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Fig. 1. Our holographic light field renders correct perspectives to generate a complex hologram with amplitude and phase maps at interactive rate (1080p).
The simulated perceived images (from 4K hologram) demonstrate high spatial resolution and depths allowing eye to focus freely in space.

Holograms display a 3D image in high resolution and allow viewers to
focus freely as if looking through a virtual window, yet computer generated
holography (CGH) hasn’t delivered the same visual quality under plane
wave illumination and due to heavy computational cost. Light field displays
have been popular due to their capability to provide continuous focus cues.
However, light field displays must trade off between spatial and angular
resolution, and do not model diffraction.

We present a light field-based CGH rendering pipeline allowing for re-
production of high-definition 3D scenes with continuous depth and support
of intra-pupil view-dependent occlusion. Our rendering accurately accounts
for diffraction and supports various types of reference illuminations for holo-
gram. We avoid under- and over-sampling and geometric clipping effects
seen in previous work. We also demonstrate an implementation of light
field rendering plus the Fresnel diffraction integral based CGH calculation
which is orders of magnitude faster than the state of the art [Zhang et al.
2015], achieving interactive volumetric 3D graphics.

To verify our computational results, we build a see-through, near-eye,
color CGH display prototype which enables co-modulation of both amplitude
and phase. We show that our rendering accurately models the spherical illu-
mination introduced by the eye piece and produces the desired 3D imagery
at the designated depth. We also analyze aliasing, theoretical resolution
limits, depth of field, and other design trade-offs for near-eye CGH.

CCS Concepts: • Computing methodologies → Mixed / augmented
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Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
0730-0301/2017/11-ART236 $15.00
https://doi.org/10.1145/3130800.3130832

Additional Key Words and Phrases: computer generated holography, light
field, computational photography, vergence-accommodation conflict

ACM Reference format:
Liang Shi, Fu-Chung Huang, Ward Lopes, Wojciech Matusik, and David
Luebke. 2017. Near-eye Light Field Holographic Rendering with Spherical
Waves for Wide Field of View Interactive 3D Computer Graphics . ACM
Trans. Graph. 36, 6, Article 236 (November 2017), 17 pages.
https://doi.org/10.1145/3130800.3130832

1 INTRODUCTION
Making a comfortable visual experience is key to making practical
daily use Virtual Reality (VR) and Augmented Reality (AR) success-
ful. Providing a wide field of view, high resolution, interactivity,
view-dependent occlusion, and being able to support continuous
focus cues to avoid vergence-accommodation conflict are some of
the most important issues for near eye displays.
Recently, near-eye light field displays have been explored as po-

tential methods to fulfill the aforementioned requirements, in partic-
ular the continuous focus cues. Other near-eye display architectures
have also been proposed to achieve a comparable viewing expe-
riences, e.g., multi-focal displays and varifocal displays. However,
combining continuous focus cues, resolution, space-time trade-offs,
mechanical movement, and diffraction limits creates a challenging
design space.

Holographic displays, especially using Computer GeneratedHolog-
raphy (CGH), have been the hope of many to create the ultimate
display since the late 60s and 70s. Holographic displays, though,
are rarely used as mainstream displays because under plane wave
illumination, the small diffraction angle directly leads to a narrow
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field of view. For near-eye applications, using spherical wave illumi-
nation enables a trade-off between field of view, viewing distance
to the display (eye relief), and size of exit pupil (eye box).
Holographic calculations are also notoriously computationally

expensive. Various approximations, e.g. sacrificing depth fidelity or
limiting the parallax to horizontal-only, are often required to speed
up calculations enough to make computation time practical.

In this work, we show how to drive a CGH based near-eye display
using light field rendering, We discuss the previously mentioned
problems, the trade-offs between different illumination schemes,
an implementation of holographic light field rendering optimized
for high performance, and the benefits and the limitations of our
choices made both in illumination and in the implementation.
Specifically, we make the following contributions:

• We propose a new rendering algorithm that avoids alias-
ing in both over-sampling, under-sampling and geometry
clipping found in previous work. Our near-eye holographic
paradigm supports continuous focus cues, intra-pupil occlu-
sion, various reference wave illuminations and significantly
improves the computational speed without sacrificing ac-
curacy.

• We analyze theoretical limits on sampling, spatial resolu-
tion, and the connections between holographic displays
and light field displays. We discuss the theoretical trade-off
space for designing near-eye displays using CGH.

• We show a GPU implementation based on the Fresnel
diffraction integral that is five orders of magnitude faster
than the prior work [Zhang et al. 2015] and achieves inter-
active performance at high resolution and per-pixel depth
for the first time.

• We build a complex-modulation see-through color display
prototype supporting continuous focus cues and an ex-
panded field of view to verify our rendering and calculation
results.

2 PREVIOUS WORK

2.1 Fourier Holography
A Fourier hologram produces a flat image in the far field and is often
viewed through a lens [Benton and Bove 2008]. In such holograms,
an inverse Fourier-transformed target image is typically approxi-
mated by a binary amplitude mask [Brown and Lohmann 1966] or
by an iteratively optimized phase modulation pattern [Fienup 1982;
Gerchberg 1972; Lesem et al. 1969]. Multi-plane reconstructions are
achieved by iterating between Fourier planes and applying phase
retrieval techniques [Dorsch et al. 1994; Makowski et al. 2005] (with-
out guarantee of convergence). Unfortunately, Fourier holograms
provide little 3D information. A Fresnel hologram, as discussed below,
can produce near-field 3D imagery.

2.2 Physically-based CGH
A physically-based CGH simulates optical propagation and inter-
ference to generate diffractive patterns that produce a desired light
distribution [Benton and Bove 2008]. In such holograms, a digital

3D object is represented as the interference of waves from point-
emitters (point-based method) [Waters 1966] or from polygonal tiles
(polygon-based method) [Leseberg and Frère 1988].

The point-based method based on the Fresnel diffraction integral
has been accelerated by elementary fringe mapping [Lucente 1993],
texture-based GPU parallelization [Maimone et al. 2017; Masuda
et al. 2006; Petz and Magnor 2003], and visibility-based non-uniform
sampling [Chen and Wilkinson 2009]. In practice, such methods
require a dense point cloud to reproduce a continuous surface and
occlusion is often not well-handled, limiting virtual objects to simple
geometries.
The polygon-based method leverages FFT-based angular spec-

trum (AS) decomposition [Goodman 2005] to efficiently calculate the
optical field of polygons at the location of the hologram plane [Tom-
masi and Bianco 1993]. Remapping the surface property function
to the angular spectrum allows texturing, shading, and reflection
[Matsushima 2005]. Fully analytical frequency representations elim-
inate per-polygon AS transforms and reduce computational cost
[Ahrenberg et al. 2008; Jia et al. 2014; Kim et al. 2008]. Silhouette
masking during AS propagation accounts for self and mutual oc-
clusion [Matsushima and Nakahara 2009; Matsushima et al. 2014].
Although polygon-based methods produce realistic 3D scenes with
smooth surfaces, occlusion handling requires storing AS decompo-
sitions at intermediate planes and iterative optimization, which is
difficult to parallelize.

2.3 Image-based CGH
The advance of computer graphics techniques has led to two types of
image-based CGHs: the holographic stereogram and the layer-based
method.

Conventional holographic stereogram (HS), either interferometry-
based or computer-generated, partitions a hologram spatially into
multiple horizontal bars with each recreating a distinct perspective
captured from an imaging system or through rendering [DeBitetto
1969; Yatagai 1976]. Diffraction-specific calculations of HSs parti-
tion the hologram into elementary hologram patches, with each
producing a local ray distribution that together reconstruct multi-
ple views [Lucente and Galyean 1995]; a close analogy to integral
imaging. The lack of focus cues and limited depth of field due to
flat wavefronts is mitigated by introducing depth-dependent wave-
front curvatures [Kang et al. 2016; Smithwick et al. 2010; Yamaguchi
et al. 1993] or employing an intermediate ray sampling plane with
angular spectrum propagation [Wakunami et al. 2013]. Resolution
loss due to spatial partitioning and independent treatment of ele-
mentary hologram may be eliminated by combining the HS model
with the point-based method [Zhang et al. 2015]. However, previous
methods only generate discrete views from the center of each ele-
mentary hologram, causing aliasing, geometry clipping, and poor
extensibility to spherical wave illumination, as shown in Section 5.1.

