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In this document we provide additional discussion and results in support of the primary text.

A Additional Results

In this section, we show all processed example scenes with three and also four primaries as well as comparisons
between NMF, PNMF, and NMF with the largest fixed gamut for the 3-primary case. For each example, we show
the simulated sRGB image, the error maps in CIE Lab space, the computed gamut (2D and 3D view), convergence
plots for ∆E76, ∆E94, and CIEDE2000, and also the color-coded factorized patterns.



Figure S.1: “Pom pom” scene for 3 primaries.

Figure S.2: “Pom pom” scene for 4 primaries.

Figure S.3: “Pom pom” scene for 5 primaries.



Figure S.4: “Dog” scene for 3 primaries.

Figure S.5: “Dog” scene for 4 primaries.

Figure S.6: “Dog” scene for 5 primaries.



Figure S.7: “Feather” scene for 3 primaries.

Figure S.8: “Feather” scene for 4 primaries.

Figure S.9: “Feather” scene for 5 primaries.



Figure S.10: “Beans” scene for 3 primaries.

Figure S.11: “Beans” scene for 4 primaries.

Figure S.12: “Beans” scene for 5 primaries.



Figure S.13: “Clay” scene for 3 primaries.

Figure S.14: “Clay” scene for 4 primaries.

Figure S.15: “Clay” scene for 5 primaries.



Figure S.16: “Face” scene for 3 primaries.

Figure S.17: “Face” scene for 4 primaries.

Figure S.18: “Face” scene for 5 primaries.



Figure S.19: “Painting” scene for 3 primaries.

Figure S.20: “Painting” scene for 4 primaries.

Figure S.21: “Painting” scene for 5 primaries.



Figure S.22: “Pepper” scene for 3 primaries.

Figure S.23: “Pepper” scene for 4 primaries.

Figure S.24: “Pepper” scene for 5 primaries.



Figure S.25: “Thread” scene for 3 primaries.

Figure S.26: “Thread” scene for 4 primaries.

Figure S.27: “Thread” scene for 5 primaries.



Figure S.28: “Tile” scene for 3 primaries.

Figure S.29: “Tile” scene for 4 primaries.

Figure S.30: “Tile” scene for 5 primaries.



Figure S.31: ∆E76 comparison between gamut mapping algorithms. The topmost figure shows that the minimum
∆E76 for both fixed gamut algorithms occurred with a gamut brightness (Y value in XYZ coordinates) of around
0.3, while the adaptive gamut performed better and yielded a gamut with similar brightness. The middle three rows
show the actual images, approximated for print using sRGB primaries; the errors in CIE Lab space when compared
to the original multispectral image; as well as the spectral filters and their associated spatial pixel intensity values.
The sRGB representation of the HPMINDE result is visibly worse when looking at the green pepper in the middle of
the bottom row of the image. The bottom figures display in xyY space the fixed gamut and the final adapted gamut,
overlaid on the original multispectral image. Red points are outside of the gamut, but mostly dark.

B Motivation For Using 3-4 Color Primaries

We review the three basic approaches to displaying color images: temporal multiplexing, optical overlay of multiple
devices, and color filter array-type displays. Temporal multiplexing, which is known as “field sequential color”,
presents images with different color primaries at high refresh rates. Examples include digital light processing (DLP)
projectors that employ high-speed SLMs and a spinning wheel with different color filters that optically modulate the
spectrum of the projected images. Optical overlay of multiple SLMs within the same device enclosure is common
for liquid crystal display (LCD) projectors; the output of multiple projectors with different color filters could also
be overlaid on the screen. Finally, conventional LCDs usually employ spatial multiplexing by interleaving different
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Figure S.32: PNMF yields lower ∆E than NMF and fixed gamut NMF. Summary of log-transformed mean ∆E
across n = 11 multispectral images, for fixed gamut NMF with 3 primaries, flexible gamut NMF with 3 and 4
primaries, and flexible gamut PNMF with 3 and 4 primaries. PNMF 3 has significantly lower ∆E94 than NMF 3,
and PNMF 4 is trending to lower ∆E94 than NMF 4 (p = 0.0039 and p = 0.073, paired t-test with Welch correction
for unequal variances); PNMF 3 has significantly lower ∆E2000 than NMF 3, and PNMF 4 has significantly lower
∆E2000 than NMF 4 (p = 0.002 and p = 0.003, respectively, paired t-test with Welch correction). Additionally,
PNMF 3 has significantly lower ∆EsCIELAB than NMF 3, and PNMF 4 has significantly lower ∆EsCIELAB than
NMF 4 (p = 0.024 and p = 0.013, respectively, paired t-test with Welch correction). Colored dots in the boxplots
correspond to the images represented in the bottom right.

