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ABSTRACT

Modern machine learning applications, such as generative modeling and probabilistic
inference, demand a new generation of methodologies for optimizing over the space of
probability distributions, where the optimization variable represents a weighted popula-
tion of potentially infinitely many points. Despite the ubiquity of these distributional
optimization problems, there has been a shortage of scalable methods grounded in math-
ematical principles. To bridge this gap, this thesis introduces two complementary lines of
works for scalable distributional optimization.

The first part of this thesis focuses on optimizing over discrete distributions to gen-
erate high-quality samples for probabilistic inference. We present two works that tackle
sampling by optimizing pairwise interaction energies defined on a collection of particles.
The first work focuses on designing a new family of mollified interaction energies over mov-
ing particles, offering a unified framework for constrained and unconstrained sampling.
The second work focuses on the scalable optimization of a family of popular interaction
energies—maximum mean discrepancy of mean-zero kernels—to generate high-quality
coresets from millions of biased samples, obtaining better-than-i.i.d. unbiased coresets.

The second part transitions to optimizing over continuous distributions through neu-
ral network parameterization, enabling the generation of endless streams of samples once
optimized. We exploit convexity principles to identify suitable mathematical formulations
and scalable optimization algorithms in three contexts: 1) averaging distributions in a ge-
ometric meaningful manner using a regularized Wasserstein barycenter dual formulation;
2) identifying local minima of non-convex optimization as a generative model by learning
proximal operators with global convergence guarantees; and 3) solving mass-conserving
differential equations of probability flows without temporal or spatial discretization by
leveraging the self-consistency of the dynamical system.

Thesis supervisor: Justin Solomon
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

■ 1.1 Distributional Optimization

Classical optimization is typically formulated as:

min
x∈K

f(x), (1.1)

where K ⊂ Rd is the constraint set and f : Rd → R is the objective function. Significant
advances have been made in the past decade towards solving (1.1). For example, if f is
convex and K is convex, and that f is sufficiently smooth, then numerous gradient-based
methods can be used to find the global optima of (1.1) with provable convergence rates.

However, the complexity of modern applications often necessitates the optimization
of a multitude of variables. For instance, the optimization variables can be

• a swarm of particles collectively achieving a common goal [DM00; PKB07];

• a diversified set of solutions to classical or multobjective optimization [NZE05;
Li+16];

• a generative model that approximates the data distribution from which infinite
samples can be drawn [Pan+19; Cao+24].

To accommodate these complexities, we consider a distributional version of (1.1):

min
µ∈P(X )

F(µ), (1.2)

where P(X ) denotes the space of probability distributions supported on X , and F :
P(X ) → R is a functional. Optionally we may include additional constraints on µ in
(1.2). This formulation generalizes (1.1) by setting X = K and F(µ) =

∫
fdµ and noting
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Chapter 1. Introduction 12

that the Dirac delta distribution at the minimizer of (1.1) solves (1.2). For generative
modeling, we may take F(µ) = D(µ,Z) for some probability divergence D and data
distribution Z, with µ typically parameterized as a neural network which imposes implicit
constraints on µ.

Despite the broad applicability of distributional optimization, creating a universal
framework for optimizing over distributions is difficult due to the generality of the for-
mulation. In this thesis, we focus on specific, impactful tasks where distributional opti-
mization proves fruitful. We propose a diverse set of scalable methodologies grounded in
mathematical principles, demonstrating state-of-the-art performance in their respective
domains. Tab. 1.1 summarizes the five works developed in this thesis, categorized based
on how each of the following three challenges are addressed:

(a) Parametrization. How to represent distributions in a computationally viable way?

(b) Modeling. How to best define the objective function on the space of distributions?

(c) Algorithm. How to develop efficient optimization algorithms in theory and in
practice?

Method Parametrization Modeling Algorithm
Ch.2 [Li+23b] moving particles mollified χ2 divergence GD w/ reparam./barrier
Ch.3 [LDM24] weighted coreset MMD of zero-mean kernel debiasing + thinning
Ch.4 [Li+20] dual potentials Wasserstein barycenter SGD
Ch.5 [Li+23a] pushforward map proximal operator SGD w/ global convergence
Ch.6 [LHS23] probability flow self-consistency condition iterative velocity matching

Table 1.1: Overview of the included works. The horizontal line is to separate methods
with discrete and neural parametrization. MMD denotes the maximum mean discrepancy
(3.2), and GD (resp. SGD) stands for gradient descent (resp. stochastic gradient descent).

Although these methods are tailored to their specific applications, they exhibit charac-
teristics that can guide future approaches to distributional optimization. Notably, they
are grounded in mathematical principles, specifically in probability theory and convex
optimization. Moreover, they provide clear and straightforward intuition with scalable,
streamlined implementations without superfluous algorithmic components.

■ 1.2 Organization

The thesis will be divided into two parts based on whether discrete parametrization or
neural parameterization is used. In the first part, the focus is on the specific task of pro-
ducing high-quality samples by optimizing a collection of potentailly weighted particles.
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In the second part, we exploit convexity principles and use neural networks to parame-
terize continuous distributions—distributions that provide infinite streams of samples—in
three different tasks accompanied by scalable optmization methods.

Part I: Optimizing Interacting Particles for Producing High-Quality Samples

A fundamental problem in statistics and machine learning is sampling: generating dis-
crete points that collectively approximate a target probability density. With a proper
probability divergence as the objective, sampling is a prime example of distributional op-
timization where the distribution is parameterized as discrete particles, potentially with
weights. In the first part of this thesis, we present two methods (Chapter 2, Chapter 3) on
high-quality sampling by optimizing interaction energies of the form ∑n

i,j=1 wiwjk(xi, xj),
where (xi)n

i=1 are positions of the samples and (wi)n
i=1 are weights.

Chapter 2: Generating well-separated samples with flexible constraint handling.
We start by posing the design question: How to define an objective over a collection of
moving particles for the purpose of sampling? To this end, in Chapter 2, we introduce
a new interaction energy between probability measures called the mollified interaction
energy (MIE). Intuitively, minimizing MIE includes an attraction force that drives samples
toward a high-density region and a repulsion force that prevents samples from collapsing.
By the careful construction of MIE, we show that as the mollifier approaches the Dirac
delta, MIE converges to the χ2 divergence to the target measure, and the minimizers
of MIE converge to the target measure. Proper discretization of MIE yields a practical
first-order particle-based algorithm for sampling in both unconstrained and constrained
domains. Compared to existing algorithms like SVGD for constrained sampling, our
method generates well-spreaded samples (Fig. 1.1) and handles more flexible constraints.

−5 0 5
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0.0

2.5

5.0

i.i.d.

−5 0 5

−5.0
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0.0
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0.0
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Figure 1.1: Mollified interaction energy descent (MIED) from Chapter 2 obtains well-
spreaded samples from a heavy-tail distribution compared with i.i.d. samples and particle-
based alternatives such as SVGD [LW16] and KSDD [Kor+21a].
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Chapter 3: Compressing and debiasing millions of samples. Given a large number
of biased samples that poorly approximate the target distribution—for instance, when the
Bayesian posterior distribution is challenging to sample from using Markov chain Monte
Carlo (MCMC) and bias needs to be introduced for MCMC to mix well—can we distill
a small coreset of high-quality samples that approximate the target distribution better?
In Chapter 3, we answer this question affirmatively by proposing a suite of algorithms
with provable guarantees to simultaneously correct bias and compress the input samples
given access to a mean-zero kernel (e.g. the Langevin Stein kernel). For an input of n
biased samples, we introduce Stein Kernel Thinning (SKT) that produces

√
n a high-

quality coreset achieving the same rate of maximum mean discrepancy (MMD) as n i.i.d.
unbiased samples. For larger-scale tasks, low-rank SKT achieves the same rate in sub-
quadratic time. For downstream applications that support weighted coresets, we propose
Stein Recombination and Stein Cholesky that match the guarantees of SKT with only
poly-log(n) weighted points. Underlying these advances are new guarantees for the qual-
ity of simplex-weighted coresets, the spectral decay of kernel matrices, and the covering
numbers of Stein kernel Hilbert spaces. We show empirically that our algorithms pro-
vide succinct and accurate summaries while overcoming biases due to burn-in (Fig. 1.2),
approximate Markov chain Monte Carlo, and tempering.

Figure 1.2: Low-rank Stein Kernel Thinning from Chapter 3 simultaneously removes the
bias (red) and compresses the debiased samples (blue) to produce a high-quality coreset
(orange), matching the burn-in oracle that uses 6 MCMC chains.

Part II: Optimizing Continuous Distributions with Neural Parametrization

Recent advances in deep learning suggest new ways of representing and optimizing con-
tinuous distributions parameterized using neural networks. Despite the universal approx-
imation power of neural networks, two challenges remain:
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• First, neural networks parameterize functions in the Euclidean space, but the op-
timization variable in distributional optimization is a probability distribution with
inherent constraints (e.g. its density integrates to one) and heterogeneous desiderata
(e.g. density and sample access).

• Second, unlike classical optimization, whether one can successfully optimize over
neural network weights remains an active research area that depends on many factors
such as the objective, the parameterization, and the optimization algorithm.

In the second part of this thesis, we demonstrate that convexity principles in the functional
or distributional spaces can be a crucial tool to tackle these challenges, giving rise to
formulations amenable with neural networks with strong performance. To this end, we
present three scalable frameworks (Chapter 4, Chapter 5, Chapter 6) that optimize over
continuous distributions using neural parameterization in different tasks.

Chapter 4: Computing continuous regularized Wasserstein barycenters. How to
compute the “average” of a list of continuous distributions given sample access? Optimal
transport theory provides a framework for extending Euclidean concepts of distances
and averages into the realm of probability distributions. In Chapter 4, we propose an
algorithm that computes the continuous Wasserstein barycenter with arbitrary ground
cost, a method previously unattainable without discretization. This was accomplished by
exploiting the strong duality of the regularized primal problem and parameterizing the
dual potentials using neural networks combined with stochastic gradient descent. The
barycenter distribution can then be recovered via the optimized transport plan (Fig. 1.3).
This work has inspired several follow-up barycenter methods [Kor+21b; Kor+22] that are
effective for higher dimensions.

Figure 1.3: The regularized barycenter method from Chapter 4 can produce geometrically
meaningful “average” distribution (right column) from the sources (left column) for each
of the three examples.

Chapter 5: Finding multiple optima of classically non-convex problems. Can we
apply distributional optimization to solve classical non-convex optimization problems in
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Rd and recover the all minima? In Chapter 5, we show that lifting classical non-convex
optimization to distributional optimization can be a powerful idea. We propose a frame-
work that optimizes for the proximal operator of a family of non-convex objectives. By
iterating the optimized operator parameterized as a neural network, we recover local min-
ima as a push-forward probability distribution. The key ingredient in our formulation
is a proximal regularization term, which elevates the convexity of our training loss: We
show that for weakly-convex objectives with Lipschitz gradients, training of the proximal
operator converges globally with a practical degree of over-parametrization. Such con-
vergence result is previously unknown in the learning-to-optimize literature [Che+22a].
Practically, our method has obtained strong performance in a wide variety of applications
including symmetry detection of 3D shapes (Fig. 1.4) and object detection in images.

Figure 1.4: The proximal-operator-learning framework from Chapter 5 can identify an
arbitrary number of reflectional symmetries of various mechanical parts in the test set.
The normal of each reflectional plane is indicated by a colored line segment where pink
indicates more accurate symmetry.

Figure 1.5: Simulation of a flow splashing against three obstacles (in purple) produced by
the method from Chapter 6. Particles are colored based on the initial y coordinates.

Chapter 6: Optimizing probability flows for simulating dynamical systems. Beyond
optimizing for a single distribution, can we use optimization to recover the time evolution
of a probability flow undergoing fluid dynamics or stochastic processes? In Chapter 6,
we develop a discretization-free framework for solving a large class of mass-conserving
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partial differential equations (PDEs), including Fokker-Planck equations and Wasserstein
gradient flows. The main observation is that the velocity field of the PDE solution needs to
be self-consistent: it must satisfy a fixed-point equation that involves the probability flow
determined by the current velocity field. To solve the fixed-point equation, we propose
an iterative optimization scheme, reminiscent of Picard’s iteration, that solves a least
square problem at each iteration. This iterative scheme bypasses significant computational
obstacles that one may encounter by directly minimizing the self-consistency residual.
Compared to existing approaches, in addition to not suffering from temporal or spatial
discretization, our method covers a wider range of PDEs including complicated dynamics
(Fig. 1.5) and scales to high dimensions with less optimization time.

Chapter 7: Conclusion. In this ultimate chapter, we summarize the common themes
of the methods developed that serve as a guide for future research in distributional opti-
mization. We end the thesis with several promising future directions.





Part I
Optimizing Interacting Particles for Pro-
ducing High-Quality Samples

We begin tackling the task of high-quality sampling by optimizing over discrete distri-
butions parameterized as moving particles. By “high-quality”, we mean that given the
target distribution P, the resulting points (xi)n

i=1 and weights (wi)n
i=1 together achieve a

small

D
(

n∑
i=1

wiδxi
,P
)

,

for some probability divergence D.
As a motivating example, in Fig. 1.6, we conduct a simple experiment of sampling

uniformly within a box in R2, using i.i.d. sampling and the methods in Chapters 2 and 3.
The i.i.d. points, while easy to generate, tend to under-sample and over-sample various
regions. In contrast, our methods in Chapters 2 and 3 produce more evenly distributed
points. This intuition is quantitatively verified in the right plot of Fig. 1.6, which shows
that the samples generated by our methods attain higher quality in terms of the energy
distance.

We focus on the case where the probability divergence D can be expressed as a pairwise
interaction energy:

D
(

n∑
i=1

wiδxi
,P
)

=
n∑

i,j=1
wiwjk(xi, xj)

using a kernel k, a symmetric, positive definite function k : Rd×Rd → R that incorporates
information about P. Specifically:

• In Chapter 2, we utilize a mollified kernel kϵ such that D approaches the χ2 di-
vergence to P as ϵ goes to 0, giving rise to a particle-based sampling method with
flexible constraint handling.

19



20

i.i.d. MIED LSKT
0.0

0.2

0.4

0.6

0.8

1.0

E
ne

rg
y

D
is

ta
nc

e

×10−3

0.00091

0.00033

0.00004

Figure 1.6: Uniform sampling in a box. Left: 512 samples generated using i.i.d. sampling
(blue), mollified interaction energy descent (orange, Chapter 2), and Low-rank Stein Ker-
nel Thinning (green, Chapter 3). Right: Energy distance [SR13] between the empirical
measure formed by the 512 samples and another empirical measure formed by 65536 i.i.d.
samples for each method.

• In Chapter 3, we employ a kernel kP that is mean-zero under P and D is the
maximum mean discrepancy to P. We develop a suite of debiased compression
methods for various coreset types.



Chapter 2

Sampling via Mollified Interaction Energy De-
scent

In this chapter, we design a kernel k, which depends on the score of P, such that the
minimizer of

min
(xi)n

i=1

n∑
i,j=1

k(xi, xj)

is a good approximation of P. This chapter is based on the publication [Li+23b].

■ 2.1 Introduction

Sampling from an unnormalized probability density is a ubiquitous task in statistics,
mathematical physics, and machine learning. While Markov chain Monte Carlo (MCMC)
methods [Bro+11] provide a way to obtain unbiased samples at the price of potentially
long mixing times, variational inference (VI) methods [BKM17] approximate the target
measure with simpler (e.g., parametric) distributions at a lower computational cost. In
this chapter, we develop a new class of VI methods that approximate the target measure
using a collection of interacting particles. A prior sampling method of evolving a collection
of interacting particles is Stein variational gradient descent (SVGD) proposed by [LW16],
a kernelized discreization of the gradient flow of the Kullback–Leibler (KL) divergence to
the target distribution.

While MCMC and VI methods have found great success in sampling from uncon-
strained distributions, they often break down for distributions supported in a constrained
domain. Constrained sampling is needed when the target density is undefined outside a
given domain (e.g., the Dirichlet distribution), when the target density is not integrable in
the entire Euclidean space (e.g., the uniform distribution), or when we only want samples

21
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that satisfy certain inequalities (e.g., fairness constraints in Bayesian inference [LTL21]).
A few recent approaches [BSU12; BG13; LZ18; SLM21] extend classical sampling methods
like Hamiltonian Monte Carlo (HMC) or SVGD to constrained domains. These exten-
sions, however, typically involve expensive numerical subroutines like solving nonlinear
systems of equations; moreover, explicit formulas for quantities such as Riemannian met-
ric tensors and mirror maps need to be derived on a case-by-case basis to agree with the
constraints.

We present an optimization-based method called mollified interaction energy descent
(MIED) that minimizes mollified interaction energies (MIEs) for both unconstrained and
constrained sampling. An MIE takes the form of a double integral of the quotient of a mol-
lifier—smooth approximation of δ0, the Dirac delta at the origin—over the target density
properly scaled. Intuitively, minimizing an MIE balances two types of forces: attractive
forces that drive the current measure towards the target density, and repulsive forces that
prevent collapsing. We show that as the mollifier converges to δ0, the MIE converges to
the χ2 divergence to the target measure up to an additive constant (Thm. 2.1). Moreover,
the MIE Γ-converges to χ2 divergence (Thm. 2.2), so that minimizers of MIEs converge
to the target measure, providing a theoretical basis for sampling by minimization.

While mollifiers can be interpreted as kernels with diminishing bandwidths, our anal-
ysis is fundamentally different from that of SVGD where a fixed-bandwidth kernel is used
to define a reproducing kernel Hilbert space (RKHS) on which the Stein discrepancy has
a closed-form [GM17]. Deriving a version of the Stein discrepancy for constrained do-
mains is far from trivial and requires special treatment [SLM21; Xu21]. In contrast, our
energy has a unified form for constrained and unconstrained domains and approximates
the χ2 divergence as long as the bandwidth is sufficiently small so that short-range in-
teraction dominates the energy: this idea of using diminishing bandwidths in sampling is
under-explored for methods like SVGD.

Algorithmically, we use first-order optimization to minimize MIEs discretized using
particles. We introduce a log-sum-exp trick to neutralize the effect of arbitrary scal-
ing of the mollifiers and the target density; this form also improves numerical stability
significantly. Since we turn sampling into optimization, we can readily apply existing
constrained sampling techniques such as reparameterization using a differentiable (not
necessarily bijective) map or the dynamic barrier method by [GL21] to handle generic
differentiable inequality constraints. Our method only uses the first-order derivatives of
both the target density and the inequality constraint (or the reparameterization map),
enabling large-scale applications in machine learning (see e.g. Fig. 2.5). For unconstrained
sampling problems, we show MIED achieves comparable performance to particle-based al-
gorithms like SVGD, while for constrained sampling problems, MIED demonstrates strong
performance compared to alternatives while being more flexible with constraint handling.
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■ 2.2 Related Works

KL gradient flow and its discretization. The Wasserstein gradient flow of the KL
divergence has been extensively studied, and many popular sampling algorithms can be
viewed as discretizations of the KL-divergence gradient flow. Two primary examples
are Langevin Monte Carlo (LMC) and Stein variational gradient descent (SVGD). LMC
simulates Langevin diffusion and can be viewed as a forward-flow splitting scheme for
the KL-divergence gradient flow [Wib18]. At each iteration of LMC, particles are pulled
along −∇ log p where p is the target density, while a random Gaussian noise is injected.
A Metropolis adjusting step is typically needed to counter the bias in LMC [RDF78].
In contrast with LMC, SVGD is a deterministic algorithm that updates a collection of
particles using a combination of an attractive force involving−∇ log p and a repulsive force
among the particles; it can be viewed as a kernelized gradient flow of the KL divergence
[Liu17] or of the χ2 divergence [Che+20]. The connection to the continuous gradient flow
in the Wasserstein space is fruitful for deriving sharp convergence guarantees for these
sampling algorithms [DMM19; Bal+22; Kor+20; SSR22].

Sampling in constrained domains. Sampling in constrained domains is more challeng-
ing compared to the unconstrained setting. Typical solutions are rejection sampling and
reparameterization to an unconstrained domain. However, rejection sampling can have
a high rejection rate when the constrained domain is small, while reparameterization
maps need to be chosen on a case-by-case basis with a determinant-of-Jacobian term
that can be costly to evaluate. [BSU12] propose a constrained version of HMC for sam-
pling on implicit submanifolds, but their algorithm is expensive as they need to solve a
nonlinear system of equations for every integration step in each step of HMC. [BG13]
propose geodesic Hamiltonian Monte Carlo for sampling on embedded manifolds, but
they require explicit geodesic formulae. [Zha+20; AC21] propose discretizations of the
mirror-Langevin diffusion for constrained sampling provided that a mirror map is given
to capture the constraint. Similarly, [SLM21] propose mirror SVGD that evolves particles
using SVGD-like updates in the dual space defined by a mirror map. While these two
methods have theoretical convergence guarantees, they are limited by the availability of
mirror maps that capture the constraints. [LTL21] extend SVGD to incorporate a popula-
tion constraint over the samples obtained; their setting is different from ours: we assume
the same constraint is applied to every sample.

Pairwise interaction energies on particles. Pairwise interaction energies on particles
take the form E({xi}N

i=1) = ∑
i,j W (xi, xj) for a kernel W (x, y). The gradient flow of E

on N particles can give rise to phenomena like flocking and swarming, and a long line
of mathematical research studies mean-field convergence of such particle gradient flow to
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continuous solutions of certain PDEs as N → ∞ [CCH14; Ser20]. Of particular interest
to sampling, a separate line of works summarized by [BHS19] demonstrates that for the
hypersingular Riesz kernel W (x, y) = ∥x − y∥−s

2 with sufficiently big s, minimizing E
(with summation over i ̸= j) over a compact set yields uniform samples as N → ∞.
Moreover, W can depend on p to obtain non-uniform samples distributed according to p.
As the hypersingular Riesz kernel is not integrable, their analysis is based on geometric
measure theory and bypasses variational techniques. In contrast, we take a different
approach by using integrable kernels in MIEs through mollifiers. This enables us to
apply variational analysis to establish interesting connections between MIEs and the χ2

divergence. We compare our formulation with theirs further in Sec. 2.B. [Jos+19] propose
to minimize the maximum of pairwise interaction akin to the interaction in [BHS19]
without gradient information using a greedy algorithm. Recently, [Kor+21a] propose
sampling via descending on kernel Stein discrepancy which can also be viewed as a type
of interaction energy, but like SVGD, it is limited to unconstrained sampling and can be
slow as higher-order derivatives of log p are required. [Cra+23] propose approximating
the χ2 divergence with a functional different from ours that also involves a mollifier. The
resulting algorithm needs to evaluate an integral containing the target density over the
whole domain at each step which can be costly. Consequently, their method is only applied
to special target densities for which the integral has a closed form. In comparison, our
method can handle general target densities with cheap updates in each step.

■ 2.3 Designing Interaction Energies

Notation. Let X ⊂ Rn be the domain we work in. We use λn to denote the Lebesgue
measure on Rn and

∫
f(x)dx denotes integration with respect to λn. We will assume all

measures are Borel. Let B2(x, r) ≜ {p ∈ Rn : ∥p − x∥2 ≤ r} with shorthand B2(r) ≜
B2(0, r). The d-dimensional Hausdorff measure is denoted by Hd. We use ωN to denote
a set of points {x1, . . . , xN} ⊂ Rn. For x ∈ Rn, let δx be the Dirac delta measure
at x and δωN

be the empirical measure 1
N

∑N
k=1 δxk

. We denote Lp(X) ≜ {f : X →
R Lebesgue measurable with

∫
X |f(x)|p dx < ∞}, and for f ∈ Lp(X) we let ∥f∥p ≜

(
∫

X |f(x)|p dx)1/p. We use ∥f∥∞ to denote the essential supremum of |f |. For f, g : Rn →
R, we write their convolution as (f ∗g)(x) ≜

∫
f(y)g(x−y)dy provided this integral exists.

We use Ck(X) to denote continuously k-differentiable real-valued functions and C∞(X)
to denote the smooth functions. The space of continuous k-differentiable functions with
compact support on X is Ck

c (X). For vector-valued continuously k-differentiable functions
from X to Y ⊂ Rn, we use the notation Ck(X, Y ) and analogously for other classes of
vector-valued functions. We denote by P(X) the set of probability measures, and by
P2(X) the set of probability measures with bounded second moments. We denote by
Msign(X) the set of finite signed measures. Given a Borel measurable map T : X → X
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and µ ∈ P(X), T#µ is the pushforward measure of µ by T .

Setup. The domain X ⊂ Rn where we constrain samples is assumed to be closed and
full-dimensional, i.e., λn(X) > 0; the unconstrained case corresponds to X = Rn. The
unnormalized target density, always denoted as p, is assumed to satisfy p ∈ C1(X), p(x) >
0 for all x ∈ X, and 0 <

∫
X p(x)dx < ∞. Let µ∗ be the target probability measure

µ∗(B) ≜
∫

B
p(x)dx∫

X
p(x)dx

for a Borel set B ⊂ X. Our goal is to sample from µ∗.

♢ 2.3.1 Mollifiers

Our framework relies on the notion of mollifiers originally introduced in Friedrichs [Fri44].

Definition 2.1 (Family of mollifiers). We say {ϕϵ}ϵ>0 ⊂ C1(Rn) is a family of mollifiers
if it satisfies:

(a) for any ϵ > 0, x ∈ Rn, ϕϵ(x) ≥ 0 and ϕϵ(x) = ϕϵ(−x);

(b) for any ϵ > 0, ∥ϕϵ∥1 = 1 and supx∈Rn ϕϵ(x) <∞; and

(c) for any δ > 0, p ∈ {1,∞}, limϵ→0∥1Rn\B2(δ)ϕϵ∥p = 0.

As ϵ → 0, the distribution with density ϕϵ converges to δ0, and if f ∈ Lp(Rn) and is
continuous, then the convolution ϕϵ∗f converges to f both pointwise (Prop. 2.7) and in Lp

(Prop. 2.8). Our definition is different from the one used in the PDE theory [Hör15], where
some ϕ ∈ C∞

c (Rn) is fixed and the family of mollifiers is generated by ϕϵ(x) ≜ ϵ−nϕ(x/ϵ).
While in the PDE theory mollifiers are typically used to improve the regularity of non-
smooth functions, in our framework they are used to construct interaction energies that
approximate the χ2 divergence.

We will use the following mollifiers. In the ensuing definitions, we include normalizing
constants Zϵ that ensure ∥ϕϵ∥1 = 1. We do not need the explicit form of Zϵ as such
constants do not appear in our practical algorithm (Alg. 2.1). For s > n, the s-Riesz
family of mollifiers is defined as ϕs

ϵ(x) ≜ (∥x∥2
2 + ϵ2)−s/2/Zs

ϵ . The Gaussian family of
mollifiers is defined as ϕg

ϵ (x) ≜ exp
(
−∥x∥2

2
2ϵ2

)
/Zg

ϵ . The Laplace family of mollifiers is
defined as ϕl

ϵ(x) ≜ exp
(
−∥x∥2

ϵ

)
/Z l

ϵ. Since {ϕg
ϵ} and {ϕl

ϵ} correspond to the densities of
centered Gaussian and Laplace random variables, they satisfy Def. 2.1. Prop. 2.6 proves
that the s-Riesz family {ϕs

ϵ} also satisfies Def. 2.1.
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♢ 2.3.2 Mollified interaction energies

Definition 2.2 (Mollified interaction energy). Given a family of mollifiers {ϕϵ}ϵ>0 (Def. 2.1),
for each ϵ > 0, define a symmetric kernel Wϵ : Rn × Rn → [0,∞] by

Wϵ(x, y) ≜
{

ϕϵ(x− y)(p(x)p(y))−1/2 if x, y ∈ X
∞ otherwise. (2.1)

Define the mollified interaction energy (MIE), Eϵ : P(Rn)→ [0,∞], to be

Eϵ(µ) ≜
∫∫

Wϵ(x, y)dµ(x)dµ(y). (2.2)

Intuitively, minimizing Eϵ(µ) balances two forces: a repulsive force from ϕϵ(x − y)
makes sure µ has a good spread, and an attractive force from (p(x)p(y))−1/2 helps µ
concentrate on high-density regions. The exponent −1/2 is chosen to balance the two
forces so that, as we will show in Thm. 2.1, Eϵ(µ) approximates the χ2 divergence with
respect to µ∗ for small ϵ.

♢ 2.3.3 Convergence to χ2 divergence

Recall that the χ2-divergence between probability measures P,Q is defined by

χ2(Q ∥ P) ≜


∫ (dQ

dP − 1
)2

dP if Q≪ P
∞ otherwise,

where Q≪ P denotes absolute continuity of Q with respect to P with density dQ
dP .

We start by giving an alternative formula for χ2 divergence with respect to the target
measure.
Lemma 2.1. Define a functional E : P(Rn)→ [0,∞] by

E(µ) ≜
{ ∫

X
q(x)2

p(x) dx if dµ(x) = q(x)dλn(x) and µ≪ µ∗

∞ otherwise.

Then for every µ ∈ P(Rn),
E(µ) = χ2(µ ∥ µ∗) + 1.