The layer-based method slices objects at multiple depths and su-
perimposes the wavefronts from each slice on the hologram through
inverse Fresnel transform or FFT-based AS decomposition [Bayrak-
tar and Özcan 2010; Zhao et al. 2015]. View-dependent occlusion is
achieved by angularly tiling groups of sliced layers [Chen and Chu
2015] or combined with the HS model to generate a layered-based
elemental hologram for each spatial partition [Zhang et al. 2016].
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Maimone et al. [2017] show a real-time single layer implementation
on the GPU. Despite considerable computational saving for complex
3D objects, layer-based holograms cannot support continuous focus
cues and accurate occlusion due to discrete plane sampling.

2.4 Holographic Display with Extended Field of View
The solid angle spanned by the maximum visible imagery to the
eye defines the field of view (FoV). Chen and Chu [2015] demagnify
the display pixel pitch via a 4f system to increase the Field of View
at the cost of a smaller display panel. The magnification mismatch
is compensated by pre-distorting the graphics model [Zhang et al.
2012]. Others have tiled multiple displays in a circular shape with
each producing a specific part of scene towards the viewer [Hahn
et al. 2008; Kozacki et al. 2012; Yaraş et al. 2011]. The Fourier optical
system [Reichelt et al. 2012; Sato and Sakamoto 2012; Senoh et al.
2011] places a lens right against the display to produce a converging
illumination and steers the viewing cones to the focal plane; the
viewing zone is limited between finite depths in return for a shorter
viewing distance and a wider field of view. A similar idea has also
been demonstrated using holographic optical elements or compound
microscopic optical systems to further expand the field of view [Li
et al. 2016; Maimone et al. 2017].

2.5 Angular Displays and Light Field Displays
Surface materials with angular variations are achieved with pro-
grammable BRDFs using light field [Fuchs et al. 2008] or wave optics
by directly optimizing diffraction [Glasner et al. 2014] or factorizing
the Wigner Distribution Function [Ye et al. 2014]. Light field models
the space-angle distribution in geometric optics, and have also been
shown to support focus cues with dense angular sampling [Mai-
mone et al. 2013] or additive multilayers [Lee et al. 2016; Narain et al.
2015]. Near eye displays have been shown using pinlights [Maimone
et al. 2014], microlens arrays [Lanman and Luebke 2013], or attenua-
tion based multilayer compression [Huang et al. 2015; Maimone and
Fuchs 2013] to support intra-ocular occlusions which are important
to depth perception [Zannoli et al. 2016]. However, diffraction limits
further enhancement of spatial and angular resolution of light field
displays. On the other hand, Ziegler et al. [2007] demonstrate a
hologram transform based on off-line light field rendering, and we
show a more efficient paradigm that generates high-resolution CGH
interactively.

3 PRELIMINARY
In this section, we first review the mathematical foundations of
computer generated holography and briefly discuss the limitations
of using plane wave illumination. We then connect light fields to
holograms via phase space modeling using the Wigner Distribution
Function. We also discuss the benefits of using spherical wave illu-
mination in Section 4 and introduce our proposed rendering and
calculation in Section 5.

3.1 Computer Generated Holography (CGH)
A hologram converts an input “reference” light wave ER (x ) to the
desired output “object” light wave EO (x ). This requires knowledge
of both the reference wave and the object wave. Usually, the form of

the reference wave is a given, and the purpose of CGH is to compute
the diffraction pattern which will do the conversion. This leaves the
question of calculating the desired output waveform at the location
of the hologram.
The desired output waveform at the location of the hologram

may be calculated by starting at the position of the desired target
3D point and propagating light towards the hologram using the
Fresnel diffraction integral. For object made up of points, this may
be thought of as a summation of spherical waves originating from
the points themselves:

EO (x ) =
∑
j

Aj

r j (x )
ei (

2π
λ r j (x )+ϕj ) , (1)

where λ is the wavelength of the monochromatic light source, Aj is
the amplitude of the point j at location (x j , zj ), as shown in Figure 2,
r j (x ) =

√
(x j − x )2 + z2j is the Euclidean distance from the point to

the pixel (x , 0) on the hologram, and ϕ j is the random initial phase
associated with each diffuse point. Note that the resulting electric
field is complex-valued.
A computer generated hologram modulates an input wavefront

multiplicatively. For plane wave (collimated) illumination, of which
the value of the wavefront is a constant across the hologram plane,
the hologram to display is exactly the object electric field. For spher-
ical wave illumination, the object electric field should be multiplied
by a complex exponential with a quadratic phase to cancel out the
quadratic phase of the spherical reference wave illumination.

Displaying the correct diffraction pattern requires devices which
can modulate both the amplitude and the phase of the waveform
with spatially varying patterns, e.g. liquid crystal (LC) displays or
spatial light modulators (SLMs).
One major limitation of holographic displays using LC-SLMs is

the narrow maximum deflection angle between the incident light
angle θin and the outgoing angle θout , which is characterized by
the grating equation:

λ

2∆p
= |sinθin − sinθout | , (2)

where ∆p is the SLM pixel pitch. A typical 8µm pitch SLM can
maximally deflect 532nm green light by 3.81◦, whereas a traditional
analog hologramwith nanometer-scale diffracting pattern can easily
achieve a maximum angle greater than 100◦.

The small diffraction angle of SLMs severely impacts the practical
application of SLMs to near eye displays under plane wave illumi-
nation, as shown in Figure 2. To observe the full extent of a SLM
of width ws , the minimal distance dmin

e from the eye to the SLM,
called eye relief, is determined by the two converging rays deflected
from the edges of the SLM, and is given by:

dmin
e =

ws

2 tan
(
sin−1

(
λ

2∆p

)) . (3)

The maximum angle αmax subtended by the SLM determines the
maximum field of view (FoV):

αmax = 2 tan−1
(

ws

2dmin
e

)
= 2 sin−1

(
λ

2∆p

)
. (4)
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Fig. 2. Plane wave illuminated holographic display. Each display pixel
diffracts wavefront into a spatially-uniform light cone. Rays are back-traced
for each point emitter within the diffraction cone. The viewer can only ob-
serve the full extent of the displayed 3D image behind the intersection of
two marginal cones diffracted from the edge of the display.

The red region allowing eye to move freely and still be able to see
the entire hologram is called the eye box. When eye relief de > dmin

e ,
the eye box is obtained as

we =
de − d

min
e

dmin
e

ws . (5)

As such, a 1080p SLM with 8µm pitch sets a minimum 265mm eye
relief and a maximum field of view of only 3.81◦. Further, Equa-
tion (4) shows the FoV does not scale with SLM width, making CGH
under plane wave illumination a less ideal candidate for near-eye
displays. In section 4 we detail how spherical wave illumination
surmounts these difficulties.

3.2 Holography, Wigner Distributions, and Light Fields
A light field L(x ,θ ) models the discrete ray space-angle distribution
in geometric optics and is widely used as a content format for mul-
tiview displays. However, a high resolution light field display often
suffers from diffractive blur [Huang et al. 2015]; since geometric
optics models do not consider diffraction and interference, they can-
not be used to display holograms. We will show how to transform
light field content into a holographic wavefront in Section 5, and
here we first discuss their similarity.

In light fields, the angle θ corresponds to the normal direction of
the wavefront and can be related to the spatial-frequencyu = θ/λ of
the Fourier transformed object wave F (EO (x )), also known as the
angular spectrum. Similar to light fields, the Wigner Distribution
Function (WDF) [Alonso 2011; Bartelt et al. 1980; Bastiaans 1997]
models both space and spatial-frequency of a scalar function, and is
calculated by Fourier transforming the mutual intensity function of
a scalar wave field E (x ):

W (x ,u) =

∫ 〈
E

(
x +

fu
2

)
E∗

(
x −

fu
2

)〉
e−i2π fuud fu , (6)

where ⟨·⟩ is the time-averaging operator for incoherent illumina-
tion. Note that the WDF is real but not necessarily positive due
to destructive interference; however, projecting the WDF along ei-
ther axis results in a non-negative function. In particular, we obtain

Side View

Fig. 3. Spherical wave illuminated holographic display. Each display pixel
diffracts a light cone toward the focus. The entire display is observable by
placing pupil in the diamond-shape viewing zone.

the intensity distribution by projecting along the spatial-frequency
(u-axis): ∫ +∞

−∞

W (x ,u)du = |E (x ) |2. (7)

A non-negativeWDF that resembles a light field can also be obtained
by convolving the WDF of E (x ) with the inverted WDF of a finite
aperture function [Zhang and Levoy 2009].
The definition of the WDF, unlike the light field, reveals an im-

portant property of holograms: the angular light distribution is
inherently encoded in the spatial pattern of the scalar function E (x ),
and no spatial resolution is sacrificed.
Despite the similarity and relationship between light fields and

WDFs, reversing a light field to obtain the scalar function E (x )
is challenging: even though the inverse Fourier transform of the
spatially-compressed WDF F−1 (W (x/2,u)) gives the scalar wave
field up to a constant scalar E (x )E∗ (0) [Claasen andMecklenbräuker
1980], obtaining the WDF by deconvolving an arbitrary light field
with the invertedWDF of a local aperture is impractical and does not
always yield a valid WDF [Jagannathan et al. 1987]. Even with valid
WDFs, inverting a high resolution (i.e. 1080p) WDF requires storing
and processing trillions of samples which is intractable. Ye et al.
[2014] approximate the nonnegative WDF via iterative global opti-
mization. However, they sacrifice the spatial and angular resolution
by partitioning the scalar field into independent segments.

