
Putting Opacity in its Place

Mohsen Lesani
Computer Science Department

University of California, Los Angeles, CA

Victor Luchangco Mark Moir
Oracle Labs

Burlington, MA, USA

ABSTRACT
We clarify the relationships between Guerraoui and Kapalka’s
opacity correctness condition for Transactional Memory (TM)
algorithms and the TMS1 and TMS2 conditions we have pre-
viously proposed. Using formal, machine checked simulation
proofs constructed using the PVS theorem proving system,
we have shown that all algorithms that satisfy opacity also
satisfy TMS1, and that all algorithms that satisfy TMS2
also satisfy opacity.

1. INTRODUCTION
Transactional memory (TM) [8, 16] provides an abstraction
that allows programmers to express that a block of code
should appear to be executed atomically (either all or none
of its effects should be seen) and in isolation (transactions
should not observe each other’s partial effects). Guaran-
teeing these properties is the responsibility of the system
(some combination of compiler, runtime library, and hard-
ware), not the programmer. Thus, TM aims to bring similar
benefits to shared memory programmers as database trans-
actions have delivered to database programmers for decades.

A dizzying array of TM algorithms have been proposed in
the quest to achieve good performance and scalability. Many
of these algorithms are complex and subtle, particularly be-
cause they execute transactions “optimistically”: they exe-
cute transactions concurrently in the hope that no conflicts
occur, but are prepared to detect conflicts that do occur. If
no conflicts occur, a transaction’s effects can become visible
to others, in which case it is said to commit ; otherwise, con-
flicts may be resolved by ensuring that a transaction’s effects
do not become visible, in which case it is said to abort.

To be useful, it is crucial that TM algorithms correctly pro-
vide the guarantees expected by programmers. Despite all
of the work on many different TM algorithms, relatively lit-
tle attention has been paid to formally specifying what it
means for them to be correct, a critical step on the path to
proving that they are correct.

Different requirements are appropriate for different contexts.
In our work, we have been most interested in specifying
correctness properties for TM runtime libraries to be used
to implement proposed transactional language features for
C++ [1]. In this context, because user code is executed dur-
ing transactions, it is important that no transaction observes
inconsistent behavior even if it ultimately aborts, because
this can cause fatal runtime errors such as divide-by-zero,
as well as infinite loops. For this reason, traditional correct-
ness conditions for database transactions—such as serializ-
ability [13]—are not adequate for this context because they
say nothing about the behavior of transactions that abort.

Guerraoui and Kapalka [6] were the first to attempt to for-
malize a correctness condition—opacity—that requires all
transactions (including active and aborted ones) to observe
consistent behavior. Opacity requires that, at any time,
there is a single execution that is consistent with the behav-
ior observed by all transactions. We and others [4, 9] have
previously observed that this requirement is unnecessarily
restrictive: provided a transaction observes behavior that
is consistent with some correct execution, fatal errors while
executing user code are avoided. In fact, opacity precludes
some eligible implementations such as dependence-aware [2,
15] TM algorithms.

In our previous work [4], we defined a condition TMS1 that
requires the behavior observed by all committed transac-
tions to be justified by a single execution, while allowing ac-
tive and aborted ones to be justified by different executions.
We specified TMS1 precisely as the set of executions exhib-
ited by an I/O automaton, which we defined and modeled
using the PVS langauge [14], allowing for formal, machine-
checked proofs that TM algorithms satisfy TMS1 via well es-
tablished proof methods such as simulation and refinement
[11, 12].

To our knowledge, no rigorous proof that a TM algorithm
satisfies opacity has been developed prior to our work in this
area. In particular, the most commonly used method used
to show that a TM algorithm satisfies opacity depends on
structural properties of the algorithm [5], which have not
been formally shown to hold for any TM algorithm as far as
we know.

We have another paper under submission [10], in which we
present a framework we have developed using the PVS the-
orem prover [14] for proving that TM algorithms (mod-

eled using I/O automata) satisfy various correctness con-
ditions (also modeled using I/O automata). We have used
this framework to construct a formal, machine-checked hi-
erarchical proof that the NOrec TM algorithm [3] satisfies
TMS1. One of the automata in this proof hierarchy models
the TMS2 condition presented in [4]. TMS2 is more re-
strictive than TMS1, but is much closer to the intuition of
many TM algorithms, including NOrec. Thus, it is easier to
prove that NOrec satisfies TMS1 by proving that it satisfies
TMS2, and composing this result with our proof that TMS2
satisfies TMS1.