Proof. If µ is not absolutely continuous with respect to µ∗, then both sides are infinity.
Otherwise, µ(X) = 1 and µ has some density q. We then compute

χ2(µ ∥ µ∗) + 1 =
∫ (

dµ

dµ∗ (x)− 1
)2

dµ∗(x) + 1 =
∫

X

(
q(x)
p(x) − 1

)2

p(x)dx + 1

=
∫

X

q(x)2

p(x) dx− 2
∫

X
q(x)dx + 2 =

∫
X

q(x)2

p(x) dx = E(µ).
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Theorem 2.1 (Pointwise convergence to χ2 divergence). Suppose µ ∈ P(Rn) satisfies
χ2(µ ∥ µ∗) <∞. Then, Eϵ(µ) <∞ for any ϵ > 0. Furthermore,

lim
ϵ→0
Eϵ(µ) = χ2(µ ∥ µ∗) + 1.

Below we give a succinct proof of Thm. 2.1 using the theory of mollifiers developed in
Sec. 2.A.1.

Proof of Thm. 2.1. Since χ2(µ ∥ µ∗) < ∞, we know µ ≪ µ∗, so µ(X) = 1. We let q(x)
be the density of µ which satisfies q(x) = 0 for x ∈ Rn \X. We compute using Tonelli’s
theorem (since our integrand is positive):

Eϵ(µ) =
∫∫

ϕϵ(x− y)(p(x)p(y))−1/2q(x)q(y)dxdy

=
∫ (

ϕϵ ∗
q
√

p

)
(x) q
√

p
(x)dx =

∫
(ϕϵ ∗ g)(x)g(x)dx, (2.3)

where we define g(x) ≜ q(x)/
√

p(x) on X and g(x) ≜ 0 for x /∈ X. Moreover, by Lem. 2.1,

χ2(µ ∥ µ∗) + 1 =
∫

g(x)2dx.

The assumption χ2(µ ∥ µ∗) < ∞ then implies g ∈ L2(Rn). By Prop. 2.8, we have
ϕϵ ∗ g ∈ L2(Rn). Next notice that∣∣∣Eϵ(µ)−

(
χ2(µ ∥ µ∗) + 1

)∣∣∣ ≤ ∫ |(ϕϵ ∗ g)(x)− g(x)| g(x)dx ≤ ∥ϕϵ ∗ g − g∥2∥g∥2 <∞.

This shows the first claim. Finally, the last expression goes to 0 as ϵ→ 0 since ∥ϕϵ ∗ g −
g∥2 → 0 by Prop. 2.8.

Remark 2.1. One may ask if similar results as Thm. 2.1 can be obtained for f -divergences
other than the χ2 divergence. We highlight that the proof of Thm. 2.1 is highly specific
to the χ2 divergence because in (2.3) there are two copies of q coming from the definition
of Eϵ as a double integral over µ. Any f -divergence between µ and µ∗ has the form∫

X f(q(x)/p(x))dp(x), and the only way to make q2 appear is to choose f(x) = x2 which
gives rise to the χ2 divergence.

Remark 2.2. It is possible to prove versions of Thm. 2.1 when X has Hausdorff dimen-
sion d < n: in such cases the χ2-divergence still makes sense and so does (2.2). When
X is “flat”, i.e., with Hausdorff dimension d and contained in a d-dimensional linear
subspace of Rn, e.g., when X is defined by a set of linear inequalities, then Thm. 2.1
follows if we adapt the assumptions of Def. 2.1 and calculations in the proof of Thm. 2.1
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to be in the subspace. For a general d-dimensional X, the same calculation yields Eϵ(µ) =∫
X

(∫
X ϕϵ(x− y)

(
q√
p

)
(y)dHd(y)

) (
q√
p

)
(x)dHd(x). For a similar argument to go through,

we will need the normalizing constant
∫

X ϕϵ(x − y)dHd(y) to the same for all x. This is
true for example when X is a d-dimensional sphere, but for a general X the last integral
will depend on the base point x. Proving a version of Thm. 2.1 for a generic X with
Hausdorff dimension d < n is an interesting future direction.

♢ 2.3.4 Convexity and Γ-convergence

We next study properties of the minimizers of MIEs: Does minµ∈P(X) Eϵ(µ) admit a unique
minimum? If so, do minima of {Eϵ}ϵ>0 converge to µ∗ as ϵ → 0? In order to answer
affirmatively to these questions, we will need the associated kernel kϵ(x, y) ≜ ϕϵ(x − y)
to satisfy the following property.

Definition 2.3 (I.s.p.d. kernel). A symmetric lower semicontinuous (l.s.c.) kernel k
on X ×X is integrally strictly positive definite (i.s.p.d.) if for every finite signed Borel
measure ν on X, the energy Ek(ν) ≜

∫∫
k(x, y)d(ν × ν)(x, y) is well-defined (i.e., the

integrals over the negative and positive parts of ν are not both infinite), and Ek(ν) ≥ 0
where the equality holds only if ν = 0 on all Borel sets of X.

For the mollifiers we consider, the associated kernel kϵ(x, y) = ϕϵ(x− y) is i.s.p.d. on
any compact set (Pronzato and Zhigljavsky [PZ21, Example 1.2]).

The next result, proved in Sec. 2.A.2, shows Wϵ is i.s.p.d. and Eϵ attains a unique
minimum whenever kϵ is i.s.p.d. and X is compact.

Proposition 2.1 (Uniqueness of the minimizer of Eϵ). Suppose X is compact and kϵ(x, y) ≜
ϕϵ(x− y) is i.s.p.d. on X. Then,

(a) the kernel Wϵ(x, y) defined in (2.1) also i.s.p.d on X, and

(b) the functional Eϵ is strictly convex on Msign(X) and attains a unique minimum on
P(X).

The rest of the section is dedicated to showing the convergence of minima of {Eϵ}
to µ∗. This follows as a consequence of Γ-convergence of the sequence {Eϵ}, defined as
follows.

Definition 2.4 (Γ-convergence). A sequence of functionals Fϵ : P(Rn) → (−∞,∞] is
said to Γ-converge to F : P(Rn)→ (−∞,∞], denoted as Fϵ

Γ→ F , if:

(a) for any sequence µϵ ∈ P(Rn) converging weakly to µ ∈ P(Rn), lim infϵ→0Fϵ(µϵ) ≥
F(µ), and
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(b) for any µ ∈ P(Rn), there exists a sequence µϵ ∈ P(Rn) converging weakly to µ with
lim supϵ→0Fϵ(µϵ) ≤ F(µ).

Theorem 2.2 (Γ-convergence to χ2 divergence). Suppose kϵ(x, y) ≜ ϕϵ(x− y) is i.s.p.d.
on compact sets for every ϵ > 0. Then we have Γ-convergence (Def. 2.4) Eϵ

Γ→ χ2(· ∥ µ∗)+
1 as ϵ → 0. In particular, if X is compact, if we denote µ∗

ϵ ≜ arg minµ∈P(X) Eϵ(µ), then
µ∗

ϵ → µ∗ weakly and limϵ→0 Eϵ(µ∗
ϵ) = 1.

Thm. 2.2 provides basis for minimizing Eϵ for a small ϵ, since its unique minimum will
be a good approximation of µ∗.

The main tool towards proving Thm. 2.2 is the following result developed in Sec. 2.A.2,
which give an expression of the double integral of an i.s.p.d. kernel using its Fourier
transform (Def. 2.6):

Proposition 2.2. Suppose ϕ ∈ L1(Rn) is even, bounded, continuous, and k(x, y) ≜
ϕ(x− y) is i.s.p.d. on any compact sets. Let ϕ̂ denote the Fourier transform of ϕ. Then,
for any ν ∈Msign(Rn), if we let ν̂ denote the Fourier transform of ν, it holds that∫∫

ϕ(x− y)dν(x)dν(y) =
∫
|ν̂(ξ)|2 ϕ̂(ξ)dξ.

Proof of Thm. 2.2. First note that Def. 2.4(b) is immediate from Thm. 2.1 with µϵ = µ:
if E(µ) =∞, then trivially lim supϵ→0 Eϵ(µ) ≤ E(µ); otherwise we apply Thm. 2.1. So we
focus on proving criterion Def. 2.4(a).

Fix a sequence µϵ ∈ P(Rn) that converges weakly to µ ∈ P(Rn), and our goal is to show
lim infϵ→0 Eϵ(µϵ) ≥ E(µ). Without loss of generality, we may assume Eϵ(µϵ) < ∞ for all
ϵ > 0 (these terms have no effect in lim inf), which implies µϵ(X) = 1. By Portmanteau’s
theorem and the assumption that X is closed, we have µ(X) ≥ lim supϵ→0 µϵ(X) = 1. So
all of µϵ and µ will have support in X.

For m > 0, ϵ > 0, define a nonnegative measure νϵ,m by

dνϵ,m(x) ≜ hm(x)p−1/2(x)dµϵ(x),

where hm : Rn → R is a continuous monotonically decreasing cutoff function satisfying
hm(x) = 1 if ∥x∥2

2 < m and hm(x) = 0 if ∥x∥2
2 > m + 1, and that hm(x) ≤ hm′(x) for

m < m′. Then since p > 0 is continuous, it is bounded below on any compact set in X,
and hence νϵ,m is finite. Also define, for m > 0, a nonnegative measure νm by

dνm(x) ≜ hm(x)p−1/2(x)dµ(x),

which is again finite following the same reasoning.
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Then for any m > 0, denoting dνϵ(x) ≜ p−1/2(x)dµϵ(x),

Eϵ(µϵ) =
∫∫

ϕϵ(x− y)dνϵ(x)dνϵ(y)

≥
∫∫

ϕϵ(x− y)dνϵ,m(x)dνϵ,m(y) =
∫
|ν̂ϵ,m(ξ)|2 ϕ̂ϵ(ξ)dξ, (2.4)

where we apply Prop. 2.2 for the last equality. On the other hand, note that

ν̂ϵ,m(ξ) =
∫

e−2πiξ·xdνϵ,m(x) =
∫

e−2πiξ·xhm(x)p−1/2(x)dµϵ(x).

Since µϵ → µ weakly and the last integrand is a continuous bounded function, we have

lim
ϵ→0

ν̂ϵ,m(ξ) =
∫

e−2πiξ·xhm(x)p−1/2(x)dµ(x) = ν̂m(ξ).

On the other hand, ϕ̂ϵ(ξ) =
∫

e−2πiξ·xϕϵ(x)dx. Since by Def. 2.1, ϕϵdx converges to δ0 in
probability (and in particular weakly), we have limϵ→0 ϕ̂ϵ(ξ) = 1.

Applying Fatou’s lemma to (2.4), we obtain, for any m > 0,

lim inf
ϵ→0

Eϵ(µϵ) ≥
∫
|ν̂m(ξ)|2 dξ.

If
∫
|ν̂m(ξ)|2 dξ = ∞ for any m > 0, then we are done since lim infϵ→0 Eϵ(µϵ) = ∞.

Otherwise, by Kühn [Küh16, Lemma 2.11], for every m > 0, νm has density in L2(Rn).
This imples µ has density everywhere. Suppose dµ(x) = q(x)dλn(x). By Plancherel’s
theorem and the monotone convergence theorem, we have

lim inf
ϵ→0

Eϵ(µϵ) ≥ lim
m→∞

∫
|ν̂m(ξ)|2 dξ

= lim
m→∞

∫
X

(
hm(x)p−1/2(x)q(x)

)2
dx

=
∫

X
p−1(x)q(x)2dx = E(µ).

This completes the proof of Eϵ
Γ→ E .

Now suppose X is compact, and let µ∗
ϵ ≜ arg minµ∈P(X) Eϵ(µ). To establish µ∗

ϵ → µ∗

weakly (resp. limϵ→0 Eϵ(µ∗
ϵ) = E(µ∗) = 1), it suffices to show that every subsequence

of {µ∗
ϵ} (resp. {Eϵ(µ∗

ϵ)}) has a further convergence subsequence converging to µ∗ (resp.
E(µ∗)). With a slight abuse of notation, we assume the sequence of ϵ is chosen so that
{µ∗

ϵ} (resp. {Eϵ(µ∗
ϵ)}) is already some subsequence of the original sequence. As argued in

the proof of Lem. 2.5, P(X) is compact with respect to weak convergence. Hence {µ∗
ϵ}
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has a weakly convergence subsequence µ∗
ϵk
→ ν for some ν ∈ P(X). The Γ-convergence

Eϵ
Γ→ E implies

lim inf
k→∞

Eϵk
(µ∗) ≥ lim inf

k→∞
Eϵk

(µ∗
ϵk

) ≥ E(ν) ≥ lim sup
k→∞

Eϵk
(ν) ≥ lim sup

k→∞
Eϵk

(µ∗
ϵk

),

where we have used, for each inequality, µ∗
ϵk

= arg minP(X) Eϵk
, Def. 2.4(a), the first para-

graph of this proof, and again the fact that µ∗
ϵk

= arg minP(X) Eϵk
. Since lim infk→∞ Eϵk

(µ∗) =
E(µ∗) by Thm. 2.1, we have

E(µ∗) ≥ lim
k→∞
Eϵk

(µ∗
ϵk

) = E(ν) ≥ E(µ∗),

where the last inequality follows because µ∗ is the minimizer of E . Then limk→∞ Eϵk
(µ∗

ϵk
) =

E(µ∗) = 1. Moreover, χ2(ν ∥ µ∗) = 0. This can only happen if ν and µ∗ agree on all Borel
sets, so ν = µ∗.

♢ 2.3.5 Differential calculus of Eϵ in P2(Rn)

We next study the gradient flow of Eϵ in Wasserstein space P2(Rn) for X = Rn. Under-
standing the gradient flow of a functional often provides insights into the convergence of
algorithms that simulates gradient flow with time discretization [AGS05, Chapter 11] or
spatial discretization [Chi22]. Proofs of this section are given in Sec. 2.A.3.

Let F : P2(Rn) → R be a functional. The Wasserstein gradient flow of F [AGS05,
Definition 11.1.1] is defined as the solution {µt}t≥0 of the PDE: ∂µt

∂t
= ∇· (µtwF ,µt) where

wF ,µ ∈ L2(µ;Rn) is a Frechét subdifferential (Def. 2.7) of F at µ. Intuitively, gradient
flows capture the evolution of the variable being optimized if we were to do gradient
descent1 on F when the step sizes go to 0. We next show that the gradient flow of Eϵ

agrees with that of χ2(· ∥ µ∗) in the sense that their subdifferentials coincide as ϵ→ 0.

Proposition 2.3. Assume µ ∈ P2(Rn) has density q ∈ C1
c (Rn)2. Then any strong Frechét

subdifferential (Def. 2.7) of Eϵ at µ takes the form

wϵ,µ(x) = 2∇
(
p(x)−1/2(ϕϵ ∗ q/

√
p)(x)

)
, for µ-a.e. x ∈ Rn. (2.5)

Moreover, if for sufficiently small ϵ, ϕϵ has compact support independent of ϵ, then

lim
ϵ→0

wϵ,µ(x) = wχ2,µ(x), for µ-a.e. x ∈ Rn, (2.6)

where wχ2,µ is a strong Frechét subdifferential of χ2(· ∥ µ∗).
1The more precise notion is of minimizing movements [AGS05, Chapter 2].
2We assume that µ has compact support because Wϵ can be unbounded and cause integrability issues

due to the presence of (p(x)p(y))−1/2 term.
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While simulating χ2 divergence gradient flow is often intractable [TS20, Section 3.3],
our MIE formulation admits a practical algorithm (Sec. 2.4) without requiring the density
of the flow.

We next show that Eϵ is displacement convex at µ∗ ∈ P2(Rn) as ϵ → 0, obtaining a
result similar to Korba et al. [Kor+21a, Corollary 4]. This suggests that gradient flow
initialized near µ∗ will have nice convergence guarantee.
Proposition 2.4. Suppose p ∈ C2

c (Rn). Suppose that for sufficiently small ϵ, ϕϵ has
compact support independent of ϵ. Assume kϵ(x, y) ≜ ϕϵ(x − y) is i.s.p.d. Let ξ ∈

C∞
c (Rn,Rn) and µt ≜ (I + tξ)#µ∗. Then limϵ→0

d2

dt2

∣∣∣∣∣
t=0
Eϵ(µt) ≥ 0.

We now consider a time discretization of the gradient flow of Eϵ given by, for an initial
measure µ0 ∈ P2(Rn) and m ∈ N0, with a step size γ > 0,

µm+1 ≜ (I − γwϵ,µm)#µm. (2.7)

Following Korba et al. [Kor+21a, Proposition 14], we can show a descent lemma for
iterations (2.7) provided the following smoothness assumptions:
Assumption 2.1. Suppose the target density p ∈ C2(Rn) satisfies 1/Cp ≤ p(x) ≤ Cp,
∥p(x)∥2 ≤ C ′

p, ∥H p(x)∥2 ≤ C ′′
p for some Cp, C ′

p, C ′′
p for all x ∈ Rn, where we use ∥A∥2

to indicate the matrix spectral norm (i.e. ∥A∥2 = σmax(A)). Suppose the mollifier ϕϵ ∈
C2(Rn) satisfies, in addition to Def. 2.1, ϕϵ(x) ≤ Cϵ, ∥∇ϕϵ(x)∥2 ≤ C ′

ϵ, and ∥H ϕϵ(x)∥2 ≤
C ′′

ϵ for some Cϵ, C ′
ϵ, C ′′

ϵ .

Proposition 2.5 (Descent lemma for Eϵ). Under Assum. 2.1, suppose µ0 ∈ P2(Rn) has
compact support. Then for any γ ≤ 1

2L
, with

L ≜ C ′′
ϵ C2

r + 2C ′
ϵC

′
rCr + Cϵ max(C ′′

r Cr, C ′2
r ), (2.8)

the update (2.7) satisfies, for each m ∈ N0,

Eϵ(µm+1)− Eϵ(µm) ≤ −γ(1− 2γL)∥wϵ,µm∥L2(µm) ≤ 0. (2.9)

■ 2.4 Mollified Interaction Energy Descent

We now present a first-order particle-based algorithm for constrained and uncon-
strained sampling by minimizing a discrete version of (2.2). Substituting an empirical
distribution for µ into (2.2) gives the discrete mollified interaction energy, for N particles
ωN = {x1, . . . , xN},

Eϵ(ωN) ≜ 1
N2

N∑
i=1

N∑
j=1

ϕϵ(xi − xj)(p(xi)p(xj))−1/2. (2.10)
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Algorithm 2.1 Mollified interaction energy descent (MIED) in the logarithmic domain.
Input: target density p, mollifier ϕϵ, initial particles {x0

i }N
i=1, total steps T , gradient

update function GradientUpdate
for t← 1 to T do

for i← 1 to N do
▷ Iij ≜ log ϕϵ(xi − xj)− 1

2(log p(xi) + log p(xj)); see the derivation in Sec. 2.C
−∇xi

log Eϵ ←
∑N

j=1
eIij∑
i,j

eIij
(2∇ log ϕϵ(xj − xi) +∇ log p(xi))

xt+1
i ← GradientUpdate (xt

i,−∇xi
log Eϵ)

end for
end for
Return: final particles {xT

i }N
i=1

Denote ω∗
N,ϵ ∈ arg minωN ⊂X Eϵ(ωN) and µ∗

ϵ = arg minµ∈P2(X) Eϵ(µ), If X is compact,
by Borodachov, Hardin, and Saff [BHS19, Corollary 4.2.9], we have weak convergence
δω∗

N,ϵ
→ µ∗

ϵ as N →∞. If in addition kϵ(x, y) ≜ ϕϵ(x− y) is i.s.p.d., then by Thm. 2.2, we
have weak convergence µ∗

ϵ → µ∗. This shows that minimizing (2.10) with a large N and
a small ϵ will result in an empirical distribution of particles that approximates µ∗. Our
sampling method, mollified interaction energy descent (MIED) described in Alg. 2.1, is
simply minimizing (2.10) using gradient-based algorithms. For instance, for unconstrained
sampling, we obtain an instantiation of MIED using gradient descent (Alg. 2.1) with an
update that resembles the one in SVGD (see the discussion in Sec. 2.C.1). Below we
address a few practical concerns.

Optimization in the logarithmic domain. In practical applications, we only have access
to the unnormalized target density p. The normalizing constant of the mollifier ϕϵ can also
be hard to compute (e.g., for the Riesz family). While these normalization constants do
not affect the minima of (2.10), they can still affect gradient step sizes during optimization.
Moreover, ϕϵ can be very large when ϵ is small, and in many Bayesian applications p can
be tiny and only log p is numerically significant. To address these issues, we optimize the
logarithm of (2.10) using the log-sum-exp trick [BHH21] to improve numerical stability
and to get rid of the arbitrary scaling of the normalizing constants:

log Eϵ(ωN) ≜ log
N∑

i=1

N∑
j=1

exp(log ϕϵ(xi − xj)−
1
2(log p(xi) + log p(xj)))− 2 log N. (2.11)

Special treatment of the diagonal terms. Since ϕϵ goes to the Dirac delta as ϵ → 0,
the discretization of (2.2) on a neighborhood of the diagonal {(x, y) : x = y} needs to
be handled with extra care. In (2.10) the diagonal appears as ∑N

i=1 ϕϵ(0)p(xi)−1 which
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can dominate the summation when ϵ is small and then ϕϵ(0) becomes too large. For
the mollifiers that we consider, we use a different diagonal term ∑N

i=1 ϕϵ(hi/κn)p(xi)−1

where hi ≜ minj ̸=i∥xi − xj∥ and κn ≥ 1 is a constant depending only on the dimension
n. Since 0 ≤ ϕϵ(hi/κn) ≤ ϕϵ(0), the energy obtained will be bounded between (2.10) and
the version of (2.10) without the diagonal terms. Hence by the proof of Theorem 4.2.2 of
Borodachov, Hardin, and Saff [BHS19], the discrete minimizers of Eϵ still converge to µ∗

ϵ

as N →∞ and ϵ→ 0. Empirically we found the choice κn = (1.3n)1/n works well for the
Riesz family of mollifiers and we use the Riesz family primarily for our experiments.

Constraint handling. If X ̸= Rn, we need to minimize (2.11) subject to constraints
ωN = {x1, . . . , xN} ⊂ X. Since the constraint is the same for each particle xi, we want
our algorithm to remain parallelizable across particles.

We consider two types of constraints: (a) there exists a differentiable map f : Rn → X,
with λn(X \ f(Rn)) = 0; (b) the set X is given by {x ∈ Rn : g(x) ≤ 0} for a differentiable
g : Rn → R. For (a), we reduce the problem to unconstrained optimization in Rn using
objective log Eϵ(f(ωN)) with ωN = {x1, . . . , xN} ⊂ Rn and f(ωN) ≜ {f(x1), . . . , f(xN)}.
For (b), we apply the dynamic barrier method by Gong and Liu [GL21] to particles
in parallel. In Sec. 2.C.2, we extend the dynamic barrier method to handle multiple
constraints.

■ 2.5 Experiments

We compare MIED with recent alternatives on unconstrained and constrained sampling
problems. Unless mentioned otherwise, we choose the s-Riesz family of mollifiers {ϕs

ϵ}
with s = n + 10−4 and ϵ = 10−8: we found minimizing the MIE with such mollifiers
results in well-separated particles so that we can take ϵ to be very small as our theory
recommends. This is not the case for the Gaussian or the Laplace family as setting ϵ too
small can cause numerical issues even when particles are well-separated. In Sec. 2.D.5,
we compare different choices of s on a constrained mixture distribution.

Unless mentioned otherwise: for SVGD [LW16], we use the Gaussian kernel with
adaptive bandwidths as in the original implementation. While it is rarely discussed in the
literature, we found such adaptive rules of SVGD can be prone to collapse samples—see
Sec. 2.D.2; for KSDD [Kor+21a], we use a fixed Gaussian kernel with unit variance. All
methods by default use a learning rate of 0.01 with Adam optimizer [KB14]. The source
code can be found at https://github.com/lingxiaoli94/MIED.

♢ 2.5.1 Unconstrained sampling

Gaussians in varying dimensions. We first compare MIED with SVGD and KSDD on
Gaussians of varying dimensions and with different numbers of particles. In Fig. 2.1, we

https://github.com/lingxiaoli94/MIED
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see that as the number of dimensions increases, MIED results in best samples in terms of
W2 distance (Wasserstein-2 distance computed using linear programming without entropic
regularization) with respect to 104 i.i.d. samples, while SVGD yields lower energy distance
[SR13]. We think this is because MIED results in more evenly spaced samples (Fig. 2.D.1)
so the W2 distance is lower. More details can be found in Sec. 2.D.1.
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Figure 2.1: Gaussian experiments results in varying dimensions and different numbers of
particles. For each method, we plot the metric (W2 distance or energy distance) versus the
number of particles, averaged over 10 trials (shaded region indicates standard deviation).

Product of two Student’s t-distributions. Next, we consider a 2-dimensional distribu-
tion constructed as the product of two independent t-distributions with the degree of free-
dom ν = 2 composed with a linear transform. Unlike Gaussians, Student’s t-distributions
have heavy tails. On the left of Fig. 2.2, we visualize the results of each method with 1000
samples after 2000 iterations. MIED captures the heavy tail while SVGD fails. Quanti-
tatively, on the right of Fig. 2.2, while SVGD captures the distribution in [−a, a]2 better
for a ≤ 3, MIED yields lower metrics for a bigger a.
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Figure 2.2: Left: visualization of samples from each method for the product of two Stu-
dent’s t-distribution (composed with a linear transform). Right: metrics of each method
when restricting to [−a, a]2. As t-distributions have heavy tails, if we draw i.i.d. samples
from the true product distribution, a small number of them will have large norms, making
the computation of metrics unstable. Thus we restrict both i.i.d. samples and the result-
ing samples from each method to [−a, a]2 before computing the metrics for a ∈ [2, 10].
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Bayesian logistic regression. We compare MIED with SVGD and KSDD for the Bayesian
logistic regression setting in Liu and Wang [LW16]. We further include a naïve baseline,
independent particle descent (IPD), which simply runs gradient descent independently on
each particle to maximize the posterior probability. In addition to using test accuracy as
the metric, we include W2 distance and energy distance between the samples from each
method and 104 samples from NUTS [HG+14] after sufficient burn-in steps. We summa-
rize the results in Tab. 2.1. All methods, including the naïve baseline IPD, are comparable
in terms of test accuracy. In other words, accuracy is not a good metric for comparing
the quality of posterior samples. Bayesian inference is typically preferred over maximum
a posteriori estimation for its ability to capture uncertainty. When evaluating the quality
of the uncertainty of the samples using distributional distances, MIED provides the best
approximation in terms of the W2 distance and all methods (except IPD) are comparable
in terms of the energy distance.

Dataset (d) NUTS IPD SVGD KSDD MIED

banana (3) 0.55 -6.14/-3.58/0.55 -7.81/-5.24/0.55 -8.24/-5.76/0.55 -7.37/-5.06/0.55
breast cancer (10) 0.64 -1.51/-1.03/0.60 -1.62/-2.06/0.60 -1.71/-2.23/0.60 -1.99/-2.18/0.60
diabetis (9) 0.78 -2.18/-1.55/0.77 -3.09/-3.42/0.77 -2.91/-3.90/0.77 -3.11/-3.13/0.77
flare solar (10) 0.59 3.30/2.65/0.48 6.91/4.09/0.52 1.77/-0.08/0.55 7.09/4.25/0.48
german (21) 0.65 -1.80/-1.25/0.65 -1.89/-2.63/0.64 -1.27/-2.83/0.65 -1.96/-2.80/0.65
heart (14) 0.87 -0.40/-0.56/0.87 -0.41/-1.50/0.87 -0.10/-1.76/0.87 -0.92/-1.67/0.87
image (19) 0.82 6.53/4.31/0.83 7.17/4.01/0.83 2.16/-0.50/0.82 1.14/-1.88/0.82
ringnorm (21) 0.77 -3.82/-2.45/0.77 -4.11/-5.98/0.77 1.07/-2.21/0.76 -4.03/-5.70/0.77
splice (61) 0.85 -1.47/-1.18/0.85 -1.22/-2.65/0.85 2.04/-0.05/0.84 1.45/0.70/0.82
thyroid (6) 0.84 1.95/0.53/0.84 1.17/-0.00/0.84 2.42/1.57/0.74 0.84/-0.37/0.84
titanic (4) 0.40 -1.59/-0.16/0.40 -0.46/-0.31/0.40 -0.63/-0.39/0.40 -1.00/-0.45/0.40
twonorm (21) 0.97 -1.21/-1.13/0.97 -1.32/-2.78/0.97 1.55/-0.62/0.97 -1.44/-3.21/0.97
waveform (22) 0.77 -2.67/-1.87/0.78 -2.98/-5.23/0.78 -2.60/-4.18/0.77 -3.09/-3.17/0.78

Table 2.1: Bayesian logistic regression results with 1000 particles. We include the test ac-
curacy for NUTS in the second column. Three numbers A/B/C in the following columns
are logarithmic W2 distance, logarithmic energy distance, and test accuracy. Bold indi-
cates the best numbers. We use 80%/20% training/test split. All methods are run with
identical initialization and learning rate 0.01. Results are reported after 104 iterations.

