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Abstract. We present a framework for verifying transactional memory
(TM) algorithms. Specifications and algorithms are specified using I/O
automata, enabling hierarchical proofs that the algorithms implement
the specifications. We have used this framework to develop what we
believe is the first fully formal machine-checked verification of a practical
TM algorithm: the NOrec algorithm of Dalessandro, Spear and Scott.

Our framework is available for others to use and extend. New proofs
can leverage existing ones, eliminating significant work and complexity.

1 Introduction

As multicore computing becomes ubiquitous, it is increasingly important to sup-
port effective concurrent programming for a wide range of programmers.Transac-
tional memory (TM) [9] allows programmers to specify a sequence of operations
on shared objects that should be executed as a transaction that appears to be ap-
plied without interference from concurrent transactions, and without concurrent
transactions observing partial results of the sequence. Programmers do not spec-
ify how these guarantees are made; this is a responsibility of the system. TM aims
to deliver to shared memory programmers the benefits that transactions provide
to database programmers.

We present a framework for specifying the guarantees that a TM system must
provide (i.e., the TM specification), modeling TM implementations, and verify-
ing that the implementations provide the specified guarantees. Our framework
is based on I/O automata and simulation proof techniques [11,12], which sup-
port hierarchical proofs by modeling both specifications and implementations as
automata and proving simulation relations between these automata. The hierar-
chical proof approach allows a proof for one TM algorithm to leverage parts of
the hierarchy constructed for other TM algorithms, thus significantly improving
productivity. The framework is formalized in the PVS language [14,16].

Using this framework, we have achieved the first fully formal machine-checked
verification of a practical TM algorithm, the NOrec algorithm [3]. As described in
[10], we have also recently used the framework to clarify relationships between the
TMS1, TMS2, and opacity correctness conditions (see Section 2.1). The primary
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goal of this paper is to give readers a concrete understanding of the nature of our
framework and proofs, and to make the framework more approachable. Readers
interested in more detail can contact us to obtain the framework and explore
our proofs interactively using PVS.

Section 2 presents background on TM correctness conditions and algorithms,
particularly the NOrec algorithm we have verified. Section 3 contains background
on I/O automata and simulation proof techniques. Section 4 describes our frame-
work, and Section 5 shares lessons we have learned that have made it signifi-
cantly easier to construct and reuse proofs. We briefly summarize related work in
Section 6, and conclude in Section 7.

2 Transactional Memory

A transactional memory system supports one or more shared objects, typically
a memory object consisting of a set of locations, each of which supports read
and write operations. A sequence of operations on such objects can be executed
as a transaction. To guarantee that transactions appear not to interleave with
each other, a transaction may sometimes abort so that it appears not to execute
at all. Transactions that successfully complete are said to commit.

2.1 Specifications

Verifying a TM implementation requires a precise specification of what it means
for it to be correct. No single TM correctness condition is universally accepted,
and indeed, different conditions are appropriate for different contexts. We have
recently studied this problem for TM algorithms intended to support transac-
tional language features in languages such as C and C++ [5]. To avoid fatal
errors such as divide-by-zero in this context, transactions—even those that ulti-
mately abort—must observe behavior that is consistent with some execution in
which all transactions that commit do so instantaneously [5,8]. Traditional cor-
rectness conditions for transactions in database systems—such as serializability
[15]—do not ensure this.

In [5], we defined a general condition TMS1 and a more restrictive condition
TMS2. TMS1 aims to allow all implementations that provide reasonable behavior
for the intended context, and as a result is somewhat abstract. TMS2 is more
restrictive, but is closer to the intuition behind many practical TM algorithms.
Briefly, TMS2 requires a writing transaction to append a new state to a sequence
of memory states during its commit operation, while a read-only transaction is
allowed to read from any state that was the last state in that sequence at some
point during the execution of the transaction. We proved in [5] that TMS2
implements TMS1, and we have recently proved the same result again using
our framework, specifically by proving that TMS2 implements opacity [8], and
opacity implements TMS1, thereby clarifying the relationships between these
conditions and confirming our conjecture [5]. This result implies that, in order
to prove that an algorithm satisfies the TMS1 condition, it suffices to prove that
it satisfies TMS2. This is the approach we have taken for our NOrec proof.
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2.2 The NOrec Algorithm