With the aforementioned computational and physical limitations,
we will not rely on the WDF to generate holograms. Nevertheless,
the WDF’s spatial-angular representation of phase space makes it
ideal for analyzing holographic display characteristics both mathe-
matically and graphically. We will revisit the WDF in Section 7.

4 SPHERICAL WAVE ILLUMINATION
CGHs under plane wave illumination give a narrow field of view
and set a long eye relief, as discussed in Section 3.1. In holographic
projection, using a diverging illumination expands the projected
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image field [Qu et al. 2015]. Similarly, we employ a converging beam
to create a near eye CGH, achieving wider field of view and shorter
eye relief, as shown in Figure 3.

We denote the focus of converging wavefront F , and the distance
between the focus and the SLM dF . Unlike under plane wave illumi-
nation, the eye box is confined between two depths determined by
Equation (2):

d{f ar,near } =
ws

2 tan
(
sin−1

(
sin

(
tan−1

( ws
2dF

))
± λ

2∆p

)) . (8)

When the eye is located at the focus (eye relief de = dF ), the field of
view αdF and the eye boxwe (dF ) follow

αdF = 2 tan−1
(
ws
2de

)
, we (dF ) = 2 tan

(
sin−1

(
λ

2∆p

))
dF . (9)

Equation 9 shows the significance of using converging spherical
wave illumination, that (1) the eye relief only depends on the focal
length of wavefront, (2) the field of view depends on both the SLM
widthws and the eye relief de , which is constrained by the demand
for a larger eye box, and (3) for any given eye relief, a smaller pixel
pitch results in a larger eye box.
These relations offer more flexibility in designing near-eye dis-

plays, for example, using a shorter focal length wavefront allows
for a wider field of view but a smaller eye box [Maimone et al. 2017].
In this paper, we require a minimal 10mm eye box coverage.
Using spherical wave illumination impacts the entire pipeline

from the optical setup, the CGH calculation in Equation (1), and the
light field rendering. In Section 5, we redesign light field rendering to
adapt the diffraction geometry under both plane wave and spherical
wave illumination, and show how to avoid the aliasing and clipping
problem in the methods proposed by the previous work.

5 RENDERING AND CALCULATION FOR CGH
In the proposed CGH rendering pipeline, we start with polygon-
based light field rendering such that occlusion is handled through
the graphics pipeline using z-buffer. The output is a multiview holo-
graphic light field which contains color and position information
intended for CGH calculation, as shown in Figure 4. We then transi-
tion to the point based method with local partitioning, which allows
for per-pixel depth reconstruction and parallel computation on GPU
at interactive speed in 1080p image quality for the first time.

In the following, we first describe the improved rendering setup
under plane wave illumination, which avoids aliasing and geome-
try clipping inherited in the previously proposed rendering setup
[Zhang et al. 2015]. We then extend the proposed algorithm to sup-
port spherical wave illumination, which enables near-eye CGHs.
The Fresnel diffraction integral based calculation which converts a
holographic light field into CGH is presented at the end.

5.1 Holographic Light Field Rendering
Calculating a full parallax hologram demands a densely sampled 4D
light field [Huang et al. 2015; Maimone et al. 2013], where a local
view (elemental image), which records depth-sorted visible scene
points, is rendered for each SLM pixel from the its spatial location
and based on the diffraction geometry. The same 4D light field can
also be rendered through a dense angular view sampling at the SLM
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Fig. 4. We render the holographic light field with both color (top-left) and
position (top-right) information . Each elemental image maps one-to-one to
the associated hogel and this allows for parallelized acceleration. However,
within each elemental-to-hogel pair, there is a dense mapping between
every pair of pixels from both sides: every pixel in the hogel accumulates
both phase and amplitude from every pixel in its elemental image, thus
forming a complete bipartite compute graph per elemental-to-hogel pair.

resolution, an approach that is often more preferred due to fewer
rendering passes. Nevertheless, even under the small diffraction
angle of existing SLMs, rendering a 1080p spatial resolution light
field at an angular resolution equivalent to human visual acuity is
computationally impractical for real-time graphics.
Assuming Lambertian surfaces, rendering a dense 4D light field

generates highly similar views for adjacent SLM pixels and results in
large redundancies: a single recording of each object point, regard-
less of the visibility to each SLM pixel, is sufficient to determine the
point’s wavefront over the entire SLM. Leveraging this observation,
a hologram can be spatially partitioned into abutting grids, called
holographic elements (hogels), as shown in Figure 4, such that only
a single representative view, an elemental image, is rendered and
used in calculation for each hogel, assuming all captured points are
visible to all pixels in the hogel. The reduction in parallax introduces
an error in occlusion bounded by the hogel sizewh (about 1mm in
our prototype) within the eye box; this approximation substantially
reduces the number of rendering pass (Section 7.6), and is widely
adopted in holographic stereogram calculations (Section 2.3).
Under plane wave illumination, the previous work renders a

hogel’s view by setting a virtual camera directly on the SLM surface
and at the hogel’s center, as shown in Figure 5 (bottom). The view
frustum, as shown by the pink cone, has a field of view equaling the
maximum diffraction angle defined by the SLM pixel. However, this
scheme cannot provide an accurate per-pixel wavefront accumula-
tion as it only renders the object points visible to the hogel’s center
pixel and also extends poorly to spherical wave illumination. Con-
sider the hogel’s bottom SLM pixel, the rendering of objects from the
top red parallelogram is mistakenly incorporated, and that from the
bottom yellow parallelogram is incorrectly excluded. Meanwhile,
to prevent geometry clipping, the separationwh between adjacent
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Clipping Plane

Our
View Frustum

Hogel

Side View

Conventional
View Frustum

Fig. 5. Holographic light field rendering for plane wave illumination. The
proposed view frustum (top, pink cone) covers the entire space in front of
the SLM, as opposed to the convention setup (bottom, pink cone), where
geometry clipping happens when objects are located between two adjacent
hogels and within a distance dmin to the SLM. In our setup, the rendering
contains a larger area w1 than what each SLM pixel sees, thus we use a
sliding windoww2 based on the maximum diffraction angle to disambiguate
the blue segment and select the valid fraction from the rendered elemental
image for each SLM pixel under consideration.

view frustums sets an implicit depth limit

z ≤ −dmin ≡ −
wh

2 tan
(
sin−1

(
λ

2∆p

)) , (10)

to the objects and the near clipping plane; artifacts are shown in
Figure 11. We propose a unified framework, holographic light field
rendering, in the following, to support accurate view estimation
under various illuminations.
To gather the part of 3D scene visible to the entire hogel, we

laterally shift the virtual camera in the z direction, as shown in
Figure 5 (top), to the intersection of the two marginal rays, defined
by the diffraction cone associated with the hogel’s top and bottom
pixel. The lateral offset to the SLM is given bydcz = dmin . The offset
camera projects all the scene points, visible to the pixels in the hogel,
to the area w1 = 2 sin−1 (λ/2∆p) (d1 + dcz ) for further processing.
Again, for the hogel’s bottom pixel, we incorrectly incorporate the
top portion of the scene points when using the entire vieww1.