Figure S.33: Design and results of a user study demonstrating how PNMF differentiates between colors that are
mapped to metamers or near-metamers when using NMF or NMF with a fixed gamut. On the left, the target image
is displayed in CIEXYZ space. In the middle, the top two rows show two views of the gamut resulting from each
factorization, overlaid with the gamut of the target image. The bottom row shows the gamut overlaid with the
gamut-mapped image. On the right are the results of the user study: the PNMF factorization enabled significantly
higher detection of all three circles than did the NMF factorization (p < 0.0001, paired t-test with Welch correction),
while the NMF with fixed gamut factorization yielded metamers for two of the color pairs.



Figure S.34: Factorization of different hyperspectral images into a set color primaries and corresponding pixel
states. This experiments confirms that natural images are usually well-approximated with only about 3-4 color
primaries, therefore they are low-rank in the spatio-spectral domain.

color filters on the same screen. Disregarding the actual technology, all of these displays rely on a simple assumption:
high-quality images can be synthesized using only a few color primaries.

Fortunately, natural images are well-known to be smooth. It is generally argued that about 3-4 color primaries are
sufficient to represent natural scenes with high fidelity [Dannemiller 1992; Chiao et al. 2000]. We confirm these
findings in a simple experiment shown in Figure S.34. Using the factorization method described in Section 3, eleven
hyperspectral images1 are factorized into decompositions with varying rank, which in this application is equivalent
to the number of color primaries. As predicted in the literature, all of these images are very well approximated by
a few primaries. However, a question that not discussed very often is whether or not the same (few) primaries are
adequate to represent a wide range of different natural images well.

C Color Difference Metrics

In this section, we review several color difference metrics that are relevant for adaptive color display. The metric
dominantly discussed in the primary text is ∆E76, which is based in a sum-of-squared differences in the conventional
CIE76 space. we briefly review this and then discuss more sophisticated color difference metrics that are used in the
primary text.

C.1 CIE76

The 2-norm of the color difference computed on the conventional CIE Lab (see primary text, Section 3) is usually
referred to as ∆E76:

∆E76 =

√
(L1 − L2)

2 + (a1 − a2)2 + (b1 − b2)2, (S.1)

1cs.columbia.edu/CAVE/databases/multispectral/

cs.columbia.edu/CAVE/databases/multispectral/


where L1, a1, b1 and L2, a2, b2 are the CIE Lab values for two images. The objective function used in the primary
text uses the sum-of-squared ∆E76 values over all the pixels in an input images as the residual, but we usually plot
the average ∆E76 in all convergence plots. ∆E76 is intuitive, but also somewhat deprecated and mostly replaced by
CIE94 and CIEDE2000.

C.2 CIE94

In 1995, the CIE published a recommended practice CIE 116-1995 for industrial color difference evaluation. It
includes a new color difference evaluation model designated as CIE94, with symbol ∆E∗94. In this model, color is
represented by CIE lightness(L∗), chroma(C∗), and hue(h∗). Instead of directly calculating the Euclidean distance
in CIE LCh space, weights are incorporated to correct for the variation in preceived color difference magnitude in
each color component.

∆E∗94 =

√(
∆L∗

kLSL

)2

+

(
∆C∗ab
kCSC

)2

+

(
∆H∗ab
kHSH

)2

(S.2)

Where detailed definition of each term can be found in Wikipedia. In our implementation of PNMF, we establish
the objective function with CIE94,

minimize
G,H

∣∣∣∣∣∣∆E94

(
βI(lab), ϕ(X)

)∣∣∣∣∣∣2
F

+ σ||∆λG||2F

subject to X − PGHT = 0

0 ≤ Gik, Hjk ≤ 1,∀i, j, k

(S.3)