NOrec [3] significantly reduces low-contention overhead as compared to previous
TM algorithms such as TL2 [4] by eliminating ownership records, which hold TM
metadata that is used when an associated location is accessed. NOrec achieves
this by using a sequence lock (seqlock) that is acquired by every transaction
that successfully writes any shared location. The seqlock is implemented by a
counter that is incremented upon acquisition and release: the lock is free when
the counter’s value is even; it is held by the transaction that most recently
incremented it when the value is odd. Although this lock limits scalability, it is
held only while a transaction is committing, and NOrec’s low overhead makes it
attractive in low-to-moderate contention workloads.

Briefly, NOrec works as follows: When a transaction begins, it checks that
the seqlock is free, and records a “snapshot” of the lock value. (Whenever a
transaction discovers the seqlock is held by some other transaction, it waits until
the lock is released before continuing.) To write a shared location, a transaction
records the location and the value to be written to it in a private write set. These
changes are written to the shared locations only when the transaction commits.

A transaction records values it reads in its private read set. After reading
a location l, a transaction checks that the lock value has not changed since
the transaction’s most recent snapshot. If the lock value has changed, then the
transaction revalidates its read set by updating its snapshot of the lock and
checking that every object in its read set has the previously recorded value
(aborting if not), before reading location l again and checking that the lock value
has not changed again. This process is repeated until the transaction aborts or
the read set validation and subsequent rereading of l is successful; in the latter
case, the value read from l is stored in the transaction’s read set and returned
to the transaction.

To commit, a transaction attempts to acquire the lock while ensuring that
its value has not changed since the transaction’s most recent snapshot. (If it
has, the transaction revalidates its reads and refreshes its snapshot as described
above before attempting again to acquire the lock.) After acquiring the lock,
the transaction performs the writes recorded in its writeset and then releases
the lock by incrementing its value once more. Because no transaction reads any
location while the lock is held, the writes performed by a transaction while it is
committing appear atomic to all other transactions.

3 Theory Background

In Sections 3.1 and 3.2, we briefly summarize the standard I/O automata theory
and simulation proof techniques upon which our framework is built. We have
not only formalized this theoretical foundation in PVS, but also verified within
the framework the theorems from the literature that we have used.
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3.1 Automata

We use simplified1 input/output automata (IOAs) [11] to express TM correct-
ness conditions and to model TM algorithms. An automaton A is a labeled
transition system that consists of: a set states(A) of states, with a nonempty
subset start(A) ⊆ states(A) of start states; a nonempty set acts(A) of ac-
tions, partitioned into external and internal actions; and a transition relation
trans(A) ⊆ states(A) × acts(A) × states(A).We describe the states using a col-
lection of variables, and the transition relation using a precondition (a predicate
on states) and an effect (a set of assignments to variables) for each action.

An execution fragment of A is a sequence s0a1s1 . . . of alternating states and
actions of A such that (sk−1, ak, sk) ∈ trans(A) for all k > 0; a finite sequence
must end with a state. An execution is an execution fragment with s0 ∈ start(A).
A state is reachable if it appears in some execution. An invariant is a predicate
that is true for all reachable states; it is typically proved by induction on the
length of an execution.

The subsequence of external actions in an execution fragment is called its
trace, and represents its externally visible behavior. The traces of an automaton
A are the traces of its executions; we denote the set of such traces by traces(A).
These traces therefore represent the behavior that the automaton can exhibit.

We can interpret an automaton as a specification and as an implementation.
For an “abstract” automaton A, interpreted as a specification, and a “concrete”
automaton C, interpreted as an implementation, C implements A iff traces(C) ⊆
traces(A): every behavior of the implementation is allowed by the specification.

