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Figure 1: Adaptive color display with our prototype projector (left). The device is a Texas Instruments LightCrafter with its original light
engine (three LEDs) replaced by an external, fiber-coupled light engine with six LEDs. The total addressable gamut of the display spans
most of the CIE xy space, but the refresh rate of the device only allows for up to four primaries to be used for any image. We develop a
perceptually-driven algorithmic framework that computes optimal content-adaptive primaries (each constructed as a linear combination of
the LEDs) and corresponding pixel values, as measured in a perceptually uniform space (e.g. CIE Lab). An example hyperspectral image
is shown processed for a fixed sRGB gamut (top row) and with our adaptive display system for three (center row) and four (bottom row)
primaries. For each case, we show the output image clamped to sRGB along with the color-coded image channels (center left), the error
maps in CIE Lab space (center columns), and the resulting gamuts with original colors that are within the optimized gamut in green and
those that needed to be gamut mapped in red (right). The total addressable gamut of the light engine, of which the optimal gamuts are a
subset, is indicated by a blue dashed line.

Abstract

Fundamental display characteristics are constantly being improved,
especially resolution, dynamic range, and color reproduction. How-
ever, whereas high resolution and high-dynamic range displays
have matured as a technology, it remains largely unclear how to
extend the color gamut of a display without either sacrificing light
throughput or making other tradeoffs. In this paper, we advo-
cate for adaptive color display; with hardware implementations that
allow for color primaries to be dynamically chosen, an optimal
gamut and corresponding pixel states can be computed in a content-
adaptive and user-centric manner. We build a flexible gamut projec-
tor and develop a perceptually-driven optimization framework that
robustly factors a wide color gamut target image into a set of time-
multiplexed primaries and corresponding pixel values. We demon-
strate that adaptive primary selection has many benefits over fixed
gamut selection and show that our algorithm for joint primary se-
lection and gamut mapping performs better than existing methods.
Finally, we evaluate the proposed computational display system ex-
tensively in simulation and, via photographs and user experiments,
with a prototype adaptive color projector.

CR Categories: B.4.2 [INPUT/OUTPUT AND DATA COMMU-
NICATIONS]: Input/Output Devices—Image display; I.3.3 [COM-
PUTER GRAPHICS]: Picture/Image Generation—Display Algo-
rithms

Keywords: computational displays, computational illumination

1 Introduction

Display resolution standards are moving from ultra high definition
to 8K and beyond within the next few years. It is widely antici-

pated, however, that a higher resolution alone will not significantly
enhance user experiences unless the dynamic range and color gamut
of consumer devices are also improved. High dynamic range dis-
play is reliably achieved via dual modulation [Seetzen et al. 2004]
and is, after a decade of research and development, entering the
market. One of the biggest remaining challenges in display design
is that of improving the color gamut while maintaining high light
throughput and a sufficient bit depth to encode high-quality images.

Whereas conventional display design strategies determine the trade-
offs between color fidelity, brightness, resolution, bit depth, and
other characteristics of a device before it is actually being fabri-
cated and shipped, we advocate for a fundamentally different strat-
egy: adaptive color display. Through the co-design of display op-
tics, electronics, and algorithmic processing, we demonstrate how
optimal tradeoffs can be made dynamically in a content adaptive
and user centric manner. For example, the spectral power distri-
butions observed in many natural images often do not contain all
perceivable colors at once – adapting the display gamut to a spe-
cific target image or video clip allows for an optimal tradeoff be-
tween brightness and color fidelity to me made. Further, some wide
gamut footage may be impossible to be displayed accurately, as
it may contain a wide range of colors distributed over the entire
perceivable color space. In such cases, the perceptually closest ap-
proximation of the target should be presented. Human color vision,
however, is a complex and nonlinear process; finding a perceptu-
ally optimal solution for the color reproduction problem is there-
fore challenging. Figures 1 and 2 demonstrate the concept of the
proposed approach to adaptive color reproduction for different hy-
perspectral images processed for a three- and a four-primary display
with fixed and adaptive gamuts.

With this work, we propose a computational display system that fa-
cilitates adaptive color display. The core contribution of this paper
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Figure 2: Optimal color reproduction is content-dependent. For
two multispectral images (top and bottom rows), the perceptually
optimized three- and four-primary gamuts are computed with our
algorithm (red traces), and compared with sRGB (green trace).
The optimized gamuts are adaptively defined using primaries that
are each a linear combination of at least six LED sources, and are
slightly different for each image and also for each display. Notably,
in the four-primary case, while the bottom image requires 4 distinct
primaries, the top image is well-approximated by 3 primaries and
the 4th primary is automatically chosen as a bright color.

is a perceptually-driven factorization algorithm that decomposes a
target wide-gamut image into a set of adaptive primaries and corre-
sponding pixel values. The classical problems of primary selection
and gamut mapping are thus solved simultaneously and they are ro-
bustly optimized in a perceptually uniform color space. We evalu-
ate this algorithm extensively with a custom-built flexible-primary
projector. The projector is a modified, low-cost digital light pro-
cessing (DLP) device offered by Texas Instruments (see Fig. 1).
We replace its three light emitting diodes (LEDs) with an external,
fiber-coupled light engine providing six distinct primaries covering
most of the perceivable colors. As other display systems utilize
time-division-multiplexing of the multiple primaries with a single
spatial light modulator, our projector is limited to pixel switching
speeds of 180-240 grayscale images (8-bit) per second, so given a
60 Hz human flicker fusion threshold, only 3-4 primaries can be
supported for any target image. The proposed primary selection al-
gorithm does not simply select a subset of the available LEDs but
it computes the perceptually-optimal choice of primaries, each of
which is a different linear combination of all available LEDs. It is
important to note that this choice of optimized primaries results in
significantly better color reproduction than simply selecting a few
of the LEDs (see Section 6).

