
Bayanihan Computing .NET: Grid Computing with XML Web Services

Luis F. G. Sarmenta∗,
Sandra Jean V. Chua, Paul Echevarria, Jose Mari Mendoza, Rene-Russelle Santos, Stanley Tan,

Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
and Richard P. Lozada

Microsoft Philippines, Makati City, Philippines

1 Introduction

XML web services are a new technology that promises
greater ease-of-use and interoperability than previous dis-
tributed computing technologies such as DCOM, CORBA,
and RMI, through the use of industry-standard XML proto-
cols such as SOAP, WSDL, and UDDI [1]. While key in-
dustry players such as Microsoft, IBM, and Sun are already
aggressively promoting XML web services as a way to im-
prove business systems, we propose and demonstrate a new
idea: that of using XML web services not only for business
systems but forgrid computingsystems as well. In this paper,
we present Bayanihan Computing .NET, a generic grid com-
puting framework based on Microsoft .NET [1] that uses web
services to: (1) harness computing resources throughvolun-
teer computing, and (2) make these resources easily accessi-
ble through easy-to-use and interoperablecomputational web
services. In doing so, we achieve the two most fundamental
goals in grid computing, and demonstrate the great potential
of using web services for grid computing.

2 Volunteer Computing

The idea behindvolunteer computing[2] is to allow or-
dinary users on the Internet to volunteer their idle comput-
ers’ processing power towards solving computationally in-
tensive tasks. Highly popular projects such as SETI@home
and others have shown how volunteer computing can lead to
supercomputer-like performance at very low costs. Bayani-
han Computing .NET implements volunteer computing by
providing aPoolServiceweb service as shown in Fig. 1. This
web service allowscomputational clientsto create pools of
tasks to be computed, andvolunteers(or workers) to re-
trieve these tasks, perform them, and return their results. The
PoolService is generic – that is, authorized computational
clients can upload code for different applications in the form
of anassembly(i.e., a DLL file), which is then automatically

∗For more information, emaillfgs @ alum.mit.edu or visit
http://bayanihancomputing.net/

Computation
Client

Volunteer
Workers

Pool
Service

Computation
Client

TaskPoolsaddTask()
getResult()

getTask()

putResult()

createPool()

deletePool()

Figure 1. Volunteer computing with web services.

downloaded by the workers as necessary. (Security mecha-
nisms in Microsoft’s .NET framework allow the worker ma-
chines to safely execute these assemblies.) Thus, unlike
application-specific systems such as SETI@home, Bayani-
han Computing .NET can be used for different applications.
In fact, the same PoolService can be used by different clients
at the same time, as shown in Fig. 1.

3 Computational Web Services

The idea behindcomputational web servicesis to: (1) of-
fer simple web methods that computation clients can call to
perform application-specific computations on their own data,
and then (2) use a parallel computing resourcebehind-the-
scenesto perform the computation much faster than possi-
ble on a single machine. Figure 2 shows an example of how
a computational web service can hide a volunteer comput-
ing system. Here, the computational client does not connect
directly to the PoolService, but instead connects to a Man-
delService web service. In this way, we shield the client’s
programmer from the complexity of parallelizing the render-
ing task. As shown in Fig. 3, all the client has to do is call
theRender() web method and receive the finished bitmap.
Behind-the-scenes, it is the MandelService that parallelizes
the computation and lets it run on the volunteer computing
system by communicating with the PoolService accordingly.

1

Computation
Client

Workers

Pool
Service

Mandel
Service

Computation
Client

Render(…)

Render(…)

Bitmap

Bitmap

addTask()
getResult()

createPool()

deletePool()

Figure 2. Computational web services hide parallel com-

puting resources behind easy-to-use web services.

MandelWebService mandelService
= new MandelWebService();

byte[][] result
= mandelService.Render(

2, 2, -2, -2, 400, 400, 2048);
displayResult(result);

Figure 3. C# code for using the Mandelbrot web service.

In addition to making programming easier, computational
web services also make it possible to have very “thin” clients.
In fact, any device that can access web services – including
handheld PDAs, as shown in Fig. 2, and potentially even cel-
lular phones – can use these computational web services. In
short, computational web services can, quite literally, bring
supercomputing power to thehandsof ordinary users.

Furthermore, computational web services are not limited
to volunteer computing systems. With the appropriate back-
ends, they can hideany high-performance processing re-
source in general – whether it be a supercomputer, a cluster,
or even the Grid as a whole (including other computational
web services), as shown in Fig. 4. By providing a simple in-
terface to the programmer, computational web services make
it possible to achieve one of the key goals in grid computing
– to allow users to get computing power as easily as one can
get electrical power through a wall socket.

Workers
Pool Service CWS

CWS

CWS

Super
Computer

CWS

More Grid
Resources

Computation
Client

Computation
Client

Figure 4. A grid of computational web services (CWS).

4 Results, Related Work, and Conclusion

Currently, we have used Bayanihan Computing .NET to
implement several simple volunteer computing applications,
including a Mandelbrot set application, a ray-tracing applica-
tion (based on Intel’s demo [3]), and a travelling salesperson
(TSP) application. We have also implemented computational
web services for the Mandelbrot and TSP applications, and
have been able to use these with different kinds of compu-
tational clients including a .NET application running on a
PC, a non-.NET Java applet, and a “grid portal” that can be
accessed as a web page on any device with a web browser,
including PDAs and cellular phones.

As far as we know, Bayanihan Computing .NET, devel-
oped in September 2001, is the first generic system for vol-
unteer computing and grid computing that uses web services.
Intel has an earlier peer-to-peer cycle sharing demo [3], but
it is not generic, and does not allow users to easily volun-
teer their machines. As far as we know, we are also the first
to propose and to implement the idea ofcomputational web
services. Earlier work exists ongrid portals that allow end-
users to submit jobs to the Grid by filling up a form on a web
page [4], but these are not as flexible and powerful as com-
putational web services, which can be called like methods in
other programs, and can thus be used not only by end-users,
but by grid service providers as well, as shown in Fig. 4.

Our results are just the beginning of much possible re-
search in this area. There are many areas in which grid com-
puting and web services can be used together. Very recently,
the Globus group has also started studying ways to integrate
web services and grid computing [5]. Meanwhile, we plan
to continue developing Bayanihan Computing .NET as well
by exploring issues such as authentication, authorization, re-
source discovery, and resource trading, and we hope that our
results encourage further research by other as well.

References

[1] Microsoft Corporation. XML and .NET White Papers.
http://www.microsoft.com/

serviceproviders/whitepapers/xml.asp

[2] L.F.G. Sarmenta,Volunteer Computing, Ph.D. thesis.
Massachusetts Institute of Technology, March 2001.
http://www.cag.lcs.mit.edu/bayanihan/

[3] B. Wilkerson. Grid Computing Using .NET Web Services
and UDDI. Sept. 2001
http://www.intel.com/ids/dotnet

[4] M. Thomas, et al. GridPort Launches Computational Science
Applications on the Web. NPACI. April 2000.http://

www.npaci.edu/envision/v16.2/gridport.html

[5] I. Foster, et al. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration.
Draft, Feb. 2002.http://www.globus.org/

2