This dual interpretation of automata enables hierarchical proofs : If automaton
C implements another automaton B, and B implements automaton A, then C
also implements A. When proving that one automaton implements another, it
is often helpful to introduce “intermediate” automata to break the proof into
more manageable pieces. These intermediate automata may represent classes of
implementations that share common approaches and ideas, allowing proofs of
implementations in the class to reuse properties already proved for the class, as
discussed further in Section 4.2.

3.2 Simulation Proofs

One way to prove that C implements A is to use a simulation relation [12],
which establishes a correspondence (not necessarily 1-1) between states(C) and
states(A) such that for each step in any execution of C, there is a finite execution
fragment of A with the same trace whose first and last states correspond to the
pre- and post-states of the step, and execution fragments for successive steps
can be “pasted together” into a single execution of A.

A forward simulation from C to A, for example, requires that every start
state of C correspond to some start state of A, and that, for every step of an

1 Our automata are simplified because we have not yet needed to explicitly compose
automata and we have concentrated only on safety properties. We anticipate adding
support for composition soon as it is needed for our ongoing work.
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execution of C and every state of A corresponding to the prestate, there is a
corresponding execution fragment of A that starts from that state and has the
same external action, if any, as the step of C. Thus, given a forward simulation
from C to A, and an execution of C, we can construct an execution of A with
the same trace by starting from a corresponding start state and extending the
execution with a corresponding execution fragment for each successive step of
C. This implies that every trace of C is a trace of A.

Lemma 1. If there is a forward simulation from C to A then C implements A.

A forward simulation that is a function on the states of C is a refinement.
Sometimes, a forward simulation cannot prove that C implements A because

knowledge of the future is needed in order to choose an appropriate execution
fragment for a step of an execution of C. In such cases, backward simulations
can be used. The conditions for a backward simulation are similar to those for
forward simulations, but they allow an abstract execution to be constructed by
working backwards from the last state of a (finite) execution of C, thus allowing
use of knowledge of the future.

4 A Framework for Verifying TM Implementations

Our framework uses the PVS system [14,16], which supports a specification lan-
guage based on typed higher-order logic, and tools for working in this language,
including an interactive theorem prover that provides inference rules and de-
cision procedures that are used in proofs. User guidance for a theorem can be
saved and rerun for repeatable verification and can also be edited and applied
to other theorems. Users can combine inference rules into high-level “strategies”
that simplify proofs and promote reuse.

The foundation of our framework is a set of PVS theories that describe au-
tomata and simulations, as well as definitions and lemmas that facilitate reason-
ing about them. These foundational concepts are not TM-specific.

Our framework further comprises specific automata specifying TM correctness
conditions (such as TMS2) and implementations (such as NOrec). We use several
automata modeling specifications and implementations in varying levels of detail
to construct hierarchical proofs that, for example, a detailed model of the NOrec
algorithm correctly implements the TMS2 condition. All our proofs have been
checked by the PVS prover. This section overviews our framework.

4.1 Foundations: Automata and Simulations

It is convenient, when defining an automaton in PVS, to have a single type
that encompasses all its actions. In standard I/O automata theory, a simulation
between two automata requires them to have the same external actions. This
implies that all the actions of all automata in a proof hierarchy must be of the
same type. Changes to this type—to add internal actions for a new automaton,
for example—affect all automata in that proof hierarchy, triggering obligations
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to reverify every lemma and invariant, even those unrelated to the changes. This
was a problem in some of our previous proofs, and is unacceptable in the context
of developing a framework that includes many automata.

We address this problem by splitting an automaton into a basic automaton,
which specifies its states, actions and transitions (Automaton theory in Figure 1),
and a view, which maps its external actions to external events (View theory in
Figure 2). Only the events need to be shared among automata.

To define a basic automaton, we define a type for states (usually a record type
with components for modeling shared variables, private variables, control states,
etc.), a type for actions, a predicate over the states to identify initial states, and
a predicate that specifies the legal steps of the automaton. We then import the
Automaton theory, shown in Figure 1, instantiating it with these elements.