One of the main benefits of the proposed display system is its flex-
ibility. Several different display modes are supported by the same
device—without mechanically moving parts—simply by switching
the software driver. For the proposed display, one could imagine
a mode that supports very bright monochrome images, for exam-
ple text or technical slides, whereas another display mode would
support extremely high color fidelity at a lower peak brightness us-
ing our algorithm; optimal tradeoffs between brightness and color
fidelity are dynamically made by the software. When presenting
legacy sRGB content, the device is operated in a conventional three-
primary mode without any adjustments. Therefore, the display
hardware is flexible enough to support existing content without any
tradeoffs while also supporting emerging color spaces.

Overview of Limitations Multi-primary displays have been ex-
plored in previous work (see Sec. 2); we built a prototype projec-
tor that is based on previously reported optical designs to evaluate
our algorithm. The prototype is currently limited to a maximum of
3-4 adaptive primaries via field-sequential color display. The dig-
ital micromirror device (DMD) allows for several bit planes to be
presented at quick succession that together form an image. Stream-
ing, and therefore video, is not supported by the DMD. With this
limitation in mind, we did not attempt to optimize the runtime of
the algorithm’s implementation. Currently, our unoptimized Mat-
lab implementation takes a few minutes (for lower resolutions) up
to a few hours (for higher resolution) to process each target frame
but there is strong evidence that it could be implemented in real
time. Finally, color difference metrics are complex, nonlinear, and
oftentimes not differentiable, making it difficult to optimize color
reproduction for some metrics. We demonstrate robust minimiza-
tions of the ∆E76 and ∆E94 metrics [Witt 2007] but found that
CIEDE2000 [CIE 2001], one of the most accurate metrics, is unfor-
tunately too discontinuous to be robustly optimized. Nevertheless,
we show that images optimized for ∆E inherently also minimize
errors measured with CIEDE2000 and other metrics that also take
spatial image variation into account. The latter would be the most
appropriate metrics for the discussed application, but also severely
increase the computational burden compared to ∆E. Eventually,
we hope that our work stimulates follow-on research in the color
science community to develop accurate and computationally effi-
cient color difference metrics that are differentiable and possibly
even convex, such that they become suitable for content optimiza-
tion rather than only for evaluation.

2 Related Work

Computational Displays Over the last decades, projector-
camera systems and multi-projector displays have been thoroughly
explored [Majumder and Brown 2007]. Today, computational
display approaches extend virtually every characteristic of dis-
plays, including their dynamic range [Seetzen et al. 2004], reso-
lution [Didyk et al. 2010; Sajadi et al. 2012; Berthouzoz and Fattal
2012; Hirsch et al. 2014; Heide et al. 2014], 3D capabilities [Wet-
zstein et al. 2011; Wetzstein et al. 2012], and refresh rate [Heide
et al. 2014]. A comprehensive review of computational displays
can be found in the recent survey by Masia et al. [2013]. Our work
builds on recent proposals on factored displays [Pauca et al. 2006;
Ben-Chorin and Eliav 2007; Lanman et al. 2010; Wetzstein et al.
2012]. In contrast to these approaches, we explore perceptually-
driven factorization algorithms for adaptive color display.

Spectral Displays and Algorithms Spectral displays can
roughly be classified as multi-primary displays [Teragawa et al.
2012] and hyperspectral displays [Rice et al. 2007; Mohan et al.
2008]. Multi-primary displays usually aim for a wide color gamut,
as perceived by a human observer. Related algorithmic problems
include selecting the optimal color primaries [Ben-Chorin and Eliav
2007; Long and Fairchild 2011; Li et al. 2015] as well as gamut
mapping (e.g., [Banterle et al. 2011]), where pixels of an image
are processed to fit within the fixed gamut provided by a display.
Gamut expansion can also help to optimize image presentation with
large-gamut displays [Majumder et al. 2010]. Hyperspectral dis-
plays have the potential to synthesize more complex spectral power
distributions than multi-primary displays. Similar to the latter, ap-
plications of hyperspectral displays include extended color gamuts,
but in addition these types of devices are also useful for hyperspec-
tral imaging, remote sensing, reflectance estimation, and medical
imaging [Rice et al. 2012].

In this paper, we target content-adaptive color display with multi-



primary displays. We build a custom, multi-primary projector that
can dynamically address a large portion of the CIE xy chromatic-
ity diagram. This design is based on similar devices described in
the literature (e.g., [Ajito et al. 2000]) but compact and easily built
by modifying off-the-shelf hardware. The proposed perceptually-
driven algorithm for joint primary selection and gamut mapping is
demonstrated with our prototype but also applicable to other dis-
plays. For example, we demonstrate a custom-built hyperspectral
projection system that is closely related to the design introduced
by Rice et al. [2007] and later used by Mohan et al. [2008] in the
supplemental document. Hyperspectral projectors could achieve si-
multaneous color and spectral match of displayed target content,
which may be beneficial for some applications [Li et al. 2015].

Our work builds on decades of research in color science; not all
of this work can be cited. However, in the last few years a trend
towards adaptive color processing is observable. For example, non-
negative matrix factorization (NMF) techniques for spectral display
have recently been proposed in CIE XYZ space [Pauca et al. 2006;
Ben-Chorin and Eliav 2007]. Similar to our algorithm, these ap-
proaches solve the joint problem of primary selection and gamut
mapping. However, we show that our technique, dubbed percep-
tual nonnegative matrix factorization (PNMF), outperforms NMF-
based techniques in all common perceptual quality metrics. We are
the first to demonstrate both NMF and PNMF with a flexible, multi-
primary projector; previous work was only simulated. Rodriguez et
al. [2012] recently proposed to determine an optimal gamut that
maximizes total gamut volume in CIE Luv space. Here, we argue
that there is no single optimal gamut in general, and that the best
gamut depends on the content to be displayed (see Fig. 2); we offer
an algorithm to compute this gamut adaptively, implement several
flexible hardware designs to test the performance of this adaptive
algorithm, solve the joint problem of primary selection and gamut
mapping, and discuss practical applications.