♢ 2.5.2 Constrained sampling

Uniform sampling in 2D. We consider uniform sampling in the square [−1, 1]2 with
500 particles. We reparameterize our particles using tanh to eliminate the constraint and
show results with various choices of mollifiers—we always choose the smallest ϵ while the
optimization remains stable. We compare our method with mirror LMC [Zha+20] and
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SVMD/MSVGD by Shi, Liu, and Mackey [SLM21] using the entropic mirror map

ϕ(θ) =
n∑

i=1
((1 + θi) log(1 + θi) + (1− θi) log(1− θi)) .

To demonstrate that SVGD and KSDD break down in constrained domains, we implement
these two methods adapted to the constrained setting using the same reparameterization
as our method. The initial particles are drawn uniformly from [−0.5, 0.5]2.
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Figure 2.3: Convergence of metrics for uniform sampling from a 2D box.
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Figure 2.4: Visualization of samples at iteration 1000 for uniform sampling from a 2D
box.

Fig. 2.3 shows that quantitatively our method achieves much lower energy distance and
W2 distance (measured against 5000 i.i.d. samples uniformly drawn in [−1, 1]2.) compared
to SVGD and KSDD with reparameterization. Of all methods, MIED with Gaussian of
Laplace mollifiers and MSVGD achieve the lowest metrics. In Fig. 2.4, we visualize
samples from each method. We see that samples from SVGD with an adaptive kernel
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collapse—we investigate this issue in Sec. 2.D.2. Samples from SVGD with a fixed kernel
size and KSDD are non-uniform (we choose kernel sizes that produce the best result).
While SVMD creates locally clustered artifacts, MSVGD produces good results. For
mirror LMC with the same mirror map as in MSVGD, the resulting samples are not evenly
spaced, resulting in worse W2 distances. When using tanh as the reparameterization map,
MIED produces decent results for Gaussian and Laplace mollifiers; the samples obtained
with the Riesz mollifier are slightly worse as samples are too dense along the edge of the
square. When using the same entropic mirror map for reparameterization as in MSVGD,
MIED produces comparable results as using tanh. This highlights the flexibility of our
method with constraint handling, whereas, for LMC and SVMD/MSVGD, the mirror
map has to be chosen carefully to be the gradient of a strongly convex function while
capturing the constraints.

In Sec. 2.D.3, we further test SVMD/MSVGD with a different choice of the mirror
map where they break down. In Sec. 2.D.4, we conduct a similar comparison for sampling
from a 20-dimensional Dirichlet distribution using the same setup as Shi, Liu, and Mackey
[SLM21]. In scenarios where a good choice of a mirror map is available, SVMD/MSVGD
can obtain better performance compared to MIED. In Sec. 2.D.6, we conduct additional
qualitative experiments for MIED, demonstrating its effectiveness for challenging con-
straints and multi-modal distributions.

Fairness Bayesian neural networks. We train fair Bayesian neural networks to predict
whether the annual income of a person is at least $50, 000 with gender as the protected
attribute using the Adult Income dataset [Koh+96]. We follow the same setup as in
Liu, Tong, and Liu [LTL21] where the dataset D = {x(i), y(i), z(i)}|D|

i=1 consists of feature
vectors x(i), labels y(i) (whether the income is ≥ $50, 000), and genders z(i) (protected
attribute). The target density is taken to be the posterior of logistic regression with a
two-layer Bayesian neural network ŷ(·; θ) with weights θ, and we put a standard Gaussian
prior on each entry of θ independently. Given t > 0, the fairness constraint is g(θ) =
(Cov(x,y,z)∼D[z, ŷ(x; θ)])2 − t ≤ 0. On the left of Fig. 2.5, we plot the trade-off curve of
the result obtained using our method and the methods from Liu, Tong, and Liu [LTL21]
for t ∈ {10−5, 10−4, 0.0001, 0.001, 0.002, 0.005, 0.01}. Details can be found in Sec. 2.D.7.
Our method recovers a much larger Pareto front compared to the alternatives. On the
right of Fig. 2.5, we visualize the curves of the energy and the covariance versus the
number of training iterations: as expected we see a smaller t results in bigger MIE (lower
log-likelihood) and smaller covariance between the prediction and the protected attribute.
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Figure 2.5: Left: trade-off curves of demographic parity versus accuracy on the test
data for MIED and methods from Liu, Tong, and Liu [LTL21]. Right: MIEs and
(Cov(x,y,z)∼D[z, ŷ(x; θ)])2 (measured on the training data) versus the number of train-
ing iterations, for various t.

■ 2.6 Conclusion and Future Directions

We present a new sampling method by minimizing MIEs discretized as particles for uncon-
strained and constrained sampling. This is motivated by the insight that MIEs converge
to χ2 divergence with respect to the target measure as the mollifier parameter goes to 0.
The proposed method achieves promising results on the sampling problems we consider.

Below we highlight three limitations. First, as discussed in Rem. 2.2, our theory only
applies when the domain is full-dimensional or flat. Extending our theory to handle cases
where the domain is an arbitrary d-rectifiable set is an important next step as it allows the
handling of more complicated constraints such as nonlinear equality constraints. Secondly,
when ϵ > 0, the minimizer of MIE can be different from the target measure. Finding a way
to debias MIE (e.g., like how Sinkhorn distances are debiased [Fey+19]) is an interesting
direction. Lastly, the connection between the minimizers of the discretized MIE (2.10)
and those of the continuous MIE (2.2) is only established in the limit as N → ∞. We
hope to investigate how well the empirical distribution of particles minimizing (2.10)
approximates the target measure when N is finite as in [XKS22].





Appendices

■ 2.A Deferred Analysis Details

♢ 2.A.1 Preliminaries on mollifiers

We review the theory of mollifiers in this section.

Proposition 2.6. For s > n, the s-Riesz family of mollifiers, defined as ϕs
ϵ(x) ≜ (∥x∥2

2 +
ϵ2)−s/2/Zs

ϵ , satisfies Def. 2.1.

In order to prove Prop. 2.6, we first prove a lemma.

Lemma 2.2. Let b ≥ 0. Then for any ϵ > 0,

Zs
ϵ

∫
B2(ϵ)

ϕs
ϵ(y)∥y∥b

2dy = Hn−1(Sn−1)
(∫ 1

0

tn+b−1

(t2 + 1)s/2

)
ϵn+b−s, (2.12)

where Hn−1(Sn−1) is the volume of the (n− 1)-dimensional sphere.
Furthermore, assuming s > b + n, then for any ϵ > 0, δ > 0,

Zs
ϵ

∫
Rn\B2(δ)

ϕs
ϵ(y)∥y∥b

2dy ≤ Hn−1(Sn−1) δn+b−s

s− (n + b) . (2.13)

Proof. For (2.12), we compute

Zs
ϵ

∫
B2(ϵ)

ϕs
ϵ(y)∥y∥b

2dy =
∫

B2(ϵ)

∥y∥b
2

(∥y∥2
2 + ϵ2)s/2 = Hn−1(Sn−1)

∫ ϵ

0

rn+b−1

(r2 + ϵ2)s/2 dr

= Hn−1(Sn−1)
∫ 1

0

(ϵt)n+b−1

(ϵ2t2 + ϵ2)s/2 ϵdt

= Hn−1(Sn−1)
(∫ 1

0

tn+b−1

(t2 + 1)s/2 dt

)
ϵn+b−s,

41
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where we use substitution r = ϵt on the second line.
If s > b + n, then

Zs
ϵ

∫
Rn\B2(δ)

ϕs
ϵ(0, y)∥y∥b

2dy =
∫
Rn\B2(δ)

∥y∥b
2

(∥y∥2
2 + ϵ2)s/2

≤
∫
Rn\B2(δ)

∥y∥b
2

∥y∥s
2

= Hn−1(Sn−1)
∫ ∞

δ
rn−1+b−s

= Hn−1(Sn−1) δn+b−s

s− (n + b) ,

where the last integral uses s > b + n.

Proof of Prop. 2.6. It is clear that (a) of Prop. 2.6 holds for ϕs
ϵ(x). Since ϕs

ϵ(x) is bounded
we have ϕs

ϵ ∈ L∞(Rn). For any δ > 0, we have, for ϵ ≤ δ,

Zs
ϵ

∫
B2(δ)

ϕs
ϵ(x)dx ≥ Zs

ϵ

∫
B2(ϵ)

ϕs
ϵ(x)dx = Cϵn−s,

where we use (2.12) with b = 0 and C is a constant depending only on n, s. On the other
hand, using (2.13) with b = 0,

Zs
ϵ

∫
Rn\B2(δ)

ϕs
ϵ(x)dx ≤ C ′δn−s,

where C ′ depends only on n, s. With δ = ϵ, we see that Zs
ϵ ϕs

ϵ ∈ L1(Rn) so (b) is satisfied.
Since δ is fixed and s > n, we see that

lim
ϵ→0

∫
B2(δ) ϕs

ϵ(x)dx∫
Rn\B2(δ) ϕs

ϵ(x)dx
≥ lim

ϵ→0

Cϵn−s

C ′δn−s
=∞.

Since
∫

B2(δ) ϕs
ϵ(x)dx +

∫
Rn\B2(δ) ϕs

ϵ(x)dx = 1, we have shown (c).

In the rest of this section, we assume {ϕϵ}ϵ>0 is a family of mollifiers satisfying Def. 2.1.
Lemma 2.3. For any p ∈ [1,∞], for any δ > 0, ϕϵ ∈ Lp(Rn) and limϵ→0∥1Rn\B2(δ)ϕϵ∥p =
0. holds.
Proof. Assume p /∈ {1,∞} since both cases are covered in the assumptions. Then for any
δ > 0, by Hölder’s inequality,

∥ϕϵ∥p
p = ∥ϕϵ · ϕp−1

ϵ ∥1 ≤ ∥ϕϵ∥1∥ϕp−1
ϵ ∥∞ = ∥ϕϵ∥1∥ϕϵ∥p−1

∞ <∞.

Similarly,

∥1Rn\B2(δ)ϕϵ∥p
p = ∥1Rn\B2(δ)ϕ

p
ϵ∥1 = ∥ϕϵ · 1Rn\B2(δ)ϕ

p−1
ϵ ∥1

≤ ∥ϕϵ∥1∥1Rn\B2(δ)ϕ
p−1
ϵ ∥∞ = ∥1Rn\B2(δ)ϕϵ∥p−1

∞ .

Letting ϵ→ 0 and applying (c) gives limϵ→0∥1Rn\B2(δ)ϕϵ∥p = 0.
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Proposition 2.7. Let f ∈ Lp(Rn), p ∈ [1,∞]. Then for every ϵ > 0, the integral∫
f(x− y)ϕϵ(y)dy

exists, so that (f ∗ ϕϵ)(x) is finite. Moreover, if f is continous at x, then

lim
ϵ→0

(f ∗ ϕϵ)(x) = f(x). (2.14)

Proof. Observe that by Hölder’s inequality, for q such that 1/p + 1/q = 1 (allowing
infinity), ∫

|f(x− y)ϕϵ(y)| dy ≤ ∥f∥p∥ϕϵ∥q <∞.

Hence (f ∗ ϕϵ)(x) is integrable and finite.
For any ϵ > 0, note that

|(f ∗ ϕϵ)(x)− f(x)| =
∣∣∣∣∫ f(x− y)ϕϵ(y)dy − f(x)

∣∣∣∣ .
Since

∫
ϕϵ(x)dx = 1, we have

|(f ∗ ϕϵ)(x)− f(x)| =
∣∣∣∣∫ (f(x− y)− f(x)) ϕϵ(y)dy

∣∣∣∣ ≤ ∫ |f(x− y)− f(x)|ϕϵ(y)dy.

Fix t > 0. Continuity of f at x implies there exists δ > 0 such that |f(x− y)− f(x)| <
t for all y ∈ B2(δ). Then∫

B2(δ)
|f(x− y)− f(x)|ϕϵ(y)dy ≤ t

∫
B2(δ)

ϕϵ(y)dy ≤ t.

On the other hand, by Hölder’s inequality,∫
Rn\B2(x,δ)

|f(x− y)− f(x)|ϕϵ(y)dy ≤ ∥τxf − f∥p∥1Rn\B2(δ)ϕϵ∥q ≤ 2∥f∥p∥1Rn\B2(δ)ϕϵ∥q.

Hence

|(f ∗ ϕϵ)(x)− f(x)| ≤ t + 2∥f∥p∥1Rn\B2(δ)ϕϵ∥q.

By Lem. 2.3, since ∥f∥p <∞, taking ϵ→ 0 we get, for any t > 0,

lim sup
ϵ→0

|(f ∗ ϕϵ)(x)− f(x)| ≤ t.

Now let t→ 0 we get (2.14).
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Corollary 2.1. Let f ∈ Lp(Rn), p ∈ [1,∞], be a continuous function. If {fϵ} is a
sequence of functions that converge uniformly to f , then for every x,

lim
ϵ→0

(fϵ ∗ ϕϵ)(x) = f(x).

Proof. Note that

|(ϕϵ ∗ fϵ)(x)− f(x)| ≤ |(ϕϵ ∗ fϵ)(x)− (ϕϵ ∗ f)(x)|+ |(ϕϵ ∗ f)(x)− f(x)| .

Prop. 2.7 shows the second term goes to 0 as ϵ→ 0. For the first term, we have

|(ϕϵ ∗ fϵ)(x)− (ϕϵ ∗ f)(x)| =
∣∣∣∣∫ (fϵ(x− y)− f(x− y)) ϕϵ(y)dy

∣∣∣∣
≤ sup

x
|fϵ(x)− f(x)| → 0

by uniform convergence.

Lemma 2.4. For f ∈ Lp(Rn), p ∈ [1,∞), we have

lim
y→0
∥τyf − f∥p = 0,

where we use τaf to denote the translated function τaf(x) ≜ f(x− a).

Proof. Fix ϵ > 0. It is a standard fact that Cc(Rn) is dense in Lp(Rn). Hence there
exists g ∈ Cc(Rn) such that ∥f − g∥p < ϵ. Since g is continuous with compact support,
it is uniform continuous. Then there exists δ > 0 with |g(x− y)− g(x)| < ϵ1/p/λn(K) if
y ∈ B2(x, δ). Hence for such y we have ∥τyg − g∥p

p < ϵ with λn(K) <∞. Thus

∥τyf − f∥p ≤ ∥τyf − τyg∥p + ∥τyg − g∥p + ∥g − f∥p ≤ 3ϵ.

Proposition 2.8. Let f ∈ Lp(Rn), p ∈ (1,∞). Then for every ϵ > 0,

∥f ∗ ϕϵ∥p ≤ 3∥f∥p.

In particular, f ∗ ϕϵ ∈ Lp(Rn). Moreover,

lim
ϵ→0
∥f ∗ ϕϵ − f∥p = 0.
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Proof. For every ϵ > 0, we have

∥f ∗ ϕϵ − f∥p
p =

∫ ∣∣∣∣∫ (f(x− y)− f(x))ϕϵ(y)dy
∣∣∣∣p dx

≤
∫ ∫

|f(x− y)− f(x)|p ϕϵ(y)dydx

=
∫ (∫

|f(x− y)− f(x)|p dx
)

ϕϵ(y)dy

=
∫
∥τyf − f∥p

pϕϵ(y)dy,

where we use Jensen’s inequality with the observation that ϕϵ(y)dy is a probability mea-
sure and Tonelli’s theorem to exchange the order of integration. To show the first claim,
note that,

∥f ∗ ϕϵ − f∥p
p ≤

∫
∥τyf − f∥p

pϕϵ(y)dy ≤
∫

(2∥f∥p)pϕϵ(y)dy = (2∥f∥p)p.

Hence ∥f ∗ ϕϵ∥p ≤ ∥f∥p + ∥f ∗ ϕϵ − f∥p ≤ 3∥f∥p.
For the second claim, by Lem. 2.4, the function y 7→ ∥τyf −f∥p

p is continuous at y = 0
with limit 0. Hence by Prop. 2.7, we are done by taking ϵ→ 0.

♢ 2.A.2 Convexity and Γ-convergence

We start by recalling a few definitions regarding functionals in P(Rn).

Definition 2.5. We say a functional F : P(Rn) → (−∞,∞] is proper if there exists
µ ∈ P(Rn) such that F(µ) < ∞, and is lower semicontinuous (l.s.c.) if for any weakly
convergence sequence µk → µ, we have lim infk→∞F(µk) ≥ F(µ).

Lemma 2.5. For any ϵ > 0, the functional Eϵ : P(Rn) → (−∞,∞] is proper and l.s.c.
Moreover, if X is compact, the minimum minµ∈P(X) Eϵ(µ) is attained by some measure in
P(X).

Proof. Taking any x ∈ X, since ϕϵ is bounded and p(x) > 0, we see that Eϵ(δx) < ∞ so
Eϵ is proper. Moreover, given weakly convergence µk → µ, by Portmanteau theorem and
the fact that Wϵ is nonnegative and l.s.c., we conclude that Eϵ is also l.s.c.

The set of probability distributions P(X) ⊂ P(Rn) is tight by the compactness of X.
It is closed since if {µk} ⊂ P(X) weakly converges to µ, then by Portmanteau theorem,
µ(X) ≥ lim sup µ(X) = 1 so that µ ∈ P(X). Hence by Prokhorov’s theorem (Theorem
5.1.3 [AGS05]), P(X) is (sequentially) compact. It is then an elementary result that any
l.s.c. function attains its minimum on a compact set.

We next prove Prop. 2.1 regarding the convexity of Eϵ and the uniqueness of its mini-
mum.
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Proof of Prop. 2.1. Let µ be any finite signed Borel measure. The compactness assump-
tion and the fact that p ∈ C1(X) imply p(x) > δ for any x ∈ X for some δ > 0. Hence
p(x)−1/2 ≤ δ−1/2, so the weighted measure µ̃ defined by dµ̃(x) ≜ p−1/2(x)dµ(x) is also
finite. By the definition of i.s.p.d. kernels, we have EWϵ(µ) = Ekϵ(µ̃) > 0 if µ̃ is not the
zero measure, which is equivalent to µ not being zero since p > 0. Thus Wϵ is i.s.p.d.
on X. Also note that (p(x)p(y))−1/2 < δ−1 for all x, y ∈ X, so EWϵ is always finite. By
Lemma 1.1 of Pronzato and Zhigljavsky [PZ21], we conclude that EWϵ is strictly convex
in Msign, the space of finite signed measures, and in particular it is convex on P(X).
Hence combined with the existence result from Lem. 2.5 we conclude Eϵ attains a unique
minimum in P(X).

Definition 2.6 (Fourier transform). For f ∈ L1(Rn), its Fourier transform f̂ is the
complex-valued function defined via

f̂(ξ) ≜
∫

e−2πiξ·xf(x)dx.

More generally, for a signed finite measure µ ∈Msign(Rn), its Fourier transform µ̂ is
the complex-valued function defined via

µ̂(ξ) ≜
∫

e−2πiξ·xdµ(x).

This integral is always well-defined and moreover µ̂ is uniformly continuous; see Boroda-
chov, Hardin, and Saff [BHS19, Section 1.10].

We will prove the following weak version (under the additional assumption that a
mollifier ϕ is integrable) of Bochner’s theorem suitable for our case. In particular we will
need the Fourier inversion formula which is not given in the usual statement of Bochner’s
theorem. On the other hand, we cannot directly use the Fourier inversion formula since
it is not obvious how to check the integrability of ϕ̂ when ϕ is a mollifier.

Lemma 2.6. Suppose ϕ ∈ L1(Rn) is even, bounded, continuous, and k(x, y) ≜ ϕ(x− y)
is i.s.p.d. on any compact sets. Then its Fourier transform ϕ̂ is real, nonnegative, and
the following inversion formula holds:

ϕ(x) =
∫

e2πix·ξϕ̂(ξ)dξ for all x ∈ Rn. (2.15)

Proof. The proof is adapted from that of Varadhan [Var01, Theorem 2.7] and is extended
to the multi-dimensional case.

Since ϕ̂(ξ) ≜
∫

e−2πix·ξϕ(x)dx and ϕ(x) = ϕ(−x), with a change of variable x′ = −x,
we obtain ϕ̂(ξ) = ϕ̂(ξ), so ϕ̂ is real.
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Next we show that ϕ̂ is nonnegative. For T > 0, we compute, for a fixed ξ ∈ Rn,

1
T n

∫
[0,T ]n

∫
[0,T ]n

e−2πi(t−s)·ξϕ(t− s)dtds

= 1
T n

∫
[−T,T ]n

(∫∏
i
[|ui|,2T −|ui|]

2−ndv

)
e−2πiu·ξϕ(u)du

= 1
T n

∫
[−T,T ]n

(
n∏

i=1

2T − 2 |ui|
2

)
e−2πiu·ξϕ(u)du

=
∫

[−T,T ]n

(
n∏

i=1

(
1− |ui|

T

))
e−2πiu·ξϕ(u)du,

where we have used change of variable u = t − s, v = t + s. Since ϕ ∈ L1(Rn), by
dominated convergence theorem, we have as T →∞

ϕ̂(ξ) =
∫

e−2πiξ·xϕ(x)dx = lim
T →∞

1
T n

∫
[0,T ]n

∫
[0,T ]n

e−2πi(t−s)·ξϕ(t− s)dtds.

For t, s ∈ Rn, we have

ℜ
(
e−2πi(t−s)·ξϕ(t− s))

)
= cos(2πt · ξ)k(t, s) cos(2πs · ξ) + sin(2πt · ξ)k(t, s) sin(2πs · ξ).

For a fixed T , if we define a finite measure µ as dµ = 1t∈[0,T ]n cos(2πt · ξ)dt, then k being
i.s.p.d. implies∫∫

ϕ(t− s)dµdµ =
∫

[0,T ]n

∫
[0,T ]n

cos(2πt · ξ)ϕ(t− s) cos(2πs · ξ)dtds ≥ 0,

and similarly for sin. Since ϕ̂ is real, we conclude that ϕ̂ is nonnegative.
Finally we prove (2.15). For σ > 0, define ϕ̂σ(ξ) ≜ ϕ̂(ξ)e−σ2∥ξ∥2

2 . Since ϕ̂ is bounded
(because ϕ ∈ L1(Rn)), we see that ϕ̂σ ∈ L1(Rn). We compute, for x ∈ Rn, using Fubini’s
theorem, ∫

e2πix·ξϕ̂σ(ξ)dξ =
∫

ϕ̂(ξ)e−σ2∥ξ∥2
2e2πix·ξdξ

=
∫ (∫

e−2πiy·ξϕ(y)dy
)

e−σ2∥ξ∥2
2e2πix·ξdξ

=
∫ (∫

e−2πi(y−x)·ξe−σ2∥ξ∥2
2dξ

)
ϕ(y)dy

=
∫

(π/σ2)n/2e−π2∥x−y∥2
2/σ2

ϕ(y)dy,



Chapter 2. Sampling via Mollified Interaction Energy Descent 48

where we use the Fourier transform formula [BHS19, (4.4.1)] of the Gaussian distribu-
tion. Notice that pσ(y) ≜ (π/σ2)n/2e−π2∥x−y∥2

2/σ2 is the density of a multivariate Gaussian
centered at x with covariance σ2/(2π2) · I. Hence

∫
e2πix·ξϕ̂σ(ξ)dξ = (pσ ∗ ϕ)(0). Since

ϕ is bounded by assumption, with x = 0 we find
∫

ϕ̂σ(ξ)dξ ≤ ∥ϕ∥∞. Taking σ → 0, by
monotone convergence theorem, we have

∫
ϕ̂(ξ)dξ ≤ ∥ϕ∥∞, so together with the fact that

ϕ̂ ≥ 0 we have ϕ̂ ∈ L1(Rn). Finally, since ϕ̂σ ≤ ϕ̂, by dominated convergence theorem
and Prop. 2.7 (note pσ is centered at x), we have∫

e2πix·ξϕ̂(ξ)dξ = lim
σ→0

∫
e2πix·ξϕ̂σ(ξ)dξ = lim

σ→0
(pσ ∗ ϕ)(0) = ϕ(x).

Proof of Prop. 2.2. By Lem. 2.6,∫∫
ϕ(x− y)dν(x)dν(y) =

∫∫ (∫
e−2πi(x−y)·ξϕ̂(ξ)dξ

)
dν(x)dν(y)

=
∫ (∫

e−2πix·ξdν(x)
)(∫

e2πiy·ξdν(y)
)

ϕ̂(ξ)dξ

=
∫

ν̂(ξ)ν̂(ξ)ϕ̂(ξ)dξ =
∫
|ν̂(ξ)|2 ϕ̂(ξ)dξ.

where we use Fubini’s theorem (all measures are finite and e−2πi· is bounded) to exchange
the order of integration.

♢ 2.A.3 Differential calculus of Eϵ in P2(Rn)

The following lemma for interchanging integration and derivatives will be useful.

Lemma 2.7. Let x0 ∈ R, h > 0, and Ω ⊂ Rm be a compact set. Suppose f : (x0−h, x0 +
h)×Ω→ R is jointly continuous and the derivative ∂

∂x
f : (x0− h, x0 + h)×Ω→ R exists

and is jointly continuous. Then
∫

Ω f(x, ω)dω is differentiable for x ∈ (x0−h, x0 +h), and

d
dx

∫
Ω

f(x, ω)dω =
∫

Ω

∂

∂x
f(x, ω)dω

where the integration is with respect to the Lebesgue measure λm on Ω.

Proof. Fix x ∈ (x0 − h, x0 + h) and let t > 0 be small enough such that [x − t, x +
t] ⊂ (x0 − h, x0 + h). Note that

∫
Ω f(x, ω)dω is well-defined by the dominated conver-

gence theorem since supx∈[x−t,x+t],ω∈Ω f(x, ω) < ∞ and λm(Ω) < ∞. Define θ(ω) ≜

supx∈[x−t,x+t]

∣∣∣ ∂
∂x

f(x, ω)
∣∣∣ which is finite since ∂

∂x
f(x, ω) is continuous, so that θ(ω) ≥

∂
∂x
|f(x, ω)| for all x ∈ [x − t, x + t] and θ is integrable since λm(Ω) < ∞. Hence by

the differentiation lemma [Kle13, Theorem 6.28] we are done.
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The following lemma is similar to Korba et al. [Kor+21a, Proposition 3] but with
different assumptions: we do not put any integrability assumptions on Wϵ, but we do
restrict measures to have compact support. For a differentiable f : Rn ×Rn → R, we use
∇1f(x, y) to denote the gradient with respect to x. We also use H1 f(x, y) to denote the
Hessian of f with respect to x. We similarly denote ∇2f(x, y) and H2 f(x, y).
Lemma 2.8. Assume µ ∈ P2(Rn) has density q ∈ C1

c (Rn). Let ξ ∈ C(Rn,Rn). Denote
s(x, t) ≜ x + tξ(x). Then for all t > 0 and all ϵ > 0,

d
dt
Eϵ(µt) = 2

∫∫ (
ξ(x)⊤∇1Wϵ(s(x, t), s(y, t))

)
dµ(x)dµ(y). (2.16)

In particularly,
d
dt

∣∣∣∣∣
t=0
Eϵ(µt) = 2

∫∫ (
ξ(x)⊤∇1Wϵ(x, y)

)
dµ(x)dµ(y).

Moreover,

d2

dt2

∣∣∣∣∣
t=0
Eϵ(µt) = 2

∫∫ (
ξ(x)⊤∇1∇2Wϵ(x, y)ξ(y) + ξ(x)⊤ H1 Wϵ(x, y)ξ(x)

)
dµ(x)dµ(y).

(2.17)
Proof. We compute

d
dt
Eϵ(µt) = d

dt

(
2
∫∫

Wϵ(s(x, t), s(y, t))dµ(x)dµ(y)
)

.

Since µ has compact support and (x, y, t) 7→ Wϵ(s(x, t), s(y, t))q(x)q(y) is jointly contin-
uous and its derivative with respect to t is also jointly continuous, by Lem. 2.7, we can
push d

dt
inside the double integral and we obtain (2.16). Another application of Lem. 2.7

shows that if we take derivative with respect to t again on (2.16) and evaluate at 0 we
obtain (2.17).
Lemma 2.9. Let f ∈ C1(Rn), p ∈ [1,∞]. Assume ϕϵ has compact support for some ϵ > 0.
Then for all i = 1, . . . , n, ϕϵ ∗ f is differentiable and

∂

∂xi

(ϕϵ ∗ f)(x) =
(

ϕϵ ∗
∂

∂xi

f

)
(x).

Proof. Since supp(ϕϵ) is compact and f ∈ C1(Rn) is bounded on any compact set, we
know ϕϵ ∗ f is well-defined at every x ∈ Rn. Note that

∂

∂xi

(ϕϵ ∗ f)(x) = ∂

∂xi

(∫
f(x− y)ϕϵ(y)dy

)
(?)=
∫ ∂

∂f
xi(x− y)ϕϵ(y)dy =

(
ϕϵ ∗

∂

∂xi

f

)
(x).
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Since supp(ϕϵ) is compact and (x, y) 7→ f(x − y)ϕ(y) is C1, by Lem. 2.7 we justify the
existence of the derivative and the exchange of differentiation and integration (?).

Subdifferentials of Eϵ

Recall the following notion of a “Wasserstein gradient” in P2(Rn) from Ambrosio, Gigli,
and Savaré [AGS05, Definition 10.1.1].