The Automaton theory defines key properties of a basic automaton, such as
its finite execution fragments, and what it means for a state to be reachable and
for a state predicate to be an invariant of the automaton. We also prove several
lemmas (not shown) that help us manipulate executions and prove invariants.
For example, we use the following lemma to prove invariants by induction:

invariantInduction: LEMMA

FORALL (p: pred[State]):

(FORALL s: start(s) IMPLIES p(s))

AND

(FORALL s0, a, s1:

reachable(s0) AND reachable(s1) AND p(s0) AND trans(s0,a,s1)

IMPLIES p(s1))

IMPLIES invariant(p)

(Although reachable(s1) is redundant—it is implied by reachable(s0) and
trans(s0,a,s1)—we include it for convenience, as it allows us to apply already-
established invariants to the poststate s1 without proving each time that the
poststate is reachable.)

The View theory (Figure 2) is parameterized by types for events and actions,
a predicate identifying external actions, and a map from those actions to events,
which we call a view. This theory defines the trace of a sequence of actions to
be the subsequence of those actions that are external, mapped to events by the
specified view. The AutomatonWithView theory (Figure 2) puts together a basic
automaton and a view to define an automaton and its set of traces.

Views allow us to use different types for the actions of different automata,
while retaining the ability to express that an external action of one automaton
is “equal to” an external action of another, by mapping each to the same event.
When views are 1-1 mappings, as they are in all our work to date, there is a
straightforward isomorphism between automata in the standard theory and our
“automata with views”.

Views also add flexibility in modeling algorithms and specifications because
multiple external actions of an automaton can be mapped to the same event.
For example, when the actions of an automaton are deterministic (i.e., the post-
state of a transition is uniquely determined by the prestate and the action), we



522 M. Lesani, V. Luchangco, and M. Moir

Automaton[State, Action: TYPE+,

start: nonempty_pred[State],

trans: pred[[State,Action,State]]]: THEORY

BEGIN

Step: TYPE = [State, Action, State]

IMPORTING finseq_props[State]

FiniteStepSeq: TYPE = [# actions: finseq[Action],

states: { ss: nonempty_finseq[State] |

ss‘length = actions‘length + 1 }

#]

stepseq: VAR FiniteStepSeq

length(stepseq): nat = stepseq‘actions‘length

first(stepseq): State = first(stepseq‘states)

last(stepseq): State = last(stepseq‘states)

steps(stepseq): finseq[Step] =

(# length := stepseq‘actions‘length,

seq := LAMBDA (n: below[stepseq‘actions‘length]):

(stepseq‘states(n), stepseq‘actions(n), stepseq‘states(n+1))

#)

finiteExecFrag(stepseq): bool =

FORALL (n: below[length(stepseq)]): trans(steps(stepseq)(n))

finiteExecution(stepseq): bool =

finiteExecFrag(stepseq) AND start(first(stepseq))

reachable(s: State): INDUCTIVE bool =

start(s) OR (EXISTS (s0: State, a: Action): reachable(s0) AND trans(s0,a,s))

invariant(p: pred[State]): bool = FORALL (s: State): reachable(s) IMPLIES p(s)

END Automaton

Fig. 1. Definitions in Automaton.pvs

can specify the effect of actions with a function, which has various advantages,
especially for automated theorem provers. For internal actions that are non-
deterministic, we can create a variant of the automaton in which such actions
have additional parameters, so that each parameterized action is deterministic.
However, we cannot add parameters to a nondeterministic external action in
standard I/O automata theory because doing so would change the externally
visible behavior. Using automata with views, we can map each parameterized
action to the same event as the original action.