Compressive Spectral Imaging Over the last few years, sev-
eral compressive hyperspectral imaging systems have been pro-
posed [Gehm et al. 2007; Wagadarikar et al. 2009; Lin et al. 2014].
The goal of these approaches is to recover a 3D hyperspectral im-
age from a coded 2D projection via sparsity-constrained optimiza-
tion. Compressive or factored displays on the other hand usually
employ some form of low-rank factorization of high-dimensional
visual data into the non-negative pixel states of the display. Al-
though both types of devices differ in the employed algorithms and
hardware, fundamentally they both exploit compressibility of visual
data; compressive displays can be interpreted as the dual of com-
pressive cameras. Content-adaptive multi-primary cameras have
also been explored and provide benefits for color reproduction in
low-light scenarios [Sajadi et al. 2011].

3 Factored Spectral Projection

3.1 Image Formation

Many projectors, in particular those based on digital light process-
ing (DLP) technology, synthesize color images by multiplexing
each channel in time (field sequential color). This image forma-
tion can be expressed as an additive superposition:

i (x, λ) =

K∑
k=1

ck (λ) · hk (x) , (1)

where i is the emitted spectral power distribution and ck are the
temporally-multiplexed primaries. These can, for example, physi-
cally be achieved with spectral filters mounted on a quickly rotating
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Figure 3: Illustration of multi-primary projection system. A digi-
tal micromirror device (DMD) is synchronized with a fiber-coupled
light engine. The latter comprises six LEDs that can be individually
controlled at high speed.

color wheel in front of a broadband light source. The human visual
system averages stimuli presented at refresh rates higher than the
critical flicker fusion threshold [Kelly 1979], thus Equation 1 as-
sumes that the refresh rate of the display is K times higher than the
critical flicker fusion threshold.

The proposed setup is illustrated in Figure 3 and comprises a stan-
dard digital micromirror device (DMD) that rapidly changes pixel
states as outlined by Equation 1. Instead of sequentially cycling
through the primaries, as done in all conventional time-multiplexed
color displays, our light engine allows each color primary to be
dynamically chosen as a weighted combination of multiple high-
power light emitting diodes (LEDs):

ck (λ) =

M∑
m=1

g
(m)
k ψ(m) (λ) . (2)

Here, the coefficients g(m)
k , m = 1 . . .M , represent the weights of

M individual LEDs at some time k and ψ(m) (λ) are the emission
spectra of the individual LEDs. Combining Equations 1 and 2 and
discretizing them yields

I = ΨGHT , (3)

where the matrix Ψ ∈ RL×M encodes the discrete spectral basis
functions in its columns, G ∈ RM×K are the temporally-varying
weights of the LEDs, and H ∈ RN×K represents the pixel states of
a two-dimensional spatial light modulator, such as our DMD, with
a total of N pixels. Both the DMD and the LEDs are electronically
synchronized and run at a framerate that is K times higher than the
critical flicker fusion threshold.

To model the color image perceived by a human observer, we need
to take the spectral sensitivity of the receptor cells in the retina into
account. Although these slightly vary from person to person, a
“standard” observer was characterized by the International Com-
mission on Illumination (CIE) [CIE 1932]. Modeling the spectral
sensitivity of the three cone types as p(x,y,z)(λ), a spectral power
distribution is converted into a perceived color image as

i(x,y,z) (x) =

∫
p(x,y,z) (λ) i (x, λ) dλ. (4)

Here, i(x,y,z) models the spectral power distribution in CIE XYZ
color space, representing a color image perceived by the standard



observer. Combining Equations 3 and 4 allows us to write the dis-
cretized formation of a perceived color image as

I(xyz) = P(xyz)ΨGHT = PGHT , (5)

where the matrix P(xyz) contains discretized versions of
p(x,y,z)(λ) in its three rows and P(xyz)Ψ = P ∈ R3×M projects
a spectral power distribution into CIE XYZ space.

3.2 Factored Image Generation

Similar to [Pauca et al. 2006] and [Ben-Chorin and Eliav 2007],
we build on nonnegative matrix factorization to decompose a target
image into a set of adaptive color primaries and corresponding pixel
values. The former problem is commonly referred to as primary
selection and the latter as gamut mapping. Together, these problems
can be formulated as a least-squares problem:

arg min
{G,H}

∥∥∥βI(xyz) −PGHT
∥∥∥2
2

subject to 0 ≤ Gik,Hjk ≤ 1, ∀i, j, k
(6)

Non-negativity constraints enforce physically-feasible pixel states.
Equation 6 can be solved iteratively, for example by applying mul-
tiplicative update rules [Lee and Seung 1999] in an alternating man-
ner:

H←H◦
(PG)T βI(xyz)

(PG)T(PGHT )+ε
, G←G◦

PTβI(xyz)H

PT (PGHT ) HT +ε
.

(7)
A small value ε is often added to the denominator to prevent di-
vision by zero. The scalar β ∈ [0, 1] can be useful for digitally
trading image brightness for color accuracy. The operators ◦ and //
denote element-wise multiplication and division, respectively.

Solving the joint problem of primary selection and gamut mapping
in CIE XYZ space was proposed in prior work [Pauca et al. 2006;
Ben-Chorin and Eliav 2007]. The goal of this paper, on the other
hand, is to compute the closest perceptual approximation of the tar-
get image. Unfortunately, an objective function using a CIE XYZ
error metric is ill-formulated to achieve this goal because the Eu-
clidean distances between XYZ coordinates are not perceptually
uniform [MacAdam 1942]. A low `2 error may not be a good per-
ceptual approximation.

