
Supplementary Material for "MATch: Differentiable Material Graphs for
Procedural Material Capture"

LIANG SHI,MIT CSAIL
BEICHEN LI,MIT CSAIL
MILOŠ HAŠAN, Adobe Research
KALYAN SUNKAVALLI, Adobe Research
TAMY BOUBEKEUR, Adobe
RADOMIR MECH, Adobe Research
WOJCIECH MATUSIK,MIT CSAIL

ACM Reference Format:
Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur,
Radomir Mech, and Wojciech Matusik. 2020. Supplementary Material for
"MATch: Differentiable Material Graphs for Procedural Material Capture"
. ACM Trans. Graph. 39, 6, Article 196 (December 2020), 7 pages. https:
//doi.org/10.1145/3414685.3417781

1 DIFFMAT EVALUATION
With its large node arsenal and auto-translation tool, DiffMat can
handle material graphs with production-size complexity and con-
nectivity. To show its versatility, we collected a set of 88 proce-
dural material graphs from the Substance Share and Substance
Source exchange platform. This set consists of a wide variety of
metallic and dielectric materials, including but not limited to ox-
idized/galvanized/rusted/polished/weaved/battered/sanded metal,
skin, leather, paint, fabric, wood, ceramic, concrete, brick, traver-
tine, stone, granite, and marble. These material graphs contain an
average of 65 nodes and 335 continuous node parameters, with the
largest graph containing more than 200 nodes and 2650 parameters
(see Tab. 1).

DiffMat automatically translated all these graphs without any
manual intervention. The graph parsing and program generation
typically takes less than a second, while the time taken for pre-
computed bitmaps depends on the output resolution and the number
of input generator nodes. Figure 4 in the main submission shows an
image gallery of all our 88 materials rendered with a light source
and a camera co-located on top of the material center. The rendering
layer uses the Cook-Torrance microfacet BRDF model with GGX
normal distribution [Walter et al. 2007].
To maximally leverage the Substance ecosystem, DiffMat is de-

signed to accurately match its output to the Substance Designer’s

Authors’ addresses: Liang Shi, MIT CSAIL, liangs@mit.edu; Beichen Li, MIT CSAIL,
beichen@mit.edu; Miloš Hašan, Adobe Research, mihasan@adobe.com; Kalyan
Sunkavalli, Adobe Research, sunkaval@adobe.com; Tamy Boubekeur, Adobe, boubek@
adobe.com; Radomir Mech, Adobe Research, rmech@adobe.com; Wojciech Matusik,
MIT CSAIL, wojciech@csail.mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
0730-0301/2020/12-ART196
https://doi.org/10.1145/3414685.3417781

output. As a result, users can export the optimized materials and ap-
ply them to 3D objects using tools like Substance Painter or perform
additional fine-tuning. In fact, our implementations have an exact
per-pixel match for all atomic filter nodes except for minor differ-
ences in the emboss node. This high fidelity extends to non-atomic
filter nodes as they are built from the atomic nodes. In Figure S1, we
demonstrate this accuracy by comparing DiffMat’s outputs against
Substance Designer’s output. Note that since the nodes (and graphs)
are resolution-independent, this accuracy is retained across different
resolutions.
Finally, we report DiffMat’s performance by evaluating its run-

time speed and memory consumption for the forward evaluation.
Table 1 lists the results benchmarked on 8 materials at resolution
of 1024 × 1024 pixel. We use an NVIDIA Tesla V100 GPU and In-
tel Xeon E5-2699v4 CPU (base frequency 2.2GHz, 55MB cache) for
all reported numbers. The forward-backward evaluation costs ∼2×
runtime and memory. We note that even for node graphs with thou-
sands of parameters, a gaming-level GPU can easily hold the graph
with sufficient space left.

Table 1. DiffMat performance on various translated procedural material
graphs. The index refers to the location (row and column) of material in Fig. 4
in the main paper. Graphs marked by the * symbol include the computation
of alpha channel while others do not. We report the memory reserved by
PyTorch during forward evaluation and the total memory cost on GPU.
The overhead is due to the storage of other system resources which is
approximately constant across graphs. We note that the runtime is not
directly proportional to the number of nodes or parameters as computational
cost can vary significantly among nodes.