The main difference comparing to use CIE76 is in the X-update, where we need to calculate the Jacobian matrix
with respect to the new optimization function. Given a single pixel X(xyz)

j , its corresponding value in CIE Lab
color space [L∗2j , a

∗
2j , b

∗
2j ] and its reference pixel value [L∗1j , a

∗
1j , b

∗
1j ]. To derive the update formulae, we rewrite the

Jacobian matrix when using CIE76 as important intermediate result

J76
Xj

=

j11 j12 j13
j21 j22 j23
j31 j32 j33

 =

 0 116φ′(X
(y)
j ,Wy) 0

500φ′(X
(x)
j ,Wx) −500φ′(X

(y)
j ,Wy) 0

0 200φ′(X
(z)
j ,Wz) −200φ′(X

(z)
j ,Wz)

 (S.4)

Here, we neglect the last three rows of the original J76
Xj

since they come from the Lagrange multiplier term and will
remain unchanged in J94

Xj
. With J76

Xj
, we can represent the first three rows of J94

Xj
as

J94
Xj

=

 0 j11 0
c1(a

∗
2jj21 + b∗2jj31) c1(a

∗
2jj22 + b∗2jj32) c1(a

∗
2jj23 + b∗2jj33)

c2(c3j21 + c4j31) c2(c3j22 + c4j32) c2(c3j23 + c4j33)

 (S.5)

where

φ′(x,w) =


1

3w
1
3

x−2/3 if
x

w
> (

6

29
)3

1

3w
(
29

6
)2 otherwise

(S.6)

c1 =
1(

1 + 0.045
√
a∗21j + b∗21j

)√
a∗22j + b∗22j

(S.7)



c2 =
1(

1 + 0.015
√
a∗21j + b∗21j

)√
2
√
a∗21j + b∗21j

√
a∗22j + b∗22j − 2(a∗1ja

∗
2j + b∗1jb

∗
2j)

(S.8)

c3 =

a∗1j − a∗2j

√
a∗21j + b∗21j√

a∗22j + b∗22j

 (S.9)

c4 =

b∗1j − b∗2j

√
a∗21j + b∗21j√
a∗22j + b∗22j

 (S.10)

By filling in the last three rows of J94
Xj

, we can apply Gauss-Newton method to iteratively approach the solution for
pixel Xj :

Xj ← Xj −
(
J94
Xj

T
J94
Xj

)−1
J94
Xj

T
f (Xj) . (S.11)

C.3 CIEDE2000

CIEDE2000 is first proposed by CIE Technical Committee 1-47 in 2001, and later becomes a standard in 2013.
Comparing with CIE94, it accommodates 4 major revisions to adequately resolve the perceptual uniformity issue.

In CIE94, for the majority of color centers close to neutral(gray), the color discrimination contours are ellipses
with main axis oriented to 90◦, not the expected constant-diameter circles. Therefore, CIEDE2000 introduces a
new coordinate system that transforms the near-achromatic ellipses into circles by elongating the length of the a∗-
coordinate.

In CIE94, the lightness weighting function SL is neglected, which later proved to be necessary. CIEDE2000 in-
corporates a V-shape weighting function, of which the minimum occurs at L∗ = 50 that is identical to the assumed
background lightness. This is consistent with the so-called ”crispening effect” ,which states the color difference
perception is most sensitive when the background color is close to the color of object sample pair.

For the hue weighting function SH , a T -function is included in CIEDE2000 to take the hue angle dependence into
account which neglected by CIE94. Finally, to cope with the anomalies that the main axes of all ellipses in blue
region do not point to the coordinate origin, a rotation term RT is added to better estimate the difference of blue
color pairs.

As a considerably more sophisticated formulae, CIEDE2000 introduces two noticeable source of mathematical dis-
continuities.

• Mean hue computation

• Hue-difference computation

The mean hue(H ′) discontinuity occurs when the absolute difference between two hue angles(|h′1 − h′2|) exceeds
180◦, where an additional 180◦ is added to arithmetic mean. It directly leads to the discontinuity of T and ∆θ whose
calculation involve the mean hue. Following figures show the volumes of T and ∆θ with respect to h′1 and h′2. To
further manifest the extent of discontinuity, we also show the 2D slice where the maximum discontinuity occurs. As
shown in the figures, the discontinuity of T is approximately 60% of the maximum T , and the discontinuity of ∆θ
is approximately 100% of the maximum ∆θ.

The hue-difference(∆h′) discontinuity also occurs when the absolute difference between two hue angles(|h′1 − h′2|)
exceeds 180◦, where an additional 360◦ is added to the arithmetic hue difference. Since computing ∆H ′ calculates
sin(∆h′/2), the discontinuity reflects on the sign reversal of ∆H ′, and subsequently on the sign ofRT . Notice, there



Figure S.35: Surface plots of T (h′1, h
′
2) (left) and for ∆θ(h′1, h

′
2) (right).