Definition 2.7. A vector field w ∈ L2(µ,Rn) is a strong Fréchet subdifferential of a
functional F : P2(Rn)→ (−∞, +∞] if for all T ∈ L2(µ,Rn), the following holds:

F(T#µ)−F(µ) ≥
∫

w(x)⊤(T (x)− x)dµ(x) + o
(
∥T − I∥L2(µ,Rn)

)
. (2.18)

Note that we cannot apply Ambrosio, Gigli, and Savaré [AGS05, Lemma 10.4.1] di-
rectly to prove (2.5) because interaction energies cannot be written in the form of (10.4.1)
in their setup.

Proof of Prop. 2.3. Let ξ ∈ C∞
c (Rn,Rn). By Lem. 2.8, we have

d
dt

∣∣∣∣∣
t=0
Eϵ(µt) = 2

∫∫ (
ξ(x)⊤∇1Wϵ(x, y)

)
dµ(x)dµ(y)

= 2
∫∫ (

ξ(x)⊤∇1
(
ϕϵ(x− y)(p(x)p(y))−1/2

))
q(y)dydµ(x)

= 2
∫

ξ(x)⊤∇
(
p(x)−1/2(ϕϵ ∗ q/

√
p)(x)

)
dµ(x),

where the last step follows from applying Lem. 2.7 since q has compact support. Now
suppose w ∈ L2(µ,Rn) is a strong Fréchet subdifferential satisfying (2.18). For the
sequence {Tt}, we have by definition

Eϵ(µt)− Eϵ(µ) ≥
∫

w(x)⊤(Tt(x)− x)dµ(x) + o
(
∥Tt − I∥L2(µ,Rn)

)
=
∫

w(x)⊤(tξ(x))dµ(x) + o(t).

Hence

lim inf
t↓0

Eϵ(µt)− Eϵ(µ)
t

≥
∫
w(x)⊤ξ(x)dµ(x) ≥ lim inf

t↑0

Eϵ(µt)− Eϵ(µ)
t

.

The previous calculation shows d
dt
|t=0Eϵ(µt) exists, and hence it is equal to

∫
w(x)⊤ξ(x)dµ(x).

This proves for any ξ ∈ C∞
c (Rn,Rn),∫

w(x)⊤ξ(x)dµ(x) =
∫

ξ(x)⊤∇
(
2p(x)−1/2(ϕϵ ∗ q/

√
p)(x)

)
dµ(x).
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Hence we have shown (2.5).
Finally, we show limϵ→0 wϵ(x) = wχ2(x) for µ-a.e. x under the additional assumption

that ϕϵ has compact support. By Ambrosio, Gigli, and Savaré [AGS05, Lemma 10.4.1]
with F (x, ρ(x)) =

(
ρ(x)
p(x) − 1

)2
p(x), we find the strong subdifferential of χ2(· ∥ µ∗) is given

by

wχ2,µ(x) = 2∇q(x)
p(x) , for µ-a.e. x ∈ Rn.

To show (2.6), we compute, for µ-a.e. x,

wϵ(x) = ∇
(
p(x)−1/2(ϕϵ ∗ q/

√
p)(x)

)
= ∇(p(x)−1/2)(ϕϵ ∗ q/

√
p)(x) + p(x)−1/2∇(ϕϵ ∗ q/

√
p)(x)

= ∇(p(x)−1/2)(ϕϵ ∗ q/
√

p)(x) + p(x)−1/2(ϕϵ ∗ ∇(q/
√

p))(x),

where for the last equality we have applied Lem. 2.9. Now taking ϵ → 0, by Prop. 2.7
using the fact that supp(ϕϵ) is compact (so that q/

√
p and ∇(q/

√
p) are bounded on

x + supp(ϕϵ)), we obtain (2.6).

Displacement convexity of Eϵ at µ∗ as ϵ → 0

The statement of Prop. 2.4 is similar in form as Korba et al. [Kor+21a, Corollary 4] but
in our case we do not have the second term in (2.17) vanishing and we need to take the
limit ϵ→ 0. We also do not resort to RKHS theory in the proof.

Proof of Prop. 2.4. By (2.17), we have

d2

dt2

∣∣∣∣∣
t=0
Eϵ(µt) = 2(Fϵ + Gϵ),

where

Fϵ =
∫∫ (

ξ(x)⊤∇1∇2Wϵ(x, y)ξ(y)
)

dµ∗(x)dµ∗(y)

Gϵ =
∫∫ (

ξ(x)⊤ H1 Wϵ(x, y)ξ(x)
)

dµ∗(x)dµ∗(y).

We tackle Fϵ first. Observe that successive application of integration by parts using the
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fact that ξ has compact support gives

Fϵ =
n∑

i,j=1

∫∫
ξi(x) ∂

∂xi

yjWϵ(x, y)ξj(y)p(x)p(y)dxdy

= −
n∑

i,j=1

∫∫ ∂

∂xi

(ξi(x)p(x)) ∂

∂yj

Wϵ(x, y)ξj(y)p(y)dxdy

=
n∑

i,j=1

∫∫ ∂

∂xi

(ξi(x)p(x))Wϵ(x, y) ∂

∂yj

(ξj(y)p(y))dxdy

=
∫∫ (

n∑
i=1

∂

∂xi

(ξi(x)p(x))
)

Wϵ(x, y)
 n∑

j=1

∂

∂yj

(ξj(y)p(y))
 dxdy.

If we view ∑n
i=1

∂
∂xi

(ξi(x)p(x)) as the density of a signed measure (it is integrable since it
has compact support), and since Wϵ is i.s.p.d. on the support of ξ by Prop. 2.1(a), we
see that each double integral in the last expression is non-negative. Hence Fϵ ≥ 0.

Next we show limϵ→0 Gϵ = 0. Since µ∗ has compact support, by Fubini’s theorem,

Gϵ =
∫

ξ(x)⊤ H1

(∫
Wϵ(x, y)p(y)dy

)
ξ(x)p(x)dx.

To expand the integral inside the Hessian operator, we have

H1

(∫
Wϵ(x, y)p(y)dy

)
= H

(
p(x)−1/2(ϕϵ ∗

√
p)(x)

)
.

First by the chain rule and Lem. 2.9, we have

d
dx

(
p(x)−1/2(ϕϵ ∗

√
p)(x)

)
= d

dx

(
p(x)−1/2

)
(ϕϵ ∗

√
p) + p(x)−1/2

(
ϕϵ ∗

d
dx

√
p(x)

)
.

Differentiating again while applying Lem. 2.9, we obtain after rearranging terms,

H1

(∫
Wϵ(x, y)p(y)dy

)
=
(

d2

dx2 p(x)−1/2
)

(ϕϵ ∗
√

p)(x)

+ 2
(

d
dx

p(x)−1/2
)(

ϕϵ ∗
d
dx

√
p

)
(x)

+ p(x)−1/2
(

ϕϵ ∗
d2

dx2
√

p

)
(x). (2.19)
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By Prop. 2.7 and the fact that p ∈ C2
c (Rn), we have

lim
ϵ→0

H1

(∫
Wϵ(x, y)p(y)dy

)
=
(

d2

dx2 p(x)−1/2
)
√

p(x) + 2
(

d
dx

p(x)−1/2
)

d
dx

√
p(x) + p(x)−1/2 d2

dx2
√

p(x)

= d2

dx2

(
p(x)−1/2

√
p(x)

)
= 0.

Finally, we have

lim
ϵ→0

Gϵ = lim
ϵ→0

∫
ξ(x)⊤ H1

(∫
Wϵ(x, y)p(y)dy

)
ξ(x)p(x)dx

=
∫

ξ(x)⊤
(

lim
ϵ→0

H1

(∫
Wϵ(x, y)p(y)dy

))
ξ(x)p(x)dx

= 0,

where interchanging the limit and the integral is jusfitied by the dominated convergence
theorem and the fact that p and ϕϵ have compact support (we need compact support
assumption of ϕϵ to make sure convolutions appearing in (2.19) are uniformly bounded
when ϵ is sufficiently small).

A descent lemma for Eϵ with time discretization

Lemma 2.10. Under Assum. 2.1, for L > 0 defined in (2.8), the function ∇1Wϵ : Rn ×
Rn → Rn is L-Lipschitz in terms of ∥·∥2 in either input.

Proof. Denote r(x) ≜ p(x)−1/2. Then our assumptions imply r(x) ≤ Cr ≜ C1/2
p , ∥∇r(x)∥2 ≤

C ′
r ≜

1
2C3/2

p C ′
p, and ∥H1 r(x)∥2 ≤ C ′′

r ≜ 3
4C5/2

p C ′2
p + 1

2C3/2
p C ′′

p . We compute, for x, y ∈ Rn,

∇1Wϵ(x, y) = ∇x (ϕϵ(x− y)r(x)r(y))
= ∇ϕϵ(x− y)r(x)r(y) + ϕϵ(x− y)∇r(x)r(y).

Then

H1 Wϵ(x, y) = H ϕϵ(x− y)r(x)r(y) + 2∇ϕϵ(x− y)∇r(x)⊤r(y) + ϕϵ(x− y) H r(x)r(y),

and

∇2∇1Wϵ(x, y) = −H ϕϵ(x− y)r(x)r(y) +∇ϕϵ(x− y)r(x)∇r(y)⊤

−∇ϕϵ(x− y)∇r(x)r(y) + ϕϵ(x− y)∇r(x)∇r(y)⊤.
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Then we have

∥H1 Wϵ(x, y)∥2 ≤ C ′′
ϵ C2

r + 2C ′
ϵC

′
rCr + CϵC

′′
r Cr,

∥∇2∇1Wϵ(x, y)∥2 ≤ C ′′
ϵ C2

r + 2C ′
ϵCrC

′
r + CϵC

′2
r .

Hence we conclude that ∇1Wϵ is L-Lipschitz with L defined in (2.8).

Remark 2.3. Compared with Korba et al. [Kor+21a, Lemma 1], to ensure ∇1Wϵ is
Lipscthiz, we only require uniform boundedness of p and ϕϵ up to second order derivatives
instead of up to order 3.
Proof of Prop. 2.5. We first show µm has compact support for all m ∈ N0. For µ ∈ P2(Rn)
with compact support, the proof of Prop. 2.3 implies (note Prop. 2.3 assumes µ has density
but it is not necessary to obtain the following formula using the same proof)

wϵ,µ(x) = 2
∫
∇1Wϵ(x, y)dµ(y).

Since x 7→ ∇1Wϵ(x, y) is C1 by the assumptions and µ has compact support, by Lem. 2.7,
we see that wϵ,µ is differentiable with

∇wϵ,µ(x) = 2
∫

H1 Wϵ(x, y)dµ(y).

By induction, suppose µm has compact support. Then

supp(µm+1) ⊂ (I − γwϵ,µm)# supp(µm) ⊂ supp(µm) + γ

(
sup

x∈supp(µm)
∥wϵ,µm∥2

)
B2(1).

Since wϵ,µm is continuous, the set on the right-hand side is bounded. Hence µm+1 has
compact support.

Now fix m ∈ N0 and we show (2.9). Define a path {µt}t∈[0,1] defined by µt =
(I − γtwϵ,µm)#µm. Let f(t) ≜ Eϵ(µt). By Lem. 2.8, the continuity of wϵ,µm implies
that f is differentiable. Moreover, another application of Lem. 2.7 implies that f is twice
differentiable, and in particular continuously differentiable. Hence f is absolutely contin-
uous on the compact interval [0, 1]. By the fundamental theorem of calculus, we have

Eϵ(µm+1)− Eϵ(µm) = f(1)− f(0) = f ′(0) +
∫ 1

0
(f ′(t)− f ′(0))dt.

Observe that by Lem. 2.8,

f ′(0) = 2
∫∫

(−γwϵ,µm(x))⊤∇1Wϵ(x, y)dµm(x)dµm(y)

=
∫

(−γwϵ,µm(x))
(

2
∫
∇1Wϵ(x, y)dµm(y)

)
dµm(x)

= −γ∥wϵ,µm(x)∥2
L2(µm),
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where we apply Fubini’s theorem to exchange the order of integration together with the
fact that µm has compact support and the integrand is continuous. Let s(x, t) ≜ x −
γtwϵ,µm(x). Note that, again by Lem. 2.8,

|f ′(t)− f ′(0)| ≤ 2
∫∫ ∣∣∣(−γwϵ,µm(x))⊤ (∇1Wϵ(s(x, t), s(y, t))−∇1Wϵ(x, y))

∣∣∣ dµm(x)dµm(y)

≤ 2γ
∫∫
∥wϵ,µm(x)∥2∥∇1Wϵ(s(x, t), s(y, t))−∇1Wϵ(x, y)∥2dµm(x)dµm(y).

Note that, by Lem. 2.10, we have

∥∇1Wϵ(s(x, t), s(y, t))−∇1Wϵ(x, y)∥2

≤∥∇1Wϵ(s(x, t), s(y, t))−∇1Wϵ(s(x, t), y)∥2 + ∥∇1Wϵ(s(x, t), y)−∇1Wϵ(x, y)∥2

≤Lγt(∥wϵ,µm(x)∥2 + ∥wϵ,µm(y)∥2).

Thus

|f ′(t)− f ′(0)| ≤ 2γ2Lt
∫∫
∥wϵ,µm(x)∥2 (∥wϵ,µm(x)∥2 + ∥wϵ,µm(y)∥2) dµm(x)dµm(y)

≤ 2γ2Lt

(
∥wϵ,µm∥L2(µm) +

(∫
∥wϵ,µm(x)∥2dµm(x)

)2
)

≤ 4γ2Lt∥wϵ,µm∥L2(µm),

where we have used the Cauchy-Schwartz inequality in the last step.
Combining everything, we have shown

Eϵ(µm+1)− Eϵ(µm) = f ′(0) +
∫ 1

0
(f ′(t)− f ′(0))dt

≤ −γ(1− 2γL)∥wϵ,µm∥L2(µm) ≤ 0,

since γ < 1
2L

.

■ 2.B Weighted Hypersingular Riesz Energy

We recall results most relevant to us from Borodachov, Hardin, and Saff [BHS19]. Sup-
pose X ⊂ Rn is compact, of Hausdorff dimension d, and d-rectifiable, i.e., the image of a
bounded set in Rd under a Lipschitz mapping. Given a non-vanishing continuous proba-
bility density p on X, define a measure Hp

d(B) ≜
∫

B p(x)dHd(x) for any Borel set B ⊂ X.
The target measure hp

d is defined to be hp
d(B) ≜

Hp
d
(B)

Hp
d
(X) . The weighted s-Riesz energy is

defined as the interaction energy

Es(ωN) ≜
∑
i ̸=j

(p(xi)p(xj))−s/2d

∥xi − xj∥s
. (2.20)
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The following result states that minimizers of the weighted s-Riesz energy approximate
the target measure when the s is sufficiently large.

Theorem 2.3 (Theorem 11.1.2, Borodachov, Hardin, and Saff [BHS19]). Suppose s > d.
For ω∗

N ∈ arg min Es with ω∗
N = {xN

1 , . . . , xN
N}, we have weak convergence δω∗

N
→ hp

d as
N →∞.

A similar result with a slightly different assumption holds for s = d (Theorem 11.1.3
of Borodachov, Hardin, and Saff [BHS19]).

Comparison of (2.20) with discrete MIE (2.10). Our theory is only valid for the full-
dimensional case, i.e., n = d (see a few exceptions discussed in Rem. 2.2). When this is
the case and if the mollifier is taken to be from the s-Riesz family, (2.10) becomes, for
s > n,

Eϵ(ωN) ≜
N∑

i,j=1

(p(xi)p(xj))−1/2

(∥xi − xj∥2
2 + ϵ2)s/2 .

Compared with (2.20), in our case there is an ϵ in the denominator, so that the continuous
version of the energy Eϵ does not blow up all the time (this is in contrast with the
continuous version of (2.20)—see Borodachov, Hardin, and Saff [BHS19, Theorem 4.3.1]).
Moreover, the exponential scaling on p is different: in our case we use −1/2 whereas in
(2.20) it is −s/2n. The diagonal i = j is included in our energy, but this is inconsequential
as another valid discretization is to discard the diagonal term [BHS19, Theorem 4.2.2].
On the other hand, our theory allows a bigger class of mollifiers that are not necessarily
of Riesz families. We also allow X to be non-compact. An interesting future research
direction is to extend our theory to cases where d < n, e.g., when X is an embedded
d-dimensional submanifold in Rn.

■ 2.C Algorithmic Details

In this section we provide algorithmic details of MIED and compare with the updates of
SVGD [LW16]. The negative gradient of (2.11) with respect to xi is

−∇xi
log Eϵ(ωN) =2

∑
j ̸=i

eIij∑
i,j eIij

(
(∇ log ϕϵ)(xj − xi) + 1

2∇ log p(xi)
)

+ eIii∑
i,j eIij

∇ log p(xi)

=
N∑

j=1

eIij∑
i,j eIij

(2∇ log ϕϵ(xj − xi) +∇ log p(xi)) ,
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where
Iij ≜ log ϕϵ(xi − xj)−

1
2(log p(xi) + log p(xj)),

and to get the last equality we used the fact that ∇ϕ(0) = 0 thanks to the assumption
ϕ(x) = ϕ(−x). Then gradient descent on (2.11) gives our algorithm (Alg. 2.1). The
special treatment of the diagonal terms described in Sec. 2.4 amounts to modifying only
the diagonal Iii.

♢ 2.C.1 Comparison with SVGD

The update formula in Alg. 2.1 is similar to the one in SVGD: if we use ϕϵ(x− y) in place
of the kernel k(x, y) in the SVGD update and rewrite:

xt+1
i = xt

i + η
N∑

j=1
(∇ϕϵ(xj − xi) + ϕϵ(xj − xi)∇ log p(xj))

= xt
i + η

N∑
j=1

ϕϵ(xj − xi) (∇ log ϕϵ(xj − xi) +∇ log p(xj)) . (SVGD)

For both algorithms, the update formula for each particle consists of attraction and repul-
sion terms and the total time complexity of each update iteration is O(N2). We note the
following differences. First, in our formulation we have scaling factors eIij∑

i,j
eIij

which help
stabilizing the optimization (as a by-product of working in the logarithmic domain) and
put more weight on nearby particles as well as particles in low-density regions, whereas in
(SVGD) the scaling factors are ϕϵ(xj−xi) which are not adapted to prioritize low-density
regions. Second, in MIED, the attraction force for particle i only comes from ∇ log p(xi),
whereas in (SVGD) the attraction force comes from ∇ log p(xj) for all j’s. Third, for
each j, in our formulation the repulsive force has an additional factor of 2 in front of
∇ log ϕϵ(xj − xi).

Empirically, the additional scaling factors in MIED help produce samples with good
separations compared to SVGD, since closer pairs of points will have large weights. Ad-
ditionally, since MIED optimizes a finite-dimensional objective (2.11), we can employ
accelerated gradient-based optimizers like Adam [KB14], which we used in our experi-
ments. In contrast, SVGD does not optimize any finite-dimensional objective. While
practical SVGD implementations also use optimizers like Adam, it is unclear how the
resulting particle dynamics is related to the gradient flow of KL divergence.

♢ 2.C.2 Handling constraints with dynamic barrier method

The dynamic barrier method is introduced in Gong and Liu [GL21] which solves minx f(x)
subject to g(x) ≤ 0 where g is scalar-valued. Intuitively, their method computes update
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directions by either decreasing g(x) when g(x) > 0, following −∇f(x) if the constraints
are satisfied, or balancing both gradient directions.

In order to handle multiple constraints such as in Fig. 2.D.7, we consider a generalized
version of their dynamic barrier method. In this generalized setting, g : Rn → Rm is
vector-valued and constraints are g(x) ≤ 0 where the ≤ sign is interpreted coordinate
wise.. Suppose we are at iteration t with current solution xt. Then the next update
direction v∗ is taken to be the arg min of

min
v∈Rn
∥v −∇f(xt)∥2

2 s.t. ∀i = 1, . . . , m,∇gi(xt)⊤v ≥ αigi(xt), (2.21)

where αi > 0 are fixed hyperparameters; in our implementation we simply choose αi = 1.
Then xt+1 = xt − ηv∗ with learning rate η. In our implementation we use Adam [KB14]
that modulates the update directions. Observe that the optimization problem (2.21) is
the same as projecting a point ∇f(xt) onto the polyhedron formed by the intersection of
the halfspaces ∩m

i=1{x ∈ Rn : ∇gi(xt)⊤v ≥ αigi(xt)}. To solve (2.21), we use Dykstra’s
algorithm [Tib17] which can be interpreted as running coordinate descent on the dual of
(2.21). We use a fixed number of 20 iterations for the Dykstra’s algorithm which we found
to be sufficient for our experiments; in the case of a single constraint, we only need to use
one iteration.

■ 2.D Experiment Details and Additional Results

♢ 2.D.1 Gaussians in varying dimensions

We generate the n-dimensional Gaussians used to produce Fig. 2.1 as follows. We
generate a matrix

√
A ∈ Rn×n with i.i.d. entries uniformly in [−1, 1]. Then we set

A =
√

A
√

A
⊤

/ det(
√

A). This way det(A) = 1. We then use A as the covariance matrix
for the Gaussian (centered at 0). We use Adam with learning rate 0.01 for all methods
for a total of 2000 iterations. This is enough for SVGD and MIED to converge, while for
KSDD the convergence can be much slower.

We visualize the samples from each method for n = 2 in Fig. 2.D.1. We notice that
MIED is capable of generating well-separated samples, while for SVGD there is a gap
between the inner cluster of samples and a sparse outer ring. For KSDD we see the
artifact where too many samples concentrate on the diagonal.

♢ 2.D.2 Collapsed samples when the kernel width is too big

In Fig. 2.4, we see that samples from SVGD collapse with an adaptive kernel where
the variance is taken to be half of the median of the squared distance among all pairs of
points [LW16]; at termination the median of the squared distance is greater than 1 in that
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Figure 2.D.1: Visualization of samples from each method for a 2D skewed Gaussian.

experiment. Here we investigate this issue further. In Fig. 2.D.2, for the same uniform
sampling setup, we visualize the results of SVGD with a fixed kernel width and MIED
with Gaussian mollifiers with the same kernel width: when the kernel width (i.e. 2ϵ2 in
ϕg

ϵ (x) = exp(−∥x∥2
2

2ϵ2 )/Zg
ϵ ) is too big, both SVGD and MIED result in collapsed samples.

This is because since the target density is a constant, the only force in the updates is
the repulsive force. When the kernel width is too large, the repulsive force coming from
points in the same collapsed cluster is dominated by the repulsive force coming from
points from other clusters—this is evident in the update directions shown in the leftmost
column of Fig. 2.D.2 (SVGD with kernel width 0.1). When using the dynamic barrier
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Figure 2.D.2: SVGD and MIED with fixed-size Gaussian kernels for uniform sampling in
a square. In each cell of the grid, we plot the samples along with the update direction
(black arrows) at that iteration. Rows correspond to iterations 100, 200, 1000. Columns
correspond to each method with varying kernel widths (twice the variance of the Gaussian
kernel/mollifier) indicated in the parentheses.
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method [GL21] to enforce the square constraints instead of reparameterization with tanh,
we obtain similar results as in Fig. 2.D.2.

This pathological phenomenon is not only limited to constrained sampling: when
sampling the 2D Gaussian from Fig. 2.D.1, using too big a kernel width can also result
in collapsing (Fig. 2.D.3).
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Figure 2.D.3: SVGD and MIED with fixed-size Gaussian kernels for sampling a 2D Gaus-
sian as in Fig. 2.D.1. We see that using too big a kernel size can lead to collapsed samples
for both SVGD and MIED.

We emphasize that our theory of MIED suggests that in practice we need to choose
the kernel width very small in order to sample from the correct target measure according
to Thm. 2.1 and Thm. 2.2. In comparison, the theory of SVGD has no such implication.

♢ 2.D.3 Uniform sampling with an alternative mirror map

In this section, we show that for sampling from a uniform distribution in the square
[−1, 1]2, the results of SVMD/MSVGD [SLM21] depend heavily on the choice of the mirror
map. Instead of the entropic mirror map used to produce results in Figs. 2.3 and 2.4, here
we use the mirror map ϕ(θ) = ∑n

i=1

(
log 1

1−θi
+ log 1

1+θi

)
as in Ahn and Chewi [AC21]. The

results are shown in Fig. 2.D.4. SVMD/MSVGD fail to draw samples near the boundary;
we suspect this is because the gradient of the conjugate ∇ϕ∗(η) = (

√
1+η2−1)

η
(coordinate-

wise arithmetic) requires coordinates of η to go to∞ to land near the boundary. We verify
this phenomenon by using ∇ϕ∗(η) as the reparametrization map in MIED (rightmost
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figure in Fig. 2.D.4): indeed with such reparameterization MIED also struggles near the
boundary.
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Figure 2.D.4: Visualization of samples for uniform sampling from a 2D box when using
a suboptimal mirror map. All three methods fail to draw samples near the boundary of
the box [−1, 1]2.

♢ 2.D.4 20-dimensional Dirichlet distribution

We sample from the 20-dimensional Dirichlet distribution in the same setup as in Shi, Liu,
and Mackey [SLM21] with 50 particles. Results and visualization are shown in Fig. 2.D.5.
We see that unlike sampling from a box (Fig. 2.3), both MSVGD and SVMD by Shi,
Liu, and Mackey [SLM21] perform better than MIED. This is due to the fact that the
entropic mirror map used here is a well-tested choice for simplex constraint, yet obtaining
a good mirror map for a generic constraint, even if it is linear, can be challenging. Our
method does not have such a limitation, as it can easily incorporate existing constrained
optimization tools.

♢ 2.D.5 Effect of s for Riesz mollifiers

When we use the s-Riesz families of mollifiers in MIED, we have the freedom of choosing
the hyperparameter s so long as s > n. In this section, we study the effect of s on the
resulting samples. We consider the problem of sampling from a mixture of four 2D Gaus-
sians centered at (±1,±1), each with diagonal variance 0.3 and constrained to the [−1, 1]2
box. We vary s in [2, 10] and the number of particles N in {100, 200, 500, 1000, 2000}. All
runs use a total of 1000 iterations with learning rate 0.01. In the top of Fig. 2.D.6, we
plot the W2 distance and energy distance as functions of s for each N . Interestingly, we
see the best performing s is in [3, 5.0] and depends on N . This suggests that our choice
of s = n + 10−4 in Sec. 2.5 may not be optimal and there is room for hyperparameter
tuning to further improve the performance of MIED with Riesz kernel. At the bottom of
Fig. 2.D.6 we visualize the samples of MIED with s = 3 and of SVGD with kernel width
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Figure 2.D.5: Top: Metrics vs. the number of iteration for sampling the 20-dimensional
Dirichlet distribution. Bottom: visualization of samples from each method.

0.01 (adaptive kernels would result in collapsed samples and other widths we tested on
would result in worse samples). While SVGD samples form visible artifacts, the samples
of MIED are evenly distributed and the four modes of the mixtures emerge as N increases.

♢ 2.D.6 More constrained sampling experiments

In this section we test MIED on more low dimensional constrained sampling problems
and qualitatively assess the results. Note that mirror LMC [Zha+20; AC21] or mirror
SVGD [SLM21] cannot be applied due to non-convexity of the constraints. In Fig. 2.D.7,
we consider uniform sampling of a challenging 2D region with initial samples drawn from
the top-right corner: as the number of iterations increases, MIED gradually propagate
samples to fill up the entire region. In Fig. 2.D.8, we consider sampling from a von Mises-
Fisher distribution on a unit sphere. Although our theory focuses on sampling from a
full-dimensional distribution, as discussed in Rem. 2.2, we can extend Thm. 2.1 to the
case of a sphere due to its symmetry. We see the samples visualized in Fig. 2.D.8 capture
the two modes that emerge by restricting the Gaussian to a unit sphere.

♢ 2.D.7 Details on fairness Bayesian neural network experiment

We use 80%/20% training/test split as in Liu, Tong, and Liu [LTL21]. We use the source
code provided by Liu, Tong, and Liu [LTL21] with default hyperparameters.The source
code provided by the authors of Liu, Tong, and Liu [LTL21] does not implement the
calculation of g(θ) faithfully as written in the formula, so we corrected it. All methods
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Figure 2.D.6: Ablation study of the hyperparameter s for MIED with s-Riesz families of
mollifiers. Top: metrics as functions of s. Bottom: visualization of samples of MIED with
a Riesz mollifier with s = 3 and of SVGD with kernel width 0.01.

use 2000 iterations for training. For our method we use learning rate 0.001. One of their
four methods (Control+SVGD) got stuck at initialization (with accuracy around 0.75),
so we omit its result from the plot in Fig. 2.5.
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Figure 2.D.7: Uniform sampling of the region {(x, y) ∈ [−1, 1]2 : (cos(3πx)+cos(3πy))2 <
0.3} using MIED with a Riesz mollifier (s = 3) where the constraint is enforced using
the dynamic barrier method. The plot in row i column j shows the samples at iteration
100 + 200(6i + j). The initial samples are drawn uniformly from the top-right square
[0.5, 1.0]2.
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Figure 2.D.8: Sampling from the von Mises-Fisher distribution obtained by constraining
the 3-dimensional Gaussian from Sec. 2.D.1 to the unit sphere. The unit-sphere constraint
is enforced using the dynamic barrier method and the shown results are obtained using
MIED with Riesz kernel and s = 3. The six plots are views from six evenly spaced
azimuthal angles.