Graph Name (index) Nodes (Parameters) Memory PyTorch/GPU Runtime

ceramic_tiles (2,1) 42 (128) 450MiB / 1449MiB 0.055s

zombie_skin* (8,11) 124 (383) 1108MiB / 2099MiB 0.166s

silk_red (6,9) 51 (250) 506MiB / 1505MiB 0.212s

copper_oxydized (3,4) 114 (307) 938MiB / 1939MiB 0.246s

bricks_gray* (1,8) 201 (923) 1704MiB / 2701MiB 0.318s

wood_cherry* (8,4) 124 (925) 1038MiB / 2027MiB 0.389s

wooden_planks (8,10) 195 (2224) 1438MiB / 2511MiB 1.291s

travertine_persian (8,1) 96 (511) 822MiB / 1823MiB 1.295s

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417781
https://doi.org/10.1145/3414685.3417781
https://doi.org/10.1145/3414685.3417781

196:2 • Shi, L. et al
Al

be
do

N
or

m
al

R
ou

gh
ne

ss

Left: DiffMat output Right: Substance Designer output

Ceramic tiles green (2,1) Wood american cherry (8,4) Potato skin (5,11) Metal woven dirty (5,5) Zombie skin (8,11)Concrete (5,8)

Fig. S1. Comparison of SVBRDF maps produced by DiffMat and Substance Designer. The indices after the graph name refer to the location of corresponding
rendered images in Figure 4 in the main paper. The metallicity is omitted for the selected examples as it is either uniform black or white. All maps are either
per-pixel matched or with negligible visual difference. Readers are encouraged to zoom in to exam and compare image details.

2 NODE DESCRIPTIONS
DiffMat implements 21 atomic nodes and 110 non-atomic nodes in
total. This section provides a complete list of their functionalities.

2.1 Atomic Nodes
1. Blend: blends or mixes together two separate inputs with a

user-defined blend mode and an optional opacity mask.
2. Blur: performs a "box-blur" operation by averaging the values

of pixels over a set distance.
3. Channel Shuffle: takes two inputs and returns an output

where any of the red, green, blue, and alpha channels are swap-
ped or set to any of the channels from the input.

4. Curve: remaps the tonality of an input using Bézier curves.
5. Directional Blur: performs a simple motion-blur like opera-

tion on an input along a user-defined angle.
6. Directional Warp: warps an input in a user-set direction, mul-

tiplied by a user-set intensity map.
7. Distance: creates an outward linear fade from any pixels in the

input over 0.5 grayscale value.
8. Emboss: performs a simple 2D shading based on two inputs,

simulating light falling on a surface with height and depth
variation.

9. FX-Map: replicates and subdivides an image or pattern input
over and over again, and control the distribution of each pattern
via parameters and value functions.

10. Gradient (Dynamic): remaps a grayscale input to a new gray-
scale or color ramp where color keys are provided through an
additional input.

11. Gradient Map: remaps a grayscale input to a custom-set gray-
scale or color ramp.

12. Grayscale Conversion: converts a color input to a grayscale
output as a weighted average over RGBA channels.

13. HSL: adjusts the hue, saturation and lightness of a color input.
14. Levels: Remap the tones of an input according to input and

output remap factors, including gamma correction.

15. Normal: converts an input grayscale map to a tangent-space
normal map output.

16. Pixel Processor: executes a custom function for every pixel
that is returned as output, on one or more optional inputs.

17. Sharpen: performs a sharpening operation on an input, similar
to unsharp masking.

18. Transformation 2D: performs an affine transformation on an
input, optionally including mipmapping.

19. Uniform Color: returns a solid, user-defined color or value.
20. Value Processor: executes a custom function on optional in-

puts for one or more values as output.
21. Warp: transforms a base input by warping or pushing pixels as

specified by a gradient input.

2.2 Non-atomic Nodes
1. Alpha Merge: adds an alpha channel to an input.
2. Alpha Split: strips the alpha channel out of an input.
3. AmbientOcclusion: takes a heightmap as input and generates

an ambient occlusion map.
4. Anisotropic Blur: applies a high quality motion blur effect to

the input.
5. Anisotropic Blur (Grayscale): see ’Anisotropic Blur’.
6. Auto Levels: automatically adjusts the levels of the input to

use the full range from black to white.
7. Bevel: applies an edge-beveling effect to an input grayscale

height map and returns beveled height and normal maps.
8. BaseColor /Metallic / Roughness Converter: converts base-

color, metallic and roughness maps to different PBR model out-
puts, such as Specular/Glossiness model.

9. Blur HQ: performs a high-quality Gaussian blur on the input.
10. Blur HQ (Grayscale): see ’Blur HQ’.
11. Cartesian to Polar: converts an input in Cartesian coordinates

to polar coordinates.
12. Cartesian to Polar (Grayscale): see ’Cartesian to Polar’.
13. Channel Mixer: mixes, swaps and blends RGB channels.
14. Chrominance Extract: extracts the chrominance value from

the input.

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.

Supplementary Material for "MATch: Differentiable Material Graphs for Procedural Material Capture" • 196:3

15. Clamp: clamps input values to user-defined limits.
16. Clamp (Grayscale): see ’Clamp’.
17. Color Blend: performs blending by preserving the luminance

of the background while adopting the hue and chrominance of
the foreground.