The Simulations theory (not shown) takes as parameters the components
for two automata, the events type that they share, and views mapping their
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View[Event, Action: TYPE+,

external: pred[Action],

view: [(external) -> Event]]: THEORY

BEGIN

IMPORTING filter_props[Action]

trace(acts: finseq[Action]): finseq[Event] =

map[(external),Event](view)(filter(external)(acts))

END View

AutomatonWithView[Event, State, Action: TYPE+,

start: nonempty_pred[State],

trans: pred[[State,Action,State]],

external: pred[Action],

view: [(external) -> Event]]: THEORY

BEGIN

IMPORTING Automaton[State, Action, start, trans]

IMPORTING View[Event, Action, external, view]

trace(stepseq: FiniteStepSeq): finseq[Event] = trace(stepseq‘actions)

finiteTrace(eventseq: finseq[Event]): bool =

EXISTS (fexec: (finiteExecution)): trace(fexec) = eventseq

END AutomatonWithView

Fig. 2. View and AutomatonWithView theories

respective external actions to events. It defines forward simulations and refine-
ments, and also proves some lemmas (not shown). For example, the equivalent of
Lemma 1 in our context states that the existence of a forward simulation implies
finite trace inclusion between the two automata (R is universally quantified, and
CA and AA are aliases for the two automata that are created by instantiating the
AutomatonWithView theory with their components):

forwardSimulationImpliesFiniteTraceInclusion: LEMMA

forwardSimulation(R) IMPLIES subset?(finiteTraces(CA), finiteTraces(AA))

Thus, one can prove that one automaton implements another by instantiating
the Simulations theory with these automata, specifying a relation between their
states, and proving that the relation satisfies the definition of a forward simu-
lation. Similar definitions and lemmas are included for refinements. In addition
to standard refinements, we define “simple refinements”, in which each step of
the concrete automaton corresponds to at most one abstract action. When it
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holds, this condition is more convenient to use as it avoids the need to specify
and manipulate execution fragments.

In separate PVS theories (not shown), we also define backward simulations
and history mappings [12], and prove similar lemmas about them. A history
mapping between two automata is equivalent to a forward simulation from the
first to the second and a refinement from the second to the first, showing that
the automata are equivalent. We provide a rule for proving history mappings
that requires less work than proving the two properties separately.

Our framework further comprises a set of PVS strategies, which help us to
automate and hide parts of proofs. For example, by structuring our automata
consistently, we can write strategies that automatically perform the mundane
“unpacking” of definitions, thus making it easier to both construct and read
proofs. We do not discuss our strategies further in this paper, but they is docu-
mented in the release notes of our framework.

4.2 TM-Specific Automata Included in the Framework

We define a number of TM-specific automata using the foundations described
above. These automata, and the relationships we have proved between them,
are depicted in Figure 3. The TMS2 automaton produces exactly the set of traces
allowed by the TMS2 condition presented in [5].

To prove that NOrec implements TMS2, we construct a hierarchical proof
using several intermediate automata, each modeling a successively more detailed
version of NOrec. In the simplest version, NOrecAtomicCommitValidate, the
reading of shared objects (including checking that the global sequence lock is
not held), validating a transaction, and committing a transaction (including
writing all the changes in its write set) are each done in a single atomic step. No
lock is needed in this version, because the lock is held only while a transaction
is committing, which occurs in a single step in this automaton.

In NOrecDerived, validation and committing are no longer atomic, but read-
ing a shared object and checking the global sequence number still is. NOrec
models an abstract version of the NOrec algorithm, in which each step accesses
at most one shared variable. Together, the proofs between these automata (Fig-
ure 3) verify an abstract version of NOrec that is consistent with synchronization
support in real systems. However, we go one step further.

The NOrecPaperPseudocode automaton is a straightforward encoding of the
pseudocode in [3], explicitly modeling details such as the control flow presented
in [3]. For example, we explicitly use program counter values like begin2, corre-
sponding to line 2 of the Begin procedure (Listing 3 in [3]), and validate6start
and validate6iter, corresponding respectively to line 6 just before initializing the
loop and just before executing the body of the loop beginning on line 6 of the
Validate procedure (Listing 2 in [3]).

If the code for the NOrec algorithm were refactored without fundamentally
changing it, we could verify the new version simply by repeating this last step
for a different automaton encoding the new pseudocode, thus effectively reusing
all of the more substantial proofs above the NOrec automaton in the hierarchy.
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 Refinement 

 Forward Simulation 

 Backward Simulation 

 History Mapping 

TMS2 

TxnOrdTMS2 

TxnOrdTMS2WithFailure

ReservationTMS2 

NOrecAtomicCommitValidate 

NOrecDerived 

NOrec 

NOrecPaperPseudocode 

Fig. 3. Relationships between TM-specific automata in our framework. Direction of
history map arrows indicates the forward simulation.