4 Towards Perceptually-optimal Factored
Spectral Projection

To overcome limitations of previously-proposed spectral factoriza-
tion methods, as discussed in the previous section, we propose a for-
mulation and practical solutions to solving the factorization prob-
lem in a perceptually relevant space. One such color space is CIE
Lab, because distances are—at least locally—perceptually linear.
This space specifically separates lightness (L) from chromaticity
(a,b). A simple nonlinear transformation can be applied to convert
from CIE XYZ to CIE Lab:

L? = 116φ (Y/Wy)− 16

a? = 500 (φ (X/Wx)− φ (Y/Wy)) (8)

b? = 200 (φ (Y/Wy)− φ (Z/Wz))

where φ : R+ → R+ is

φ(x) =

{
x1/3 if x > ( 6

29
)3

1
3

(
29
6

)2
x+ 4

29
otherwise

(9)

Following the ICC standard, a reference white of Wx = 0.9642,
Wy = 1.0000, Wz = 0.8249 is often used in practice (e.g., for
high-definition television), although as described in section 4, we
used the calibrated white point of the light engine. An objective
function for the spectral factorization problem can be formulated in
this perceptually linear space such that a least squared error solu-
tion will more closely resemble the best perceptual approximation
of a target image. To this end, we write the mapping from CIE XYZ
to Lab space as a function ϕ : R3×N → R3×N that applies Equa-
tions 8 and 9 to each of N image pixels. The objective function is
then

minimize
{G,H}

∥∥∥βI(lab) − ϕ
(
PGHT

)∥∥∥2
F

subject to 0 ≤ Gik,Hjk ≤ 1, ∀i, j, k
(10)

We call this perceptual nonnegative matrix factorization (PNMF).
PNMF is composed of two subproblems: a bi-convex factorization
and the nonlinear term modeling a transformation into the percep-
tually uniform space.

Note that the squared Frobenius norm in Equation 10 divided by
the number of pixels N corresponds to the color difference metric
∆E76 averaged over all image pixels. While this is one of the most
intuitive, perceptually-motivated color spaces, it is actually neither
perfectly perceptually linear nor is it the most appropriate choice for
comparing spatially-varying color images. Metrics such as ∆E94

and CIEDE2000 model perceptual linearity more accurately and
spatial extensions to these spaces (e.g., [Zhang and Wandell 1996])
model the complex interplay of color and spatial image frequencies
more appropriately. Unfortunately, CIEDE2000 is too discontinu-
ous to be robustly minimized with any of the evaluated optimization
schemes (see Supp. Sec. C.3) and s-CIE Lab would drastically in-
crease computational cost. Therefore, we optimize Equation 10 for
∆E94 in practice (see derivation in Suppl. Sec. C.2) but demon-
strate in the following sections that this approach inherently also
drives down all of the more sophisticated color difference metrics.

An obvious choice for solving Equation 10 would be to apply a
nonlinear least squares solver, such as Levenberg-Marquardt (LM).
We implemented LM and observe slow and unpredictable conver-
gence in practice (see Supplement). The quality of the solution de-
pends very much on the initial guesses of G and H and the runtime
is extremely long for high-resolution images. As a practical alter-
native, we propose to split the problem into multiple subproblems
that each can be solved very efficiently. This strategy has recently
gained a lot of traction in the optimization community; for exam-
ple, the alternating direction method of multipliers (ADMM, [Boyd
et al. 2011]) is a method that can be applied to solve such problems.
In ADMM, Equation 10 is formulated as

minimize
{G,H}

∥∥∥βI(lab) − ϕ (X)
∥∥∥2
F

subject to X−PGHT = 0
0 ≤ Gik,Hjk ≤ 1, ∀i, j, k

(11)

where X ∈ R3×N is an intermediate variable. Following the gen-
eral ADMM algorithm design strategy, we derive the Augmented
Lagrangian of this problem and derive a sequence of simple update
rules as

X←arg min
{X}

∥∥∥βI(lab) − ϕ (X)
∥∥∥2
F

+
ρ

2

∥∥∥X−PGHT + U
∥∥∥2
F

{G,H} ←arg min
{G,H}

ρ

2

∥∥∥X−PGHT + U
∥∥∥2
F

U← U + X−PGHT (12)



4.1 Updating X with ∆E76

The first update in Equation 12 is independent for each pixel. Al-
though being a small problem, it is still nonlinear and non-convex.
We use Newton’s method to solve it. To this end, the Jacobian ma-
trix for each pixel j = 1 . . . N is formulated as

JXj=



0 −116φ′(X
(y)
j ,Wy) 0

−500φ′(X
(x)
j ,Wx) 500φ′(X

(y)
j ,Wy) 0

0 −200φ′(X
(y)
j ,Wy) 200φ′(X

(z)
j ,Wz)√

ρ/2 0 0

0
√
ρ/2 0

0 0
√
ρ/2


(13)

where

φ′ (x,w) =

{
1

3w1/3 x
−2/3 if x

w
> ( 6

29
)3

1
3w

(
29
6

)2 otherwise
(14)

Newton’s method is an iteration scheme that updates Xj as

Xj ← Xj −
(
JTXj

JXj

)−1

JTXj
f (Xj) , (15)

where f : R3 → R is the objective function evaluating the first
term of Equation 12 for a single pixel j. In practice, we compute
all results in this paper with the slightly more sophisticated ∆E94

metric instead of ∆E76. A detailed derivation of the corresponding
X, which builds on Equation 13, can be found in Suppl. Sec. C.2.

4.2 Updating G and H

The factor matrices can be updated using conventional nonnegative
matrix factorization [Lee and Seung 1999] by updating G and H
in an alternating manner. We found that the rank-one residue it-
eration proposed by Ho [2008] improves convergence and usually
finds better solutions for the H update. Unfortunately, it is unclear
how to apply this method to the G update due to the projection
matrix P. We summarize the NMF updates using pseudo-code in
Algorithm 1.