18. Color Burn: performs a color burn blend between foreground
and background.

19. Color Dodge: performs a color dodge blend between fore-
ground and background.

20. Color to Mask: turns a selected color range into a black-and-
white mask.

21. Contrast/Luminosity: adjusts the contrast and brightness of
the input.

22. Contrast/Luminosity (Grayscale): see ’Contrast/Luminosity’.
23. Convert to Linear: converts an sRGB color space input to

linear color space.
24. Convert to Linear (Grayscale): see ’Convert to Linear’.
25. Convert to sRGB: converts a linear input to sRGB color space.
26. Convert to sRGB (Grayscale): see ’Convert to sRGB’.
27. Curvature: performs a simple, harsh single-pass curvature con-

version to the input normal map.
28. Curvature Smooth: performs a smooth multi-pass curvature

conversion to the input normal map.
29. Curvature Sobel: performs a single-pass curvature conversion

to input normal map with Sobel sampling.
30. Difference: performs a difference blend between foreground

and background.
31. Dissolve: blends two inputs together with white noise as the

mask for transition.
32. Edge Detect: detects contrast in a grayscale input, then creates

a black and white mask highlighting the contrast.
33. Emboss with Gloss: performs an embossing effect with added

gloss on a color and height input.
34. Glow: performs a glowing effect on an input.
35. Glow (Grayscale): see ’Glow’.
36. Facing Normal: takes a normal map as an entry image and

produces a grayscale image in which the value corresponds to
how much the normal vectors are facing the viewer.

37. Grayscale Conversion Advanced: converts a color input to
a grayscale output in several preset modes.

38. Height Map Frequencies Mapper: separates a height map’s
frequencies into two separate maps: one with large-scale differ-
ences and one with small-scale differences.

39. Height Normal Blender: converts and blends a grayscale
height map onto a normal map.

40. Height to Normal World Units: converts a height map input
to a normal map while making use of real-world units during
the conversion.

41. Highpass: applies a highpass filter to the input.
42. Highpass (Grayscale): see ’Highpass’.
43. Histogram Range: reduces or moves the histogram range of

a grayscale input.
44. Histogram Scan: remaps the contrast and brightness of an

input grayscale image based on its histogram.

45. Histogram Scan Non-Uniform: performs a histogram scan
filter with additional controls and input to drive the effect on a
per-pixel level.

46. Histogram Select: remaps a grayscale input by setting a gray-
scale value position with a fade range around it, whose contrast
can be adjusted to make the range sharper.

47. Histogram Shift: shifts the whole range of the image, wrap-
ping around when reaching range limits.

48. Invert: inverts input colors.
49. Invert (Grayscale): see ’Invert’.
50. Linear Burn: performs a linear burn blend between foreground

and background.
51. Luminance Highpass: cancels out lighting information by

applying a highpass filter to the input’s luminance value.
52. Luminosity Blend: performs a luminosity blend between fore-

ground and background.
53. Make It Tile Patch: repeats and stamps an input image patch

around with controlled randomness, generating a tiling output.
54. Make It Tile Patch (Grayscale): see ’Make It Tile Patch’.
55. Make It Tile Photo: fixes the edges of an input which might

not tile due to non-continuous edges, producing a tiling version.
56. Make It Tile Photo (Grayscale): see ’Make It Tile Photo’.
57. Mirror: mirrors the input image over a user-defined axis, and

from a chosen side.
58. Mirror (Grayscale): see ’Mirror’.
59. Mosaic: applies a facetization effect to an input gradient map

through multi-pass warping.
60. Mosaic (Grayscale): see ’Mosaic’.
61. Multi Directional Warp: applies directional warp multiple

times in opposite directions while the displaced texture stays
in place.

62. Multi Directional Warp (Grayscale): see ’Multi Directional
Warp’.

63. Multi Switch: passes through one of the inputs defined by the
selection parameter.

64. Multi Switch (Grayscale): see ’Multi Switch’.
65. Non-Square Transform: similar to ’Transform 2D’, but de-

tects non-square ratios and can transform square input images
onto a non-square canvas.

66. Non-Square Transform (Grayscale): see ’Non-Square Trans-
form’.

67. Non-Uniform Blur: performs a high-quality blur on the in-
put where the intensity is driven by an input mask, optionally
supporting anisotropy and assymetry.

68. Non-Uniform Blur (Grayscale): see ’Non-Uniform Blur’.
69. Normal Blend: blends two normal maps together with an op-

tional mask, while making sure all values stay normalized.
70. Normal Color: returns a uniform color in the normal map

color space, according to normal direction and slope angle.
71. Normal Combine: blends two normal maps while combining

their details in a mathematically correct way.
72. Normal Invert: inverts any or all channels of a normal map.
73. Normal Normalize: performs a mathematical vector normal-

ization operation on every single pixel in the input normal map.
74. Normal Sobel: converts a heightmap input to a normal map

output, using Sobel sampling.