Some TM algorithms cannot be proved to implement TMS2 by a forward
simulation. For example, in TL2 [4], a transaction “validates” the reads it has
performed using a technique that ensures that its reads were consistent at the
beginning of the validation process, but only determines that the validation was
successful later. Thus, the transaction must take effect before it is known to have
committed successfully. Exploiting such “knowledge of the future” in a simula-
tion proof requires a backward simulation. Verifying a backward simulation can
be challenging because it requires reasoning about extending an execution back-
wards from a poststate to a prestate.

To facilitate verification of such algorithms, we provide an alternate formula-
tion of the TMS2 correctness condition as an automaton ReservationTMS2, in
which a writing transaction “reserves” a place in the order of (writing) transac-
tions before it knows whether its commit will succeed. This way, algorithms such
as TL2 can be verified via a forward simulation to ReservationTMS2, reserving
a transaction’s place at the beginning of validation.

To prove that ReservationTMS2 captures the TMS2 correctness condition,
we show that it both implements and is implemented by TMS2. To do this, we
introduce intermediate automata TxnOrdTMS2 and TxnOrdTMS2WithFailures.
TxnOrdTMS2 is just like TMS2 except that it records the initial state of the
memory and a sequence of committed writer transactions (in the order that
they commit) instead of the sequence of memory states that those transactions
write. TxnOrdTMS2WithFailures is similar except that the sequence of trans-
actions may include transactions that abort rather than commit. It is easy to
verify that there are refinement mappings from TxnOrdTMS2WithFailures to
TxnOrdTMS2, and from TxnOrdTMS2 to ReservationTMS2, and a history map-
ping from TMS2 to TxnOrdTMS2. A backward simulation is necessary only to
show that ReservationTMS2 implements TxnOrdTMS2WithFailures.
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5 Our Experience

We have been verifying concurrent algorithms using PVS over several years,
successively improving our framework, making it easier to construct, understand,
and reuse proofs. There is undoubtedly still room for improvement. However, we
have finally reached a point at which the machine-checked proofs we construct
using our framework are often not significantly harder than rigorous hand proofs.
In this section, we explain some details that have helped us to get to this point by
improving both our productivity and the clarity of our proofs considerably. We
also discuss ongoing issues with constructing formal, machine-checked proofs.

5.1 Reasons Why Proofs Are Easier Than Before

We are able to construct proofs more quickly and easily than before in part
due to our increased facility with using PVS, particularly with its dependent
type system and its inductive inference rules, in part due to improvements in
our libraries defining the basic theory on automata and simulations, and in part
due to our development of the libraries on basic data structures, particularly
finite sequences. Although the concepts embodied in the Automaton, View and
AutomatonWithView theories are essentially the same as those in the correspond-
ing Automata theory of our earlier verification work, several factors have made
our recent verifications significantly simpler.

First, changes in the way we represent sequences significantly simplified our
proofs. In previous work, envisaging a framework that would evolve to also sup-
port progress proofs, we defined a type that could represent both finite and infi-
nite sequences by using partial functions subject to a dependent typing condition
to preclude “gaps” in the sequence. (PVS provides finite and infinite sequences,
but not both in the same type.) While not conceptually difficult, the way PVS
represents partial functions requires frequent conversions to distinguish values
in the range of the function from “undefined”; this was a tedious and error-prone
distraction in our previous work. It made proof sequents difficult to read, and
generated many proof obligations due to type-checking conditions. It became
clear that this was not worthwhile.

Thus far we have only done safety proofs for which finite sequences are suf-
ficient. Therefore, our current framework uses only finite sequences, which has
greatly simplified our proofs, both for writing and for reading, as well as allowing
us to use the built-in definitions and lemmas in PVS. (Nonetheless, we did need
to define some functionality on finite sequences, such as truncation, mapping a
function over a sequence’s elements, etc., as well as many lemmas to help us
reason about sequences.) When we need sequences that can be either finite or
infinite in future work, we plan to define a type whose elements can be either a
finite sequence or an infinite sequence, using the built-in PVS theories for each,
and to prove metatheorems to avoid duplication of proofs where possible.