Figure S.36: T (h′1, h
′
2) at maximum discontinuity (left) and ∆θ(h′1, h

′
2) at maximum discontinuity (right).

are two important facts of RT . First, its discontinuity is simultaneously decided by the mean hue discontinuity and
hue-difference discontinuity. Second, when the chroma values of the color pair are same, RT will equal to 0 due to
∆C∗ = 0. Thus, it is hard to quantitatively measure this discontinuity under a meaningful circumstance. However,
the impact of hue-difference discontinuity is minor comparing to the mean hue discontinuity.

Overall, we show how the mean hue discontinuity affects the ∆E00. We evaluate ∆E00 at R = 10 and R = 60,
where R represents the chroma radius of the color pair. The RT is zero in both cases, thus eliminates the influence
of hue-difference discontinuity.

The discontinuity at R = 10 is already noticeable, when R increases to 60 it becomes more apparent. The surface
will be more rugged when the chroma radius of the color pair become different, which further introduces the hue-
difference discontinuity.

The discontinuities in the CIEDE2000 may not be a major concern in most industrial applications, where other
sources of experimental variation are much larger. However, the discontinuities do preclude the use of the formula
in analysis based on Taylor series approximations and in design techniques using gradient based optimization, which
not only require continuity of the function but also continuity of the first derivative [Sharma et al. 2005]. As a result,
our PNMF implementation is based on CIE94 but not CIEDE2000, however, experiments show error of CIEDE2000
is equivalently minimized when we optimize based on CIE94.



Figure S.37: Surface plot of ∆E00(h
′
1, h
′
2), R = 10 (left) and ∆E00(h

′
1, h
′
2), R = 60 (right).

C.4 s-CIE Lab

None of the three color metrics discussed above account for spatial image variation. Effectively, these metrics
are valid for comparing the color appearance of two large, uniformly-colored patches. Complex images consist of
many many spatial frequencies — the interplay of their color appearances and varying sensitivities to these are not
modeled by CIE76, CIE94, or CIEDE2000. Zhang and Wandell [Zhang et al. 1996] introduced s-CIE Lab as a
spatial extension of CIE76 that computes the error in scale space to account for varying color sensitivities of these
frequency bands. This error metric could easily be optimized for with our algorithm, but it would be computationally
much more demanding. Using CIE76 has the advantage of being completely separable into small-scale problems
that are solved via Newton’s method on a per-pixel basis (see Sec. 3 in the paper). Nevertheless, we evaluate our
results using s-CIE Lab in the primary text and demonstrate that our approach consistently drives down the s-CIE
Lab error as well.

C.5 SSIM

Traditional similarity measurement methods like peak signal-to-noise ratio (PSNR) and mean squared error (MSE)
have been proved to be inconsistent with human eye perception. To address this problem, Wang and Bovik [Wang
et al. 2004] introduce the structural similarity (SSIM) index to accurately estimate the preceived errors, which con-
siders image degradation as perceived change in structural information. Mathematically, it computes three terms,
namely the illuminance term, the contrast term and the structural term. The overall index is a multiplicative combi-
nation of the three terms and will reach 1 when two images are identical. We evaluate our results on the SSIM and
demonstrate that our approach will lead SSIM almost equal to 1 across all the dataset.

D Hardware Prototypes

In addition to the LightCrafter prototype described in the primary text, we also built a second prototype that is based
imaging spectrometers; we call it inverse imaging spectrometer (IIS) projector. The optical design is closely related
to recent proposals [Rice et al. 2007, Mohan et al. 2008]. Unfortunately, the color gamut we could achieve with
this prototype was limited by the contrast of the employed spatial light modulators. Because it is also much more
complex, we decided to outline our efforts on IIS projection only in the supplement while focusing the primary text
on the immediately applicable LightCrafter prototype.