Chapter 3

Debiased Distribution Compression

In Chapter 2, we explored how minimizing an interactive energy of the form∑n
i,j=1 k(xi, xj)

over particles provides a good approximation of the target distribution P by establishing
a rich connection with the χ2 divergence. However, this approach has its limitations:
each gradient step takes Θ(n2) time to compute, and moreover, the finite-dimensional
optimization problem over moving particles is inherently non-convex.

In this chapter, we shift our perspective from optimizing over moving particles to
optimizing an m-sparse weight w for fixed particles given as input:

min
w:∥w∥0≤m

n∑
i,j=1

wiwjk(xi, xj). (3.1)

In other words, we will look for a coreset of size m≪ n that simultaneously debiases and
compresses the input points (xi)n

i=1. Despite the non-convex sparsity constraint in (3.1),
we demonstrate that this problem can be solved efficiently, yielding a heavily compressed
coreset with accurarcy comparable to n i.i.d. unbiased samples within quadratic or even
sub-quadratic time in n. This chapter is based on the publication [LDM24].

■ 3.1 Introduction

Distribution compression is the problem of summarizing a target probability distribution
P with a small set of representative points. Such compact summaries are particularly
valuable for tasks that incur substantial downstream computation costs per summary
point, like organ and tissue modeling in which each simulation consumes thousands of
CPU hours [Nie+11].

Remarkably, modern compression methods can summarize a distribution more suc-
cinctly than i.i.d. sampling. For example, kernel thinning (KT) [DM21; DM22b], Com-
press++ [SDM22], recombination [HOL23], and randomly pivoted Cholesky [EM24] all

67
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Table 1: Methods for debiased distribution compression. For each method, we
report the smallest coreset size m and running time, up to logarithmic factors, sufficient
to guarantee Õ(n−1/2) MMDkP to P given a LogGrowth kernel kP and n slow-growing
input points Sn = (xi)n

i=1 from a fast-mixing Markov chain targeting Q with tails no lighter
than P (see Thm. 3.1 and Def. 3.3). For generic slow-growing Sn, identical guarantees
hold for excess MMDkP (3.4) relative to the best simplex reweighting of Sn.

Method Compression Type Coreset Size m Runtime Source

Stein Thinning [Ria+22] equal-weighted n dkPn
2 Sec. 3.D.1

Stein Kernel Thinning

Greedy
Low-rank

(Alg. 3.2)
(Alg. 3.4)

equal-weighted
√

n
dkPn

2

dkPn
1.5

Thm. 3.3
Thm. 3.5

Stein Recombination

Greedy
Low-rank

(Alg. 3.6) simplex-weighted poly-log(n) dkPn
2

dkPn + n1.5 Thm. 3.6

Stein Cholesky

Greedy
Low-rank

(Alg. 3.8) constant-preserving poly-log(n) dkPn
2

dkPn + n1.5 Thm. 3.7

provide Õ(1/m) approximation error using m points, a significant improvement over the
Ω(1/

√
m) approximation provided by i.i.d. sampling from P. However, each of these con-

structions relies on access to an accurate input sequence, like an i.i.d. sample from P or a
Markov chain converging quickly to P.

Much more commonly, one only has access to n biased sample points approximating a
wrong distribution Q. Such biases are a common occurrence in Markov chain Monte Carlo
(MCMC)-based inference due to tempering [where one targets a less peaked and more
dispersed distribution to achieve faster convergence, GSK10], burn-in [where the initial
state of a Markov chain biases the distribution of chain iterates, CC96], or approximate
MCMC [where one runs a cheaper approximate Markov chain to avoid the prohibitive
costs of an exact MCMC algorithm, e.g., AKW12]. The Stein thinning (ST) method
of Riabiz et al. [Ria+22] was developed to provide accurate compression even when the
input sample sequence provides a poor approximation to the target. ST operates by
greedily thinning the input sample to minimize the maximum mean discrepancy [MMD,
Gre+12] to P. However, ST is only known to provide an O(1/

√
m) approximation to P;

this guarantee is no better than that of i.i.d. sampling and a far cry from the Õ(1/m)
error achieved with unbiased coreset constructions.

In this work, we address this deficit by developing new, efficient coreset constructions
that provably yield better-than-i.i.d. error even when the input sample is biased. For P
on Rd, our primary contributions are fourfold and summarized in Tab. 1. First, for the
task of equal-weighted compression, we introduce Stein Kernel Thinning (SKT, Alg. 3.2),
a strategy that combines the greedy bias correction properties of ST with the unbiased
compression of KT to produce

√
n summary points with error Õ(n−1/2) in O(n2) time. In
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contrast, ST would require Ω(n) points to guarantee this error. Second, for larger-scale
compression problems, we propose Low-rank SKT (Alg. 3.4), a strategy that combines
the scalable summarization of Compress++ with a new low-rank debiasing procedure
(Alg. 3.3) to match the SKT guarantees in sub-quadratic o(n2) time.

Third, for the task of simplex-weighted compression, in which summary points are ac-
companied by weights in the simplex, we propose greedy and low-rank Stein Recombina-
tion (Alg. 3.6) constructions that match the guarantees of SKT with as few as poly-log(n)
points. Finally, for the task of constant-preserving compression, in which summary points
are accompanied by real-valued weights summing to 1, we introduce greedy and low-rank
Stein Cholesky (Alg. 3.8) constructions that again match the guarantees of SKT using as
few as poly-log(n) points.

Underlying these advances are new guarantees for the quality of simplex-weighted
coresets (Thms. 3.1 and 3.2), the spectral decay of kernel matrices (Cor. 3.B.1), and the
covering numbers of Stein kernel Hilbert spaces (Prop. 3.1) that may be of independent
interest. In Sec. 3.5, we employ our new procedures to produce compact summaries of
complex target distributions given input points biased by burn-in, approximate MCMC,
or tempering.

Notation We assume Borel-measurable sets and functions and define [n] ≜ {1, . . . , n},
∆n−1 ≜ {w ∈ Rn : w ≥ 0,1⊤w = 1}, ∥x∥0 ≜ |{i : xi ̸= 0}|, and ∥x∥p

p ≜
∑

i |xi|p for x ∈ Rd

and p ≥ 1. For x ∈ Rd, δx denotes the delta measure at x. We let Hk denote the re-
producing kernel Hilbert space (RKHS) of a kernel k : Rd × Rd → R [Aro50] and ∥f∥k
denote the RKHS norm of f ∈ Hk. For a measure µ and separately µ-integrable k and f ,
we write µf ≜

∫
f(x)dµ(x) and µk(x)≜

∫
k(x, y)dµ(y). The divergence of a differentiable

matrix-valued function A is (∇x · A(x))j = ∑
i ∂xi

Aij(x). For random variables (Xn)n∈N,
we say Xn = O(f(n, δ)) holds with probability ≥ 1−δ if Pr(Xn≤Cf(n, δ)) ≥ 1−δ for a
constant C independent of (n, δ) and all n sufficiently large. When using this notation,
we view all algorithm parameters except δ as functions of n. For A∈Rn×n and v ∈ Rn,
diag(A) and diag(v) are n× n diagonal matrices with Aii and vi respectively as the i-th
diagonal entry.

■ 3.2 Debiased Distribution Compression

Throughout, we aim to summarize a fixed target distribution P on Rd using a sequence
Sn ≜ (xi)n

i=1 of potentially biased candidate points in Rd.1 Correcting for unknown biases
in Sn requires some auxiliary knowledge of P. For us, this knowledge comes in the form
of a kernel function kP with known expectation under P. Without loss of generality, we

1Our coreset constructions will in fact apply to any sample space, but our analysis will focus on Rd.
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can take this kernel mean to be identically zero.2

Assumption 3.1 (Mean-zero kernel). For some p ≥ 1/2, Ex∼P[kP(x, x)p] < ∞ and
PkP ≡ 0.

Given a target compression size m, our goal is to output an weight vector w ∈ Rn

with ∥w∥0 ≤ m, 1⊤
n w = 1, and o(m−1/2) (better-than-i.i.d.) maximum mean discrepancy

(MMD) to P:

MMDkP(
∑n

i=1wiδxi
,P) ≜

√∑n
i,j=1wiwjkP(xi, xj). (3.2)

We consider three standard compression tasks with ∥w∥0 ≤ m. In equal-weighted com-
pression one selects m possibly repeated points from Sn and assigns each a weight of 1

m
;

because of repeats, the induced weight vector over Sn satisfies w ∈ ∆n−1 ∩ (N0
m

)n. In
simplex-weighted compression we allow any w ∈ ∆n−1, and in constant-preserving com-
pression we simply enforce 1⊤

n w = 1.
When making big O statements, we will treat Sn as the prefix of an infinite sequence

S∞ ≜ (xi)i∈N. We also write kP(Sn[J],Sn[J]) ≜ [kP(xi, xj)]i,j∈J for the principal kernel
submatrix with indices J ⊆ [n].

♢ 3.2.1 Kernel assumptions

Many practical Stein kernel constructions are available for generating mean-zero kernels
for a target P [CSG16; LLJ16; GM17; Gor+19; Bar+19; Yan+18; AM23]. We will use
the most prominent of these Stein kernels as a running example:

Definition 3.1 (Stein kernel). Given a differentiable base kernel k and a symmetric
positive semidefinite matrix M , the Stein kernel kp : Rd × Rd → R for P with positive
differentiable Lebesgue density p is defined as

kp(x, y) ≜ 1
p(x)p(y)∇x · ∇y · (p(x)Mk(x, y)p(y)).

While our algorithms apply to any mean zero kernel, our guarantees adapt to the
underlying smoothness of the kernels. Our next definition and assumption make this
precise.

Definition 3.2 (Covering number). For a kernel k : Rd × Rd → R with Bk ≜ {f ∈ Hk :
∥f∥k ≤ 1}, a set A ⊂ Rd, and ε > 0, the covering number Nk(A, ε) is the minimum
cardinality of all sets C ⊂ Bk satisfying

Bk ⊂
⋃

h∈C{g ∈ Bk : supx∈A |h(x)− g(x)| ≤ ε}.
2For PkP ̸≡ 0, the kernel kP

′(x, y) = kP(x, y) − PkP(x) − PkP(y) + PPkP satisfies PkP
′ ≡ 0 and

MMDkP′ = MMDkP .
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Assumption (α,β)-kernel. For some Cd > 0, all r > 0 and ε ∈ (0, 1), and B2(r) ≜
{x ∈ Rd : ∥x∥2 ≤ r}, a kernel k is either PolyGrowth(α, β), i.e.,

logNk(B2(r), ε) ≤ Cd(1/ε)α(r + 1)β,

with α < 2 or LogGrowth(α, β), i.e.,

logNk(B2(r), ε) ≤ Cd log(e/ε)α(r + 1)β.

In Cor. 3.B.1 we show that the eigenvalues of kernel matrices with PolyGrowth
and LogGrowth kernels have polynomial and exponential decay respectively. Dwivedi
and Mackey [DM22b, Prop. 2] showed that all sufficiently differentiable kernels satisfy the
PolyGrowth condition and that bounded radially analytic kernels are LogGrowth.
Our next result, proved in Sec. 3.B.2, shows that a Stein kernel kp can inherit the growth
properties of its base kernel even if kp is itself unbounded and non-smooth.

Proposition 3.1 (Stein kernel growth rates). A Stein kernel kp with

sup∥x∥2≤r ∥∇ log p(x)∥2 = O(rdℓ),

for dℓ ≥ 0, is

(a) LogGrowth(d + 1, 2d + δ) for any δ > 0 if the base kernel k is radially analytic
(Def. 3.B.3) and

(b) PolyGrowth( d
s−1 , (1 + dℓ

s
)d) if the base kernel k is s-times continuously differen-

tiable (Def. 3.B.2) for s>1.

Notably, the popular Gaussian (Ex. 3.B.1) and inverse multiquadric (Ex. 3.B.2) base
kernels satisfy the LogGrowth preconditions, while Matérn, B-spline, sinc, sech, and
Wendland’s compactly supported kernels satisfy the PolyGrowth precondition [DM22b,
Prop. 3]. To our knowledge, Prop. 3.1 provides the first covering number bounds and
eigenvalue decay rates for the (typically unbounded) Stein kernels kp.

♢ 3.2.2 Input point desiderata

Our primary desideratum for the input points is that they can be debiased into an accurate
estimate of P. Indeed, our high-level strategy for debiased compression is to first use kP
to debias the input points into a more accurate approximation of P and then compress
that approximation into a more succinct representation. Fortunately, even when the
input Sn targets a distribution Q ̸= P, effective debiasing is often achievable via simplex
reweighting, i.e., by solving the convex optimization problem

wOPT ∈ arg minw∈∆n−1

∑n
i,j=1 wiwjkP(xi, xj) (3.3)

with MMDOPT ≜ MMDkP(
∑n

i=1wOPTiδxi
,P).
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For example, Hodgkinson, Salomone, and Roosta [HSR20, Thm. 1b] showed that simplex
reweighting can correct for biases due to off-target i.i.d. or MCMC sampling. Our next
result (proved in Sec. 3.C.2) significantly relaxes their conditions.

Theorem 3.1 (Debiasing via simplex reweighting). Consider a kernel kP satisfying As-
sum. 3.1 with HkP separable, and suppose (xi)∞

i=1 are the iterates of a homogeneous ϕ-
irreducible geometrically ergodic Markov chain [GLR23, Thm. 1] with stationary distri-
bution Q and initial distribution absolutely continuous with respect to P. If

Ex∼P[ dP
dQ(x)2q−1kP(x, x)q] <∞

for some q > 1 then MMDOPT = O(n−1/2) in probability.

Remark 3.1. HkP is separable whenever kP is continuous [SC08, Lem. 4.33].

Since n points sampled i.i.d. from P have Θ(n−1/2) root mean squared MMD (see
Prop. 3.C.1), Thm. 3.1 shows that a debiased off-target sample can be as accurate as
a direct sample from P. Moreover, Thm. 3.1 applies to many practical examples. The
simplest example of a geometrically ergodic chain is i.i.d. sampling from Q, but geomet-
ric ergodicity has also been established for a variety of popular Markov chains includ-
ing random walk Metropolis [RT96, Thm. 3.2], independent Metropolis-Hastings [AP07,
Thm. 2.2], the unadjusted Langevin algorithm [DM17, Prop. 8], the Metropolis-adjusted
Langevin algorithm [DM22a, Thm. 1], Hamiltonian Monte Carlo [DMS20, Thm. 10 and
Thm. 11], stochastic gradient Langevin dynamics [LLW23, Thm. 2.1], and the Gibbs sam-
pler [Joh09]. Moreover, for Q absolutely continuous with respect to P, the importance
weight dP

dQ is typically bounded or slowly growing when the tails of Q are not much lighter
than those of P.

Remarkably, under more stringent conditions, Thm. 3.2 (proved in Sec. 3.C.3) shows
that simplex reweighting can decrease MMD to P at an even-faster-than-i.i.d. rate.

Theorem 3.2 (Better-than-i.i.d. debiasing via simplex reweighting). Consider a kernel
kP satisfying Assum. 3.1 with p = 2 and points (xi)∞

i=1 drawn i.i.d. from a distribution Q
with dP

dQ bounded. If E[kP(x1, x1)q] <∞ for some q > 3, then E[MMD2
OPT] = o(n−1).

The work of Liu and Lee [LL17, Thm. 3.3] also established o(n−1/2) MMD error for
simplex reweighting but only under a uniformly bounded eigenfunctions assumption that
is often violated ([Min10, Thm. 1], [Zho02, Ex. 1]) and difficult to verify [SS12].

Our remaining results make no particular assumption about the input points but
rather upper bound the excess MMD

∆MMDkP(w) ≜ MMDkP(
∑

i∈[n]wiδxi
,P) −MMDOPT (3.4)
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of a candidate weighting w in terms of the input point radius Rn ≜ maxi∈[n] ∥xi∥2∨ 1 and
kernel radius ∥kP∥n ≜ maxi∈[n] kP(xi, xi). While these results apply to any input points,
we will consider the following running example of slow-growing input points throughout
the paper.

Definition 3.3 (Slow-growing input points). We say Sn is γ-slow-growing if Rn =
O((log n)γ) for some γ ≥ 0 and ∥kP∥n = Õ(1).

Notably, Sn is 1-slow-growing with probability 1 when kP(x, x) is polynomially bounded
by ∥x∥2 and the input points are drawn from a homogeneous ϕ-irreducible geometrically
ergodic Markov chain with a sub-exponential target Q, i.e., E[ec∥x∥2 ] <∞ for some c > 0
[DM21, Prop. 2]. For a Stein kernel kp (Def. 3.1), by Prop. 3.B.3, kp(x, x) is polynomi-
ally bounded by ∥x∥2 if k(x, x), ∥∇x∇yk(x, x)∥2, and ∥∇ log p(x)∥2 are all polynomially
bounded by ∥x∥2. Moreover, ∥∇ log p(x)∥2 is automatically polynomially bounded by
∥x∥2 when ∇ log p is Lipschitz or, more generally, pseudo-Lipschitz [EMS18, Eq. (2.5)].

♢ 3.2.3 Debiased compression via Stein Kernel Thinning

Off-the-shelf solvers based on mirror descent and Frank Wolfe can solve the convex de-
biasing program (3.3) in O(n3) time by generating weights with O(n−1/2∥kP∥n) excess
MMD [LL17]. We instead employ a more efficient, greedy debiasing strategy based on
Stein thinning (ST). After n rounds, ST outputs an equal-weighted coreset of size n with
O(n−1/2∥kP∥n) excess MMD [Ria+22, Thm. 1]. Moreover, while the original implementa-
tion of Riabiz et al. [Ria+22] has cubic runtime, our implementation (Alg. 3.D.1) based
on sufficient statistics improves the runtime to O(n2dkP) where dkP denotes the runtime
of a single kernel evaluation.3

The equal-weighted output of ST serves as the perfect input for the kernel thinning
(KT) algorithm which compresses an equal-weighted sample of size n into a coreset of any
target size m ≤ n in O(n2dkP) time. We adapt the target KT algorithm slightly to target
MMD error to P and to include a baseline ST coreset of size m in the kt-swap step (see
Alg. 3.D.3). Combining the two routines we obtain Stein Kernel Thinning (SKT), our
first solution for equal-weighted debiased distribution compression:

Our next result, proved in Sec. 3.D.3, shows that SKT yields better-than-i.i.d. excess
MMD whenever the radii (Rn and ∥kP∥n) and kernel covering number exhibit slow growth.

Theorem 3.3 (MMD guarantee for SKT). Given a kernel kP satisfying Assums. 3.1
and (α,β)-kernel, Stein Kernel Thinning (Alg. 3.2) outputs wSKT in O(n2dkP) time sat-
isfying

∆MMDkP(wSKT)=O
(√∥kP∥nℓδ·log n·Rβ

nGα
m

min(m,
√

n)

)
3Often, dkP = Θ(d) as in the case of Stein kernels (Sec. 3.I.1).
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Algorithm 3.2 Stein Kernel Thinning (SKT)
Input: mean-zero kernel kP, points Sn, output size m, KT failure probability δ
n′ ← m 2⌈log2

n
m

⌉

w ← SteinThinning(kP,Sn, n′)
wSKT ← KernelThinning(kP,Sn, n′, w, m, δ)
Return: wSKT ∈∆n−1 ∩ (N0

m
)n ▷ hence ∥wSKT∥0 ≤ m

with probability at least 1− δ, where ℓδ ≜ log2( e
δ
) and

Gm≜

log(em) LogGrowth(α, β),
m PolyGrowth(α, β).

Example 3.1. Under the assumptions of Thm. 3.3 with γ-slow-growing input points
(Def. 3.3), LogGrowth kP, and a coreset size m ≤

√
n, SKT delivers Õ(m−1) ex-

cess MMD with high probability, a significant improvement over the Ω(m−1/2) error rate
of i.i.d. sampling.

Remark 3.2. When m <
√

n, we can uniformly subsample or, in the case of MCMC
inputs, standard thin (i.e., keep only every n

m2 -th point of) the input sequence down to
size m2 before running SKT to reduce runtime while incurring only O(m−1) excess error.
The same holds for the LSKT algorithm introduced in Sec. 3.3.

■ 3.3 Accelerated Debiased Compression

To enable larger-scale debiased compression, we next introduce a sub-quadratic-time ver-
sion of SKT built via a new low-rank debiasing scheme and the near-linear-time compres-
sion algorithm of Shetty, Dwivedi, and Mackey [SDM22].

♢ 3.3.1 Fast bias correction via low-rank approximation

At a high level, our approach to accelerated debiasing involves four components. First, we
form a rank-r approximation FF ⊤ of the kernel matrix K = kP(Sn,Sn) in O(nrdkP +nr2)
time using a weighted extension ( WeightedRPCholesky, Alg. 3.F.1) of the randomly
pivoted Cholesky algorithm of Chen et al. [Che+22b, Alg. 2.1]. Second, we correct the di-
agonal to form K ′ = FF ⊤+diag(K−FF ⊤). Third, we solve the reweighting problem (3.3)
with K ′ substituted for K using T iterations of accelerated entropic mirror descent [AMD,
WAL23, Alg. 14 with ϕ(w) = ∑

i wi log wi]. The acceleration ensures O(1/T 2) subopti-
mality after T iterations, and each iteration takes only O(nr) time thanks to the low-rank
plus diagonal approximation. Finally, we repeat this three-step procedure Q times, each
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time using the weights outputted by the prior round to update the low-rank approxi-
mation K̂. On these subsequent adaptive rounds, WeightedRPCholesky approximates
the leading subspace of a weighted kernel matrix diag(

√
w̃)K diag(

√
w̃) before undoing

the row and column reweighting. Since each round’s weights are closer to optimal, this
adaptive updating has the effect of upweighting more relevant subspaces for subsequent
debiasing. For added sparsity, we prune the weights outputted by the prior round using
stratified residual resampling [Resample, Alg. 3.E.3, DC05]. Our complete Low-rank De-
biasing (LD) scheme, summarized in Alg. 3.3, enjoys o(n2) runtime whenever r = o(n1/2),
T = O(n1/2), and Q = O(1).

Algorithm 3.3 Low-rank Debiasing (LD)
Input: mean-zero kernel kP, points Sn = (xi)n

i=1, rank r, AMD steps T , adaptive rounds
Q

w(0) ← ( 1
n
, . . . , 1

n
) ∈ Rn

for q = 1 to Q do
w̃ ← Resample(w(q−1), n)
I, F ←WeightedRPCholesky(kP,Sn, w̃, r)
K ′ ← FF ⊤ + diag(kP(Sn,Sn))− diag(FF ⊤)
w(q)←AMD(K ′, T, w̃, AGG = 1q>1)
if (w(q))⊤K ′w(q) > w̃⊤K ′w̃ then w(q) ← w̃

end for
Return: wLD ← w(Q) ∈∆n−1

Moreover, our next result, proved in Sec. 3.F.1, shows that LD provides i.i.d.-level
precision whenever T ≥

√
n, Q = O(1), and r grows appropriately with the input radius

and kernel covering number.

Assumption (α,β)-params. The kernel kP satisfies Assums. 3.1 and (α,β)-kernel, the
output size and rank m, r ≥ (CdRβ

n+1√
log 2 + 2

√
log 2)2, the AMD step count T ≥

√
n, and the

adaptive round count Q=O(1).4

Theorem 3.4 (Debiasing guarantee for LD). Under Assum. (α,β)-params, Low-rank
Debiasing (Alg. 3.3) takes O((dkP +r+T )nr) time to output wLD satisfying

∆MMDkP(wLD)=O

(√
∥kP∥n max(log n,1/δ)

n
+
√

nHn,r

δ

)
4To unify the presentation of our results, Assum. (α,β)-params constrains all common algorithm input

parameters with the understanding that the conditions are enforced only when the input is relevant to a
given algorithm.
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with probability at least 1− δ, for any δ ∈ (0, 1) and Hn,r defined in (3.48) that satisfies

Hn,r =


O
(√

r(R2β
n

r
)1

α

)
PolyGrowth(α, β),

O
(√

r exp(−
(

0.83
√

r−2.39
CdRβ

n

)1
α)
)

LogGrowth(α, β).

Example 3.2. Under the assumptions of Thm. 3.4 with γ-slow-growing input points
(Def. 3.3), LogGrowth kP, T = Θ(

√
n), and r = (log n)2(α+βγ)+ϵ for any ϵ > 0,

LD delivers Õ(n−1/2) excess MMD with high probability in Õ(n1.5) time.

♢ 3.3.2 Fast debiased compression via Low-rank Stein KT

To achieve debiased compression in sub-quadratic time, we next propose Low-rank SKT
(Alg. 3.4). LSKT debiases the input using LD, converts the LD output into an equal-
weighted coreset using Resample, and finally combines KT with the divide-and-conquer
Compress++ framework [SDM22] to compress n equal-weighted points into

√
n in near-

linear time.

Algorithm 3.4 Low-rank Stein Kernel Thinning (LSKT)
Input: mean-zero kernel kP, points Sn = (xi)n

i=1, rank r, AGM steps T , adaptive rounds
Q, oversampling parameter g, failure prob. δ

w ← Low-rankDebiasing(kP,Sn, r, T, Q)
n′ ← 4⌈log4 n⌉, m←

√
n′ ▷ output size

√
n ≤ m < 2

√
n

w ← Resample(w, n′)
wLSKT ← KT-Compress++(kP,Sn, n′, w, g, δ

3)
Return: wLSKT ∈∆n−1 ∩ (N0

m
)n ▷ hence ∥wLSKT∥0 ≤ m

Our next result (proved in Sec. 3.F) shows that LSKT can provide better-than-i.i.d.
excess MMD in o(n2) time.

Theorem 3.5 (MMD guarantee for LSKT). Under Assum. (α,β)-params, Low-rank SKT
(Alg. 3.4) with g∈ [log2 log(n + 1) + 3.1, log4(

√
n/ log n)] and δ ∈ (0, 1) outputs wLSKT in

O((dkP +r+T )nr+dkPn
1.5) time satisfying, with probability at least 1− δ,

∆MMDkP(wLSKT) = O

(√
∥kP∥n max(1/δ, ℓδ(log n)nγβGα√

n
)

n
+
√

nHn,r

δ

)
,

for Gm, Hn,r as in Thms. 3.3 and 3.5.

Example 3.3. Under the assumptions of Thm. 3.5 with γ-slow-growing input points
(Def. 3.3), LogGrowth kP, T = Θ(

√
n), and r = (log n)2(α+βγ)+ϵ for any ϵ > 0,

LSKT delivers Õ(n−1/2) excess MMD with high probability in Õ(n1.5) time with a coreset
of size m ∈ [

√
n, 2
√

n).
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■ 3.4 Weighted Debiased Compression

The prior sections developed debiased equal-weighted coresets with better-than-i.i.d. com-
pression guarantees. In this section, we match those guarantees with significantly smaller
weighted coresets.

♢ 3.4.1 Simplex-weighted coresets via Stein Recombination

Algorithm 3.5 Recombination Thinning (RT)
Input: mean-zero kernel kP, points Sn = (xi)n

i=1, weights w ∈ ∆n−1, output size m
w̃ ← Resample(w, n)
I, F ←WeightedRPCholesky(kP,Sn, w̃, m− 1)
w′ ← Recombination([F,1n]⊤, w̃) ▷ [F,1n]⊤∈ Rm×n

▷ F ⊤w̃ = F ⊤w′, w′ ∈ ∆n−1 , and ∥w′∥0 ≤ m
w′′←KT-Swap-LS(kP,Sn, w′, SPLX); J←{i : w′′

i > 0}
w′′[J] ← arg minw′∈∆|J|−1

w′⊤kP(Sn[J],Sn[J])w′ ▷ use any O(|J|3) quadratic programming
solver

Return: wRT ← w′′ ∈ ∆n−1 with ∥wRT∥0 ≤ m

Inspired by the coreset constructions of Hayakawa, Oberhauser, and Lyons [HOL22;
HOL23], we first introduce a simplex-weighted compression algorithm, Recombination-
Thinning (RT, Alg. 3.5), suitable for summarizing a debiased input sequence. To produce
a coreset given input weights w ∈ ∆n−1, RT first prunes small weights using Resample
and then uses WeightedRPCholesky to identify m−1 test vectors that capture most of
the variability in the weighted kernel matrix. Next, Recombination (Alg. 3.G.1) [Tch16,
Alg. 1] identifies a sparse simplex vector w′ with ∥w′∥0 ≤ m that exactly matches the inner
product of its input with each of the test vectors. Then, we run KT-Swap-LS (Alg. 3.G.2),
a new, line-search version of kt-swap [DM21, Alg. 1b] that greedily improves MMD to
P while maintaining both the sparsity and simplex constraint of its input. Finally, we
optimize the weights of the remaining support points using any cubic-time quadratic
programming solver.

