitions (B. 15), the behavior at
the head ol is taken and installed as the current behaviar,.of
To process updates in order, new behaviors aredaddthe tail
and removed from the head of the update store.

The translation simulates the update mechanism méksage
passing. Aready expression ofa, is translated to sending
Update messages to reader actaysand then installing the new
behavior fora,,. Update messages contain the new behavior for
the reader actors. At the reader actaMdethod received/pdate
messages. To preserve the order of updates, treeuptbssages

Interaction Equivalence



should be processed in the same order as theyeamte Fhe
translation adds a counter parameter to the diefindf the writer
and readers behaviors. The writer actor maintaimeunterc,,

that holds the number of the next update to sewdeach reader

actor a, maintains the number of the next update message to |

receivec,. The selective receive feature of the languagesésl to
check the number of the messages. Uhéate messages that,
sends contain a pair of expressions. The first eferaf the pair is
the number of the update message and the secamérelés the
new behavior. The guard of thethod checks the equality of
the first element of the pair (that is the numbfethe message) to
¢, (that is the number of the next update messageceive). If
the check succeeds, thready expression that installs the new
behavior is obtained from the second element ohtessage and
is evaluated.

The following theorem states the interaction edeivee of
sharing actors and pure actors. We show that eskying actor
system can be translated to a pure actor systemm that any
interaction of the sharing actor system could Iselted from the
pure actor system.

THEOREM1. Vp € P: Isem([[p]) = Isem([s2p(p)])

Please see the appendix [15] for the proof.
3. Implementation

As we mentioned in the introduction, CAF provides epen
source implementation of Sharing Actors using sesige
JavaScript. JavaScript execution model is singleattied, but
asynchronous calls during the processing of a rgessdaroduce
task interleaving. We have also experimented withtinthreaded
garbage collected (Erlang and Scala) and non-gerleatiected
(C) implementations of the same concepts as HP pedpwietary
libraries.

The implementation provides a set of commonly uaBd's
(Abstract Data Types) such as Map and Set thatsacan share.
There is one actor that owns the shared abstradttos owner is
the only actor that can mutate the abstraction. hEaost
containing a sharing actor holds one copy of tharabtion. All
the sharing actors can transparently access theetien as part
of their internal state. We use the term epocheferrto the
execution period of an actor that services a singssage. After
each epoch of the owner actor that mutates thegtadystraction,
an update message is sent to sharing hosts. Téiepwpdates to
hosts before they are needed and hence hides cdoatian
latency. An epoch by the owner may involve multipfelates on
the abstraction. To preserve the atomicity propestye update
message containing all the updates that were peeron the
abstraction is sent. Serialization of updates igaiobd by
numbering the update messages at the owner anddeong
them in order at other hosts.

To provide the isolation property, an actor thahighe middle
of processing a message should not see an updattheOother
hand, to support the fairness property, other shaactors on the
same host should not wait indefinitely for the updalo meet
both of these requirements, the implementation taais multiple
versions of the abstraction at each host. Whileoteversions are
retained for the actively processing actors, newchp can see
new versions. The implementation maintains multipégsions
efficiently as follows. We use a simple semi-pegsis data
structure [6]. See Figure 9.(A). Each copy of thieared
abstraction is represented as a reference to e dfethe list of
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Figure 9. Implementation

update messages. The tail of the update list ptorasbase object.
The base object is an instance of a conventiomaalizable
implementation of the abstraction. We can beneditf existing

high performance data structure implementationse S&ure

9.(B). The update list is initially empty. Receivaedgpdate

messages are prepended to the update list andférence to the
head of the list is updated. Obviously, in the irihiteaded

implementation, the reference is updated atomic&lgferences
to different elements of the update list represiffierent versions
of the abstraction. The head of the update lishésmost recent
version of the abstraction.

Upon a read request on the abstraction using aldngtitht
references possibly the middle of the list), thst Is traversed
starting from the update message that the refeneoicgs to. The
result of the access may be determined accordingntapdate
message that is visited in the traversal. Othentligeaccess is
finally performed on the base object.