To address this problem, a conservative sliding window considers
only the valid fraction in the rendered hogel view during the final
wave calculation. This sliding window, w3 =

(
1 − dcz

d1+dcz

)
w1, on

the front clipping plane is defined by projecting a cone of max-
imum diffraction angle from the SLM pixel under consideration
(the bottom hogel pixel in fig. 5 (top)) to the scene object. Since we

approximate the projection geometry by replacing the per-pixel ren-
dering with the per-hogel rendering, the 3D projection to the offset
virtual camera also introduces ambiguity segments, as shown in the
inset of Figure 5. For the bottom hogel pixel, an example is shown
in the blue segment, where both the valid yellow triangle (should
be considered) and the invalid red triangle (should be excluded) are
projected to the same location. During the final wave calculation,
we disambiguate this region by testing whether or not the angle to
the SLM pixel under consideration is smaller than the maximum
diffraction angle. To test the visibility, we include the ambiguity
segment by extending the sliding window to the following:

w2 =

(
1 −

dcz
d2 + dcz

)
w1. (11)

Arranging a camera array under the proposed configuration al-
lows for unrestricted disposition of scene objects. The lateral separa-
tion between camera and SLM ensures that adjacent camera views
overlap immediately in front of the SLM, and the tiled frustum array
fully covers the field of view of the entire hologram, allowing near
clipping plane to be set at arbitrary depth in front of SLM. The con-
figuration works well for rendering under plane wave diffraction
geometry. For rendering under spherical wave illumination, the
prior discussion still applies, but the camera geometry has to con-
sider the limited eye box and the expanded field of view as discussed
in Section 4.

5.2 Spherical-Holographic Light Field Rendering
Using spherical wave illumination enables a wider field of view.
However, the view-frustum must be updated to accommodate the
new diffraction geometry. Specifically, the frustums undergo spatially-
varying transforms: the wavefront curvature introduces an off-axis
rotation to the diffraction cones and centers each frustum on the
local incident ray direction, as shown in Figure 6 (top). Meanwhile,
at a larger incident angle, the diffraction cone and the associated
frustum shrinks according to the grating equation (eq. (2)), but stills
covers the eye box defined by the diffraction cone of the SLM’s
center pixel. Overall, the updated viewing frustums of all SLM pix-
els collectively widen the field of view. In the conventional setup
(bottom), the cameras’ viewing frustums are largely disjoint to the
pixels’ frustums and fail to provide a properly generalized view.

Extending the proposed camera arrangement to spherical illumi-
nation sets the virtual camera at the intersection of the marginal
rays restricted by the eye box (eq. (9)) and skews the field of view.
The separation between camera and SLM is given by

dcz =
dFwh

we (dF ) +wh
. (12)

The offset between camera and hogel center along x- and y-axis
depends on each hogel’s position relative to the eye box. Assuming
2M + 1 by 2N + 1 partitioning of the SLM along x and y, the dis-
placement from the (m,n)-th hogel center to its virtual camera is
given by

dcx =
mwhdcz

dF
, dcy =

nwhdcz
dF

. (13)
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Clipping Plane

Our
View Frustum

Hogel

Side View

Conventional
View Frustum

Fig. 6. Holographic light field rendering for spherical wave illumination.
The camera view frustums are spatially non-uniform and steered off-axis to
capture hogel’s entire field of view. Calculating the per-SLM-pixel view is
similar to that in the plane wave illumination setup. Points in the red trian-
gles (projected to the blue segment) are disambiguated by examining the
angles with respect to the central ray (dashed green line) of the diffraction
cone for the pixel under consideration.

In camera space, we can define the off-axis projection matrix as

P {m,n } =



2dcz
wh

0 2dcx
wh

0

0 2dcz
wh

2dcy
wh

0
0 0 −

d2+d1
d2−d1

−
2d2d1
d2−d1

0 0 −1 0



. (14)

The sliding windoww2 inside each elemental image to disambiguate
the projected pixels is

w2 =

(
1 −

dcz
(
d2 + dF − dcz

)
d2dF

)
w1. (15)

We also analyze the error and performance gain due to choices of
large hogel size by examining the error-free fraction in the sliding
window

w3
w2
= 1 −

(d2 − d1)dcz
d1 (d2 − dcz )

; (16)

more details are discussed in Section 7.6. We emphasize two extreme
choices of hogel size. When each pixel is treated as an individual
hogel, the proposed holographic light field rendering renders the
exact view perceived by each SLM pixel and produces a dense 4D
light field as that in Huang et al. [2015]. On the other hand, when the
entire SLM is treated as a single hogel, depth cue from intra-occular
occlusion [Zannoli et al. 2016] is ignored and the approach is the
same as that adopted by Maimone et al. [2017].
With the rendered holographic light field, as shown in Figure 4

(top row), we can compute the interference patterns (bottom row)

to be shown on the SLM pixel by accumulating the amplitudes and
phases in the cropped elemental image using the sliding window.

5.3 Calculating Object Wave for Displaying on SLM
In holographic light fields, the one-to-one mapping between an
SLM hogel and its visible elemental image, as shown in Figure 4,
facilitates parallel computation of the Fresnel diffraction integral.

Let p denote a SLM pixel in the (m,n)-th hogel at a displacement
(∆x ,∆y) to the hogel center. In its associated camera space under
spherical wave illumination, p’s spatial coordinate is given by (∆x +
dcx ,∆y + dcy ,−dcz ). Let p’s estimated view be a sliding window of
Pw2 × Pw2 pixels and define qj be the j-th elemental pixel whose
rendered point is located at (xqj ,yqj , zqj ) with amplitude Aqj and
initial phase ϕqj . The Euclidean distance between p and qj is given
by

r (p,qj ) =
√
(xqj−∆x−dcy )

2 + (yqj−∆y−dcy )
2 + (zqj+dcz )

2. (17)

Since the CGH converts a reference wave ER (x ) to the object wave
EO (x ), we need to pre-multiply the object wave with the conjugate
reference wave—a reference wave that propagates away from the
SLM. The conjugate spherical wave also has to be evaluated in a
per-pixel basis that requires the distance from p to the focus of
spherical wavefront F :

r (p, F ) =
√
d2F + (mwh + ∆x )

2 + (nwh + ∆y)
2. (18)

Substituting Equation (1) with variables defined for an on-axis spher-
ical wave illumination establishes the complex amplitude on the
SLM at location p:

E (p) =
*..
,

Pw2
2∑

j=1

Aqj

r (p,qj )
e
i2π

r (p,qj )
λ +ϕqj

+//
-︸                                 ︷︷                                 ︸

Object Wave EO (x )

(
AF

r (p, F )
ei2π

r (p,F )
λ

)
︸                   ︷︷                   ︸
Conjugate Reference

Wave E∗R (x )

, (19)

where AF denotes the amplitude of conjugate spherical wave. Note
that the CGH under plane wave illumination is simply the object
wave EO (x ) in the equation, where r (p,qj ) is reformulated accord-
ing to plane wave rendering geometry. For paraxial region, Equa-
tion (19) can be simplified by the Fresnel approximation to remove
the square root operation. In this paper we aim for an accurate
quadruple sum between ps and qs on the SLM and the rendered
scene plane respectively.

6 IMPLEMENTATION AND RESULT
Our implementation depends on the desired trade-off between field
of view and eye box described in Equation (9) and the available off-
the-shelf hardware. In this section, our design requires a minimum
eye box of 10mm size, and we will discuss more design trade-off
spaces for software in Section 7.6 and hardware in Section 7.7.

6.1 Computing Hardware and Software
We render holographic light fields on a PC with an Intel core i7
3.3GHz CPU and 16GB of RAM, and a NVIDIA TitanX GPU. The
multiview holographic light field is rendered with Simultaneous
Multi-projection at the geometry shader stage. The elemental image
resolution bounds the rendering cost. Unlike in the rendering of full
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(a) Target Scene (b) Captured Front Focus (c) Captured Rear Focus

Fig. 7. We verify our rendering and CGH calculation on an optical color hologram setup. We show the reference 2D image in (a). When the object is displayed
on a hologram, we can support accommodation (b and c). Our computation uses per-pixel depth allowing continuous focusing.

resolution light fields [Huang et al. 2015], the view size is bounded
by the relatively small diffraction cone. For 4K SLMs, the overall
rendering to a resolution of 5376 × 3024 light field (under 16 × 9
hogels) takes less than 20ms .
We use CUDA-OpenGL Inter-Op to calculate the CGH, and the

pseudo kernel code that runs on each SLM pixel is outlined in Al-
gorithm 1, where Pws , Pwh , Pw1 , and Pw2 denote the number of
pixels in the SLM, the hogel, the elemental image, and the sliding
window respectively. The heavy computation in the loop (line 5-12)
hides the latency of repeated texture fetching (line 6 and line 9). The
major performance bottleneck comes from three parts: calculating
the Euclidean distance and phase shift between 3D image points
and SLM pixels (line 8), accumulating complex value with trigono-
metric operations (line 11), and conditional branching (line 10). We
re-formulate the maximum diffraction angle comparison to avoid

division and minimize the branching code. We further parallelize the
compute-looping (line-5) using the prefix-sum algorithm and using
on-chip shared memory to avoid memory bank conflicts. Together,
we obtain an additional 40% performance gain compared to an un-
optimized GPU CUDA code, 100× to a GLSL shader implementation
of the same algorithm, and more than 13000× to a C++ implementa-
tion on CPU [Zhang et al. 2015]. Maimone et al. [2017] show similar
performance to our GLSL code for offline computation of the point
based method. We profiled the code to be heavily compute-bounded
(nearly 11 trillion floating point operation).