Using the ‘o’ infix operator (defined in the PVS prelude of built-in theories)
has also improved the readability of proof sequents.
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Finally, PVS auto-rewrite rules can be included in a theory definition, so
that they are automatically applied when the theory is imported, or they can
be explicitly enabled in a proof script when needed. The latter option imposes
more work on the user, but avoids spending time on applying the rules when
they are not needed, and also prevents confusion that can arise when they are
applied unexpectedly. We have chosen the latter option.

5.2 Using Our Framework to Verify the NOrec Algorithm

Unlike our previous verification efforts, we did not first write out a careful hand
proof for NOrec and then attempt to translate it into PVS. Rather, we informally
reasoned at a high level about why NOrec is correct, and tried to construct the
formal proof guided by this informal reasoning and our past experience with
simulation proofs. In particular, as described in the previous section, we defined
an “intermediate” automaton that collapsed several steps of the NOrec algorithm
into single atomic steps, and then successively refined that automaton until it
had the granularity of the actual NOrec algorithm.

We were pleased to find that this approach worked quite well, and that using
PVS to verify NOrec was not significantly more difficult than we estimate a
similarly careful hand proof would have been. Indeed, in some respects, it was
easier because when we discovered and corrected a mistake in a definition or
lemma, we could rerun our earlier proofs and examine only those, if any, that
no longer succeeded. Correcting those proofs was typically straightforward.

One exception was that, after proving that NOrecAtomicCommitValidate im-
plements TMS2, we defined a variant that refines the validation operation but
still treats commit as a single atomic operation, and proved that it imple-
ments NOrecAtomicCommitValidate. However, when we attempted to refine
this automaton further so that the commit operation was no longer atomic,
we found that it was difficult to prove that this automaton implemented the
version with the atomic commit, and that it was easier to prove that it imple-
mented NOrecAtomicCommitValidate directly. This problem was with our proof
approach, and would have occurred in a hand proof as well.

Another exception was in the proof that NOrecPaperPseudocode implements
NOrec (the abstract NOrec algorithm, in which some “local” actions happen
atomically together with an action that accesses shared state), which was much
more difficult than we expected: it required great care to correctly express the
state correspondence (i.e., the forward simulation). Again, this problem would
exist for a hand proof as well, but hand proofs are rarely done to that level of
detail, and indeed, we had not initially intended to do so in our verification.

While working on our proofs, we discovered several small mistakes we had
made in specifying the automata involved. Because we had done all the proofs
with PVS, we could simply rerun them after fixing the mistakes, thereby iden-
tifying within minutes which proofs had been broken by the fixes. Of course we
had to construct proofs to address the cases missed due to the fixed mistakes,
but otherwise proofs were typically broken in straightforward and predictable
ways, and could be quickly and easily repaired.



528 M. Lesani, V. Luchangco, and M. Moir

5.3 Formal Proofs Are Still Harder Than Typical Hand Proofs

Machine-checked PVS proofs are still harder to write than hand proofs. First,
there is the difficulty of specifying automata and related properties in the PVS
language. In a hand proof, we use whatever notation and mathematical defi-
nitions are most convenient. However, a formal language is more limited. For
example, the Automaton theory (Figure 1) defines an execution fragment using
a sequence of actions and a sequence of states that is exactly one longer than the
sequence of actions, rather than as an alternating sequence of states and actions,
which is more natural but would require a common supertype for actions and
states that would pollute our proofs with many inconvenient conversions.

Second, in PVS, we need to prove that our definitions are type-correct, even for
cases that are never used. For example, the effect function we use to determine
the poststate of a transition must be well defined even when the precondition does
not hold, even though its value in that case is unimportant. To address this, we
define the poststate to be an arbitrary state in case the precondition does not hold,
requiring extra steps in every proof that deals with the effect function. This issue
is mitigated by the use of automated strategies. This kind of problem seems to be
inherent in formal machine-checked proofs. Although annoying, such issues are
usually manageable once one becomes familiar with PVS.