It is obvious that concurrent update and read dijpersado not
block each other. It is notable that this represt@m avoids
memory overhead of replication for each actor antha same
time the synchronization bottleneck of a singleedete actor.
Visiting update messages in the traversal is deg@noh and can
be optimized according to the abstraction type. Emample,
consider accessing the value of a key in the magiradiion.
Having a bloom filter [3] on the keys in each umdatessage can
accelerate skipping update messages that arevarglgo the
accessed key.

References of user code to the abstraction aretshpé type
handle. To have the fairness property, if a hamsleccessed for



the first time in an epoch, we want the referemcéhe handle to
be updated to the current head of the update Tisthave the
isolation property, we want the handle to stay amded if the
handle is accessed again in an epoch. The stré¢edgyeeping
track of references influences the performance loé ftist
compaction. We first describe the structure of hesmdénd then
the compaction mechanism.

In the single-threaded implementation, a handleahaalidity
state in addition to a reference to an elementhefupdate list.
Each element of the list maintains a reference tdbaring an
epoch, if an invalidated handle is accessed, iupslated to
reference the head of the update list and theeefer count of the
head element is incremented. At the end of the lepeoe
decrement the count of the element that the hanefibeences and
set the handle state to invalid. Due to singleatesl execution,
no synchronization is needed for updates to thereate counts.

On the other hand in the multi-threaded implemémnata
handle contains an epoch number in addition tdfererce to an
element of the update list. A unique epoch numberssigned to
each message when it is being processed. This epactber
helps discriminate two cases. Upon accessing aléashating
processing of a message, the epoch number of thsage that is
being processed and the epoch number of the adcbasele are
compared. If the epoch numbers are different, tredte is being
accessed for the first time in the current epockend¢, the
reference in the handle is updated to the curread of the update
list and the epoch number in the handle is updaietie epoch
number of the message. If the two epoch numbersharsame,
the handle is being accessed again in the curpatheand hence
the reference in the handle is not updated.

As an access to the shared abstraction includesvarsal of
the update list, the access time is a linear fonabf the length of
the update list plus the access time of the bagend 0 make the
performance of accesses as close as possible petftgmance of
accesses on the base object, we need to keepribh lef the
update list small. Consider a reference to an el¢wiethe update
list and that it divides the list to two sublistet we call the head
list and the tail list. The tail list can be comfgtas follows. We
want to apply the updates of the tail list to tleeséd object in the
reverse order of the list and then update thedblsnent of the
head list to the base object. See Figure 9.(C)rigute 9.(D). But
consider a tail list and an epoch that is accessirgabstraction
using a handle that references the middle of thielis. To
preserve the isolation property, the epoch shooldobserve the
updates that are added to list after the handtaisfepoch. If we
compact this tail list, its updates are appliedhe base object.
The base object is accessible starting from thelleatvo. This
can lead the epoch observe the updates that aetha#t handle
and therefore, isolation is violated. To preventlation of the
isolation property, we need to compact a list oifilmo handle
references the middle of it.

In the single-threaded implementation, the list chae
compacted efficiently based on reference countiffg.the
reference count of all elements of a list is zérean be merged
into the base object. On decrementing a counténeaend of an
epoch, if the counter reaches zero, the sublistngtdrom the
element is checked and if all the reference coumitsare zero, it
is merged. If the reference count of an elementhres zero, it
will not be referenced again. Therefore, checking teference
counts can be optimized by skipping the previousigited
sublists. Again, note that sequential processingclpdes
synchronization.

Unfortunately, compaction based on reference cognti
introduces contention that limits the scalabilifynoulti-threaded
implementations. Instead, we employ a techniqueiied by
RCU (Read-Copy-Update) [13]. To compact the updiate we
first read the current head. The goal is to compaetist that the
first element points to which we call the target.liAs handles
used in processing of new messages are updatedetence the
head of the update list, no new epoch will refeecae element in
the target list. We need to make sure that allctimeently active
epochs that have a handle to the target list arshigd. We
schedule a dummy message in each thread of thadtip@ol that
executes the epochs. As threads process messages nho
preemptively, the new messages are processedtlagt@urrently
active epochs. Therefore, once all the threadsHittie processing
of the dummy messages, all the epochs that wereecaat the
time of scheduling the dummy messages are alraéaghéd. At
this point, it is certain that no epoch has or Wwdle a handle that
references the middle of the target list. Thus, tdrget list is
merged to the base object. While the updates ang lapplied to
the base object, concurrent readers may accessage object.
These readers do not experience any inconsisteacgube the
base object is a linearizable implementation ofabstraction and
also viewing the updates both in the list and ie tfase object
does not affect the values that the readers read.