6.2 Optical Setup
The optical setup is shown in Figure 8 with three incoming narrow
band red, green, and blue lasers operating at wavelengths 642nm,
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Algorithm 1 Fringe Calculation Kernel with Spherical Wave
1: i← pixel index in SLM

2: ϕE∗R (x )
← lenдth

({(
i − Pws

2

)
· ∆p,DF

})
/λ · 2π

3: iHoдel ←mod (i, Pwh )
4: iElem ← ⌊i/Pwh ⌋ · Pw1 + iHoдel /Pwh · (Pw1 − Pw2 )
5: for Pixel index in slidinд window j = 0 to Pw2 × Pw2 do
6: q← LiдhtFieldPositionTex[iElem + j]
7: ∆q←

{(
i −

Pwh
2

)
∗ ∆p + dc {x,y } ,−dcz

}
8: ϕ ← Lenдth(q − ∆q)/λ · 2π + ϕE∗R (x ) + ϕInit
9: A← LiдhtFieldColorTex[iElem + j] · (1/r )
10: if Angle < MaxDiffractionAngle then
11: E(i) ← E(i) +A · eiϕ

12: end if
13: end for

Fig. 8. The optical setup relays amplitude modulation to phase modulation
via a 4F system. Color reconstruction is achieved by field sequential modu-
lation. The aperture stop at the eye box filters the undiffracted zero order
beam and higher order diffractions.

515nm, and 442nm respectively. We obtain field-sequential color re-
construction by displaying the color specific holograms at the same
time as illuminating with that specific color and cycling through
the colors red, green, and blue. We achieve complex-modulation by
relaying an amplitude SLM to a phase SLM via a 4F system. The
amplitude SLM, made by bbs bild und lichtsysteme GmbH (part#
LCD L3C07U-85G13) , has 1920× 1080 resolution, 8.5µm pixel pitch,
and operates in transmissive mode. We calibrate the non-linear
amplitude modulation response and the accompaning phase shift.
The phase SLM is made by HoloEye (part# GAEA) and factory pre-
calibrated. It has 4094 × 2464 resolution, 3.74µm pixel pitch and
operates in reflective mode. The hologram is computed at 4K reso-
lution, and the amplitude is down-sampled to 1080p using nearest
neighbor filtering for display. We capture the photographed results
with a Cannon EOS 5D MIII DSLR camera with a 100mm f /2.8 lens.

A Thorlabs 75mm achromatic lens is placed 50mm behind the
phase SLM and before the eye box. The lens, effectively, converts
the plane wave illumination to a converging illumination [Reichelt
et al. 2012] focused at the back focal point centered at the eye
box. Our rendering and calculation are adjusted with respect to the
magnified virtual SLM and the spherical wave illumination.
Though we only demonstrate a bench-top prototype, our algo-

rithm is fully compatible with the prototypes demonstrated by Mai-
mone et al. [2017], including the compact head-mounted design. To
our knowledge, companys like Silicon Light Machine are also devel-
oping complex-modulation SLMs which will remove the necessity
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Fig. 9. Comparing performance under CPU and different GPU implementa-
tions, and different illuminations. We implement Zhang el al.’s algorithm
in C++, GLSL (left two blue bars) under plane wave illumination and our
algorithms in CUDA (right 4 pair of bars) under both illumination schemes.
The elemental image resolution is 128 × 128 (2048 × 1152 overall points
cloud) in the plane wave method, and 160 × 160 (2560 × 1440 overall) in the
spherical wave method; both methods achieve 30 pixels per degree angular
sampling on a 1920 × 1080 resolution SLM.

of relaying different SLMs with 4F system and largely reduce the
form factor of our display prototype.
We verify our rendering and CGH calculation using the above-

mentioned optical setup; photographed results are shown in Fig-
ure 7. (2020 updates: the results have been recaptured on a
revamped setup, and the holograms are recomputed using
the phase initialization from Maimone et al.[2017])

7 EVALUATION AND ANALYSIS
We evaluate the performance, model the aliasing, theoretical resolu-
tion and sampling limits through the WDF analysis, and discuss the
physical limitations of the SLM panel in the design trade-off space.

7.1 Compute Performance
We evaluate the performance of the implementations discussed in
Section 6, under different illumination schemes. The performance
results, as shown in Figure 9, are obtained at an angular sampling
rate of 30 pixels per visual degree, similar to the angular resolution
found in commercial VR/AR devices. Specifically, the CPU imple-
mentation of plane wave method by Zhang et al. [2015], which we
also reimplemented on CPU, takes nearly an hour to compute a
3-color-channel 1080p hologram, where an optimized CUDA im-
plementation of our algorithm takes only 250ms , achieving more
than 5 orders of magnitude speed up. The performance is compute-
bounded, thus a Pascal Titan X with 11 TeraFLOPS nearly doubles
the frame rate of using a GeForce 980Ti with 5.63 TeraFLOPS1.

7.2 Phase-only Holograms andQuantization
With diffuse objects (i.i.d random phases), the resulting hologram
exhibits a near-uniform amplitude and most information is trans-
fered to the phase [Goodman 2005]. Similar to most prior work, we
construct a phase-only hologram by discarding the amplitude, as
shown in Figure 10 (b). The reconstruction closely resembles the
reference result (a) with minor artifacts marked in blue, orange and
yellow. Adding a low-resolution amplitude mitigates these artifacts
significantly (d).

1The upcoming NVIDIA Volta GV100 2017 has 120 TeraFLOPS in tensor operations.
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Complex
8-bit

Phase-only
8-bit

Amp(8-bit)+
Phs(2-bit)

Amp(320p,8-bit)+
Phs(8-bit)

(c)

(a) (b)

(d)

Fig. 10. Comparisons of (a): the ideal amplitude and phase hologram with
(b): phase-only hologram, (c): lower bit depth phase, and (d): lower amplitude
resolution. We compare the simulated results (insets) using a 1080p SLM.

The bit-level of phase precision can also be reduced [Zhao et al.
2015] for other purposes, e.g. higher refresh rate or resolution, with-
out noticeably sacrificing the image quality. The image reconstructs
well with a slight contrast loss even at 2-bit quantization (c). We
simulate different quantization levels in the Appendix, Figure 18.

7.3 Geometry Clipping and Aliasing Comparison
Unlike previous work [Zhang et al. 2015], our rendering, as dis-
cussed in Section 5.1, avoids geometry clipping (fig. 5, bottom) for
sufficiently close objects (z ≤ dmin in Equation (10)) and aliasing
due to over- and under-sampling outside the view frustum in the
center of hogel. We visualize these benefits in Figure 11 by recon-
structing a spring that spans between 0.9dmin (13mm) and 2.1dmin
(30mm) to the SLM. The front focus on the CGH produced by Zhang
et al.[2015] (c) exhibits visible geometry loss and strong aliasing due
to geometry clipping and over- and under-sampling, as analyzed in
Section 7.4. However, their method also performs well, as shown
in (d), outside the distance dmin for the majority of the viewing
volume.

7.4 Sampling Outside the Maximum Diffraction Cone
In Section 5.1, a sliding window w2 limits wavefront sampling;
we argue that sampling the wavefront of any point outside the
maximum diffraction cone dictated by the highest spatial frequency
|umax | = 1

2∆p results in aliasing. Assuming paraxial region where
the WDF description is accurate, we analyze the reconstruction of
a single spherical point emitter on a 1D hologram. In the analysis,
we also discard the spatially-varying amplitude for simplicity, by
noticing that the derived resolution matches the simulation using
complex amplitude wavefront well. Consider the emitter at (x0, z0),
its wavefront at z = 0 and the WDF (eq. (6)) are:

E (x ) = e
iπ (x−x0 )2

z0λ , Wz=0 (x ,u) = δ

(
x − x0
z0λ

− u

)
. (20)
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Fig. 11. The proposed method (top row, photographed) provides an accurate
rendering setup (Section 5.1) such that no geometry is clipped near the SLM.
The algorithm used by Zhang et al. [2015] results in geometry clipping when
the object is closer to the SLM than dmin (c), and aliasing due to over and
under-sampling (c and d). The captured results from a 1080p SLM closely
resemble the simulations (red insets).