Algorithm 1 Nonnegative Matrix Factorization (NMF)

1: function [G,H] = NMF (X,G,H, σ)
2: for each NMF iteration
3: G←

[
G ◦

(
PTXH

)
//
(
PT
(
PGHT

)
HT+ε

)]
+

4: for k=1 . . . K # rank-1 residue update
5: Rk = X −

∑
i6=k (PG)i H

T
i

6: Hk ←
[
RT
k (PG)k

]
+
//
(

(PG)Tk (PG)k

)
7: end
8: end

The overall ADMM updates, implementing Equation 12, comprises
three steps in each iteration: the Newton updates of each pixel inX ,
the NMF update of G and H, and an update of the slack variable
U. These steps are outlined in Algorithm 2.

5 Implementation

Software PNMF was implemented in Matlab. The X-update step
in ADMM is based on parallel per-pixel operations; we sped up this
step considerably by implementing it as a mex module that loops
through the pixels for each Newton iteration. For each pixel, we

Algorithm 2 Perceptual Nonnegative Matrix Factorization (PNMF)

1: function [G,H] = PNMF
2: init G=rand(M×K), H=rand(N×K)
3: X=zeros(O×N), U=zeros(O×N)
4: for each ADMM iteration
5: for each pixel j
6: for each Newton iteration
7: Xj ← Xj −

(
JTXj

JXj

)−1

JTXj
f (Xj)

8: end
9: end

10: [G,H]← NMF
(
X+U,G,H, ρ

σ

)
11: U← U + X−PABT

12: end

calculate the gradient, and we apply a simple backtracking scheme
to determine the step length that yielded the largest decrease in the
residual. For all results, we use the Newton updates for ∆E94

described in Supplemental Section C.2, which are slightly more
complex than the updates for ∆E76 outlined in Section 4.1. The
ρ parameter in ADMM is chosen as 1.5E+06, which heuristically
yielded consistent and fast convergence.

We convert all target multispectral images to CIE Lab space using
the white point specified by the Rec. 709 standard. For all results
shown in this paper, we used a scaling parameter β = 1 which never
compromises image brightness; however, choosing β < 1 may be
useful to trade brightness for higher color accuracy. For PNMF, we
use 1,500 total ADMM iterations, where within each iteration there
are 5 Newton iterations for the first update step, and 10 NMF iter-
ations for the second step. For the comparisons to NMF, we use
35,000 NMF iterations, which was adequate to yield convergence
to a delta between iterations smaller than at least 1e-6. On an Intel
i7-4790 3.6 GHz processor with 8 GB RAM, for 1,500 iterations on
a 512×512 pixel image, PNMF took 9,500 seconds and for 35,000
iterations on the same image, NMF took 13,500 seconds. While
the processing times seem prohibitive, PNMF actually converges in
less time than NMF. Note that the per-pixel operations are all inde-
pendent and can be further sped up through multi-core concurrency
or a GPU-based implementation, and NMF has been shown to run
in real-time using efficient GPU implementations. We did not at-
tempt to optimize runtimes and believe there is a clear path towards
optimizing these significantly, as discussed in Section 7.

Projector Hardware The prototype consists of a modified Texas
Instruments LightCrafter 0.3 WVGA DLP chipset projector, a six
LED fiber-coupled analog light engine, control electronics, and
software for synchronization. The existing LEDs and dichroic mir-
rors from the DLP projector were removed. A fiber optic light
guide from an external light engine was mounted in place of the
LED nearest to the DMD. The light engine is a Lumencor Spec-
tra X that contains six individually controllable high-power LEDs
which are cooled and optically combined into the light guide. To
enable display of three custom primaries at a frame rate faster than
the human flicker fusion rate of 60 Hz, we require the ability to
configure all six LED channels to a different analog state every
5.56 ms or less. To achieve this, we utilized our light engine’s high
speed TTL-based electronic shutter (up to 5 kHz) in combination
with analog control of each LED sequentially through a serial port
protocol at baud rates up to 115,200. More specifically, we first
shutter all LEDs, and then sequentially set each of the six LEDs to
their respective analog values using serial commands, which takes
3 ms in total. We then unshutter the light source for 2 ms before
repeating the procedure for the next primary, enabling us the abil-
ity to display 3-primary images at 66.7 Hz. This lower 40% duty
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Figure 4: Convergence of a dataset optimized for the average
∆E94 error metric. In addition to plotting the ∆E94 log resid-
ual, we also plot errors in ∆E76 and CIEDE2000 and observe
strong correlations between these metrics (top). Intermediate re-
sults, printed in sRGB, are shown in the center. Finally, the 3D
gamuts are visualized in CIE xyY in the bottom. Here, green points
represent target colors that are within the optimized gamut and red
points those outside. After convergence, only a few very bright and
very dark points are outside the optimized gamut.

cycle, which reduces the maximum brightness of the projected im-
ages, could be much higher if we had had higher speed or fully
parallel analog control over all six LEDs, which we are consider-
ing for future implementations. To operate the prototype, we first
preload a sequence of image frames onto the DMD, which is set
to change frames upon receiving a TTL trigger signal. Then, to
precisely synchronize the light source with the DMD, we use a Na-
tional Instrument DAQ (USB-6343) to generate a series of digital
voltage waveforms, which are pre-computed and preloaded onto the
device. Here, the first channel controls the DMD trigger, the sec-
ond channel controls the electronic shutter of the Lumencor, and the
third channel we used to send the binary serial command sequences
to the Lumencor, using a TTL-to-serial voltage level shifter as the
interface. Software in MATLAB was written to preload images via
a mouse emulator macro onto the LightCrafter graphical interface,
and to compute and preload the digital voltage waveforms onto the
DAQ over USB.

Calibration Software calibration was needed to determine the
color gamut and gamma curves of the projector as well as non-
linear intensity curves of the LEDs. To obtain the gamut, a white
background was displayed on the DMD, while all LEDs of the light
engine were turned on sequentially and their spectrum was cap-
tured using the spectrometer (see Fig. 6). The gamma curve of the
DMD was fitted to intensity measurements made with a fixed LED
illumination while varying DMD transmission values. Finally, the
nonlinear intensity curve of each LED was captured with a similar
procedure. These measurements are used to compute look-up ta-
bles that linearize all values sent to the LEDs and the DMD. Given
the spectrum of each LED, we could obtain the CIE XYZ color
coordinate of each LED. As a baseline for comparison, we found
the linear combination of LED intensities that yielded the closest
approximation to the sRGB gamut that our projector could achieve.