We have recently reproved the latter result in such a way
that it has a side effect of “putting opacity in its place”.
Specifically, we proved that TMS2 satisfies TMS1 in two
steps by proving that TMS2 satisfies opacity and that opac-
ity satisfies TMS1. This result confirms our previous con-
jecture [4], which is good news for several reasons. First,
algorithms that are proved to satisfy opacity are now known
to also satisfy TMS1. Second, our result paves the way for
rigorous machine-checked proofs that TM algorithms sat-
isfy opacity, and in fact, to our knowledge, our proofs that
NOrec satisfies TMS2 and that TMS2 satisfies opacity to-
gether constitute the first such proof. We also find it com-
forting to confirm our belief that accepting TMS1 as the
correctness condition of choice for a class of TM algorithms
does not require us to preclude any algorithms that satisfy
opacity, which has been widely accepted by the community.

In the remainder of the paper, we introduce the I/O automa-
ton that formally specifies the opacity condition, and give
an overview of the proofs establishing that TMS2 satisfies
opacity and that opacity satisfies TMS1.

2. OPACITY AS AN IOA
Because an I/O automaton cannot generate an execution
without first generating all of its prefixes, the set of execu-
tions of every I/O automaton is naturally prefix-closed. For
the same reason, an implementation that satisfies opacity
cannot exhibit an execution that has a prefix that does not
satisfy opacity. Some definitions of opacity [6] have nonethe-
less allowed such executions. By specifying opacity via an
I/O automaton whose executions are naturally prefix closed,
we model the prefix-closed definition of opacity [7].

Figure 1 presents the automaton we use to precisely spec-
ify Opacity(O), the opacity condition for a TM algorithm
implementing transactions on a generic object O, whose se-
quential semantics are represented by legalO, the set of legal
sequences of operations on O. In this figure, σ|S denotes the
subsequence of the sequence σ containing only elements of
the set S. σ|≤s denotes the prefix of the sequence σ up to
and including the element s.

The actions in the lefthand column of Figure 1 represent in-
vocations by transactions, with the preconditions capturing
well-formedness requirements, and the effects making ap-
propriate state transitions that should be self explanatory.
Two points that may require further explanation concern
the effects of the begint and invt(i) actions. The begint ac-
tion adds a pair (t′, t) to extOrder for every transaction t′

that completed before t began; this records the real-time
ordering between transactions, so that we can enforce opac-

ity’s requirement that the order in which transactions appear
to take effect preserves the real-time order of transactions.
The invt(i) action records t’s invocation, so that—together
with the corresponding response—it can be validated and
recorded when the response occurs.

The actions in the righthand column represent the TM sys-
tem’s responses to transactions’ invocations. Again, the pre-
conditions capture well-formedness requirements that should
be self-explanatory, and the effects make appropriate state
transitions; note that respt(r) records t’s pending operation
together with the response r in t’s operations.

It remains to describe the most interesting and important
parts of the automaton, which are the key to ensuring that
it produces exactly the set of opaque histories.

The preconditions of the respt(r), commitOkt, and abortt ac-
tions each have an additional requirement whose purpose is
to ensure that, after the action takes effect, the history pro-
duced so far by the automaton is opaque. (We also specified
an automaton that expresses opacity in the postconditions
of the actions, which is slightly simpler and more intuitively
maps to opacity, but is less convenient for proving the prop-
erties stated in the next section. We have proved the two
formulations to be equivalent.) Let us first examine the pre-
condition for commitOkt.

The opaqueValidCommit(t) condition requires that there ex-
ists a serialization σ of all transactions that have started,
such that σ respects the real-time order of transactions (de-
noted by ser(ST, extOrder)). It further requires that there is
a set S that contains all transactions that have committed,
some subset of those that are commit-pending (i.e., have in-
voked commit, but have neither committed nor failed yet),
and t itself, as t will have committed after the action takes
effect. Finally, it requires that, for every transaction t′ ∈ S,
the history that is produced by concatenating the opera-
tions performed by each of the transactions in S up to and
including t′ in the order of σ respects the sequential seman-
tics of the implemented object O. We note that, although
all transactions before t′ are considered to be committed
(either they are actually committed, or they are commit-
pending and have been chosen for the set S), t′ itself may
not be committed and may not even have invoked commit.
This captures the requirement that the serialization chosen
also justifies the responses of active transactions.

