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Abstract — Cooperation in learning improves the
speed of convergance and the quality of learning. Spe-
cial treatment is needed when heterogeneous agents co-
operate in learning. It has been discussed that, coop-
eration in learning may cause the learning process not
to converge if heterogeneity is not handled properly. In
this paper, it is assumed that two (or several) hetero-
geneous Q)-learning agents cooperate to learn. The two
hunter agents independently pursue a prey agent on a
two-dimentional lattice; however, the hunters’ visual-
field depths are different. Thus, in order to have success-
ful cooperation, the agents should be able to interprete
other agents’ Q-table. For this purpose, an algorithm
has been proposed and implemented on the pursuit prob-
lem. Two case studies has been introduced and simulated
to show the effectiveness of the proposed algorithm.
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1 Introduction and

Work

Agents can communicate knowledge between each
other and take advices or training commands from peer
agents, expert agents, or even agents with less expert-
ness [1]. Because of having more knowledge acquisi-
tion resources in multi-agent systems, cooperation in
learning can result in higher performance compared to
individual learning. Researchers have shown that im-
provements in learning occures when using cooperative
learning [3] [1]. In the field of multi agent cooper-
ative learning, there are few works on heterogeneous
agents. Lesser et al [4] [5] [6] has used the nego-
tiation method to resolve the conflicts arisen between
some heterogeneous agents in a steam condenser. They
learn to change their organizational roles by negotiat-
ing about problem solving situation and relaxing some
of their soft constraints. In [7] sharing meta information
is used to guide solving the steam condenser problem in
a distributed search space. ILS [2] is a distributed sys-
tem of heterogeneous agents that learns how to control
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a telecommunication network. The proposal made by
each agent is given to TLC (The Learning Controller).
Then, TLC chooses one of these proposals and performs
actions based on that. Afterwards, agents see the effects
of the performed porposal and learn accordingly. [8] in-
troduces an extension of Tan’s paper [3], however, for
heterogeneous agents. Difference in the learning rates
of the Q-learning agents is the cause of heterogeneity
between them. The authors showed that the comple-
mentarity property of their agents made the multi agent
learning process more efficient and robust. ANIMALS
[9] is based on a number of independent, but cooperat-
ing agents each of whose task is managing a traditional
machine learning algorithm (ID3 and LPE). Distributed
learning occures when agents communicate requests for
theories or facts from other agents. Tan showed that,
sharing episodes with an expert agent could improve
the group learning significantly [3]. In [10], the state,
action, and value pairs are communicated among the
agents. No measure is used to evaluate the received rules
by the learners; however, in heterogeneous cooperative
learning, the learner agents need a proper mechanism
to interprete and evaulate other agents’ experiences for
their own use.

In this paper, we look at the heterogeneous cooperaitve-
learning agents problem from another point of view.
Here, our agents are fuzzy Q-learners and they have the
same actions. They also use the same fuzzy sets as their
Q-table states, however, heterogeneity is in their (ac-
tual) perceptual state space. The developed algorithm
allows the agents to successfully cooperate in learning.

2 Cooperative Learning in Het-
erogeneous Fuzzy Q-Learning
Agents

2.1 Fuzzy Discrete Action-Space Q-

Learning
2.1.1 Fuzzy if-then Rule

In this study, each agent uses a one-step fuzzy
Q-learning algorithm. Although we introduce a



specific fuzzy Q-learning algorithm, but the method
can be applied to other forms of FQL as well. We
introduce a fuzzy Q-learning algorithm like the one
addressed in [11], but modified for discrete action-
space. Let us assume that the state space in the
problem domain is described by an n-dimentional
vector * = (x1,%2,...,%,). Also, suppose that there
exists m different discrete actions in the action-space

{ai,as,...,ap}. We use fuzzy if then rules of the
following type :
R;: If 2, is Sj; and ... and =, is S},
then Q] = (lea Qj27 ) Q]m)

j=1,...,N.
where S;; for 1 < i < n is a fuzzy set for a state
variable, ; is a consequent real vector of fuzzy if-then
rule R;j, and N is the number of fuzzy if-then rules.
Assume that @); is the jth row of the Q-table and Q;;
corresponds to the Q-value of action a; in the R; rule’s
corresponding state.

2.1.2 Action Selection

When the learning agent receives a state vector z, the
overall weight of each discrete action (ay) in the action-
space is calculated through fuzzy inference as follows

S Qe (2)
S #ile)

where p;(z) is the compatibility of a state vector « with
the rule R;. For selecting the agent’s final output ac-
tion, we use the Boltzmann selection scheme. Thus, the
probability for selecting action a; is :

Q(ar) 1<k<m. (1)

eQeai)/T
P(al) = W’ =

where T indicates the temprature.

2.1.3 Updating Q-values

Assume that reward r is given to the learning agent
after performing the selected action. The Q-table values
corresponding to each fuzzy if-then rule is updated by :

= 1-a)).Qf +al(r+ V() (3)

where « is a discounting factor, o' is an adaptive learn-
ing rate defined by :

a = a. Mj(l‘) (4)
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where « is a positive constant. Also, V(z') is the maxi-
mum value among @ (ay) values (1 < k < m) in the new
state vector z' resulted from performing the selected ac-
tion, where Q(ay) values are computed again from Eq.
(1) in state vector z'.