Figure S.38: Overview of IIS projector prototype. We build an agile spectral projector from scratch, comprising a
fiber-coupled broadband light source with collimating optics (lower right), a dispersing prism (lower left), an optical
train with magnifying, beam splitting, and relay elements (center) in a Thorlabs 60 mm cage system, and two spatial
light modulators (SLMs, SMD ST-1080) that provide a display refresh rate of up to 240 Hz at full high-definition
(1080p) resolution. The optical assembly focuses the spectrum of the light source on one of the SLMs (top right),
which allows it to be programmatically controlled. The second SLM (top left) is in focus with the projection screen
(not shown). Together, these SLMs facilitate high-resolution spatio-spectral image synthesis with the equivalent of
up to four primaries per displayed image, assuming a critical flicker fusion of 60 Hz. Note that this projector design
allows for arbitrary spectral distributions to be produced, which is not the case for standard multi-primary displays.
Hence, this device offers unprecedented degrees of freedom for spectral factorization algorithms.
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Figure S.39: Illustration of IIS projection system. Two high-speed spatial light modulators control the illumination
inside the device. At any given point in time, one of them shows a spatial image whereas the other adaptively controls
the spectrum. Spectral modulation can be optically implemented with a dispersive 4f-system (bottom).

D.1 IIS Prototype Design

The IIS projector design is exhibited in Figure S.38. We use a liquid light guide-coupled Lumencor Spectra X as
the light source, which provided higher power, particularly in the blue end of the spectrum, than the halogen and
broadband LED sources we initially tried. The light was collimated using a 45 mm achromatic doublet (Thorlabs),
focused onto a slit (cut with a scalpel into a piece of black paper), and then collimated using a 2-inch diameter
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Figure S.40: Gamut of the IIS IIS projector prototype. In our implementation, the gamut area was limited by the
black level of the SLMs, the width of the slit used to collimate light into the prism, and the brightness and spectrum
of the light source. A Lumencor Spectra X was use as the light source, as it provided more blue light than other
tested sources.

40 mm focal length aspherical condenser (Thorlabs ACL5040) onto a equilateral dispersing prism (Thorlabs PS854).
The prism was placed one focal length away from a 150 mm achromatic doublet (Thorlabs), with a polarizing
beamsplitter, and an additional polarizer in between. The spectral SLM (Silicon Microdisplay ST1080 HD liquid
crystal on silicon (LCoS) spatial light modulator) was placed one focal length past the 150 mm lens, supported by a
structure that allowed a full six degrees of kinematic freedom. The spatial SLM was placed one focal length away
on the opposite side of the lens, with more polarizers and a polarizing beam splitter in between. A Nikon 50 mm
F-mount lens projected the image that was displayed on the spatial SLM. Images were displayed and synchronized
on the SLMs by configuring them as external monitors in MOSAIC display mode, and then using either IrfanView
or an OpenGL script in fullscreen mode. For calibration, a fiber-coupled spectrometer (Thorlabs CCS200) was used.
For result captures, a Canon T5 with a 50 mm lens directly imaged the output of the projector. The performance
of our setup was degraded by a number of factors: the spectral purity and resolution (and thus gamut size) was
limited by the width of the slit and by the contrast of the SLMs, the power was limited by our light source and by
the fact that we were using polarization based SLMs as opposed to much more efficient digital micromirror devices
(DMDs), and the homogeneity of our output could have been improved through the use of an integrating sphere or
other homogenizer between the spectral and spatial SLMs.

D.2 IIS Prototype Results

Preliminary results of the IIS prototype are shown in Figure S.41. Note that the error metric here is the sum of
squared ∆E76 errors of all pixels in the image. The actual number may not be intuitive to a color scientist, but it is
the residual optimized by our implementation of the proposed algorithms for this prototype.

E More Detailed ADMM derivation using ∆E76

Here we describe the derivation of an ADMM formulation to solve the following problem. The spectral smoothness
term is omitted in this derivation, but the same derivation applies and the final expressions with that term are listed
in the primary text.

minimize
{G,H}

∥∥βI(lab) − ϕ (X)
∥∥2
F

subject to X−PGHT = 0
0 ≤ Gik,Hjk ≤ 1, 0 ≤ Xij , ∀i, j, k

(S.12)

Addition of a penalty term to the objective leads to formulation of an augmented Lagrangian:

Lρ(X,G,H,Y) =
∥∥∥βI(lab) − ϕ (X)

∥∥∥2
F

+
∑(

Y ◦
(
X−PGHT

))
+
(ρ

2

)∥∥X−PGHT
∥∥2
F

(S.13)



Figure S.41: Simulation and photographed results for two multispectral datasets on the IIS projector. Note that the
image colors have been clipped for printing from the gamut of the projector to that of sRGB. As shown in the left
column, in general, ∆E is less for the adaptive gamut PNMF than for NMF and fixed gamut PNMF. Additionally,
the photographed results match the simulations to within calibration error. In the center column, the red gamut
represents the gamut of the IIS projector, the orange represents the solution gamut, black points represent the solution
gamut-mapped pixel chromaticities, and green points represent the target pixel chromaticities.