Figure 5: Photograph of prototype projector.
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Figure 6: Gamut and spectral profiles of the projector proto-
type. The light engine provides six additive primaries that, together,
cover a large part of the CIE xy chromaticity diagram (left). The
spectral emission profiles of each LED are plotted on the right.

In particular, using fmincon, we solved for the LED coefficients that
yielded the sRGB primary chromaticities as well as the sRGB white
point when all primaries were summed together. The result was an
sRGB gamut, scaled to the maximum brightness achievable with
our projector. We used the white point of this gamut (x = 0.3127, y
= 0.3290, Y = 0.1774) as the white point for all computations, such
as in the conversion from XYZ to LAB space.

6 Results

Simulation performance We tested our algorithm on 11 differ-
ent multispectral images. Results for one example are shown in
Figure 7; results for all other images can be found in the supple-
ment, and are summarized in Figure 9 and Table 1. We analyzed
the factored images using a number of different metrics, as shown
in Figure 9: ∆E76,∆E94, CIEDE2000, SSIM in IPT color space
[Bonnier et al. 2006], and PSNR. With all metrics, our algorithm
performed better. In particular, PNMF 4 yielded a significantly
lower ∆E than NMF 4, and PNMF 4 yielded a significantly lower
∆E94 than NMF 3 (p = 0.002 and p = 0.003, respectively, paired
t-test with Welch correction for multiple comparisons).

Hardware performance Our projector prototype was able to suc-
cessfully display adaptive gamut images. During the calibration, we
verified using a single pixel spectrometer that the projector was able
to reproduce target spectra within its range. Further, we were able
to display artifact-free images. Because our projector can create a
larger gamut than any of the capture or print devices available to us,
we cannot directly show the image quality in the paper. As a proxy,
to demonstrate that our projector generates images that look similar
in content to the original images, in Fig. 8, we present photographs



Figure 7: PNMF yields lower ∆E error than NMF and NMF with fixed primaries. Here we show for one example multispectral image the
results of the five algorithms tested (NMF with 3 primaries fixed sRGB, NMF with 3 and 4 adaptive primaries, PNMF with 3 and 4 adaptive
primaries). From left to right: simulation of the factored result image, clipped for the sake of printing to the sRGB color gamut; the per-pixel
error in CIE Lab space between the target image and factored image, shown in log-space; the result gamut in CIE xyY space (top view and
side view), overlaid with the CIE xyY coordinates of the target image—red points are pixels that fall outside of the gamut; the convergence
trajectory ; the images associated with each primary.

of the image displayed on the projector. Obviously, the camera has
clipped the gamut of the image to be smaller than the gamut of the
actual, displayed image; however, this still shows that our prototype
is capable of producing artifact free images.

User Experiment For our user experiment, we aimed to support
three claims: 1) A flexible gamut has the ability to adapt more
readily in situations which cause a fixed gamut to fail; 2) PNMF
can maintain perceptual color differences better than NMF; 3) Our
hardware prototype is capable of conveying the results of the flexi-
ble gamut algorithm. We limited the scope of this user experiment;
a more in depth user study will be the subject of future work.

We selected three pairs of similar colors, specified in CIE XYZ
space. We additionally selected a fixed gamut that had the largest
area in CIE xy chromaticity space possible within the gamut of our
projector. Two of the color pairs were chosen such that the pairs
were metamers of this fixed gamut: when we applied NMF with a
fixed gamut as a simple gamut mapping technique, the colors in the
pair were mapped to the same color. We note that with this gamut
mapping technique, it is possible to find metamers for any reason-
able fixed gamut. We also acknowledge that other gamut mapping
techniques, such as a relative colorimetric approach, could mitigate

this metameric effect, however this would still lead to a loss in color
fidelity and desaturation associated with shrinking the entire im-
age’s gamut. An adaptive gamut, on the other hand, has enough de-
grees of freedom that it can always choose a gamut that eliminates
at least some of the metamers observed in the fixed gamut case. Fur-
ther, gamut mapping in a perceptually uniform space, using PNMF,
spreads the error equally across all of the perceived colors and tries
to retain color differences that are reflective of the original colors,
which is more likely to remove metamers.

We generated an image with these three color pairs: assigned one
member of each pair as the background color of a stripe, and the
other member as the color of an overlaid circle. We factored this im-
age using NMF3 with a fixed gamut, NMF3 with a flexible gamut,
and PNMF3 with an adaptive gamut. The ∆E errors for each fac-
torization were, respectively, 52, 32, and 13. The errors were large
because of the premeditated difficult gamut of the target image. Us-
ing the prototype projector, n = 6 human subjects were each pre-
sented with each of the three factorizations a total of four times, in a
counter-balanced, pseudo-random order. Each image was displayed
for 600 ms, short enough such that detection of all three circles was
at the perceptual threshold. The perceptual visibility of each circle
was thus one indication of how well the algorithm and projector
paired together faithfully represent the color differences that were