This captures the same requirements as stated for opacity
in [6]:

A history H is opaque if there exists a sequen-
tial history S equivalent to some history in set
Complete(H), such that (1) S preserves the real-
time order of H, and (2) every transaction Ti ∈ S
is legal in S.

The precondition for the abortt action is identical, except
that it requires that t is not included in the set of transac-
tions chosen, because t will abort if the action takes effect.
The precondition for respt(r) is again similar, but it modifies
the value of opst to include the invocation-response pair that

State variables

extOrder : binary relation on T ; initially ∅
For each t ∈ T :

statust: {notStarted, beginPending, ready, opPending, commitPending,
committed, cancelPending, aborted}; initially notStarted

opst: (IO ×RO)∗ (i.e., a sequence of operations); initially ∅
pendingOpt: IO; initially arbitrary

Actions for each t ∈ T
begint
Pre: statust = notStarted
Eff: extOrder← extOrder ∪ (DT× {t})

statust ← beginPending

beginOkt
Pre: statust = beginPending
Eff: statust ← ready

invt(i), i ∈ IO
Pre: statust = ready
Eff: pendingOpt ← i

statust ← opPending

respt(r), r ∈ RO
Pre: statust = opPending

opaqueValidResp(t, pendingOpt, r)
Eff: statust ← ready

opst ← opst · (pendingOpt, r)

committ
Pre: statust = ready
Eff: statust ← commitPending

commitOkt

Pre: statust = commitPending
opaqueValidCommit(t)

Eff: statust ← committed

cancelt
Pre: statust = ready
Eff: statust ← cancelPending

abortt
Pre: statust ∈ {beginPending, opPending,

commitPending, cancelPending}
opaqueValidFail(t)

Eff: statust ← aborted

Derived state variables, functions and predicates

ST , {t | statust 6= notStarted}

DT , {t | statust ∈ {committed, aborted}}

CT , {t | statust = committed}

CPT , {t | statust = commitPending}

opSeq(σ) , opst1 · opst2 · . . . · opstnwhere σ = t1t2 . . . tn

opaque(σ, S, ops) , ∀t ∈ range(σ) : legalO(opSeq(σ|S∪{t}|≤t , ops))

opaqueValidCommit(t) , ∃σ, S: σ ∈ ser(ST, extOrder) ∧ CT ∪ {t} ⊆ S ⊆ CT ∪ CPT ∧ opaque(σ, S, ops)

opaqueValidFail(t) , ∃σ, S: σ ∈ ser(ST, extOrder) ∧ CT ⊆ S ⊆ CT ∪ CPT \ {t} ∧ opaque(σ, S, ops)

opaqueValidResp(t, i, r) , ∃σ, S: σ ∈ ser(ST, extOrder) ∧ CT ⊆ S ⊆ CT ∪ CPT ∧ opaque(σ, S, ops[opst := opst · (i, r)])

Figure 1: Opacity(O) Automaton.

will become part of the history if the action takes effect, so
must be included in the evaluation of whether the history
will be opaque after the action takes effect.

3. OVERVIEW OF PROOFS
In this short paper, we describe the proofs that “put opacity
in its place” only at a high level. We plan to release our
proof framework, which includes these proofs, in the near
future, hopefully in conjunction with the above-mentioned
paper about the framework [10]. At that point, interested
readers will be able to view the definitions and properties
used in our proof in precise detail, and will even be able to
step interactively through our proofs using PVS.

In [4], we specified our TMS1 condition via an automaton
TMS1(O) that captures the allowed behavior of a TM al-
gorithm implementing transactions on a generic object O.
However, because TMS2 is intended to be closer to the intu-
ition of common TM algorithms that typically implement a
shared memory object, we specified TMS2 directly for such
objects, via a TMS2(init) automaton (where init is a pred-
icate that is assumed to be satisfied by the initial state of
the shared memory object).

Using our framework, we have formally specified and me-
chanically proved the following two theorems, where A ≤F

B denotes that there is a forward simulation from automa-
ton A to automaton B.

Theorem 1 Opacity(O) ≤F TMS1(O).

Theorem 2 TMS2(init) ≤F Opacity(Mem(init)).