A single thread is used for compaction. The compact
procedure does not affect the progress of the sctdhe
compaction procedure at each host is independeathefr hosts
and thus there is no global synchronization ovethea

Older elements tend to have no reference soontrasthe list
is typically very short. In average, only a smaihdow of active
versions is needed to be maintained. We bound thémum size
of the list by a small constant. In pathologicatesthat the size
of the list exceeds the limit, we create a new cactgd object
that will be used for all the new epochs. This téghe mitigates
the worst case access time.

An optimization to lower pressure on garbage ctdleand
improve cache locality is to reuse cells of thethet is removed
during compaction. A subtle point is that in thenpaction, even
after updating the pointer to the base object.etimeay be readers
that are still traversing the removed list. Thus, veed to wait for
the next RCU cycle before reusing the cells ofdladlist.

The implementation maintains one writer or multiple
concurrent readers of the shared state. Thus,eiepves race-
freedom of the encapsulated state. Due to indepeerdef the
versioning mechanism in reader hosts, fault isotats preserved
at the granularity of hosts. Both writer and reaafginrs can move
between hosts. Therefore, sharing actors preseahesdocation
transparency property as well.

4. Checking Tool

The translation of sharing programs to pure prograrplained in
Section 2.6 gives a direct method of implementing $emantics.
While this translation is an essential part of tinéeraction

equivalence result, a direct implementation of tiéslation is
inefficient in terms of both time and space. Ourtirozed

implementation benefits from sharing data and agpdifferent
techniques to implement the semantics efficientifaus, the
optimized implementation is quite involved. To iease the
confidence that the optimized implementation coegphvith the
semantics, we have built a testing tool.

The testing tool executes a test program with thénized
implementation and logs the execution. It uses eaectli
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implementation of the semantics as the referenpdeimentation.
Using the log, the checker replays the executiorth wthe
reference implementation and compares the configms
resulted from the two executions. A difference e tresults
suggests a bug in the optimized implementation.iaédity in
interleaving of independent actors can expose bifighe same
procedure is repeated for a large number of timestlae resulting
configurations are the same, the confidence inctiveectness of
the implementation is increased.

We assume that the process of each actor in thpregrams
is a deterministic function of the current statehaf actor and the
input message. To have a deterministic replay efekecution,
we want each actor to process the exact same smExuahn
messages that it has processed in the play. A andbis assigned
to each actor. The id of each actor is assignednwtseparent
creates it. The id of a child actor is the id oé tharent actor
concatenated with a child number. As the exenutioeach actor
is serial, the messages that an actor sends casehally
numbered. The id of a message is the pair of thef itk sender
actor and the number of the message in the selRdeeach actor,
we log an entry for each epoch. The entry is a pdithe
processed message id and the version of the sladsicaction
with which the processing is started. During thelag, the
checker reads the log and makes sure that eachpaiottesses the
same sequence of messages with the same versitie shared
abstraction. Out of order messages and updatesaateed and
applied at a later time.

Figure 10 shows an example of the play and replagegulure.
The first two actors are readers and the thirdrastthe writer of
the shared abstraction. Each block shows an epi@atk blocks
show epochs that their execution time is diffeienthe play and
the replay. The upper diagram Figure 10.(A) showsagy with
the optimized implementation and the lower diagr&gure
10.(B) shows the replay with the reference impletaion. The
arrows show sending of messages. In the lowerahagdashed
arrows show sending of updates to reader actotlseimeference
implementation. In the optimized implementationge theader
actors are transparently updated. The first readtar processes
message ((a2, nl), vl) and then message ((a2,vBR),This
means that the first actor processes the messagieend of actor
2 with version 1 of the abstraction and then preesshe message
number 3 of the actor 2 with version 2 of the asgton. In the
replay, the second epoch of the second actor eeeclater
(moved to the right). Now, the first actor receieesessage from
the third actor before receiving the message ofsgmnd actor.
Furthermore, the third epoch of the third actoexgecuted sooner

import akka.sharing.checker.core.Actor._
def main(args: Array[String]) {

play(

import akka.sharing.map.optimized.Maplmp
/I replay({
/I import akka.sharing.map.reference.Maplmp
/I detached({
/I import akka.sharing.map.optimized.Maplmp

val map = new Maplmp[int, Int]()

val readMap = map.newReadRef()

val writer = actorOf(new Writer(map))

val reader = actorOf(new Reader(readMap))
readMap.setReader(reader)

writer.start()

reader.start()