In Prop. 3.G.1 we show that RT runs in time O((dkP + m)nm + m3 log n) and nearly
preserves the MMD of its input whenever m grows appropriately with the kernel cover-
ing number. Combining RT with SteinThinning or Low-rankDebiasing in Alg. 3.6, we
obtain Stein Recombination (SR) and Low-rank SR (LSR), our approaches to debiased
simplex-weighted compression. Remarkably, SR and LSR can match the MMD error rates
established for SKT and LSKT using substantially fewer coreset points, as our next result
(proved in Sec. 3.G.2) shows.
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Algorithm 3.6 (Low-rank) Stein Recombination (SR / LSR)
Input: mean-zero kernel kP, points Sn, output size m, rank r, AGM steps T , adaptive

rounds Q

w ←

Low-rankDebiasing(kP,Sn, r, T, Q) if low-rank
SteinThinning(kP,Sn) otherwise

wSR ← RecombinationThinning(kP,Sn, w, m)
Return: wSR ∈ ∆n−1 with ∥wSR∥0 ≤ m

Theorem 3.6 (MMD guarantee for SR/ LSR). Under Assum. (α,β)-params, Stein Re-
combination (Alg. 3.6) takes O(dkPn

2+(dkP+m)nm+m3 log n) to output wSR, and Low-rank
SR takes O((dkP +r+T )nr+(dkP +m)nm+m3 log n) time to output wLSR. Moreover, for
any δ ∈ (0, 1) and Hn,r as in Thm. 3.4, each of the following bounds holds (separately)
with probability at least 1− δ:

∆MMDkP(wSR)=O
(√

∥kP∥n(log n∨ 1
δ

)
n

+ nHn,m

δ

)
and

∆MMDkP(wLSR)=O
(√

∥kP∥n(log n∨ 1
δ

)
n

+ n(Hn,m+Hn,r)
δ

)
.

Example 3.4. Instantiate the assumptions of Thm. 3.6 with γ-slow-growing input points
(Def. 3.3), LogGrowth kP, and a heavily compressed coreset size m = (log n)2(α+βγ)+ϵ

for any ϵ > 0. Then SR delivers Õ(n−1/2) excess MMD with high probability in O(n2)
time, and LSR with r=m and T = Θ(

√
n) achieves the same in Õ(n1.5) time.

♢ 3.4.2 Constant-preserving coresets via Stein Cholesky

For applications supporting negative weights, we next introduce a constant-preserving
compression algorithm, CholeskyThinning (CT, Alg. 3.7), suitable for summarizing a de-
biased input sequence. CT first applies WeightedRPCholesky to a constant-regularized
kernel kP(x, y)+c to select an initial coreset and then uses a combination of KT-Swap-LS
and closed-form optimal constant-preserving reweighting to greedily refine the support
and weights. The regularized kernel ensures that WeightedRPCholesky, originally devel-
oped for compression with unconstrained weights, also yields a high-quality coreset when
its weights are constrained to sum to 1, and our CT standalone analysis (Prop. 3.H.1)
improves upon the runtime and error guarantees of RT. In Alg. 3.8, we combine CT with
SteinThinning or Low-rankDebiasing to obtain Stein Cholesky (SC) and Low-rank SC
(LSC), our approaches to debiased constant-preserving compression. Our MMD guaran-
tees for SC and LSC (proved in Sec. 3.H.2) improve upon the rates of Thm. 3.6.
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Algorithm 3.7 Cholesky Thinning (CT)
Input: mean-zero kernel kP, points Sn = (xi)n

i=1, weights w ∈ ∆n−1, output size m
c← Average(Largest m entries of (kP(xi, xi))n

i=1)
I, F ←WeightedRPCholesky(kP + c,Sn, w, m); w ← 0n

w[I]← arg minw′∈R|I|:
∑

i
w′

i=1 w′⊤kP(Sn[I],Sn[I])w′

w ← KT-Swap-LS(kP,Sn, w, CP); I← {i : wi ̸= 0}
w[I]← arg minw′∈R|I|:

∑
i

w′
i=1 w′⊤kP(Sn[I],Sn[I])w′

Return: wCT ← w ∈ Rn with ∥wCT∥0 ≤ m, 1⊤
n wCT = 1

Algorithm 3.8 (Low-rank) Stein Cholesky (SC / LSC)
Input: mean-zero kernel kP, points Sn, output size m, rank r, AGM steps T , adaptive

rounds Q

w ←

Low-rankDebiasing(kP,Sn, r, T, Q) if low-rank
SteinThinning(kP,Sn) otherwise

wSC ← CholeskyThinning(kP,Sn, w, m)
Return: wSC ∈ Rn with ∥wSC∥0 ≤ m and 1⊤

n wSC = 1

Theorem 3.7 (MMD guarantee for SC / LSC). Under Assum. (α,β)-params, Stein
Cholesky (Alg. 3.8) takes O(dkPn

2+(dkP+m)nm+m3) time to output wSC, and Low-rank
SC takes O((dkP +r+T )nr+(dkP +m)nm+m3) time to output wLSC. Moreover, for any
δ ∈ (0, 1), with probability at least 1− δ, each of the following bounds hold:

∆MMDkP(wSC) = 2 MMDOPT +O
(√

∥kP∥n log n

δn
+ Hn,m′

δ

)
and

∆MMDkP(wLSC) = 2 MMDOPT +O
(√

∥kP∥n(log n∨1/δ)
δn

+ Hn,m′

δ
+ nHn,r

δ2

)
for Hn,r as in Thm. 3.4 and m′ ≜ m + log 2− 2

√
m log 2 + 1.

Example 3.5. Instantiate the assumptions of Thm. 3.7 with γ-slow-growing input points
(Def. 3.3), LogGrowth kP, and a heavily compressed coreset size m = (log n)2(α+βγ)+ϵ

for any ϵ > 0. Then SC delivers Õ(n−1/2) excess MMD with high probability in O(n2)
time, and LSC with r=m and T = Θ(

√
n) achieves the same in Õ(n1.5) time.

Remark 3.3. While we present our results for a target precision of 1/
√

n, a coarser
target precision of 1/

√
n0 for n0 < n can be achieved more quickly by standard thinning

the input sequence down to size n0 before running SR, LSR, SC, or LSC.
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Figure 1: Correcting for burn-in. Left: Before selecting coresets (orange), the burn-in
oracle uses 6 independent Markov chains to discard burn-in (red) while LSKT identifies
the same high-density region (blue) with 1 chain. Right: Using only one chain, our
methods consistently outperform the Stein and standard thinning baselines and match
the 6-chain oracle.

■ 3.5 Experiments

We next evaluate the practical utility of our procedures when faced with three com-
mon sources of bias: (1) burn-in, (2) approximate MCMC, and (3) tempering. In all
experiments, we use a Stein kernel kp with an inverse multiquadric (IMQ) base kernel
k(x, y)=(1+∥x−y∥2

M/σ2)−1/2 for σ equal to the median pairwise ∥·∥M distance amongst
1000 points standard thinned from the input. To vary output MMD precision, we first
standard thin the input to size n0 ∈ {210, 212, 214, 216, 218, 220} before applying any method,
as discussed in Rems. 3.2 and 3.3. For low-rank or weighted coreset methods, we show
results for m = r = nτ . When comparing weighted coresets, we optimally reweight every
coreset. We report the median over 5 independent runs for all error metrics. We im-
plement our algorithms in JAX [Bra+18] and refer the reader to Sec. 3.I for additional
experiment details.

Correcting for burn-in The initial iterates of a Markov chain are biased by its
starting point and need not accurately reflect the target distribution P. Classical burn-in
corrections use convergence diagnostics to detect and discard these iterates but typically
require running multiple independent Markov chains [CC96]. Alternatively, our proposed
debiased compression methods can be used to correct for burn-in given just a single chain.

We test this claim using an experimental setup from Riabiz et al. [Ria+22, Sec. 4.1]
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Figure 2: Correcting for approximate MCMC (top) and tempering (bottom).
For posterior inference over the parameters of Bayesian logistic regression (d = 54, top)
and a cardiac calcium signaling model (d=38, bottom), our concise coreset constructions
correct for approximate MCMC and tempering biases without need for explicit importance
sampling.

and the 6-chain “burn-in oracle” diagnostic of Vats and Knudson [VK21]. We aim to com-
press a posterior P over the parameters in the Goodwin model of oscillatory enzymatic
control (d=4) using n=2×106 points from a preconditioned Metropolis-adjusted Langevin
algorithm (P-MALA) chain. We repeat this experiment with three alternative MCMC
algorithms in Sec. 3.I.3. Our primary metric is MMDkP to P with M = I, but, for external
validation, we also measure the energy distance [Ria+22, Eq. 11] to an auxiliary MCMC
chain of length n. Trajectory plots of the first two coordinates (Fig. 1, left) highlight the
substantial burn-in period for the Goodwin chain and the ability of LSKT to mimic the
6-chain burn-in oracle using only a single chain. In Fig. 1 (right), for both the MMD
metric and the auxiliary energy distance, our proposed methods consistently outperform
Stein thinning and match the quality of 6-chain burn-in removal paired with unbiased
compression. The spike in baseline energy distance for the constant-preserving task can
be attributed to the selection of overly large weight values due to poor matrix condi-
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tioning; the simplex-weighted task does not suffer from this issue due to its regularizing
nonnegativity constraint.

Correcting for approximate MCMC In posterior inference, MCMC algorithms
typically require iterating over every datapoint to draw each new sample point. When
datasets are large, approximating MCMC using datapoint mini-batches can reduce sam-
pling time at the cost of persistent bias and an unknown stationary distribution that
prohibits debiasing via importance sampling. Our proposed methods can correct for
these biases during compression by computing full-dataset scores on a small subset of
n0 standard thinned points. To evaluate this protocol, we compress a Bayesian logistic
regression posterior conditioned on the Forest Covtype dataset (d = 54) using n = 224

approximate MCMC points from the stochastic gradient Fisher scoring sampler [AKW12]
with batch size 32. Following Wang et al. [Wan+24], we set M = −∇2log p(xmode) at
the sample mode xmode and use 220 surrogate ground truth points from the No U-turn
Sampler [HG+14] to evaluate energy distance. We find that our proposals improve upon
standard thinning and Stein thinning for each compression task, not just in the optimized
MMD metric (Fig. 2, top) but also in the auxiliary energy distance (Fig. 2, middle) and
when measuring integration error for the mean (Fig. 3.I.4).

Correcting for tempering Tempering, targeting a less-peaked and more dispersed
distribution Q, is a popular technique to improve the speed of MCMC convergence. One
can correct for the sample bias using importance sampling, but this requires knowledge
of the tempered density and can introduce substantial variance [GSK10]. Alternatively,
one can use constructions of this work to correct for tempering during compression; this
requires no importance weighting and no knowledge of Q. To test this proposal, we
compress the cardiac calcium signaling model posterior (d = 38) of Riabiz et al. [Ria+22,
Sec. 4.3] with M = I and n = 3 × 106 tempered points from a Gaussian random walk
Metropolis-Hastings chain. As discussed by Riabiz et al., compression is essential in this
setting as the ultimate aim is to propagate posterior uncertainty through a human heart
simulator, a feat which requires over 1000 CPU hours for each summary point retained.
Our methods perform on par with Stein thinning for equal-weighted compression and yield
substantial gains over Stein (and standard) thinning for the two weighted compression
tasks.

■ 3.6 Conclusions and Future Work

We have introduced and analyzed a suite of new procedures for compressing a biased
input sequence into an accurate summary of a target distribution. For equal-weighted
compression, Stein kernel thinning delivers

√
n points with Õ(n−1/2) MMD in O(n2)

time, and low-rank SKT can improve this running time to Õ(n3/2). For simplex-weighted
and constant-preserving compression, Stein recombination and Stein Cholesky provide
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enhanced parsimony, matching these guarantees with as few as poly-log(n) points. Re-
cent work has identified some limitations of score-based discrepancies, like Stein kernel
MMDs, and developed modified objectives that are more sensitive to the relative density
of isolated modes [LDG23; BSD24]. A valuable next step would be to extend our con-
structions to provide compression guarantees for these modified discrepancy measures.
Other opportunities for future work include marrying the better-than-i.i.d. guarantees of
this work with the non-myopic compression of Teymur et al. [Tey+21], the control-variate
compression of Chopin and Ducrocq [CD21], and the online compression of Hawkins,
Koppel, and Zhang [HKZ22].





Appendices

■ 3.A Appendix Notation

For the point sequence Sn = (xi)i∈[n], we define Sn ≜ 1
n

∑
i∈[n] δxi

. For a weight vector
w ∈ Rn, we define the support supp(w) ≜ {i ∈ [n] : wi ̸= 0} and the signed measure
Sw

n ≜
∑

i∈[n] wiδxi
. For a matrix K ∈ Rn×n and w ∈ ∆n−1, we define the weighted

matrix Kw ≜ diag(
√

w)K diag(
√

w). For positive semidefinite (PSD) matrices (A, B),
we use A ⪰ B (resp. A ⪯ B) to mean A − B (resp. B − A) is PSD. For a symmetric
PSD (SPSD) matrix M , we let M1/2 denote a symmetric matrix square root satisfying
M = M1/2M1/2. For A ∈ Rn×m, we denote ∥A∥p ≜ supx ̸=0

∥Ax∥p

∥x∥p
. We will use 1E to

denote the indicator function for an event E.
Notations used only in a specific section will be introduced within.

■ 3.B Spectral Analysis of Kernel Matrices

The goal of this section is to develop spectral bounds for kernel matrices.
In Sec. 3.B.1, we transfer the bounds on covering numbers from the definition of Poly-

Growth or LogGrowth kernels to bounds on the eigenvalues of the kernel matrices.
This sets the theoretical foundation for the algorithms in later sections as their error
guarantees rely on the fast decay of eigenvalues of kernel matrices.

In Sec. 3.B.2, we show that Stein kernels are PolyGrowth (resp. LogGrowth)
provided that their base kernels are differentiable (resp. radially analytic). Hence we
obtain spectral bounds for a wide range of Stein kernels.

Notation For a normed space E, we use ∥·∥E to denote its norm, BE(p, r) ≜ {x ∈ E :
∥x− p∥E ≤ r} to denote the closed ball of radius r centered at p in E with the shorthand
BE(r) ≜ BE(0, r) and BE ≜ BE(1). When E is an RKHS with kernel k, for brevity we
use k in place of E in the subscript. Let F(X ,Y) denote the space of functions from X
to Y , and B(E, F ) denote the space of bounded linear functions between normed spaces
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E, F . For a set A, we use ℓ∞(A) to denote the space of bounded R-valued functions on
A equipped with the sup-norm ∥f∥∞,A ≜ supx∈A |f(x)|. We use E ↪→ F to denote the
inclusion map. e use λℓ(T ) to denote the ℓ-th largest eigenvalue of an operator T .

♢ 3.B.1 Bounding the spectrum of kernel matrices

We first introduce the general Mercer representation theorem from Steinwart and Scovel
[SS12], which shows the existence of a discrete spectrum of the integral operator asso-
ciated with a continuous square-integrable kernel. The theorem also provides a series
expansion of the kernel, i.e., the Mercer representation, in terms of the eigenvalues and
eigenfunctions.

Lemma 3.B.1 (General Mercer representation [SS12]). Consider a kernel k : Rd ×
Rd → R that is jointly continuous in both inputs and a probability measure µ such that∫
k(x, x)dµ(x) <∞. Then the following holds.

(a) The inclusion Hk ↪→ L2(µ) is a compact operator, i.e., Bk is a compact subset of
L2(µ). In particular, this inclusion is continuous.

(b) The Hilbert-space adjoint of the inclusion Hk ↪→ L2(µ) is the compact operator
Sk,µ : L2(µ)→ Hk defined as

Sk,µf ≜
∫
k(·, x)f(x)dµ(x). (3.5)

We also have S∗
k,µ ≜ Hk ↪→ L2(µ). Hence the operator

Tk,µ ≜ S∗
k,µSk,µ : L2(µ)→ L2(µ) (3.6)

is also compact.

(c) There exist {λℓ}∞
ℓ=1 with λ1 ≥ λ2 ≥ · · · ≥ 0 and {ϕℓ}∞

ℓ=1 ⊂ Hk such that {ϕℓ}∞
ℓ=1 is an

orthonormal system in L2(µ) and {λℓ}∞
ℓ=1 (resp. {ϕℓ}∞

ℓ=1) consists of the eigenvalues
(resp. eigenfunctions) of Tk,µ with eigendecomposition, for f ∈ L2(µ),

Tk,µf = ∑∞
ℓ=1 λℓ⟨f, ϕℓ⟩L2(µ)ϕℓ

with convergence in L2(µ).

(d) We have the following series expansion

k(x, x′) = ∑∞
ℓ=1 λiϕℓ(x)ϕℓ(x′), (3.7)

where the series convergence is absolute and uniform in x, x′ on all A×A ⊂ supp µ×
supp µ.
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Proof of Lem. 3.B.1. Part (a) and (b) follow respectively from Steinwart and Scovel [SS12,
Lem. 2.3 and 2.2]. Part (c) follows from part (a) and Steinwart and Scovel [SS12,
Lem. 2.12]. Finally, part (d) follows from Steinwart and Scovel [SS12, Cor. 3.5].

We will use the following lemma regarding the restriction of covering numbers.

Lemma 3.B.2 (Covering number is preserved in restriction). For a kernel k : Rd×Rd →
R and a set A ⊂ Rd, we have Nk(A, ϵ) = Nk|A(A, ϵ), for k|A, the restricted kernel of k to
A [PR16, Sec. 5.4].

Proof of Lem. 3.B.2. It suffices to show that a (k, A, ϵ) cover can be converted to a cover
of (k|A, A, ϵ) of the same cardinality and vice versa.

Let C ⊂ Bk|A be a (k|A, A, ϵ) cover. For any f ∈ C, we have [PR16, Corollary 5.8]

∥f∥k|A = inf
{
∥f̃∥k : f̃ ∈ Hk, f̃ |A = f

}
≤ 1.

Moreover, the infimum is attained by some f̃ ∈ Hk such that ∥f̃∥k = ∥f∥k|A ≤ 1 and
f̃ |A = f . Now form C̃ = {f̃ : f ∈ C}. For any h̃ ∈ Bk, there exists f ∈ C such that∥∥∥h̃|A − f

∥∥∥
∞,A
≤ ϵ =⇒ =

∥∥∥h̃− f̃
∥∥∥

∞,A
≤ ϵ,

so C̃ is a (k|A, A, ϵ) cover.
For the other direction, let C̃ ⊂ Bk be a (k, A, ϵ) cover. Define C = {f̃ |A : f̃ ∈ C̃} ⊂

Hk|A . Since ∥f̃ |A∥k|A ≤ ∥f̃∥k, we have C ⊂ Bk|A . For any h ∈ BkA], again by Paulsen and
Raghupathi [PR16, Corollary 5.8], there exists h̃ ∈ Hk such that ∥h̃∥k = ∥h∥k|A ≤ 1, so
there exists f̃ ∈ C̃ such that∥∥∥h̃− f̃

∥∥∥
∞,A
≤ ϵ =⇒

∥∥∥h− f̃ |A
∥∥∥

∞,A
≤ ϵ,

Hence C is a (k, A, ϵ) cover.

The goal for the rest of this section is to transfer the bounds of the covering number
in the definition of a PolyGrowth or LogGrowth kernel from Assum. (α,β)-kernel
to bounds on entropy numbers [SC08, Def. 6.20] that are closely related to eigenvalues of
the integral operator (3.6).

Definition 3.B.1 (Entropy number of a bounded linear map). For a bounded linear
operator S : E → F between normed spaces E, F , for ℓ ∈ N, the ℓ-th entropy number of
S is defined as

eℓ(S) ≜ inf
{
ϵ > 0 : ∃s1, . . . , s2ℓ−1 ∈ S(BE) such that S(BE) ⊂ ⋃2ℓ−1

i=1 BF (si, ϵ)
}

.
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The following lemma shows the relation between covering numbers and entropy num-
bers.

Lemma 3.B.3 (Relation between covering number and entropy number). Suppose a
kernel k is jointly continuous and A ⊂ Rd is bounded. Then for any ϵ > 0,

e⌈log2 Nk(A,ϵ)⌉+1(Hk|A ↪→ ℓ∞(A)) ≤ ϵ.

Proof of Lem. 3.B.3. First, the assumption implies k|A is a bounded kernel, so by Stein-
wart and Christmann [SC08, Lemma 4.23], the inclusion Hk|A ↪→ ℓ∞(A) is continuous.
By the definition of Nk|A(A, ϵ), by adding arbitrary elements into the cover if necessary,
there exists a (k|A, A, ϵ) cover of Bk|A of cardinality 2⌈log2(Nk|A (A,ϵ))⌉ ≥ Nk|A(A, ϵ). Hence

e⌈log2 Nk|A (A,ϵ)⌉+1(Hk|A ↪→ ℓ∞(A)) ≤ ϵ.

The claim follows since Nk|A(A, ϵ) = Nk(A, ϵ) by Lem. 3.B.2.

Proposition 3.B.1 (ℓ∞-entropy number bound for PolyGrowth or LogGrowth k).
Suppose a kernel k satisfies Assum. (α,β)-kernel. Let Cd > 0 denote the constant that
appears in the Assum. (α,β)-kernel. Define

Lk(r) ≜ Cd

log 2rβ. (3.8)

Then for any r > 0 and ℓ ∈ N that satisfies ℓ > Lk(r + 1) + 1, we have

eℓ(Hk|B2(r) ↪→ ℓ∞(B2(r))) ≤


(

Lk(r+1)
ℓ−1

) 1
α if k is PolyGrowth(α, β), and

exp(1−
(

ℓ−1
Lk(r+1)

) 1
α ) if k is LogGrowth(α, β).

Proof of Prop. 3.B.1. By Lem. 3.B.3 and the fact that eℓ is monotonically decreasing in
ℓ by definition, if ℓ ≥ log2Nk(B2(r), ϵ) + 1 for some ϵ > 0, then

eℓ(Hk|B2(r) ↪→ ℓ∞(B2(r))) ≤ e⌈log2 Nk(B2(r),ϵ)⌉+1(Hk|B2(r) ↪→ ℓ∞(B2(r))) ≤ ϵ. (3.9)

For the PolyGrowth case, by its definition, the condition ℓ ≥ log2Nk(B2(r), ϵ) + 1 is
met if ϵ ∈ (0, 1) and

ℓ ≥ Cd

log 2(1/ϵ)α(r + 1)β + 1⇐⇒ ϵ ≤
(

Lk(r+1)
ℓ−1

) 1
α .

Hence (3.9) holds with ϵ =
(

Lk(r+1)
ℓ−1

) 1
α , as long as ϵ ∈ (0, 1), so ℓ needs to satisfy

1 >
(

Lk(r+1)
ℓ−1

) 1
α ⇐⇒ ℓ > Lk(r + 1) + 1.
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Similarly, for the LogGrowth case, the condition ℓ ≥ log2Nk(B2(r), ϵ) + 1 is met if
ϵ ∈ (0, 1) and

ℓ ≥ Cd

log 2(log(1/ϵ) + 1)α(r + 1)β + 1⇐⇒ ϵ ≤ exp(1−
(

ℓ−1
Lk(r+1)

) 1
α ).

Hence (3.9) holds with ϵ = exp(1−
(

ℓ−1
Lk(r+1)

) 1
α ), as long as ϵ ∈ (0, 1), so ℓ needs to satisfy

1 > exp(1−
(

ℓ−1
Lk(r+1)

) 1
α )⇐⇒ ℓ > Lk(r + 1) + 1.

Next, we show that we can transfer bounds on entropy numbers to obtain bounds
for the eigenvalues of kernel matrices, which will become handy when we develop sub-
quadratic-time algorithms in Sec. 3.3. We rely on the following lemma, which summarizes
the relevant facts from Steinwart and Christmann [SC08, Appendix A].

Lemma 3.B.4 (Eigenvalue is bounded by entropy number). Let k be a jointly continuous
kernel and P be a distribution such that Ex∼P[k(x, x)] <∞, and recall that λℓ(·) denotes
the ℓ-th largest eigenvalue of a linear operator. Then, for all ℓ ∈ N,

λℓ(Tk,P) ≤ 4e2
ℓ(Hk ↪→ L2(P)).

Proof of Lem. 3.B.4. For any bounded linear operator S : H1 → H2 between Hilbert
spaces H1 and H2, we have aℓ(S) ≤ 2eℓ(S), where aℓ is the ℓ-th approximation number
defined in Steinwart and Christmann [SC08, (A.29)]. Recall the operator S∗

k,P = Hk ↪→
L2(P) from (3.5), which is compact (in particular bounded) by Lem. 3.B.1(a). Thus

sℓ(S∗
k,P) = aℓ(S∗

k,P) ≤ 2eℓ(S∗
k,P),

where the first equality follows from the paragraph below Steinwart and Christmann
[SC08, (A.29)]) and sℓ is ℓ-th singular number of an operator [SC08, (A.25)]. Then us-
ing the identities mentioned under Steinwart and Christmann [SC08, (A.25)] and Stein-
wart and Christmann [SC08, (A.27)] and that all operators involved are compact by
Lem. 3.B.1(b), we have

λℓ(Tk,P) = λℓ(S∗
k,PSk,P) = sℓ(S∗

k,PSk,P) = s2
ℓ(S∗

k,P) ≤ 4e2
ℓ(S∗

k,P).

The previous lemma allows us to bound eigenvalues of kernel matrices by ℓ∞-entropy
numbers.
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Proposition 3.B.2 (Eigenvalue of kernel matrix is bounded by ℓ∞-entropy number).
Let k be a jointly continuous kernel. Define K ≜ k(Sn,Sn) for the sequence of points
Sn = (x1, . . . , xn) ⊂ Rd. For any w ∈ ∆n−1, recall the notation Sw

n = ∑
i∈[n] wiδxi

,
Kw = diag(

√
w)K diag(

√
w), and Rn = 1 + supi∈[n] ∥xi∥2. Then for all ℓ ∈ N,

λℓ(Kw) (i)= λℓ(Tk,Sw
n
)

(ii)
≤ 4e2

ℓ(Hk|B2(Rn−1) ↪→ ℓ∞(B2(Rn − 1))). (3.10)

Proof of Prop. 3.B.2. Without loss of generality, we assume wi > 0 for all i ∈ [n], since
otherwise, we can consider a smaller set of points by removing the ones with zero weights.

Proof of equality (i) from display (3.10) Note that L2(Sw
n ) is isometric to Rn.

Let K ≜ k(Sn,Sn) denote the kernel matrix. The action of Tk,Sw
n

is given by, for i ∈ [n],

Tk,Sw
n
f(xi) = ∑

j∈[n] wjk(xi, xj)f(xj),

so in matrix form, Tk,Sw
n
f = K diag(w)f , and hence Tk,Sw

n
= K diag(w). If λℓ is an

eigenvalue of K diag(w) with eigenvector vℓ, then

K diag(w)vℓ = λℓvℓ ⇐⇒ diag(
√

w)K diag(w)vℓ = λℓ diag(
√

w)vℓ

⇐⇒ diag(
√

w)K diag(
√

w)(diag(
√

w)vℓ) = λℓ diag(
√

w)vℓ,

where we used wi > 0 for all i ∈ [n]. Hence the eigenspectrum of Tk,Sw
n

agrees with that
of diag(

√
w)K diag(

√
w).

Proof of bound (ii) from display (3.10) By Lem. 3.B.4, we have λℓ(Tk,Sw
n
) ≤

4e2
ℓ(Hk|B2(Rn−1) ↪→ L2(Sw

n )). Finally, using Def. 3.B.1, we have eℓ(Hk|B2(Rn−1) ↪→ L2(Sw
n )) ≤

eℓ(Hk|B2(Rn−1) ↪→ ℓ∞(B2(Rn − 1))) because Sw
n is supported in B2(Rn−1) and the fact that

∥·∥L2(P) ≤ ∥·∥∞ for any P.

Combining the tools developed so far, we have the following corollary for bounding
the eigenvalues of PolyGrowth and LogGrowth kernel matrices.

Corollary 3.B.1 (Eigenvalue bound for PolyGrowth or LogGrowth kernel matrix).
Suppose a kernel k satisfies Assum. (α,β)-kernel. Let Sn = (x1, . . . , xn) ⊂ Rd be a
sequence of points. For any w ∈ ∆n−1, using the notation Lk from (3.8), for any ℓ >
Lk(Rn) + 1, we have

λℓ(Kw) ≤

4
(

Lk(Rn)
ℓ−1

) 2
α PolyGrowth(α, β) and

4 exp(2− 2
(

ℓ−1
Lk(Rn)

) 1
α ) LogGrowth(α, β).

Proof of Cor. 3.B.1. The claim follows by applying Prop. 3.B.2 and Prop. 3.B.1.
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♢ 3.B.2 Spectral decay of Stein kernels

The goal of this section is to show that a Stein kernel kp satisfies Assum. (α,β)-kernel
provided that the base kernel is sufficiently smooth and to derive the parameters α, β for
PolyGrowth and LogGrowth cases.

For a Stein kernel kp with preconditioning matrix M , we define

Sp(r) ≜ max
(
1, sup∥x∥2≤r

∥∥∥M1/2∇ log p(x)
∥∥∥

2

)
. (3.11)

We start by noting a useful alternative expression for a Stein kernel where we only need
access to the density via the score ∇ log p.

Proposition 3.B.3 (Alternative expression for Stein kernel). The Stein kernel kp has
the following alternative form:

kp(x, y) = ⟨∇ log p(x), M∇ log p(y)⟩k(x, y) + ⟨∇ log p(x), M∇yk(x, y)⟩+
⟨∇ log p(y), M∇xk(x, y)⟩+ tr(M∇x∇yk(x, y)),

(3.12)

where ∇x∇yk(x, y) denotes the d× d matrix (∂xi
∂yj

k(x, y))i,j∈[d].