Figure 8: Simulation and photographed results for three multispectral datasets as displayed on the prototype projector. Note that the image
colors have been clipped for printing from the gamut of the projector to that of sRGB. The photographed results match the simulations to
within calibration error but the color space of the camera is not calibrated. Hence, there are slight differences between the simulated sRGB
images and the captured photographs.
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Figure 9: PNMF yields lower ∆E94 than NMF and fixed gamut
NMF. Summary of log-transformed mean ∆E across n = 11 mul-
tispectral images, for fixed gamut NMF with 3 primaries, flexible
gamut NMF with 3 and 4 primaries, and flexible gamut PNMF
with 3 and 4 primaries. PNMF 3 has significantly lower ∆E94

than NMF 3, and PNMF 4 is trending to lower ∆E94 than NMF
4 (p = 0.0039 and p = 0.073, paired t-test with Welch correction
for unequal variances); PNMF 3 has significantly lower ∆E2000

than NMF 3, and PNMF 4 has significantly lower ∆E2000 than
NMF 4 (p = 0.002 and p = 0.003, respectively, paired t-test with
Welch correction). Additionally, PNMF 3 has significantly lower
∆EsCIELAB than NMF 3, and PNMF 4 has significantly lower
∆EsCIELAB than NMF 4 (p = 0.024 and p = 0.013, respectively,
paired t-test with Welch correction). Colored dots in the boxplots
correspond to the images represented in the bottom right.

inherent to the target image. As shown in Figure 10, PNMF enabled
significantly better detection of all three circles than NMF. Further,
as expected, two of the color pairs were metamerically invisible
when mapped to the fixed gamut.

While this user experiment is by no means sufficient to prove that
PNMF is better than NMF in general, it is an example that demon-
strates the potential of the algorithm and projector design for faith-
fully representing the color of images that possess large and high
contrast gamuts. A full user study will be the subject of future
work.

Dataset Algorithm ∆E∗
76 ∆E∗

94 CIEDE2000 S-CIELab SSIM PSNR(dB)
Clay NMF fix 3 1.56E+00 7.58E-01 8.00E-01 1.53E+00 9.89E-01 45.62

NMF 3 2.99E-02 1.48E-02 1.52E-02 2.41E-02 1.00E+00 70.36
NMF 4 2.35E-02 1.55E-02 1.54E-02 2.13E-02 1.00E+00 73.56
PNMF 3 1.79E-03 1.00E-03 8.58E-04 2.52E-03 1.00E+00 75.45
PNMF 4 1.53E-03 7.09E-04 5.81E-04 1.97E-03 1.00E+00 75.60

Feathers NMF fix 3 1.30E+00 4.49E-01 4.86E-01 1.31E+00 9.91E-01 46.72
NMF 3 3.43E-01 1.18E-01 1.22E-01 3.26E-01 9.98E-01 56.64
NMF 4 3.21E-02 1.10E-02 1.20E-02 2.34E-02 1.00E+00 66.47
PNMF 3 6.54E-02 2.50E-02 2.42E-02 7.90E-02 9.99E-01 62.24
PNMF 4 2.47E-02 8.36E-03 8.23E-03 3.17E-02 9.99E-01 65.17

Beans NMF fix 3 1.74E-01 1.16E-01 1.28E-01 1.80E-01 9.97E-01 55.94
NMF 3 1.30E-01 7.92E-02 9.42E-02 1.10E-01 9.95E-01 61.01
NMF 4 6.77E-02 3.51E-02 3.59E-02 5.42E-02 1.00E+00 64.49
PNMF 3 1.19E-02 8.27E-03 6.62E-03 1.77E-02 1.00E+00 69.83
PNMF 4 4.78E-03 3.62E-03 2.65E-03 7.47E-03 1.00E+00 73.04

Pompom NMF fix 3 2.35E-01 9.35E-02 9.70E-02 2.28E-01 9.98E-01 58.10
NMF 3 4.48E-02 1.96E-02 2.04E-02 2.71E-02 9.99E-01 67.18
NMF 4 6.68E-03 3.35E-03 4.00E-03 4.53E-03 1.00E+00 72.75
PNMF 3 3.69E-03 2.08E-03 1.77E-03 3.92E-03 1.00E+00 75.35
PNMF 4 2.39E-03 1.12E-03 9.66E-04 2.56E-03 1.00E+00 76.79

Dog NMF fix 3 5.16E-02 3.13E-02 3.30E-02 5.48E-02 1.00E+00 62.18
NMF 3 4.27E-02 2.41E-02 2.51E-02 4.29E-02 1.00E+00 65.90
NMF 4 7.69E-03 4.47E-03 5.27E-03 6.28E-03 1.00E+00 71.08
PNMF 3 1.20E-02 8.14E-03 6.55E-03 1.26E-02 1.00E+00 69.78
PNMF 4 4.89E-03 3.39E-03 2.70E-03 5.11E-03 1.00E+00 71.86

Face NMF fix 3 2.77E-02 1.91E-02 2.06E-02 3.01E-02 1.00E+00 65.29
NMF 3 2.60E-02 1.66E-02 1.81E-02 2.42E-02 1.00E+00 67.38
NMF 4 1.08E-02 7.04E-03 8.60E-03 8.39E-03 1.00E+00 68.49
PNMF 3 3.47E-03 2.57E-03 2.29E-03 3.40E-03 1.00E+00 70.15
PNMF 4 1.59E-03 1.30E-03 1.08E-03 1.62E-03 1.00E+00 71.87

Beer NMF fix 3 6.28E-03 4.05E-03 4.48E-03 6.54E-03 1.00E+00 71.23
NMF 3 7.01E-02 4.27E-02 4.79E-02 6.86E-02 9.99E-01 58.59
NMF 4 3.80E-02 2.08E-02 2.33E-02 3.68E-02 9.99E-01 62.78
PNMF 3 4.57E-03 3.11E-03 2.65E-03 4.82E-03 1.00E+00 71.46
PNMF 4 3.04E-03 2.17E-03 1.73E-03 3.08E-03 1.00E+00 71.79

Pepper NMF fix 3 5.34E-01 1.59E-01 1.85E-01 4.59E-01 9.98E-01 50.50
NMF 3 4.88E-02 2.85E-02 3.18E-02 4.07E-02 9.99E-01 66.91
NMF 4 3.53E-02 2.09E-02 2.35E-02 2.93E-02 9.99E-01 67.57
PNMF 3 2.52E-03 2.05E-03 1.57E-03 3.89E-03 1.00E+00 73.59
PNMF 4 1.68E-03 1.49E-03 1.06E-03 2.86E-03 1.00E+00 74.74