The automaton Opacity(Mem(init)) is Opacity(O) instanti-
ated with a read-write memory object whose initial state
satisfies the init predicate.

The most interesting and challenging part of proving these
forward simulations is showing that, when the precondition
of the respt(r), commitOkt, or abortt action holds in a state
of the more concrete automaton (e.g., opacity(O) in the case
of Theorem 1), then it also holds in any state of the more ab-
stract automaton (TMS1(O) for Theorem 1) that is related
by the simulation relation.

TMS2(init) is expressed using a sequence of memory states
[4], and preconditions for the above-mentioned actions are
stated in terms of validity with respect to that sequence.
For example, reads performed by writing transactions that
commit successfully must be consistent with the last mem-
ory state in the sequence at the time they take effect, while
reads of read-only transactions are allowed to be consistent
with any memory state in the sequence that was the last one
at any point during the read-only transaction’s execution.
As a result, there is somewhat of an intuitive gap between
the preconditions in the commit actions of TMS2(init) and
Opacity(Mem(init)).

We addressed this issue by performing the proof for Theo-
rem 2 in two steps. We defined another automaton
TxnOrdTMS2(init), which records the initial state of the
memory and a sequence of committed writer transactions (in
the order that they commit) instead of the sequence of mem-
ory states that those transactions write. We then proved the
following two lemmas, which together imply Theorem 2.

Lemma 1 TMS2(init) ≤F TxnOrdTMS2(init).

Lemma 2 TxnOrdTMS2(init) ≤F Opacity(Mem(init)).

4. REFERENCES
[1] Ali-Reza Adl-Tabatabai and Tatiana Shpeisman (eds).

Draft specification of transactional language
constructs for C++, Version 1.0.
http://research.sun.com/scalable/pubs/C++-
transactional-constructs-1.0.pdf, August
2009.

[2] Utku Aydonat and Tarek Abdelrahman. Serializability
of transactions in software transactional memory. In
TRANSACT ’08: 3rd Workshop on Transactional
Computing, feb 2008.

[3] Luke Dalessandro, Michael F. Spear, and Michael L.
Scott. NOrec: Streamlining STM by abolishing
ownership records. In PPoPP’10: Proceedings of the
15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, January 2010.

[4] Simon Doherty, Lindsay Groves, Victor Luchangco,
and Mark Moir. Towards formally specifying and
verifying transactional memory. Formal Aspects of
Computing, 2012.

[5] Rachid Guerraoui, Thomas A. Henzinger, Barbara
Jobstmann, and Vasu Singh. Model checking
transactional memories. In PLDI ’08: Proceedings of
the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 372–382,
2008.

[6] Rachid Guerraoui and Michal Kapalka. On the
correctness of transactional memory. In PPoPP’08:
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pages 175–184, 2008.

[7] Rachid Guerraoui and Michal Kapalka. Principles of
Transactional Memory. Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool
Publishers, 2010.

[8] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International
Symposium on Computer Architecture, 1993.

[9] Damien Imbs, José Ramon de Mendivil, and Michel
Raynal. Brief announcement: virtual world
consistency: a new condition for stm systems. In
Proceedings of the 28th ACM symposium on Principles
of distributed computing, PODC ’09, pages 280–281,
New York, NY, USA, 2009. ACM.

[10] Mohsen Lesani, Victor Luchangco, and Mark Moir. A
framework for formally specifying and verifying the
correctness of transactional memory algorithms. under
submission, March 2012.

[11] N. Lynch and M. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of the
Sixth Annual ACM Symposium on Principles of
Distributed Computing, pages 137–151, August 1987.

[12] Nancy Lynch and Frits Vaandrager. Forward and
backward simulations, I: Untimed systems.
Information and Computation, 121(2):214–233,
September 1995.

[13] Christos H. Papadimitriou. The serializability of
concurrent database updates. J. ACM, 26:631–653,
October 1979.

[14] The PVS Specification and Verification System,
http://pvs.csl.sri.com/.

[15] Hany E. Ramadan, Christopher J. Rossbach, and
Emmett Witchel. Dependence-aware transactional
memory for increased concurrency. In Proceedings of
the 41st annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 41, pages 246–257,
Washington, DC, USA, 2008. IEEE Computer Society.

[16] Nir Shavit and Dan Touitou. Software transactional
memory. In ACM Symposium on Principles of
Distributed Computing, pages 204–213. ACM Press,
1995.