Aliased Points

Visible  Field
Vanished Points
(unobservable)

propagation &
projection

SLM 
Space-bandwidth Support

Sheared SLM 
Space-bandwidth Support

Fig. 12. WDF analysis of aliasing caused by sampling outside the maxi-
mum diffraction cone. (Left): The dashed lines denote replicas from discrete
sampling. The display’s space-bandwidth product in green rectangle is
bounded by the spatial extent ws and the maximum spatial frequency
±1/2∆p . (Right): The visible field is the lateral extent of the sheared space-
bandwidth product. Each constructively interfered replica in red dash line
projects to an aliased point at a displacement depicted by the Nyquist
sampling rate.

Sampling the wavefront at a discrete interval ∆p on the SLM gener-
ates infinite replicas (fig. 12 (left)) of doubly sampledWDFWz=0 (x ,u)
along u-axis at a displacement of 1

2∆p [Stern and Javidi 2004]:

Ŵz=0,∆p (x ,u) =
1

2∆p

(∑
k

∑
l

δ (x − k∆p)Wz=0 (x ,u − l/2∆p)

(21)

+ (−1)kδ (x − (k + 1/2)∆p)Wz=0 (x ,u − l/2∆p)
)
.

The space-bandwidth product of the SLM, shown as the green rec-
tangle in the WDF chart, bounds the reproducible wavefront. To
observe the point emitter, we propagate the wavefront back to z0;
the WDF, similar to a light field, is sheared along x-axis [Good-
man 2014]. The intensity distribution at z0 is obtained by projecting
along theu-axis from the visibleWDF enclosed by the sheared space-
bandwidth support (eq. (7)), as shown in Figure 12 (right). For odd
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projectionpropagation

Fig. 13. WDF analysis of resolution limit outside the DoF. (Left): Frequency is minimally dilated to the main lobe of the sinc function near the center, while the
peripheral dilation (orange sinc) has wider spread and weaker peak amplitude. (Middle): The yellow dash line marks the sheared minimally dilated frequency
at the observed distance. (Right): The dash lines bound the region where sinc response is always positive, and the projected circle bounds the resolution.

k-th replicas, no spatial point is observed because alternating signs
(dash line interleaved with red and blue) destructively interfere; for
even k-th replicas, aliased points are generated within the field of
view. The displacement between adjacent aliased emitters obeys the
Nyquist theorem and is jointly characterized by the maximal spatial
frequency and the depth of the target emitter as ∆s = z0λ/∆p.

To avoid aliasing, the even k-th replicas should be located outside
the sheared space-bandwidth support of the display: if the point
emitter is located within a minimal distance to the SLM

z0 ≤ zmin ≡ (ws + |2x0 |)∆p/λ, (22)

we avoid sampling outside the maximum diffraction cone using
a sliding window w2; artifacts due to oversampling are shown in
the Appendix, Figure 17. Equation (22) also defines the Depth
of Field (DoF). In Section 7.5, we discuss the limits of reconstructed
resolution inside and outside the DoF (zmin ).

7.5 Resolution Limits on the Depth of Field (DoF)
We show that, like light field displays, holographic displays also have
limited spatial resolution outside the depth of field, beyond which
spatial resolution exhibits a depth-dependent degradation. The effect
is due to sampling of a continuous wavefront over SLM’s finite
spatial extent. We distinguish two cases: spatially-limited sampling
when a point emitter is outside zmin (eq. (22)) and frequency-limited
when it is inside.

Spatially-limited sampling. When the object point is outside the
depth of field (z0 ≥ zmin ), the SLM is smaller than the maximum
diffraction cone projected from the object point, and all pixels sample
the wavefront:

Ews (x , 0) = e
iπ (x−x0 )2

z0λ ⊓

(
x

ws

)
, (23)

where ⊓(·) is a rectangular function modeling SLM’s finite spatial
extent. The corresponding WDF can be derived as

Wws ,z=0 (x ,u) = 2ws

(
1 −
|2x |
ws

)
sinc

(
ws

(
1 −
|2x |
ws

) (
x − x0
z0λ

− u

))
= δ

(
x − x0
z0λ

− u

)
⊗u 2ws

(
1 −
|2x |
ws

)
sinc

(
2ws

(
1 −
|2x |
ws

)
u

)
,

which is a convolution along u-axis between the WDF of the con-
tinuous wavefront and the WDF of the rectangular function. The
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Fig. 14. Simulation of spatial resolution limit. (First Row): spatially-limited
sampling outside the DoF. The red bounding box marks the width of the
main lobe as resolution limit, and the bounding box scales proportional
to the distance between the point emitter and the display. The observed
resolution limit (eq. (25)) is the same for display with the same spatial
extent but smaller pixel pitch (b,c); however, their DoF (eq. (22)) are different.
(Second Row): frequency-limited sampling within the DoF. Spatial resolution
in (e,f,h) remains at ∆p when the projected maximum diffraction cone is not
cropped by SLM boundary. When the display boundary crops the projected
maximum diffraction cone, reconstruction degrades as shown in (g) due to
under-sampling.

convolution dilates the frequency response from a Dirac delta func-
tion to a spatially varying sinc function, as shown in Fig. 13 (left).
Because sinc degrades rapidly after its first zero-crossing, we char-
acterize the frequency dilation by the width of the main lobe:

∆u =
1

ws
(
1 − |2x |ws

) , x ∈ (−ws/2,ws/2). (24)

The minimal frequency dilation ∆umin = 1/ws is obtained at
x = 0 and centers around u = −x0z0λ

. To observe the point emitter,
we propagate the WDF to z = z0 and the propagation shears the
frequency dilation to create a spatial dilation. In Figure 13 (middle),
the yellow dash line marks the sheared Wws ,z=0 (x = 0,u) and
bounds the minimal spatial dilation

∆xmin = z0λ∆umin =
z0λ

ws
≡

z0λ(
Pws∆p

) . (25)

Calculating the exact intensity distribution at z = z0 requires
integrating the sheared spatially varying sinc along u-axis (eq. (7)).
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However, we notice that for x ∈ (x0 −
1
2∆xmin ,x0 +

1
2∆xmin ), as

shown by the region defined between the two dash lines in Figure 13
(right), the WDF is always positive as the main lobes sheared from
different spatial locations are at least ∆xmin wide. Thus, the spa-
tial resolution of the point is upper-bounded by ∆xmin ; this width
agrees with the closed-form solution sinc2

(
(x−x0 )
∆xmin

)
obtained by

Kizacki [2010] and shows a depth-dependent degradation.
To validate, we reconstruct a point emitter at distances 1m, 2m,

4m away from a 1920 × 1080 SLM of 8um pixel pitch, all three
distances are outside the SLM’s DoF as shown in Figure 14 (a, b,
and d), in simulation [Matsushima and Nakahara 2009], and we find
that the resolution of reconstructed points scales proportionally to
the distance, as predicted by Equation (25). For these point emitters,
doubling the SLM resolution while halving the pitch results in the
same degraded spatial dilation as the DoF reduces (eq. (25)). As
an example, a point reconstructed at 2m to a 3840 × 2160 SLM
of 4um pixel pitch SLM (c) has the same dilation as that from a
1920 × 1080 SLM of 8um pixel pitch SLM (b). Increasing display
sizews , e.g. by tiling, expands the DoF and avoids resolution
degradation.

Frequency-limited sampling. When the object point is within the
depth of field (z0 < zmin ) , the active sampling region is bounded
by the intersection between the projected maximum diffraction
cone and the SLM boundary. We leave the detailed derivation to the
Appendix Section A and summarize the result here.