Tiles NMF fix 3 8.34E-02 4.64E-02 5.08E-02 9.73E-02 9.98E-01 56.86
NMF 3 2.69E-02 1.47E-02 1.51E-02 2.52E-02 1.00E+00 66.17
NMF 4 6.03E-03 3.48E-03 4.04E-03 5.02E-03 1.00E+00 71.46
PNMF 3 4.75E-03 4.20E-03 3.12E-03 1.32E-02 1.00E+00 72.15
PNMF 4 8.81E-04 8.41E-04 5.79E-04 2.02E-03 1.00E+00 77.73

Painting NMF fix 3 1.47E-02 6.27E-03 7.03E-03 1.42E-02 1.00E+00 68.08
NMF 3 3.89E-02 2.17E-02 2.57E-02 2.91E-02 9.99E-01 64.40
NMF 4 2.10E-02 1.13E-02 1.34E-02 1.62E-02 9.99E-01 66.80
PNMF 3 2.41E-03 1.52E-03 1.38E-03 2.46E-03 1.00E+00 73.50
PNMF 4 1.98E-03 1.37E-03 1.16E-03 2.10E-03 1.00E+00 71.45

Thread NMF fix 3 4.40E-02 2.04E-02 2.12E-02 4.36E-02 1.00E+00 66.18
NMF 3 3.88E-02 1.80E-02 1.90E-02 3.18E-02 1.00E+00 66.96
NMF 4 2.48E-02 1.18E-01 1.28E-02 1.78E-02 1.00E+00 69.42
PNMF 3 1.65E-03 1.29E-03 1.07E-03 2.17E-03 1.00E+00 73.46
PNMF 4 1.71E-03 1.16E-03 9.53E-04 2.24E-03 1.00E+00 74.34

Table 1: Evaluation of NMF with a fix three-primary gamut as well
as adaptive NMF and PNMF for three and four-primary displays
using 11 datasets. PNMF in all cases results in a better quality than
both NMF and fix-gamut NMF. For most examples, SSIM did not
calculate a significant difference between the results (light green).

7 Discussion

In summary, we introduce a new paradigm for color display: adap-
tive, perceptually-driven factored spectral projection. We demon-



Figure 10: Design and results of a user experiment demonstrat-
ing how PNMF differentiates between colors that are mapped to
metamers or near-metamers when using NMF or NMF with a fixed
gamut. On the left, the target image is displayed in CIE XYZ space.
On the right are the results of the user study: the PNMF factoriza-
tion enabled significantly higher detection of all three circles than
did the NMF factorization (p < 0.0001, paired t-test with Welch
correction), while the NMF with fixed gamut factorization yielded
metamers for two of the color pairs.

strate with many examples that adaptive gamuts have strong ben-
efits over fixed gamuts and that the proposed algorithm yields the
best quality in all common quality metrics. Finally, we evaluate the
proposed display system with a prototype projector, through pho-
tographs and a user experiment that validates our simulations.

Limitations and Future Work The solver is currently imple-
mented in Matlab and does not run in real-time. Although real-
time processing may not be needed in many applications, such as
movies, it would be desirable for interactive applications. We are
convinced that this is possible. Specifically, the discussed ADMM
update scheme could be replaced by more efficient primal-dual
methods, which would improve overall convergence (e.g., [Cham-
bolle and Pock 2011]). Further, the Newton updates of each pixel
in the X-update are independent of each other and could be paral-
lelized on the GPU. Finally, the NMF updates could also be ported
to the GPU, which has been shown to provide a speed-up of ap-
prox. 15× [Platos et al. 2010]. Other types of nonnegative fac-
torization algorithms with a similar data size have been demon-
strated to run in real time [Wetzstein et al. 2012; Heide et al.
2014]. We believe that there is a clear path to efficiently imple-
menting the proposed method, possibly in real time, but that was
not the goal of this project and is left for future work. For appli-
cations in video processing we could further reduce the required
iterations by warm-starting the optimization of a frame with the
output of the previous frame or just compute a fixed gamut for
a video sequence or keyframe-segmented clips rather than for ev-
ery frame. Imposing constraints on temporal consistency between
successively-displayed video frames may be necessary for future
video applications and could easily be incorporated into the opti-
mization. It would be interesting to analyze the behavior of quan-
tization in more detail. Large gamuts and high dynamic range con-
tent require a larger bit depth than what is available currently. Adap-
tive color display should ideally also consider the available bit depth
for representing colors. We do observe that the gamuts produced by
our algorithm are usually a tight fit around the target colors, which
would suggest that the available bit depth is used very efficiently.

In the future, we are most interested in exploring new display de-
vices that could benefit from adaptive color reproduction. Any dis-
play hardware that supports dynamic adjustment of the color pri-

maries would be supported by the proposed algorithm, the only ad-
justment that has to be made is in the basic image formation (Eq. 1).
We would like to optimize for other color metrics, especially those
specifically modeling spatial image variation. We demonstrate that
our optimization scheme consistently drives down s-CIE Lab, but
more sophisticated metrics could further improve color reproduc-
tion with our system. Eventually, we hope to stimulate the color
science community to develop color metrics that are both accurate
but also useful for optimization procedures including conventional
gamut mapping techniques and algorithms for joint primary selec-
tion and gamut mapping, such as the proposed. Finally, we always
optimize color fidelity for the “standard” observer—personalizing
these kinds of display for the particular characteristics of a person
would be most interesting.

8 Conclusion

Trends in the display industry are clear: higher resolution, extended
contrast, and wider color gamuts will become commonplace in the
near future. Increasing resolution will be provided by advanced
nano-fabrication technology and high dynamic range displays have
matured to the point where they can be deployed to the market.
With the flexible computational color display system proposed in
this paper, we provide a viable solution for adaptive, wide color
gamut display that could be seamlessly integrated into cinematic
projection systems, home theaters, and office projectors.
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