We can write the ADMM update rules for this Lagrangian in standard form:

Xk+1 :=arg min
{0≤X}

Lρ

(
X,Gk,Hk,Yk

)
(S.14){

Gk+1,Hk+1
}

:= arg min
{0≤G,H≤1}

Lρ

(
Xk+1,G,H,Yk

)
(S.15)

Yk+1 := Yk + ρ
(
Xk+1 −PGk+1(Hk+1)T

)
(S.16)



Using the scaled form of the augmented Lagrangian, we arrive at the final ADMM update rules by setting U =
(1/ρ)Y:

X←arg min
{0≤X}

∥∥∥βI(lab) − ϕ (X)
∥∥∥2
F

+ (ρ/2)
∥∥X−PGHT + U

∥∥2
F

(S.17)

{G,H} ← arg min
{0≤G,H≤1}

(ρ/2)
∥∥X−PGHT + U

∥∥2
F

(S.18)

U← X−PGHT + U (S.19)

The first update step is a constrained nonlinear least squares problem. Importantly, this step can be split and solved in
parallel across columns of X, as a per-pixel operation. By deriving the Jacobian of the objective function associated
with this step, we can determine Xk+1 using an iterative algorithm such as Newton-Raphson, applied in parallel
across each pixel.

E.1 Solving PNMF via ADMM

E.1.1 Deriving the Jacobian Matrix

Each column of I(lab) corresponds to the color values of a single pixel. Let x ∈ R3, i(lab), u, and a respectively each
be the corresponding column of X, I(lab), U, and PGHT for the current iteration. For a single pixel, the objective
function of the first update step is

f(x) =
∥∥∥βi(lab) − ϕ (x)

∥∥∥2
2

+ (ρ/2) ‖x− a+ u‖22 (S.20)

This objective can be expanded into a sum of squares of functions of the three components of x.

f(x) =
∑

j=1,2,3

(
βi

(lab)
j − ϕj (x)

)2
+ (ρ/2) (xj − aj + uj)

2 (S.21)

It can further be represented by a vector of functions, r, such that f(x) = rT r.

r(x) =



βi
(lab)
1 − ϕ1 (x)

βi
(lab)
2 − ϕ2 (x)

βi
(lab)
3 − ϕ3 (x)√

ρ/2 (x1 − a1 + u1)√
ρ/2 (x2 − a2 + u2)√
ρ/2 (x3 − a3 + u3)


(S.22)

The Jacobian is formed by taking the derivative of each entry of r(x) with respect to each of the three components
of x. Note that ϕ1, ϕ2, ϕ3 correspond to L∗, a∗, b∗, and x1, x2, x3 correspond to X,Y, Z in Primary Equation 8.

J (X) =



0 −116φ′(Y/Wy) 0
−500φ′(X/Wx) 500φ′(Y/Wy) 0

0 −200φ′(Y/Wy) 200φ′(Z/Wz)√
ρ/2 0 0

0
√
ρ/2 0

0 0
√
ρ/2

 (S.23)



φ
( x
w

)
=

{(
x
w

)1/3 if x
w > ( 6

29)3

1
3

(
29
6

)2 x
w + 4

29 otherwise
(S.24)

Based on Equation S.24, we find that

φ′
( x
w

)
=

{
1

3w1/3x
−2/3 if x

w > ( 6
29)3

1
3w

(
29
6

)2 otherwise
(S.25)

E.1.2 Solving the Nonlinear Problem using Newton’s Method

With the per-pixel Jacobian matrix computed, it is straightforward to apply Newton’s method to iteratively approach
the solution for pixel Xj using the update rules listed in the primary text:

Xj ← Xj −
(
JTXj

JXj

)−1
JTXj

f (Xj) . (S.26)

E.2 Solving PNMF via Alternating Least Squares and Levenberg-Marquardt

Instead of ADMM, we can solve the PNMF problem in many other ways as well. Here, we derive the alternating
least squares solution. Again, the objective of PNMF is

minimize
{G,H}

∥∥βI(lab) − ϕ (PGHT
)∥∥2
F

subject to 0 ≤ Gik,Hjk ≤ 1, ∀i, j, k
(S.27)

Alternating least squares (ALS) basically alternates between solving for H with fixed G and solving for G with
fixed H. This is the same idea as used in most conventional NMF solvers. The pseudo-code for such an update is
listed in Algorithm 1.