Proof of Prop. 3.B.3. We compute

(∇x · (p(x)Mk(x, y)p(y)))j = ∑
i∈[d] Mij (∂xi

p(x)k(x, y)p(y) + p(x)∂xi
k(x, y)p(y)) .

∇y · ∇x · (p(x)Mk(x, y)p(y)) = ∑
i,j∈[d] Mij

(
∂xi

p(x)∂yj
p(y)k(x, y) + ∂xi

p(x)∂yj
k(x, y)p(y)

)
+∑

i,j∈[d] Mij

(
p(x)∂yj

p(y)∂xi
k(x, y) + p(x)∂xi

∂yj
k(x, y)p(y)

)
.

The four terms in the last equation correspond to the four terms in (3.12).

In what follows, we will make use of a matrix-valued kernel K : Rd × Rd → Rd×d

which generates an RKHS HK of vector-valued functions. See Carmeli, De Vito, and
Toigo [CDT06] for an introduction to vector-valued RKHS theory.

Our next goal is to build a Hilbert-space isometry between the direct sum Hilbert
space Hk

⊕d and Hkp to represent functions in Hkp using functions from Hk.

Lemma 3.B.5 (Preconditioned matrix-valued RKHS from a scalar kernel). Let k :
Rd × Rd → R be kernel and Hk be the corresponding RKHS. Let M ∈ Rd×d be an
SPSD matrix. Consider the map ι : Hk

⊕d → F(Rd,Rd) defined by (f1, . . . , fd) 7→ [x 7→
M1/2(f1(x), . . . , fd(x))], where Hk

⊕d is the direct-sum Hilbert space of d copies of Hk

Then ι is a Hilbert-space isometry onto a vector-valued RKHS HK with matrix-valued
reproducing kernel given by K(x, y) = k(x, y)M .
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Proof of Lem. 3.B.5. Define γ : Rd → F(Rd,Hk
⊕d) via

γ(x)(α) ≜ k(x, ·)M1/2α.

We have

∥γ(x)(α)∥Hk
⊕d ≤ ∥k(x, ·)∥k

∥∥∥M1/2
∥∥∥

2
∥α∥2 ,

so γ(x) is bounded. Since γ(x) is also linear, we have γ(x) ∈ B(Rd,Hk
⊕d). Let γ(x)∗ :

Hk
⊕d → Rd denote the Hilbert-space adjoint of γ(x). Then for any (f1, . . . , fd) ∈ Hk

⊕d,
α ∈ Rd, we have

⟨γ(x)∗(f1, . . . , fd), α⟩ = ⟨(f1, . . . , fd), γ(x)(α)⟩Hk
⊕d

= ⟨(f1, . . . , fd),k(x, ·)M1/2α⟩Hk
⊕d

= ⟨(f1(x), . . . , fd(x)), M1/2α⟩
= ⟨M1/2(f1(x), . . . , fd(x)), α⟩.

Hence γ(x)∗(f1, . . . , fd) = M1/2(f1(x), . . . , fd(x)), so ι(f1, . . . , fd)(x) = γ(x)∗(f1, . . . , fd).
By Carmeli, De Vito, and Toigo [CDT06, Proposition 2.4], we see that ι is a partial
isometry fromHk

⊕d onto a vector-valued RKHS space withv reproducing kernel K(x, y) =
γ(x)∗γ(y) : Rd → Rd. For α ∈ Rd, previous calculation implies

γ(x)∗γ(y)(α) = γ(x)∗(k(y, ·)M1/2α) = M1/2k(y, x)M1/2α = k(x, y)M.

Lemma 3.B.6 (Stein operator is an isometry). Consider a Stein kernel kp with base
kernel k and preconditioning matrix M . Then, the Stein operator Sp defined by Sp(v) ≜
1
p
∇ · (pv) is an isometry from HK with K ≜ kM to Hkp.

Proof. This follows from Barp et al. [Bar+22, Theorem 2.6] applied to K.

The previous two lemmas show that Sp ◦ ι is a Hilbert space isometry from Hk
⊕d to

Hkp . Note that Sp(v) = ⟨∇ log p, h⟩+∇ · h. Hence, we immediately have

Hkp =
{
⟨∇ log p, M1/2f⟩+∇ · (M1/2f) : f = (f1, . . . , fd) ∈ Hk

⊕d
}

. (3.13)

We next build a divergence RKHS which is one of the summands used to form Hkp .

Lemma 3.B.7 (Divergence RKHS). Let k : Rd×Rd → R be a continuously differentiable
kernel. Let M be an SPSD matrix. Define ∇⊗2 · (Mk) : Rd × Rd → R via

∇⊗2 · (Mk)(x, y) ≜ ∇y · ∇x · (Mk(x, y)) = tr(M∇x∇yk(x, y)). (3.14)
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Then ∇⊗2 · (Mk) is a kernel, and its RKHS H∇⊗2·(Mk) has the following explicit form

H∇⊗2·(Mk) = ∇ · HK =
{
∇ · (M1/2f) : f = (f1, . . . , fd) ∈ Hk

⊕d
}

, (3.15)

where K = Mk. Moreover, ∇· : HK → H∇⊗2·(Mk) is an isometry.

Proof of Lem. 3.B.7. First of all, by Steinwart and Christmann [SC08, Corollary 4.36],
every f ∈ Hk is continuously differentiable, so ∂xi

f exists. By Lem. 3.B.5, ∇ · HK is
well-defined and the right equality in (3.15) holds.

Define γ : Rd → F(R,HK) via

γ(x)(t) ≜ t
∑d

i=1 ∂xi
K(x, ·)ei,

where ei ∈ Rd is the ith standard basis vector in Rd; by Barp et al. [Bar+22, Lemma C.8]
we have ∂xi

K(x, ·)ei ∈ HK . Note that

∥γ(x)(t)∥K = |t|
∥∥∥∑d

i=1 ∂xi
K(x, ·)ei

∥∥∥
K

,

so γ(x) ∈ B(R,HK). The adjoint γ(x)∗ ∈ B(HK ,R) must satisfy, for any h ∈ HK ,

tγ(x)∗h = ⟨h, γ(x)(t)⟩K =
〈
h, t

∑d
i=1 ∂xi

K(x, ·)ei

〉
K

= t∇ · h,

where we used the fact [Bar+22, Lemma C.8] that, for c ∈ Rd, h ∈ HK , ⟨∂xi
K(x, ·)c, h⟩ =

c⊤∂xi
h(x). So we find γ(x)∗(h) = ∇ · h(x). By Carmeli, De Vito, and Toigo [CDT06,

Proposition 2.4], the map A : HK → F(Rd,R) defined by A(h)(x) = γ∗(x)(h) = ∇ · h(x),
i.e., A = ∇·, is a partial isometry from HK to an RKHS H∇·K with reproducing kernel

γ(x)∗γ(y) = ∇ ·
(∑d

i=1 ∂xi
K(x, ·)ei

)
(y) = ∇y · ∇x ·K(x, y) = ∇⊗2 · (Mk)(x, y).

The following lemma shows that we can project a covering of Bk consisting of arbitrary
functions to a covering using functions only in Bk while inflating the covering radius by
at most 2.

Lemma 3.B.8 (Projection of coverings into RKHS balls). Let k be a kernel, A ⊂ Rd be
a set, and ϵ > 0. Let C be a set of functions such that for any f ∈ Bk, there exists g ∈ C
such that ∥f − g∥∞,A ≤ ϵ. Then

Nk(A, 2ϵ) ≤ |C| .
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Proof. We will build a (k, A, 2ϵ) covering C ′ as follows. For any h ∈ C, if there exists
h′ ∈ Bk with ∥h′ − h∥∞,A ≤ ϵ, then we include h′ in C ′. By construction, |C ′| ≤ |C|.
Then, for any f ∈ Bk, by assumption, there exists g ∈ C such that ∥f − g∥∞,A ≤ ϵ. By
construction, there exists g′ ∈ C ′ such that ∥g′ − g∥∞,A ≤ ϵ. Thus

∥f − g′∥∞,A ≤ ∥f − g∥∞,A + ∥g − g′∥∞,A ≤ 2ϵ.

Hence C ′ is a (k, A, 2ϵ) covering.

We are now ready to bound the covering numbers of kp by those of k and ∇⊗2 · (Mk).
Our key insight towards this end is that any element in Hkp can be decomposed as a sum
of functions originated from Hk and a function from the divergence RKHS H∇⊗2·(Mk).

Lemma 3.B.9 (Upper bounding covering number of Stein kernel with that of its base
kernel). Let kp be a Stein kernel with density p and preconditioning matrix M . For any
A ⊂ Rd, ϵ1, ϵ2 > 0,

Nkp(A, ϵ) ≤ Nk(A, ϵ1)dN∇⊗2·(Mk)(A, ϵ2),

for ϵ = 2(
√

dϵ1 supx∈A

∥∥∥M1/2∇ log p(x)
∥∥∥+ ϵ2).

Proof of Lem. 3.B.9. Let Ck be a (k, A, ϵ1) covering and C∇⊗2·(Mk) be a (∇⊗2 ·(Mk), A, ϵ2)
covering. Define b ≜ M1/2∇ log p. Form

C ≜
{
⟨b, f̃⟩+ g̃ : f̃ = (f̃1, . . . , f̃d) ∈ (Ck)d, g̃ ∈ C∇⊗2·(Mk)

}
⊂ F(Rd,R).

Then |C| ≤ |Ck|d
∣∣∣C∇⊗2·(Mk)

∣∣∣. Let K ≜ kM . For any h ∈ Bkp , by (3.13), we can find
f = (f1, . . . , fd) ∈ Hk

⊕d with fi ∈ Hk such that

h = Sp ◦ ι(f) = ⟨∇ log p, M1/2f⟩+∇ · (M1/2f) = ⟨b, f⟩+∇ · (M1/2f).

Since ι and Sp are isometries, we have f ∈ BHk
⊕d . Since, for each i,

∥fi∥k ≤
√∑d

j=1 ∥fj∥2
k = ∥f∥Hk

⊕d ≤ 1,

we have fi ∈ Bk. By Lem. 3.B.7, ∇· : HK → H∇⊗2·(Mk) is also an isometry, so ∇ ·
(M1/2f) ∈ B∇⊗2·(Mk). Thus there exist f̃i ∈ Ck for each i and g̃ ∈ C∇⊗2·(Mk) such that∥∥∥fi − f̃i

∥∥∥
∞,A
≤ ϵ1,

∥∥∥∇ · (M1/2f)− g̃
∥∥∥

∞,A
≤ ϵ2.

Let

h̃(x) ≜ ⟨b, f̃⟩+ g̃ ∈ C.
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Then for x ∈ A,∣∣∣h(x)− h̃(x)
∣∣∣ =

∣∣∣⟨b(x), f(x)− f̃(x)⟩+∇ · (M1/2f(x))− g̃(x)
∣∣∣

≤ ∥b(x)∥
√∑d

i=1(fi(x)− f̃i(x))2 +
∣∣∣∇ · (M1/2f(x))− g̃(x)

∣∣∣
≤
√

dϵ1 ∥b(x)∥+ ϵ2.

Hence ∥∥∥h− h̃
∥∥∥

∞,A
≤
√

dϵ1 supx∈A ∥b(x)∥+ ϵ2 ≜ ϵ3.

Note that C that we constructed is not necessarily contained in Bkp . By Lem. 3.B.8, we
can get a (kp, A, 2ϵ3) covering and we are done.

Corollary 3.B.2 (Log-covering number bound for Stein kernel). Let kp be a Stein kernel
and A ⊂ Rd. For any r > 0, ϵ > 0,

logNkp(A, ϵ) ≤ d logNk

(
A, ϵ

4
√

dSp(r)

)
+ logN∇⊗2·(Mk)

(
A, ϵ

4

)
,

where Sp is defined in (3.11).

Proof. This is direct from Lem. 3.B.9 with ϵ1 = ϵ
4
√

dSp(r) , ϵ2 = ϵ
4 .

Case of differentiable base kernel

Definition 3.B.2 (s-times continuously differentiable kernel). A kernel k is s-times con-
tinuously differentiable for s ∈ N if all partial derivatives ∂α,αk exist and are continuous
for all multi-indices α ∈ Nd

0 with |α| ≤ s.

Proposition 3.B.4 (Covering number bound for kp with differentiable base kernel).
Suppose kp is a Stein kernel with an s-times continuously differentiable base kernel k for
s ≥ 2. Then there exist a constant Cd > 0 depending only on (s, d,k, M) such that for
any r > 0, ϵ ∈ (0, 1),

logNkp(B2(r), ϵ) ≤ CdrdSd/s
p (r)(1/ϵ)d/(s−1).

Proof of Prop. 3.B.4. Since k is s-times continuously differentiable, the divergence kernel
∇⊗2 · (Mk) is (s−1)-times continuously differentiable. By Dwivedi and Mackey [DM22b,
Proposition 2(b)], there exists constants c1, c2 depending only on (s, d,k, M) such that,
for any r > 0, ϵ1, ϵ2 > 0,

logNk (B2(r), ϵ1) ≤ c1r
d(1/ϵ)d/s,

logN∇⊗2·(Mk) (B2(r), ϵ2) ≤ c2r
d(1/ϵ)d/(s−1).
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By Cor. 3.B.2 with A = B2(r), we have, for any r > 0 and ϵ ∈ (0, 1),

logNkp(B2(r), ϵ) ≤ c1drd(4
√

dSp(r))d/s(1/ϵ)d/ϵ + c2r
d(4/ϵ)d/(s−1)

≤ CdrdSd/s
p (r)(1/ϵ)d/(s−1)

for some Cd > 0 depending only on (s, d,k, M).

Case of radially analytic base kernel

For a symmetric positive definite M ∈ Rd×d, we define, for x ∈ Rd,

∥x∥M ≜
√

x⊤M−1x.

Definition 3.B.3 (Radially analytic kernel). A kernel k is radially analytic if k satisfies
k(x, y) = κ(∥x− y∥2

M) for a symmetric positive definite matrix M ∈ Rd×d and a function
κ : R≥0 → R real-analytic everywhere with convergence radius Rκ > 0 such that there
exists a constant Cκ > 0 for which∣∣∣ 1

j!κ
(j)
+ (0)

∣∣∣ ≤ Cκ(2/Rκ)j, for all j ∈ N0, (3.16)

where κ
(j)
+ indicates the j-th right-sided derivative of κ.

Example 3.B.1 (Gaussian kernel). Consider the Gaussian kernel k(x, y) = κ(∥x− y∥2
M)

with κ(t) = e− t
2σ2 where σ > 0. Note the exponential function is real-analytic everywhere,

and so is κ. Since κ(t) = ∑∞
j=0

(−t/2σ2)j

j
, we find 1

j!κ
(j)(0) = (−1)j

j(2σ2)j . Hence (3.16) holds
with Cκ = 1 and Rκ = 2 infj≥0(j(2σ2)j)1/j = 4σ2.

Example 3.B.2 (IMQ kernel). Consider the inverse multiquadric kernel k(x, y) = κ(∥x− y∥2
M)

with κ(t) = (c2 + t)−β where c, β > 0. By Sun and Zhou [SZ08, Example 3], κ is real-
analytic everywhere with Cκ = c−2β(2β + 1)β+1 and Rκ = c2.

A simple calculation yields the following lemma.

Proposition 3.B.5 (Expression for kp with a radially analytic base kernel). Suppose a
Stein kernel kp has a symmetric positive definite preconditioning matrix and a base kernel
k(x, y) = κ(∥x− y∥2

M) where κ is twice-differentiable. Then

kp(x, y) = ⟨∇ log p(x), M∇ log p(y)⟩κ(∥x− y∥2
M)−

2κ′
+(∥x− y∥2

M)⟨x− y,∇ log p(x)−∇ log p(y)⟩−
4κ′′

+(∥x− y∥2
M) ∥x− y∥2

M − 2dκ′
+(∥x− y∥2

M).
(3.17)

In particular,

kp(x, x) =
∥∥∥M1/2∇ log p(x)

∥∥∥2

2
κ(0)− 2dκ′

+(0).
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Proof of Prop. 3.B.5. From k(x, y) = κ(∥x− y∥2
M) = κ((x−y)⊤M−1(x−y)), we compute,

using (3.14),

∇yk(x, y) = −2κ′
+(∥x− y∥2

M)M−1(x− y)
∇x∇yk(x, y) = −2κ′

+(∥x− y∥2
M)M−1 − 4κ′′

+(∥x− y∥2
M)M−1(x− y)((x− y)M−1)⊤

∇⊗2 · (Mk)(x, y) = tr(M∇x∇yk(x, y)) = −4κ′′
+(∥x− y∥2

M) ∥x− y∥2
M − 2dκ′

+(∥x− y∥2
M).

(3.18)

The form (3.17) then follows from applying Prop. 3.B.3.

We next show that the divergence kernel ∇⊗2 · (Mk) is radially analytic given that k
is.
Lemma 3.B.10 (Convergence radius of divergence kernel). Let k be a radially analytic
kernel with the corresponding real-analytic function κ, convergence radius Rκ with constant
Cκ, and a symmetric positive definite matrix M . Then

∇⊗2 · (Mk)(x, y) = κ∇⊗2·(Mk)(∥x− y∥2
M),

where κ∇⊗2·(Mk) : R≥0 → R is the real-analytic function defined as

κ∇⊗2·(Mk)(t) ≜ −4κ′′
+(t)t− 2dκ′

+(t).

Moreover, κ∇⊗2·(Mk) has convergence radius with constant

Rκ∇⊗2·(Mk)
= Rκ

4d+8 , Cκ∇⊗2·(Mk)
= 4dCκ/Rκ.

Proof of Lem. 3.B.10. The first statement regarding the form of κ∇⊗2·(Mk) directly follows
from (3.18). Next, iterative differentiation yields, for j ∈ N0,

κ
(j)
∇⊗2·(Mk)(t) = −(2d + 4j)κ(j+1)

+ (t)− 4κ
(j+2)
+ (t)t.

Thus ∣∣∣ 1
j!κ

(j)
∇⊗2·(Mk)(0)

∣∣∣ = 2d+4j
j! κ

(j+1)
+ (0)

= (2d+4j)(j+1)
(j+1)! κ

(j+1)
+ (0)

≤ (2d + 4j)(j + 1)Cκ(2/Rκ)j+1. (3.19)

For j ≥ 1, ∣∣∣ 1
j!κ

(j)
∇⊗2·(Mk)(0)

∣∣∣ ≤ (2Cκ/Rκ)
(
((2d + 4j)(j + 1))1/j2/Rκ

)j

≤ (2Cκ/Rκ) ((2(2d + 4) · 2/Rκ)j .

where we used the fact that ((2d + 4j)(j + 1))1/j is decreasing in j. For j = 0, (3.19) is
just 2dCκ ·2/Rκ. Hence κ∇⊗2·(Mk) is analytic with Cκ∇⊗2·(Mk)

= 4dCκ/Rκ and Rκ∇⊗2·(Mk)
=

Rκ

4d+8 .
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We will use the following lemma repeatedly.

Lemma 3.B.11 (Covering number of radially analytic kernel with M -metric). Let k0
be a radially analytic kernel with k0(x, y) = κ(∥x− y∥2

2). For any symmetric positive
definite M ∈ Rd×d, consider the radially analytic kernel k(x, y) ≜ κ(∥x− y∥2

M). Then for
any A ⊂ Rd and ϵ > 0, we have

Nk(M−1/2(A), ϵ) = Nk0(A, ϵ).

In particular, for any r > 0,

Nk(B2(r), ϵ) ≤ Nk0(B2(r∥M1/2∥2), ϵ).

Proof. Note that k(x, y) = k0(M−1/2x, M−1/2y). By Paulsen and Raghupathi [PR16,
Theorem 5.7], Hk = {f ◦M−1/2 : f ∈ Hk0}, and moreover Bk = {f ◦M−1 : f ∈ Bk0}.
Let C0 be a (k0, A, ϵ) covering. Form C = {h ◦M−1/2 : h ∈ C0} ⊂ Bk. For any element
f ◦M−1/2 ∈ Bk where f ∈ Bk0 , there exists h ∈ C0 such that ∥f − h∥∞,A ≤ ϵ. Thus∥∥∥f ◦M−1/2 − h ◦M−1/2

∥∥∥
∞,M−1/2(A)

= ∥f − h∥∞,A ≤ ϵ.

Thus Nk(M−1/2(A), ϵ) ≤ Nk0(A, ϵ). By considering M−1 in place of M , we get our desired
equality.

For the second statement, by letting A = M1/2B2(r), we have

Nk(B2(r), ϵ) = Nk0(M1/2B2(r), ϵ) ≤ Nk0(B2(r∥M1/2∥2), ϵ),

where we use the fact that M1/2B2(r) ⊂ B2(r∥M1/2∥2).

In the next lemma, we rephrase the result from Sun and Zhou [SZ08, Theorem 2] for
bounding the covering number of a radially analytic kernel.

Lemma 3.B.12 (Covering number bound for radially analytic kernel). Let k be a radially
analytic kernel with k(x, y) = κ(∥x− y∥2

2). Then, there exist a polynomial P (r) of degree
2d and a constant C depending only on (κ, d) such that for any r > 0, ϵ ∈ (0, 1/2),

logNk(B2(r), ϵ) ≤ P (r)(log(1/ϵ) + C)d+1.

Proof of Lem. 3.B.12. Let Rκ, Cκ denote the constants for κ as in (3.16). By and Sun
and Zhou [SZ08, Theorem 2] with R = 1, D = 2r, and Lem. 3.B.2, for ϵ ∈ (0, 1/2), we
have

logNk(B2(r), ϵ) ≤ N2(B2(r), r†/2)
(
4 log(1/ϵ) + 2 + 4 log(16

√
Cκ + 1)

)d+1
,
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where r† = min(
√

Rκ

2d
,
√

Rκ + (2r)2 − 2r), and N2(B2(r), r†/2) is the covering number of
B2(r) as a subset of Rd, which can be further bounded by [Wai19, (5.8)]

N2(B2(r), r†/2) ≤
(
1 + 4r

r†

)d
.

If r† =
√

Rκ + (2r)2−2r, then r
r† = r√

Rκ+(2r)2−2r
= r(
√

Rκ+(2r)2+2r)
Rκ

≤ r(
√

Rκ+4r)
Rκ

which is a
quadratic polynomial in r. Hence for a constant C > 0 and a polynomial P (r) of degree
2d that depend only on (κ, d), we have the claim.

Proposition 3.B.6 (Covering number bound for kp with radially analytic base kernel).
Suppose kp is a Stein kernel with a preconditioning matrix M and a radially analytic base
kernel k based on a real-analytic function κ. Then there exist a constant C > 0 and a
polynomial P (r) of degree 2d depending only on (κ, d, M) such that for any r > 0, ϵ ∈
(0, 1),

logNkp(B2(r), ϵ) ≤
(
log Sp(r)

ϵ
+ C

)d+1
P (r). (3.20)

Proof of Prop. 3.B.6. Recall k(x, y) = κ(∥x− y∥2
M). Consider k0(x, y) ≜ κ(∥x− y∥2

2).
For ϵ1 ∈ (0, 1/2), by Lem. 3.B.11, we have

logNk(B2(r/∥M1/2∥2), ϵ1) ≤ logNk0(B2(r), ϵ1/2).

Thus by Lem. 3.B.12, there exists a polynomial Pk(r) of degree 2d and a constant Ck

depending only on (κ, d, M) such that

logNk(B2(r), ϵ1) ≤ Pk(r)(log(1/ϵ1) + Ck)d+1

Similarly, for ϵ2 ∈ (0, 1/2), by Lem. 3.B.10 and Lem. 3.B.12, we have, for a constant
C∇⊗2·(Mk) > 0 and a polynomial P∇⊗2·(Mk)(r) of degree 2d that depend only on (κ, d, M),

logN∇⊗2·(Mk)(B2(r), ϵ2) ≤ P∇⊗2·(Mk)(r)(log(1/ϵ2) + C∇⊗2·(Mk))d+1.

For a given ϵ ∈ (0, 1), let ϵ1 = ϵ
4
√

dSp(r) and ϵ2 = ϵ
4 . Then since Sp ≥ 1, we have

ϵ1, ϵ2 ∈ (0, 1/2). By Cor. 3.B.2 with A = B2(r), we obtain, for a constants C > 0 and a
polynomial P (r) of degree 2d that depend only on (κ, d, M),

logNkp(B2(r), ϵ) ≤ P (r)(log(1/ϵ) + logSp(r) + C)d+1.

Hence (3.20) is shown.

When logSp(r) grows polynomially in r, we apply Prop. 3.B.6 to immediately obtain
the following.



Chapter 3. Debiased Distribution Compression 100

Corollary 3.B.3. Under the assumption of Prop. 3.B.6, suppose Sp(r) = O(poly(r)).
Then for any δ > 0, there exists Cd > 0 such that

logNkp(B2(r), ϵ) ≤ Cd log(e/ϵ)d+1(r + 1)2d+δ.

Proof of Cor. 3.B.3. This immediately follows from Prop. 3.B.6 by using δ > 0 to absorb
the logSp(r) = O(rδ) term.

Proof of Prop. 3.1: Stein kernel growth rates

This follows from Prop. 3.B.4 and Cor. 3.B.3, and by noticing that if sup∥x∥2≤r ∥∇ log p(x)∥2
is bounded by a degree dℓ polynomial, then so is

Sp(r) = sup∥x∥2≤r

∥∥∥M1/2∇ log p(x)
∥∥∥

2
≤
∥∥∥M1/2

∥∥∥
2

sup∥x∥2≤r ∥∇ log p(x)∥2 .

■ 3.C A Debiasing Benchmark

♢ 3.C.1 MMD of unbiased i.i.d. sample points

We start by showing that sequence of n points sampled i.i.d. from P achieves Θ(n−1)
squared MMDkP to P in expectation.

Proposition 3.C.1 (MMD of unbiased i.i.d. sample points). Let kP be a kernel satisfying
Assum. 3.1 with p ≥ 1. Let Sn = (xi)i∈[n] be n i.i.d. samples from P. Then

E[MMDkP(Sn,P)2] = Ex∼P[kP(x,x)]
n

.

Proof of Prop. 3.C.1. We compute

E[MMDkP(Sn,P)2] = E[∑i,j∈[n]
1

n2kP(xi, xj)] = 1
n2
∑

i,j∈[n] E[kP(xi, xj)] = 1
n
E[kP(x1, x1)],

where we used the fact that kP is mean-zero with respect to P and the independence of
xi, xj for i ̸= j.

♢ 3.C.2 Proof of Thm. 3.1: Debiasing via simplex reweighting

We make use of the self-normalized importance sampling weights

wSNIS
j = dP

dQ(xj)/
∑

i∈[n]
dP
dQ(xi)
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for j ∈ [n] in our proofs. Notice that (wSNIS
1 , . . . , wSNIS

n )⊤ ∈ ∆n−1 and hence

MMDOPT ≤ MMDkP(wSNIS
i δxi

,P) = ∥
∑n

i=1
dP
dQ (xi)kP(xi,·)∥kP∑n

i=1
dP
dQ (xi)

= ∥ 1
n

∑n

i=1
dP
dQ (xi)kP(xi,·)∥kP

1
n

∑n

i=1
dP
dQ (xi)

.

Introduce the bounded in probability notation Xn = Op(gn) to mean Pr(|Xn/gn| > Cϵ) ≤ ϵ
for all n ≥ Nϵ for any ϵ > 0. Then we claim that under the conditions assumed in Thm. 3.1,
∥ 1

n

∑n
i=1

dP
dQ(xi)kP(xi, ·)∥kP = Op(n− 1

2 ) and 1
n

∑n
i=1

dP
dQ(xi)→ 1 almost surely, (3.21)

so that by Slutsky’s theorem [Wel+13, Ex. 1.4.7], we have MMDOPT = Op(n− 1
2 ) as desired.

We prove the claims in (3.21) in two main steps: (a) first, we construct a weighted RKHS
and then (b) establish a central limit theorem (CLT) that allows us to conclude both
claims from (3.21)

Constructing a weighted and separable RKHS Define the kernel
kQ(x, y) ≜ dP

dQ(x)kP(x, y) dP
dQ(y)

with Hilbert space HkQ = dP
dQHkP and the elements ξi ≜ kQ(xi, ·) = dP

dQ(xi)kP(xi, ·) dP
dQ(·) ∈

HkQ for each i ∈ N. By Paulsen and Raghupathi [PR16, Prop. 5.20], any element in HkQ

is represented by dP
dQf for some f ∈ HkP and moreover, f 7→ dP

dQf preserves inner product
between the two RKHSs, i.e., ⟨f, g⟩kP

= ⟨ dP
dQf, dP

dQg⟩kQ for f, g ∈ HkP , which in turn implies
∥f∥kP = ∥ dP

dQf∥kQ . As a result, we also have that

∥ 1
n

∑n
i=1

dP
dQ(xi)kP(xi, ·)∥kP = ∥ 1

n

∑n
i=1

dP
dQ(xi)kP(xi, ·) dP

dQ(·)∥kQ = ∥ 1
n

∑n
i=1 ξi∥kQ . (3.22)

Since HkP is separable, there exists a dense countable subset (fn)n∈N ⊂ HkP . For any
dP
dQf ∈ HkQ , there exists {nk}k∈N such that limk→∞ ∥fnk

− f∥kP = 0. Since

∥ dP
dQfnk

− dP
dQf∥kQ = ∥ dP

dQ(fnk
− f)∥kQ = ∥fnk

− f∥kP

due to inner-product preservation, we thus have
limk→∞ ∥ dP

dQfnk
− dP

dQf∥kQ = limk→∞ ∥fnk
− f∥kP0,

so ( dP
dQfn)n∈N is dense in HkQ , showing that HkQ is separable.