Figure 11. Sample Checker Code

(moved to the left). The first actor has receivied third version
of the shared abstraction before its second epbebpite these
reorderings, the checker caches out-of-order messagd makes
sure that the first actor processes the messagderug from

actor 2 with version 2 the shared abstraction.

We have written our checking tool on top of Akkan actors
library written in Scala The checker exposes the same interface
as the Akka actors interface. Thus, the checkarfexte can be
used during development and a single import statemeeds to
be changed for deployment. As Figure 11 showsgthrtedes are
possible during the development. The play mode Itiys
execution, the replay mode replays the log andigtached mode
performs an execution without logging. Switchingvibeen the
play, replay and detached modes are as easy asargimmand
uncommenting a couple of lines.

5. Rdated Works

Erlang's ETS (Erlang Term StoraBepbles can be shared
among actors. Similar to our shared maps and E@tS, tables
provides atomicity for updates to a single key.t®& other hand,
they do not provide atomicity for accesses invajvimultiple
keys. Therefore, these tables do not provide imslaMoreover,
they also have no notion of versioning and distityu

Axum programming language introduced domains asinges
classes that enclose statically declared reademaitdr actors.
The state of the domain can be accessed by a simigge actor or
concurrently by multiple reader actors. De Kostérak [11]
emphasized the need for a sharing mechanism aspliozent to
the pure actor model and revisited domains. Thefjneld a
domain as an object that actors can have a viewrtactor can
asynchronously request shared or exclusive viea tiomain at
runtime. Once the access right is granted to aoraitkeeps it
during the epoch and can synchronously accesshijeets in the
domain. Domains are a proposal for the same prolhenthis
paper tackles. Both models extend the actor progiam model
with single-writer multiple-reader abstractions. rBains are
introduced as an extra design element while shagigrs keep
actors as the only one. In sharing actors, shasta appears as
traditional encapsulated state. Domains allow twomcarrent
reads while sharing actors not only allow two canent reads but
also concurrent write and read due to maintainingltipie

4 http://akka.io/
5 http://iwww.scala-lang.org/
8 http://www.erlang.org/doc/man/ets.html



versions. Consistency is maintained by locking @mdins. On
the other hand, it is maintained by multiple vensian sharing
actors. Therefore, sharing actors are amenableisibdition
across nodes. Domains although preserve many piegpeare not
formalized. The access level to a domain can beddécat
runtime. On the other hand, our current sharingradtave fixed
ownership.

The idea of accessing a shared object with diffeveews is
seen not only for the actors programming modeldist in the
context of sharing programming models. Demsky aah L[5]
define views as a partial object interface. Ther s define
several views of an object and their incompatilesit A Code
region declares its views to the objects that teases. Using
view declarations, data-races can be found and irigck
implementations can be synthesized.

The pure actor theory requires sequential procgsfn an
actor. Although this simplifies programming andseaing, it can
limit scalability. To allow parallelism inside awtar, Scholliers et
al. [21] proposed parallel actor monitors (PAM) amnthm and
Sarkar [12] proposed integration of the async-finisodel. The
former allows parallel processing of messages gex-defined
scheduler object. The latter allows parallel preges of a single
message by launching asynchronous light-weightsta3kese
works target intra-actor parallelism. On the ottsdraring actors
allow inter-actor parallel read and write.

Similar to our shared abstractions, a class of Sa¢rithms
maintain multiple versions [18]. On the other hatiity neither
directly provide incremental updates for distribbutinor exploit
the single-writer multiple-reader assumption of scenario.

6.

The proposed sharing actor theory extends the actar theory
with single-writer multiple-reader sharing of stateis proved
that our added sharing is only semantic sugarHterpure actor
model. We described an optimized implementatiothefsharing
actor theory. We presented a tool that checks timeptiance of
the implementation with the semantics. We are atlye
evaluating the performance of sharing against capn and
delegation.
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