2.2 Cooperative Learning Algorithm

The reinforcement learning agents act in two modes
: individual and cooperative learning mode. At first,
all of the agents are in individual learning mode. Af-
ter executing some trials, the learner agent(s), switches
to cooperative learning mode to acquire properly other
agents’ Q-policies into its Q-table. The learner agent go
back then to the individual learning mode and in regu-
lar trial-intervals it switches to the cooperative learning
mode for one trial. Each learning trial starts from a ran-
dom state and ends when the agent reaches the goal.
In the individual learning mode, the agent uses the fuzzy
Q-learning method introduced in the previous subsec-
tion. However, in the cooperative learning mode, the
learner agent uses a weighted average of other agent’s Q-
table values. The learner agent assigns a relative utility
weight (U) to each fuzzy-state (Q-table row) of other
heterogeneous agents with respect to the fuzzy state of
the teacher’s utility for itself and average it with its own
Q-table values. Thus, the ith row’s values (rows indi-
cate states and columns indicate actions) of the resulting
Q-table for the learner agent A; will be :

new __ Zf:l (U(l,j,l) * lek)
e Zﬁ:l U(l,S,'L)

where L is the number of agents and U(l, j,¢) is the util-
ity weight of agent j in relation to agent [ for fuzzy state
i (condition of Rule R;). As mentioned earlier, suppose
that the agents have different perceptual state space
(In our simulation, the hunters have different visual-
field depths). Let us call the intersection of agent [ and
agent j’s perceptual space as Ij;. I;; can be a concrete
or discrete state space. In order to assign an appropri-
ate value to the utility function U, we define U(I, j, ) to
be the maximum compatibility of I;;’s members in rule
Ri :

L 1<k<m (5)

U(l,4,i) = mazzern,; (pi(x)) (6)

In other words, the more the common perceptual space
is compatible with state ¢, the more utility is assigned
for these two agents.

3 Simulation Results

Two case studies have been discussed for acquiring
experimental results approving the proposed method’s
effectiveness. The tasks considered in this study involve
hunter agents seeking to capture randomly-moving prey
agents in a 10 by 10 grid world. On each time step, each
agent has five possible actions to choose from : moving
up, down, left, right or stoping. A prey is captured when
it occupies the same cell as a hunter. Upon capturing,
the hunter involved receive +1 reward whereas Hunters
receive —0.1 reward for each unsuccessful movement.
Each hunter has a limited visual field inside which it
can locate prey accurately. Each hunter’s perception is



represented by (z,.,y,) where z, (y,) is the relative dis-
tance of the prey to the hunter according to its x (y)
axis. We use two hunters, one with visual-field depth of
5 and the other with 2. So, for example the first hunter’s
perceptual state space is {(z,,y,) : =5 < z,,y,. < 5}
and their intersection of perceptual state space will be
described as : {(z,,y,) : =2 < z,,y < 2} . Each of the
z and y axes has five uniform triangular membership
functions. The linguistic labels’(mentioned later) corre-
sponding values are -4, -2, 0, 2 and 4, respectively for
both axes. Thus, the location of the prey may be consid-
ered in more than one state. Also, the hunter Q-table’s
fuzzy state representation will be of type (S;, Sy) where
S, can be a fuzzy linguistic label from {LEFTMOST,
LEFT, MIDDLE, RIGHT, RIGHTMOST} and S, from
{DOWNMOST, DOWN, MIDDLE, UP, UPMOST}.

3.1 Case Study 1 Regular Frequent

Cooperation between Peer Agents

In the first set of simulations, the two hunters learn
individualy at first. however, at various frequencies the
hunter agent with visual depth equal to 5 performs
a wutility wighted policy averaging between the other
hunter’s Q-table and its own one using the proposed
method. The performance results when the learner
hunter averaged the policies at every 10, 20, 50 and
100 trials show firstly, that the learning process in all of
these cases converged quicker than independent learn-
ing hunter (a benefit of cooperation). The other im-
portant result was acquired by simulating the same sce-
nario without the utility weighted method but with an
equal-weighted policy averaging. In other words, we set
U(1,2,i) and U(1,1,3) equal to 1 for the two hunters
(A1, As) and for all 1 < i < N, where N is the number
of all fuzzy states (5 * 5 = 25). The performace com-
parison for learning in independent mode, cooperative
mode with utility weighted avergaing and with equal
weighted avergaing is shown in Fig. 1 and Fig. 2. We
observed that the utility weighted policy avergaing out-
performs the equal-weighted method. Evenmore, the
equal-weighted policy averaging method could not con-
verge to a final value, since the learner hunter used the
other hunter’s Q-table blindly without respect to each
fuzzy state of the other hunter’ utility for itself.

3.2 Case Study 2 : Unfrequent Learning
from an Expert Agent

In the second case, an expert hunter agent with vi-
sual depth equal to 2 has been used for teaching. The
other hunter starts in individual learning mode but per-
forms utility /equal weighted policy averaging at a spe-
cific trial (10, 20, 50, 75, 100 or 200) and then switches
back into the individual learning mode again, and con-
tinues until convergance. It is observed that the util-
ity weighted policy averging converges quicker than the

individual learning policy. So, it outperforms the ind-
pendent learning policy in terms of learning speed. The
performace results are depicted in Figure 3 when the
agents cooperate in leanring at trial 75.

4 Conclusion and Future Work

It is shown that careful cooperation in learning can
have crucial effect on the learning process of a team
of heterogeneous agents. When the agents are hetero-
geneous, cooperative learning can be misleading if the
agents cannot handle this heterogeneity in some ways.
Heterogeneous agents with similar fuzzy state space and
actions but different perceptual state space has been
considered in this research. A utility function helps
the agents interprete and evaluate other agents’ fuzzy
states in order to perform a successful wighted policy
averaging. The results approves the effectiveness of the
proposed cooperation algorithm and also shows the pro-
vided opportunity for cooperative learning in hetero-
geneous multi agent systems. Introducing expertness
measures [1] in such multi agent systems to increase
the cooperative learning performance is the next step of
this research.
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Figure 3: Performance comparison between Unfrequent Weighted Utility Cooperative Learning and Independent
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