The highest spatial resolution is achieved inside a triangular
region in front of the SLM, defined by the Appendix Equation (37),
within which the projectedmaximum diffraction cone is not cropped
by the SLM boundary. For object points in this region, the active
sampling region on the SLM is given byw ′s = z0

λ
∆p and substitutes

it to Equation (25) gives

∆xmin = ∆p. (26)

This reveals a key observation: inside the depth of field, the high-
est spatial resolution remains constant and equals the pixel
pitch. Outside this triangular region, the resolution degrades due to
spatial cropping by the SLM boundary. A generalized resolution is
given by the Appendix Equation (36) and visualized by the Appendix
Figure 21.
In Figure 14, we reconstruct a point emitter at distances 100mm,

75mm, 50mm away from a 1920 × 1080 SLM of 8um pixel pitch,
all three distances are within the SLM’s DoF and in the triangular
region of highest spatial resolution. As shown, all reconstructions
are of single pixel wide (e, f, and h). When the point is laterally offset,
the under-sampling due to spatial cropping by the SLM boundary
results an under-resolved point as a line in (g).

Resolution Limits under Spherical Wave Illumination. The above-
mentioned analysis assumes plane wave illumination. Placing a lens
of focal length dF right behind the SLM magnifies the optical setup
and creates spherical wave illumination focused at the back focal
plane. With the magnification, the depth of field under spherical
wave illumination is also magnified and given by:

zmin =
dF

dF − zmin
zmin , (27)

(a)

(c)

(b)

(d)

Fig. 15. Comparisons of elemental image resolution w1 (blue inset). We
simulate focusing on the bunny on a 1080p 8µm CGH. The angular sampling
rate is (a): 6, (b): 18, (c): 30, and (d): 45 pixels per degree respectively. The
reconstructions exhibit obvious aliasing on the top row (red inset) but are
smoothed out greatly above 30 pixels per degree (c).

where the overline operator · denotes magnified geometry under
spherical wave illumination. We still distinguish two cases: when
the depth of field under plane wave illumination is beyond the
front focal plane (zmin ≥ dF ), the CGH under spherical wave il-
lumination has unlimited depth of field. On the other hand, the
reconstructed point between the depth of field and the front focal
plane (zmin ≤ z0 ≤ dF ) has a magnified point spread at the vir-
tual image plane. We summarize the reconstructed resolution as
following:

∆x =



dF
dF−z0

∆p, if z0 ≤ min (dF , zmin )
dF

dF−z0
∆xmin , otherwise,

(28)

where ∆xmin is defined in Equation (36).

7.6 Elemental Image Resolution & Hogel Partitioning
The elemental image resolution gives the angular sampling rate
under spherical wave illumination. We derive the maximum angu-
lar resolution ∆αmax = ∆p/dF in Section C; human visual acuity
or the angular resolution determine the required upper bound on
the angular sampling rate β = max((1/60)◦,∆αmax ). For a hogel
partition of widthwh , the maximum hogel viewing cone φ is given
by:

φ = 2 tan−1
(
wh
2dcz

)
= 2 tan−1

(
we (dF ) +wh

2dF

)
, (29)

and the maximum elemental image resolution is obtained as:

k = φ/β . (30)

For a 10mm eye box, a 3840 × 2160 SLM of 4um pixel pitch achieves
an angular sampling 4× the visual acuity — too expensive and im-
practical to render for interactive applications. In Figure 15, we find
the threshold above 30 pixels per degree gives a good approximation
without strong perceivable aliasing.
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Fig. 16. Design trade space between the pixel pitch ∆p and the SLM width
ws assuming eye box we = 10mm and f /# = 1. (Left) The maximum
FoV increases with a smaller pitch and a wider SLM. The white dash line
separates the above pitch bounded case from the lower lens bounded case
(shaded region); details are discussed in Section B. (Right): The minimum
eye relief (focal length) decreases with a smaller pitch (eq. (9)) for a given
eye box requirement, and the current off-the-shelf SLM is far from the
lens-bounded region.

Hogel Partition. Although a small hogel size and dense partition-
ing increases the number of rendered views, the reduced ambiguity
region (eq. (16)) produces accurate perspectives for intra-ocular
occlusion. To balance this trade-off, we evaluate the hogel sizewh
based on the ratio between the error-free segmentw3 and the ap-
proximated view sliding window w2. Choosing wh ≈ 1mm in our
prototypes reduces the ambiguity region to less than 0.16% for a
two-dimensional view and gives a 16×9 hogel partitioning. A larger
pixel pitch requires denser hogel partitioning; however, rendering
is not the bottleneck.

7.7 Practical Design Trade-offs
Using spherical wave illumination opens a design trade space not
possible under plane wave illumination: for a given eye relief, in-
creasing the FoV does not require simultaneously increasing the
size of the display panel and decreasing the pixel pitch (eq. (9)).

In Figure 16, we show the design space of spherical wave illumi-
nation based holographic displays according to Equation (9). We
assume a minimum eye box we = 10mm, wavelength λ = 532nm,
and a f -number limited to one. The f -number is the ratio of the fo-
cal length of the lens to the diameter of the lens. The design trade-off
is often described as the "etendue". Small f -number and small eye
box creates even wider FoV as shown in the Appendix [Maimone
et al. 2017]. We plot off-the-shelf SLMs in the figure; SLMs with
pitch ≤ 3um or 8K resolution exists [Bleha and Lei 2013].
For a given pixel pitch ∆p and eye box we , we also derive the

bound below which FoV and eye relief are solely limited by maxi-
mum diffraction angle. The bound for the SLM width is give by

ws =
*...
,

tan
(
sin−1

(
sin

(
tan−1 (( f /#)/2)

)
+ λ

2∆p

))
tan

(
sin−1

(
λ

2∆p

)) − 1
+///
-

we . (31)

As shown in Figure 16, the SLM width in white dash line separates
the pitch-bounded case from the the lens-bounded case (shaded
region below dash line); details are in Section B. This limitation is
not strict, since holograms are capable of compensating aberrations

introduced by optical elements with smaller f -number. A compound
microscopic pupil-forming design or a holographic optical element
(HOE) based design allows for a higher angular magnification in
trade for a smaller eye box and more significant optical aberrations.
With such technique, tiling three GAEA SLMs allows for a 66.7◦
FoV and 35mm eye relief with a 5mm eye box. In summary, a smaller
pitch or larger SLM improves the visual experience under spherical
illumination.

Comparison with Maimone [2017]. We make many different de-
sign and implementation choices on both hardware and software.
We require the minimum eye box to be 10mm. This results in a
smaller FoV, compared to Maimone et al.’s prototype which maxi-
mizes the FoV to 80◦ at a cost of ≤ 1mm eye box. Their software
implementation targets real-time performance and assumes con-
stant depth for applying a separable Fast Fourier Transform. We
present a Fresnel diffraction integral based implementation that
supports per-pixel depth reconstruction and runs interactively (vs.
their off-line implementation). The 10mm eye box requires us to
render a dense near-eye light field to support intra-ocular occlusion
[Zannoli et al. 2016], and our algorithm avoids geometry clipping,
under- and over-sampling in the previous work.

8 CONCLUSION AND FUTURE WORK
CGHs using plane wave illumination encounter limitations when
applied to near-eye displays; we advocate using spherical wave illu-
mination to break many of these constraints. We show an accurate
rendering algorithm by offsetting the camera and using a sliding
window to provide a pixel-accurate rendering perspective, and we
extend the al gorithm to support spherical wave illumination. Com-
puting the Fresnel diffraction integral on a GPU provides over five
orders of magnitude performance improvement compared to the
CPU implementation in the previous work, making interactive CGH
possible. We derive theoretical resolution limits and trade-off analy-
sis for designing a near-eye display in-depth. In this work, we show
the first practical near-eye CGH for high resolution at interactive
rates, modeling intra-pupil occlusion and providing continuous fo-
cus cues with per-pixel depth. We believe CGH has the potential to
be the ultimate display and we hope to stimulate graphics research
incorporating holography. Below we discuss limitations and future
work.

Dense Angular Sampling. Holograms are capable of showing highly
view-dependent effects like occlusion, specular, or mirror surfaces;
these are critical to the depth perception in VR or AR [Toth et al.
2015; Zannoli et al. 2016]. Our rendering considers sparse views at
hogel width intervals, and is imprecise for highly specular materials.
Spectral analysis on materials could help determine the necessary
sampling rate and possibly support non-uniform sampling density
and hogel partitioning.

Hardware Accelerating with Tensor Operations. Our software cur-
rently computes at 4 FPS. New GPUs have accelerated tensor op-
erations for machine learning. As with light fields [Wetzstein et al.
2012], holographic computation could be substantially accelerated.
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Simultaneous Amplitude-Phase Modeling. We use both amplitude
and phase SLMs. Alternatively, the double phase methods or super
pixel methods enable simultaneous modulation by sacrificing spatial
resolution. Incorporating the phase-change within the amplitude
SLM [van Putten et al. 2008] may allow for joint optimization.