Third, “obvious” facts that would usually be used implicitly in a hand proof
must be proved and cited. Associativity of concatenation is an example. De-
veloping and verifying richer theories that assert these obvious facts and using
auto-rewrite rules to avoid the need to cite them explicitly helps.

Fourth, we prove results about automata and simulations only when we need
them. This disrupts our work when it happens, but will happen less as our frame-
work matures. For example, in proving that NOrecPaperPseudocode implements
NOrec, we needed an invariant of NOrec that would be somewhat involved to
prove. However, we had already proved (an abstract version of) this invariant for
NOrecAtomicCommitValidate, and refinements from NOrec to NOrecDerived,
and from NOrecDerived to NOrecAtomicCommitValidate.

Rather than proving the invariant directly, we proved two new “metatheo-
rems” for this purpose: one shows that the composition of two refinements is a
refinement, and the other allows us to derive an invariant of one automaton from
an invariant of another automaton and a refinement from the first automaton
to the second. This approach has several advantages: (1) There is no need to
replicate the proof. (2) The proof in the abstract automaton is simpler than
the direct proof in NOrec would have been because the abstract automaton is
simpler than NOrec. (3) We can use these metatheorems in future proofs.

6 Related Work

Cohen et al. [1] verified small instances of some simple TM algorithms directly
using a model checker. This approach cannot verify larger instances, especially
for more complex algorithms, and is limited to finite instances regardless. Others
have attempted to overcome these limitations using more complex techniques.
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Guerraoui et al. [7] showed that TM algorithms satisfying certain structural
properties can be verifed by model checking small instances of them. To our
knowledge, these structural properties have not been formally verified for any
TM algorithm, so this work does not yield fully machine checked proofs. Emmi
et al. [6] used techniques to automatically generate and check parameterized
invariants. However, limitations of their approach forced them to use abstract
models that assume away complex concurrency-related aspects of the practical
TM algorithms considered. Overall, while model checking approaches can be
valuable for testing hypotheses and finding bugs, we do not believe that they
will be sufficient to fully verify practical TM algorithms any time soon.

Cohen et al. [2] used PVS to verify another simple TM algorithm. Like us,
they used PVS to model algorithms and specifications, and used the PVS theo-
rem prover to verify that a TM algorithm satisfies the specification. While this
work is similar in spirit to ours, there are two notable differences. First, we have
used correctness conditions that ensure aborted transactions cannot observe in-
consistent behavior, which is critical in some contexts (see Section 2). Other
than [7], all other work mentioned above use specifications that do not constrain
the behavior of aborted transactions. Second, in contrast to the other work men-
tioned above, we have have modeled a practical TM algorithm in faithful detail,
and have proved it correct in a hierarchical manner that can be leveraged to
significantly reduce the effort required to verify other TM algorithms.

Finally, other frameworks exist for specifying and verifying relationships be-
tween I/O automata in PVS, analogous to the non-TM-specific foundations of
our framework. To our knowledge, the most mature of these is TAME [13]. How-
ever TAME is not generally available, so we developed our own framework so
that we could make it available for others to use and extend.

7 Concluding Remarks

We have built a framework for formally verifying transactional memory (TM)
algorithms using the PVS theorem prover. To demonstrate its utility, we have
used it to complete what we believe is the first fully formal, machine-checked cor-
rectness proof of a practical TM algorithm (NOrec). Our framework is available
so that others may use and extend it, for example to verify other TM algorithms.

We continue to improve our framework, and we plan to extend it with proofs
of additional TM algorithms. We are particularly interested in verifying an
algorithm—such as TL2 [4]—that requires a backward simulation to prove that
it implements TMS2. As discussed in Section 4.2, we expect to be able to prove
that TL2 implements TMS2 by proving that it implements ReservationTMS2,
thus avoiding the need for a backward simulation.
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