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.

196:4 • Shi, L. et al

75. Normal to Height: converts a tangent-space normal map back
into a height map.

76. Normal Vector Rotation: rotates all vectors of an input nor-
mal map in tangent space.

77. Polar to Cartesian: converts an input in polar coordinates to
Cartesian coordinates.

78. Polar to Cartesian (Grayscale): see ’Polar to Cartesian’.
79. Pow: powers the input by a user-specified exponent.
80. Pow (Grayscale): see ’Pow’.
81. Pre-Multiplied to Straight: removes the pre-multiplied alpha

from RGB on the input.
82. Quad Transform: performs transformation of a quad shape

by specifying its corner points.
83. Quad Transform (Grayscale): see ’Quad Transform’.
84. Quantize: approximates the color range of an input to a prede-

fined number of values.
85. Quantize (Grayscale): see ’Quantize’.
86. Replace Color: adjusts an color input by hue shifting a source

color towards a target color.
87. Replace Color Range: replaces the source Color by the target

Color, with additional controls.
88. RGBA Merge: packs four separate grayscale inputs into a sin-

gle color output.
89. RGBA Split: splits an input into its respective red, green, blue,

and alpha channels.
90. Safe Transform: scales, rotates, or offsets the input without

breaking tiling or losing details.
91. Safe Transform (Grayscale): see ’Safe Transform’.
92. Shape Drop Shadow: Performs the "drop shadow" effect on

an input black-and-white mask or an input with transparency.
93. Shape Drop Shadow (Grayscale): see ’Shape Drop Shadow’.
94. Shape Glow: creates a soft glow around an input mask or an

input with transparency.
95. Shape Glow (Grayscale): see ’Shape Glow’.
96. Skew: skews an input image.
97. Skew (Grayscale): see ’Skew’.
98. Slope Blur: performs an advanced, high-quality blur where the

direction is driven by a grayscale slope map.
99. Slope Blur (Grayscale): see ’Slope Blur’.
100. Straight to Pre-Multiplied: converts a straight alpha to pre-

multiplied by multiplying a color into alpha-blended pixels.
101. Swirl: transforms an input image by warping it in a swirling

direction.
102. Swirl (Grayscale): see ’Swirl’.
103. Switch: returns one or the other input based on choice setting.
104. Switch (Grayscale): see ’Switch’.
105. Trapezoid Transform: modifies the input in a trapezoid warp-

ing manner.
106. TrapezoidTransform (Grayscale): see ’Trapezoid Transform’.
107. Vector Morph: distorts an input image smoothly and progres-

sively by a color input as a vector map.
108. Vector Morph (Grayscale): see ’Vector Morph’.
109. Vector Warp: applies an advanced warping effect to the input,

driven by a vector map.
110. Vector Warp (Grayscale): see ’Vector Warp’.

3 OPTIMIZED MAPS FOR SYNTHETIC MATERIALS
Figure S2 visualize the optimized material maps for 4 additional syn-
thetic materials. Each example is presented as a septuple (from left
to right): rendering of the default material, rendering of the target
material, rendering of the optimized material, and the optimized
albedo, normal, roughness, and metallic maps. The optimization was
performed directly from the default parameters under the exposed
parameters preserved mode if the exposed parameters are defined
or full parameters mode otherwise.

4 OPTIMIZED MAPS FOR REAL-WORLD MATERIALS
Figure S3 and Figure S4 visualize all 45 optimized real-world mate-
rials. Each example is presented as a sextuplet (from left to right):
the user-input photograph, rendering of the optimized procedural
material, and the generated albedo, normal, roughness, and metallic
maps.

REFERENCES
Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. 2007.

Microfacet models for refraction through rough surfaces. In Proceedings of the
18th Eurographics conference on Rendering Techniques. Eurographics Association,
195–206.

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.

Supplementary Material for "MATch: Differentiable Material Graphs for Procedural Material Capture" • 196:5

Default material Target material Optimized material Albedo Roughness MetallicNormal

Fig. S2. Material map visualization of the optimized synthetic material images.

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.

196:6 • Shi, L. et al

Target Optimized Albedo Normal Rougness Metallic

Fig. S3. Material map visualization of the optimized real-world material images, Part 1.

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.

Supplementary Material for "MATch: Differentiable Material Graphs for Procedural Material Capture" • 196:7

Target Optimized Albedo Normal Rougness Metallic

Fig. S4. Material map visualization of the optimized real-world material images, Part 2.

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.

	1 DiffMat Evaluation
	2 Node Descriptions
	2.1 Atomic Nodes
	2.2 Non-atomic Nodes

	3 Optimized Maps for synthetic materials
	4 Optimized Maps for real-world materials
	References