Wavelength Mixing. Most CGH use field sequential colors, but
multiplexing multiple wavelengths has been shown [Glasner et al.
2014; Levy et al. 2001]. Content-adaptive optimization for the entire
hologram could increase the frame rate two to three times.

Practical Limitation on FoV. In Section 4 and Section 7.7, we show
that the FoV is primarily limited by the spatial extent of the SLM.
Similar to tiling SLMs circularly to create a spherical display [Hahn
et al. 2008], tiling on a flat plane under spherical wave illumination
also increases the field of view. For a Giga-pixel SLMs, bandwidth
and physical implementation are engineering challenges. Although
smaller pixel pitch also increase FoV, cross-talk between liquid crys-
tals becomes non-negligible and requires further optimization.

Correcting Individual Aberrations. Wearing a corrective lens in-
side the near-eye display is cumbersome. Holograms and light fields
can incorporate personalized inverse aberrations [Huang et al. 2014;
Lanman and Luebke 2013; Maimone et al. 2017; Pamplona et al. 2012,
2011]. We envision such system [Padmanaban et al. 2017] will soon
be required for a better-than-reality near-eye displays.
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A FREQUENCY-LIMITED RESOLUTION LIMITS ON
DEPTH OF FIELD

For object points within the DoF of the display (z0 < zmin ), the
SLM is wider than the maximum diffraction cone projected from the
object point to the SLM. The anti-aliased sampling limits the active
sampling area inside the intersection of the projected maximum
diffraction cone and the SLM’s finite spatial extent

xl = max
(
x0 −

z0λ

2∆p
,−

ws
2

)
, xr = min

(
x0 +

z0λ

2∆p
,
ws
2

)
, (32)

as shown in fig. 19 (left). For simplicity, we denote xc = (xl + xr )/2
andw ′s = (xr − xl ). The continuous wavefront is given by

Ew ′s (x , 0) = e
iπ (x−x0 )2

z0λ ⊓

(
x − xc
w ′s

)
. (33)

and the corresponding WDF can be derived as
Ww ′s ,z=0 (x ,u)

= 2w ′s

(
1 −

2|x − xc |
w ′s

)
sinc

(
2w ′s

(
1 −

2|x − xc |
w ′s

) (
x − x0
z0λ

− u

))
= δ

(
x − x0
z0λ

− u

)
⊗u 2w ′s

(
1 −

2|x − xc |
w ′s

)
sinc

(
2w ′s

(
1 −

2|x − xc |
w ′s

)
u

)
,

(34)
from which the frequency dilation is characterized as the width of
the main lobe

∆u =
1

w ′s

(
1 − 2 |x−xc |

w ′s

) , x ∈ (xl ,xr ). (35)

Theminimal frequency dilation ∆umin = 1/w ′s is achieved at x = xc ,
which depends on both (x0, z0) andws (fig. 19 left). Propagating the
WDF to z = z0 shears the minimal frequency dilation to the minimal
spatial dilation

∆xmin = z0λ∆umin = z0λ/w
′
s , (36)

which gives the maximum spatial resolution(fig. 19 middle, right).
We note that ∆xmin = ∆p when the active sampling region w ′s =
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7-bit 5-bit 2-bit 1-bit

Fig. 18. Comparison of phase bit levels and simulated scene focused on the front hand from a 1080p, 8um pixel pitch, CGH. The image quality presents
noticeable degradation below 3-bit; we show the 2-bit result again as a transition stage. In our prototype, the effective phase control is between 6-bit and 7-bit
and the degradation with respect to 8-bit is negligible.

propagation projection

Fig. 19. WDF analysis of resolution limits under frequency-limited sampling inside the DoF. (Left): The active sampling region is limited to the intersection of
the projected maximum diffraction cone and the SLM’s finite spatial extent. In this example, the projected maximum diffraction cone falls fully inside the
SLM. The frequency is minimally dilated to the main lobe of the sinc function at x0. (Middle): The yellow dash line marks the sheared minimally dilated
frequency at the observed distance. The minimum spatial dilation is ∆p . (Right): The dash lines bound the region where the sinc response is always positive,
and the projected WDF inside this region interferes constructively.

Lens bound
Pitch bound

Viewing zone

Extended
Pixels

Extended
Pixels

Pitch-bounded Lens-bounded

Fig. 20. Illustration of (left): pitch-bounded and (right): lens-bounded display
modes. When the spherical illumination is constrained by the f /# (right),
the diffraction cones emitted from the edges of the SLM shift away, and eye
relief increases on a wider SLM.

z0
λ
∆p , which is solely limited by the projected maximum diffraction

cone (by (x0, z0)). This condition is satisfied when

z0 ≤ (ws − |2x0 |)∆p/λ. (37)

Beyond this distance, cropping due to the SLM’s finite spatial extent
reduces spatial resolution (fig. 14 (g)). To conclude, we show an

overall resolution distribution as a function of SLM width and pixel
pitch in Figure 21.

B LENS-PITCH BOUND DERIVATION
In Section 7.7, we show the FoV and eye relief bounds under spherical
wave illumination, and, we contrast two different cases when the
maximum FoV and shortest eye relief are bounded by either the
pitch pixel (maximum diffraction angle, fig. 20 (left)) or the lens
(f /#, fig. 20 (right)). We detail the two cases in the following.

Given a required eye box we , the minimum eye relief dpitche
enforced by the central diffraction cone is solely determined by the
pixel pitch:

d
pitch
e =

we

2 tan
(
sin−1

(
λ

2∆p

)) . (38)

On the other hand, the minimum lens-bounded eye relief dlense
enforced by the peripheral cones is jointly determined by the SLM
width ws , focal length dF , and pixel pitch ∆p according to Equa-
tion (2) and similar triangle relation:

dlense =
ws +we

2 tan
(
sin−1

(
sin

(
tan−1

( ws
2dF

))
+ λ

2∆p

)) . (39)

Equation (39) makes the assumption that the f -number is not
bounded by 1. It is easy to show that, under the f -number limitation,
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Region by Eq. (37)

Frequency-limited
Spatially-limited

Fig. 21. Illustration of spatial resolution as a function of SLM width and
pixel pitch. For (ws , ∆p ) SLM (yellow top), red and blue point inside the
black triangle (region defined by eq. (37)) are reproduced at ∆p resolution.
For (ws , ∆p/2) SLM (dark blue top), resolution inside the region defined
by eq. (37) is doubled(red point). Sampling of blue point becomes spatially-
limited, however, spatial resolution is still higher than (ws , ∆p ) case because
the active sampling area is the entire SLM. For both cases, the green point
subtends to the entire SLM and are reproduced at same spatial resolution.
For (2ws , ∆p ) SLM (yellow top+bottom), the expanded region defined by
eq. (37) encapsulates larger space with ∆p resolution and produces higher
resolution, i.e. green point.

if we let dF = d
pitch
e and this focal length dF is valid (f /# ≥ 1), we

always have dlense ≤ d
pitch
e under this given dF (fig. 20 (left)). Thus

it is pitch-bounded.
A wider SLM (fig. 20 (right)) with the same pixel pitch has the

same pitch-bounded eye relief dpitche , but the lens-bounded eye
relief extends due to the f /# ≥ 1 limitation (fig. 20). Substituting
the f /# in Equation (39) and equating Equations (38) and (39) gives
the maximum pitch-bounded SLM widthws (eq. (31)).

C MAXIMUM ANGULAR RESOLUTION
The spatial resolution analysis derived in Section 7.5 is based on
plane wave illumination, but it can be transformed to spherical wave
illumination according to Section 6.2. We consider a magnifying
glass placed right after the SLM with focal length dF and the pupil
located at the back focal plane. The scene reconstructed under spher-
ical wave illumination can be considered as a miniature scene lying
in between the SLM and the front focal plane reconstructed under
plane wave illumination. Let ∆xmin be the spatial resolution at z0 in
front of SLM under plane wave illumination. When z0 ≤ dF , a vir-
tual image of spatial resolution dF

dF−z0
∆xmin is created at dF

dF−z0
z0,

and the angular resolution is obtained from the angle subtended by
the spatial resolution of the virtual image to the pupil:

∆α =

(
dF

dF − z0
∆xmin

)
/

(
dF z0

dF − z0
+ dF

)
= ∆xmin/dF . (40)

When z0 satisfies eq. (37), we have ∆xmin = ∆p and the maximum
angular resolution is obtained as ∆αmax = ∆p/dF .
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