Algorithm 1 Perceptual Nonnegative Matrix Factorization

1: function [G,H] = PNMF
2: init G=rand(M×K), H=rand(N×K)
3: for each ALS iteration
4: H←minimize

{1≥H≥0}

∥∥βI(lab) − ϕ (PGHT
)∥∥2
F

5: G←minimize
{1≥G≥0}

∥∥βI(lab) − ϕ (PGHT
)∥∥2
F

6: end

To solve each substep, a nonlinear optimization routine must be employed — we use Levenberg-Marquard. For
this purpose, we first need to compute the Jacobian matrix, for example to solve for G ∈ RC×K will take the form
J ∈ R3N×CK . We will reshape G so that it is a vector g ∈ RCK .

J (g) =



∂L1/∂g11 · · · ∂L1/∂g1K · · · ∂L1/∂gC1 · · · ∂L1/∂gCK
∂a1/∂g11 · · · ∂a1/∂g1K · · · ∂a1/∂gC1 · · · ∂a1/∂gCK
∂b1/∂g11 · · · ∂b1/∂g1K · · · ∂b1/∂gC1 · · · ∂b1/∂gCK

...
...

...
...

∂LN/∂g11 · · · ∂LN/∂g1K · · · ∂LN/∂gC1 · · · ∂LN/∂gCK
∂aN/∂g11 · · · ∂aN/∂g1K · · · ∂aN/∂gC1 · · · ∂aN/∂gCK
∂bN/∂g11 · · · ∂bN/∂g1K · · · ∂bN/∂gC1 · · · ∂bN/∂gCK


(S.28)



We can explicitly derive these derivatives by writing out the product

PGHT =

x1 · · · xN
y1 · · · yN
z1 · · · zN

 =

px1 px2 · · · pxC
py1 py2 · · · pyC
pz1 pz2 · · · pzC


g11 g12 g13 g1K

...
...

gC1 gC2 gC3 gCK



h11 · · · h1N
h21 · · · h2N
h31 · · · h3N
hK1 · · · hKN

 (S.29)

And we can thus write for pixel t

xt =

C∑
i

K∑
j

pxigijhjt (S.30)

and

yt =

C∑
i

K∑
j

pyigijhjt (S.31)

Thus, we obtain that

∂xt/∂gij = pxihjt (S.32)

And if

px =

px1...
pxC

 (S.33)

hj =
[
h1j · · · hkj

]
(S.34)

Then for pixel t

∂xt/∂g1:C,1:K = repmat(px, 1,K). ∗ repmat(ht, C, 1) (S.35)

Finally, we can write out the partial derivative we are looking for:

∂Lt
∂g11

= −116
∂ϕL(yt)

∂y

∂yt
∂g11

= −116
∂ϕL(yt)

∂y
py1h1t (S.36)

and

∂at
∂g11

= −500(
∂ϕa(xt)

∂x

∂xt
∂g11

− ∂ϕa(yt)

∂y

∂yt
∂g11

) = −500
∂ϕa(xt)

∂x
px1h1t + 500

∂ϕa(yt)

∂y
py1h1t (S.37)

Given J ∈ R3N×CK , and f ∈ R3N our goal is to find ∆ ∈ RCK such that g(n+1) = g(n)−∆. We find ∆ by solving

J∆ = f = reshape(I(lab) − ϕ(PGH′)) (S.38)

The last equation can then be solved iteratively with either Newton’s method or Levenberg-Marquard. We imple-
mented this method in Matlab, constructing the Jacobian matrix for the global problem explicitly and then solved
tested both Newton and LM updates. This method is extremely slow and did not allow us to process images with a
resolution larger than 64 × 64 pixels. In addition, the convergence is not monotonic. Overall, we don’t believe this
method to be practical. ADMM exhibits significantly better convergence properties, results in better solutions, it is
significantly faster, and also more modular (one per-pixel update step and one global NMF update) so that real-time
GPU implementations are in reach.
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