Harris recurrence of the chain (xi)i∈N Let µ1 denote the distribution of x1. Since
S∞ = (xi)∞

i=1 is a homogeneous ϕ-irreducible geometrically ergodic Markov chain with
stationary distribution Q, it is also positive [MT12, Ch. 10] by definition and aperiodic
by Douc et al. [Dou+18, Lem. 9.3.9]. Moreover, since S∞ is ϕ-irreducible, aperiodic, and
geometrically ergodic in the sense of Gallegos-Herrada, Ledvinka, and Rosenthal [GLR23,
Thm. 1] and µ1 is absolutely continuous with respect to P, we will assume, without loss
of generality, that S∞ is Harris recurrent [MT12, Ch. 9], since, by Qin [Qin23, Lem. 9],
S∞ is equal to a geometrically ergodic Harris chain with probability 1.



Chapter 3. Debiased Distribution Compression 102

CLT for 1√
n

∑n
i=1 ξi We now show that 1√

n

∑n
i=1 ξi converges to a Gaussian random el-

ement taking values in HkQ . We separate the proof in two parts: first when the initial
distribution µ1 = Q and next when µ1 ̸= Q.

Case 1: µ1 = Q When µ1 = Q, S∞ is a strictly stationary chain. By Bradley [Bra05,
Thm. 3.7 and (1.11)], since S∞ is geometrically ergodic, its strong mixing coefficients
(α̃i)i∈N satisfy α̃i ≤ Cρi for some C > 0 and ρ ∈ [0, 1) and all i ∈ N. Since each ξi

is a measurable function of xi, the strong mixing coefficients (αi)i∈N of (ξi)i∈N satisfy
αi ≤ α̃i ≤ Cρi for each i ∈ N. Consequently, ∑i∈N i2/δαi < ∞ for δ = 2q − 2 > 0. Note
that we also have

Ez∼Q[∥kQ(z, ·)∥2+δ
kQ

] = Ez∼Q[kQ(z, z)q] = Ez∼Q[ dP
dQ(z)2qkP(z, z)q]

= Ex∼P[ dP
dQ(x)2q−1kP(x, x)q] <∞,

Exi∼Q[ξi] = Exi∼P[kP(xi, ·)] = 0 and thatHkQ is separable. Since S∞ is a strictly stationary
chain, we conclude that (ξi)i∈N is a strictly stationary centered sequence of HkQ-valued
random variables satisfying the conditions needed to invoke Merlevède, Peligrad, and Utev
[MPU97, Cor. 1], and hence ∑n

i=1 ξi/
√

n converges in distribution to a Gaussian random
element taking values in HkQ .

Case 2: µ1 ̸= Q Since S∞ is positive Harris and ∑n
i=1 ξi/

√
n satisfies a CLT for

the initial distribution µ1 = Q, Meyn and Tweedie [MT12, Prop. 17.1.6] implies that∑n
i=1 ξi/

√
n also satisfies the same CLT for any initial distribution µ1.

Putting the pieces together for (3.21) Since, for any initial distribution for x1,
the sequence (∑n

i=1 ξi/
√

n)n∈N converges in distribution and that HkQ is separable and (by
virtue of being a Hilbert space) complete, Prokhorov’s theorem [Bil13, Thm. 5.2] implies
that the sequence is also tight, i.e., ∥∑n

i=1 ξi∥kQ/
√

n = Op(1). Consequently,

∥ 1
n

∑n
i=1

dP
dQ(xi)kP(xi, ·)∥kP

(3.22)= ∥ 1
n

∑n
i=1 ξi∥kQ = 1√

n
· ∥
∑n

i=1 ξi√
n
∥kQ = Op(n− 1

2 ),

as desired for the first claim in (3.21). Moreover, the strong law of large numbers for
positive Harris chains [MT12, Thm. 17.0.1(i)] implies that 1

n

∑
i∈[n]

dP
dQ(xi) converges almost

surely to Ez∼Q[ dP
dQ(z)] = 1 as desired for the second claim in (3.21).

♢ 3.C.3 Proof of Thm. 3.2: Better-than-i.i.d. debiasing via simplex reweighting

We start with Thm. 3.C.1, proved in Sec. 3.C.4, that bounds MMDOPT in terms of the
eigenvalues of the integral operator of the kernel kP. Our proof makes use of a weight
construction from Liu and Lee [LL17, Theorem 3.2], but is a non-trivial generalization
of their proof as we no longer assume uniform bounds on the eigenfunctions, and instead
leverage truncated variations of Bernstein’s inequality (Lems. 3.C.2 and 3.C.3) to establish
suitable concentration bounds.
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Theorem 3.C.1 (Debiasing via i.i.d. simplex reweighting). Consider a kernel kP sat-
isfying Assum. 3.1 with p = 2. Let (λℓ)∞

ℓ=1 be the decreasing sequence of eigenvalues of
TkP,P defined in (3.6). Let Sn be a sequence of n ∈ 2N i.i.d. random variables with law Q
such that P is absolutely continuous with respect to Q and ∥ dP

dQ∥∞ ≤M for some M > 0.
Futhermore, assume there exist constants δn, Bn > 0 such that Pr (∥kP∥n > Bn) < δn.
Then for all L ∈ N such that λL > 0, we have

E[MMD2
kP

(SwOPT
n ,P)] ≤ 8M

n

(
2M
n

Ex∼P[k2
P(x,x)]

λL
+∑

ℓ>L λℓ

)
+ ϵnE[k2

P(x1, x1)], (3.23)

where

ϵ2
n ≜ n exp( −3n

16MBn/λL
) + 2 exp( −n

16M2 ) + 2 exp(− n
64M2(Ex∼P[kP(x,x)]+Bn/12)/λL

) + δn. (3.24)

Given Thm. 3.C.1, Thm. 3.2 follows, i.e., we have E[MMD2
kP

(SwOPT
n ,P)] = o(n−1),

as long as we can show (i) E[k2
P(x1, x1)] < ∞, which in turn holds when q > 3 as

assumed in Thm. 3.2, and (ii) find sequences (Bn)∞
n=1, (δn)∞

n=1, and (Ln)∞
n=1 such that

Pr(∥kP∥n > Bn) < δn for all n and the following conditions are met:

(a) Ex∼P[k2
P(x,x)]

λLn
= o(n);

(b) Bn

λLn
= O(nβ), for some β < 1;

(c) ∑ℓ>Ln
λℓ = o(1);

(d) δn = o(n−2).

We now proceed to establish these conditions under the assumptions of Thm. 3.2.
Condition (d) By the de La Vallée Poussin Theorem [Cha15, Thm. 1.3] applied

to the Q-integrable function x 7→ kP(x, x)q (which is a uniformly integrable family with
one function), there exists a convex increasing function G such that limt→∞

G(t)
t

=∞ and
E[G(kP(x1, x1)q)] <∞. Thus,

Pr(kP(x1, x1) > n3/q) = Pr(kP(x1, x1)q > n3) = Pr(G(kP(x1, x1))q > G(n3))
≤ E[G(kP(x1,x1))q]

G(n3) = o(n−3),

where the last step uses limt→∞
G(t)

t
=∞. Hence by the union bound,

Pr(∥kP∥n > n3/q) = Pr(maxi∈[n] kP(xi, xi) > n3/q) ≤ n Pr(kP(x1, x1) > n3/q) = o(n−2).

Hence if we set Bn = nτ for τ ≜ 3/q < 1, there exists (δn)∞
n=1 such that δn = o(n−2). This

fulfills (d) and that Pr(∥kP∥n > Bn) < δn.
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To prove remaining conditions, without loss of generality, we assume that λℓ > 0 for
all ℓ ∈ N, since otherwise we can choose Ln to be, for all n, the largest ℓ such that λℓ > 0.
Then ∑ℓ>Ln

λLn = 0 and all other conditions are met.
Condition (c) If Ln →∞, then (c) is fulfilled since ∑ℓ λℓ <∞, which follows from

Lem. 3.B.1(d) and that∑
ℓ λℓ = ∑∞

ℓ=1 λiEx∼P[ϕℓ(x)2] = ∑∞
ℓ=1 λiEx∼P[ϕℓ(x)2] = Ex∼P[∑∞

ℓ=1 λiϕℓ(x)2]
= Ex∼P[kP(x, x)] <∞.

Conditions (a) and (b) Note that the condition (a) is subsumed by (b) since
Ex∼P[k2

P(x, x)] <∞. It remains to choose (Ln)∞
n=1 to satisfy (b) such that limn→∞ Ln =∞.

Define Ln ≜ max{ℓ ∈ N : λℓ ≥ n
τ−1

2 }. Then Ln is well-defined for n ≥ ( 1
λ1

)
2

1−τ , since for
such n we have λ1 ≥ n

τ−1
2 . Hence for n ≥ ( 1

λ1
)

2
1−τ , we have

Bn

λLn
≤ nτ

n
τ−1

2
= n

τ+1
2 ,

so (b) is satisfied with β = τ+1
2 < 1. Since τ < 1, Ln is non-decreasing in n and n

τ−1
2

decreases to 0. Since each λℓ > 0, we therefore have limn→∞ Ln =∞.

♢ 3.C.4 Proof of Thm. 3.C.1: Debiasing via i.i.d. simplex reweighting

We will slowly build up towards proving Thm. 3.C.1. First notice Ex∼P[k2
P(x, x)] < ∞

implies Ex∼P[kP(x, x)] <∞, so Lem. 3.B.1 holds. Fix any L ∈ N satisfying λL > 0. Since
n is even, we can define D0 ≜ [n/2] and D1 ≜ [n] \ D0. We will use SD0 and SD1 to
denote the subsets of Sn with indices in D0 and D1 respectively. Let (ϕℓ)∞

ℓ=1 ⊂ HkP be
eigenfunctions corresponding to the eigenvalues (λℓ)∞

ℓ=1 by Lem. 3.B.1(c), so that (ϕℓ)∞
ℓ=1

is an orthonormal system of L2(P).
We start with a useful lemma.

Lemma 3.C.1 (HkP consists of mean-zero functions). Let kP be a kernel satisfying As-
sum. 3.1. Then for any f ∈ HkP, we have Pf = 0.

Proof. Fix f ∈ HkP . By Steinwart and Christmann [SC08, Thm 4.26], f is P integrable.
Consider the linear operator I that maps f 7→ Pf . Since

|I(f)| = |Pf | ≤ P |f | =
∫
|⟨f,kP(x, ·)⟩kP| dP ≤

∫
∥f∥kP

√
kP(x, x)dP

= ∥f∥kP
Ex∼P[kP(x, x) 1

2 ].

Hence I is a continuous linear operator, so by the Riez representation theorem [SC08,
Thm. A.5.12], there exists g ∈ HkP such that I(h) = ⟨h, g⟩kP for any h ∈ HkP .
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By Steinwart and Christmann [SC08, Thm. 4.21], the set

Hpre ≜
{∑n

i=1 αikP(·, xi) : n ∈ N, (αi)i∈[n] ⊂ R, (xi)i∈[n] ⊂ Rd
}

is dense in HkP . Note that Hpre consists of mean zero functions under P by linearity. So
there exists fn converging to f in HkP where each fn has Pfn = I(fn) = ⟨fn, g⟩kP = 0.
Since

limn→∞ |⟨f, g⟩kP − ⟨fn, g⟩kP| = limn→∞ |⟨f − fn, g⟩kP| ≤ limn→∞ ∥f − fn∥kP
∥g∥kP

= 0,

we have Pf = ⟨f, g⟩kP = 0.

In particular, the assumption Ex∼P[k2
P(x, x)] <∞ of Thm. 3.C.1 implies Ex∼P[kP(x, x) 1

2 ] <
∞, so Lem. 3.C.1 holds.

Step 1. Build control variate weights
Fix any L ≥ 1 and h ∈ HkP , and let ĥD0 denote the eigen-expansion truncated

approximation of h based on D0,

ĥD0(x) ≜ ∑L
ℓ=1 β̂ℓ,0ϕℓ(x) for β̂ℓ,0 ≜ 2

n

∑
i∈D0 h(xi)ϕℓ(xi)ξ(xi).

Then

E[β̂ℓ,0] = E
[

2
n

∑
i∈D0 h(xi)ϕℓ(xi)ξ(xi)

]
= ⟨h, ϕℓ⟩L2(P). (3.25)

Next, define the control variate

Ẑ0[h] = 2
n

∑
i∈D1

(
ξ(xi)(h(xi)− ĥD0(xi))

)
. (3.26)

which satisfies

E[Ẑ0[h]] = Ex∼P
[
h(x)−∑L

ℓ=1 E[β̂ℓ,0]ϕℓ(x)
]

= 0, (3.27)

since functions in HkP have mean 0 with respect to P (Lem. 3.C.1). Similarly, we define
Ẑ1[h] by swapping D0 and D1. Then we form Ẑ[h] ≜ Ẑ0[h]+Ẑ1[h]

2 . We can rewrite Ẑ[h] as
a quadrature rule over Sn [LL17, Lemma B.6]

Ẑ[h] = ∑
i∈[n] wih(xi), (3.28)

where wi is defined as (whose randomness depends on the randomness in Sn)

wi ≜

{
1
n
ξ(xi)− 2

n2
∑

j∈D1 ξ(xi)ξ(xj)⟨ΦL(xi), ΦL(xj)⟩, ∀i ∈ D0,
1
n
ξ(xi)− 2

n2
∑

j∈D0 ξ(xi)ξ(xj)⟨ΦL(xi), ΦL(xj)⟩, ∀i ∈ D1,
(3.29)
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and ΦL(x) ≜ (ϕ1(x), . . . , ϕL(x)).
Step 2. Show E[MMD2

kP
(Sw

n ,P)] = o(n−1)
We first bound the variance of the control variate Ẑ0[h] for h = ϕℓ′ for ℓ′ ∈ N. Let us

fix ℓ′ ∈ N. From (3.26), we compute

E[Ẑ0[h]2] = 4
n2E

[(∑
i∈D1 ξ(xi)(h(xi)− ĥD0(xi))

)2
]

= 4
n2E

[∑
i∈D1 ξ(xi)2(h(xi)− ĥD0(xi))2

]
= 2

n
E[Ex∼Q[ξ(x)2(h(x)− ĥD0(x))2|SD0 ]]

= 2
n
E[Ex∼P[ξ(x)(h(x)− ĥD0(x))2|SD0 ]]

≤ 2M
n
E[Ex∼P[(h(x)− ĥD0(x))2|SD0 ]],

where in the second equality, the cross terms are zero due to the independence of points
xi and the equality (3.27). By the definition of ĥD0 , we compute

Ex∼P[(h(x)− ĥD0(x))2|SD0 ] = Ex∼P

[(
ϕℓ′(x)−∑ℓ≤L β̂ℓ,0ϕℓ(x)

)2
∣∣∣∣SD0

]
= Ex∼P

[
ϕ2

ℓ′(x) +∑
ℓ≤L β̂2

ℓ,0ϕ
2
ℓ(x)− 2ϕℓ′(x)∑ℓ≤L β̂ℓ,0ϕℓ(x)

∣∣∣SD0

]
= 1 +∑

ℓ≤L β̂2
ℓ,0 − 2∑ℓ≤L β̂ℓ,01ℓ′=ℓ

= 1 +∑
ℓ≤L β̂2

ℓ,0 − 2β̂ℓ′,01ℓ′≤L,

where we use the fact that (ϕℓ)∞
ℓ=1 is an orthonormal system in L2(P). By (3.25) with

h = ϕℓ′ , we have E[β̂ℓ′,0] = 1. On the other hand, we can bound, again using the
orthonormality of (ϕℓ)∞

ℓ=1,

E[β̂2
ℓ,0] = E

[(
2
n

∑
i∈D0 ϕℓ(xi)ϕℓ′(xi)ξ(xi)

)2
]

= 4
n2E [∑i∈D0(ϕℓ(xi)ϕℓ′(xi)ξ(xi))2]

≤ 2M
n
Ex∼P[(ϕℓ(x)ϕℓ′(x))2].

Thus for all ℓ′ ∈ N,

E[Ẑ0[ϕℓ′ ]2] ≤ 2M
n

(
1 + 2M

n

∑
ℓ≤L Ex∼P[(ϕℓ(x)ϕℓ′(x))2]− 21ℓ′≤L

)
≤ 2M

n

(
2M
n

∑
ℓ≤L Ex∼P[(ϕℓ(x)ϕℓ′(x))2] + 1ℓ′>L

)
.

Since Ẑ[h] = Ẑ0[h]+Ẑ1[h]
2 and (a+b

2 )2 ≤ a2+b2

2 for a, b ∈ R, and, by symmetry, E[Ẑ0[h]2] =
E[Ẑ1[h]2], we have

E[Ẑ[ϕℓ′ ]2] ≤ 2M
n

(
2M
n

∑
ℓ≤L Ex∼P[(ϕℓ(x)ϕℓ′(x))2] + 1ℓ′>L

)
. (3.30)
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Now we have

E[MMD2
kP

(Sw
n ,P)] = E

[∑
i,j∈[n] wiwjkP(xi, xj)

]
= E

[∑
i,j∈[n] wiwj

∑∞
ℓ′=1 λℓ′ϕℓ′(xi)ϕℓ′(xj)

]
= E

[∑∞
ℓ′=1

∑
i,j∈[n] wiwjλℓ′ϕℓ′(xi)ϕℓ′(xj)

]
= E

[∑∞
ℓ′=1 λℓ′

(∑
i∈[n] wiϕℓ′(xi)

)2
]

= ∑∞
ℓ′=1 λℓ′E

[(∑
i∈[n] wiϕℓ′(xi)

)2
]

= ∑∞
ℓ′=1 λℓ′E[Ẑ[ϕℓ′ ]2],

where the second and third equalities are due to the absolute convergence of the Mer-
cer series (Lem. 3.B.1(d)), the fourth equality follows from Tonelli’s theorem [SC08,
Thm. A.3.10], and the last step is due to (3.28). Plugging in (3.30), we have

E[MMD2
kP

(Sw
n ,P)] ≤ 2M

n

(
2M
n

∑∞
ℓ′=1

∑
ℓ≤L λℓ′Ex∼P[(ϕℓ(x)ϕℓ′(x))2] +∑

ℓ>L λℓ

)
.

Since the eigenvalues are non-negative and non-increasing, we can write, by (3.7),

k2
P(x, x) = (∑∞

ℓ=1 λℓϕℓ(x)2)2 ≥ ∑∞
ℓ′=1

∑
ℓ≤L λℓ′λℓ(ϕℓ(x)ϕℓ′(x))2

≥ λL
∑∞

ℓ′=1
∑

ℓ≤L λℓ′(ϕℓ(x)ϕℓ′(x))2.

Thus by Tonelli’s theorem [SC08, Thm. A.3.10],∑∞
ℓ′=1

∑
ℓ≤L λℓ′Ex∼P[(ϕℓ(x)ϕℓ′(x))2] = Ex∼P

[∑∞
ℓ′=1

∑
ℓ≤L λℓ′(ϕℓ(x)ϕℓ′(x))2

]
≤ Ex∼P[k2

P(x,x)]
λL

.

Finally, we have

E[MMD2
kP

(Sw
n ,P)] ≤ 2M

n

(
2M
n

Ex∼P[k2
P(x,x)]

λL
+∑

ℓ>L λℓ

)
. (3.31)

Step 3. Meet the non-negative constraint
We now show that the weights (3.29) are nonnegative and sum close to one with high

probability. For i ∈ D0, we have

wi = 1
n
ξ(xi) (1− Ti) for Ti ≜ 2

n

∑
j∈D1 ξ(xj)⟨ΦL(xi), ΦL(xj)⟩.

Our first goal is to derive an upper bound for Pr (mini∈D0 wi < 0). Define the event

En ≜ {∥kP∥n ≤ Bn} , (3.32)

so Pr(Ec
n) < δn by the assumption on ∥kP∥n. Then

Pr
(
mini∈[n] wi < 0, En

)
= Pr

(
maxi∈[n] Ti > 1, En

)
≤ n Pr(T11En > 1), (3.33)

where we applied the union bound and used the fact that Ti1En has the same law for
different i. To further bound Pr(T11En > 1), we will use the following lemma.
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Lemma 3.C.2 (Truncated Bernstein inequality). Let X1, . . . , Xn be i.i.d. random vari-
ables with E[X1] = 0 and E[X2

1 ] <∞. For any B > 0, t > 0,

Pr
(

1
n

∑
i∈[n] Xi1Xi≤B > t

)
≤ exp

(
−nt2

2(E[X2
1 ]+ Bt

3 )

)
.

Proof of Lem. 3.C.2. Fix any B > 0 and t > 0 and define, for each i ∈ [n], Yi ≜ Xi1Xi≤B.
Then Yi ≤ B,

E[Yi] = E[Xi1Xi≤B] ≤ E[Xi1Xi≤B] + E[Xi1Xi>B] = E[Xi] = 0, and
E[Y 2

i ] = E[X2
i 1Xi≤B] ≤ E[X2

i ] = E[X2
1 ].

Now we can invoke the non-positivity of E[Yi], the one-sided Bernstein inequality [Wai19,
Prop. 2.14], and the relation E[Y 2

i ] ≤ E[X2
1 ] to conclude that

Pr
(

1
n

∑
i∈[n] Yi > t

)
≤ Pr

(
1
n

∑
i∈[n] (Yi − E[Yi]) > t

)
≤ exp

(
−nt2

2( 1
n

∑
i∈[n] E[Y 2

i ]+ Bt
3 )

)
≤ exp

(
−nt2

2(E[X2
1 ]+ Bt

3 )

)
.

For j ∈ D1, define Xj ≜ ξ(xj)⟨ΦL(x1), ΦL(xj)⟩ and note that

E[Xj|x1] = Ex∼Q[ξ(x)⟨ΦL(x1), ΦL(x)⟩|x1] = Ex∼P[⟨ΦL(x1), ΦL(x)⟩|x1] = 0
E[X2

j |x1] = E[ξ(xj)2⟨ΦL(x1), ΦL(xj)⟩2|x1] ≤MEx∼P[⟨ΦL(x1), ΦL(x)⟩2|x1]
= MEx∼P

[∑
ℓ,ℓ′≤L ϕℓ(x1)ϕℓ′(x1)ϕℓ(x)ϕℓ′(x)

∣∣∣x1
]

= M
∑

ℓ,ℓ′≤L ϕℓ(x1)ϕℓ′(x1)Ex∼P [ϕℓ(x)ϕℓ′(x)]
= M ∥ΦL(x1)∥2

2 .

Since λ1 ≥ λ2 ≥ · · · ≥ 0, for any x ∈ Rd, we can bound ∥ΦL(x)∥2
2 via

∥ΦL(x)∥2
2 = ∑

ℓ≤L ϕℓ(x)2 ≤
∑

ℓ≤L
λℓϕℓ(x)2

λL
≤
∑∞

ℓ=1 λℓϕℓ(x)2

λL
= kP(x,x)

λL
, (3.34)

where we applied Lem. 3.B.1(d) for the last equality. Thus

|Xj| ≤M ∥ΦL(x1)∥2 ∥ΦL(xj)∥2 ≤M ∥ΦL(x1)∥2

√
kP(xj ,xj)

λL
,

so if we let B ≜
√

Bn

λL
M ∥ΦL(x1)∥2 , then

En =
{
supi∈[n] kP(xi, xi) ≤ Bn

}
⊂ ⋂j∈D1{|Xj| ≤ B}.
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Since T1 = 2
n

∑
j∈D1 Xj, we have inclusions of events

{T11En > 1} = {T1 > 1} ∩ En ⊂
{

2
n

∑
j∈D1 Xj1Xj≤B > 1

}
.

Thus Lem. 3.C.2 with t = 1 and conditioned on x1 implies

Pr (T11En > 1|x1) ≤ Pr
(

2
n

∑
j∈D1 Xj1Xj≤B > 1

∣∣∣x1
)

≤ exp
 −n

4(M∥ΦL(x1)∥2
2+
√

Bn
λL

M∥ΦL(x1)∥2/3)

 .

On event {kP(x1, x1) ≤ Bn}, by (3.34), we have

∥ΦL(x1)∥2 ≤
√

Bn

λL
.

Hence

Pr (T11En > 1|x1)1kP(x1,x1)≤Bn ≤ exp
(

−n
16
3 M Bn

λL

)
.

On the other hand, {kP(x1, x1) > Bn} /∈ En, so

Pr (T11En > 1|x1)1kP(x1,x1)>Bn = 0

Thus

Pr(T11En > 1) = E[Pr(T11En > 1|x1)] ≤ exp
(

−n
16
3 M Bn

λL

)
.

Combining the last inequality with (3.33), we have:

Pr
(
mini∈[n] wi < 0, En

)
≤ n exp

(
−n

16
3 M Bn

λL

)
. (3.35)

Step 4. Meet the sum-to-one constraint
Let

S ≜
∑

i∈D0 wi = ∑
i∈D0

1
n
ξ(xi)

(
1− 2

n

∑
j∈D1 ξ(xj)⟨ΦL(xi), ΦL(xj)⟩

)
.

We now derive a bound for Pr(S < 1/2− t/2) for t ∈ (0, 1). Let

S1 ≜ 1
n

∑
i∈D0 ξ(xi), S2 ≜ − 2

n2
∑

i∈D0

∑
j∈D1 ξ(xi)ξ(xj)⟨ΦL(xi), ΦL(xj)⟩,
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so S = S1 + S2. Note that E[S1] = 1/2 and E[S2] = 0 since D0 and D1 are disjoint. Let
En be the same event defined as in (3.32). For t1 ∈ (0, t/2) to be determined later and
t2 ≜ t/2− t1, we have, by the union bound

Pr(S < 1/2− t/2, En) ≤ Pr(S1 < 1/2− t1, En) + Pr(S2 < −t2, En).

By Hoeffding’s inequality and the assumption ξ(x) ≤M , we have

Pr(S1 < 1/2− t1, En) ≤ Pr
(

2
n

∑
i∈D0

ξ(xi)
2 − 1/2 < −t1

)
≤ exp

(−2(n/2)t2
1

(M/2)2

)
= exp

(−4nt2
1

M2

)
.

(3.36)

To give a concentration bound for Pr(S2 < −t2, En), we will use the following lemma.

Lemma 3.C.3 (U-statistic Bernstein’s inequality). Let h : X × X → R be a function
bounded above by b > 0. Assume n ∈ 2N and let x1, . . . , xn be i.i.d. random variables
taking values in X . Denote mh ≜ E[h(x1, x2)] and σ2

h ≜ Var[h(x1, x2)]. Let D0 = [n/2]
and D1 = [n] \ [n/2]. Define

U ≜ 1
(n/2)2

∑
i∈D0

∑
j∈D1 h(xi, xj).

Then

Pr(U −mh > t) ≤ exp
(

−nt2

4(σ2
h

+ bt
3 )

)
.

Proof of Lem. 3.C.3. We adapt the proof from Pitcan [Pit17, Section 3] as follows. Let
k ≜ n/2. Define V : X n → R as

V (x1, . . . , xn) ≜ 1
k

∑
i∈[k] h(xi, xi+k).

Then note that

U = 1
k!
∑

σ∈perm(k) Vσ,

Vσ ≜ V (xσ1 , . . . , xσk
),

where perm(k) is the set of all permutations of [k]; this is because every h(xi, xj) term
for i ∈ D0, j ∈ D1 will appear in the summation an equal number of times. For a fixed
σ ∈ perm(k), the random variable V (xσ1 , . . . , xσk

, xk+1, . . . , xn) is a sum of k i.i.d. terms
h(xσi

, xi+k). Denote V = V (x1, . . . , xn). For any s > 0, we have, by independence,

E[es(V −mh)] = E
[
exp( s

k

∑
i∈[k](h(xi, xi+[k])−mh))

]
=
(
E
[
exp( s

k
(h(x1, x2)−mh))

])k
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By the one-sided Bernstein’s lemma Wainwright [Wai19, Prop. 2.14] applied to h(x1,x2)
k

which is upper bounded by b
k

with variance σ2
h

k2 , we have

E
[
exp(sh(x1,x2)−mh

k
)
]
≤ exp( s2σ2

h/2
k(k− bs

3 )),

for s ∈ [0, 3k/b). Next, by Markov’s inequality and Jensen’s inequality,

Pr(U −mh > t) = Pr(es(U−mh) > est) ≤ E[es(U−mh)]e−st

= E
[
exp( 1

(n/2)!
∑

σ∈perm(n/2) s(Vσ −mh))
]

e−st

≤ E
[

1
(n/2)!

∑
σ∈perm(n/2) exp(s(Vσ −mh))

]
e−st

= E[es(V −mh)]e−st.

Therefore,

Pr(U −mh > t) ≤ exp( s2σ2
h

2(k− bs
3 ) − st).

Now, we get the desired bound if we pick s = k2t
kσ2

h
+ ktb

3
∈ [0, 3k/b) and simplify.

Let

h(x, x′) ≜ ξ(x)ξ(x′)⟨ΦL(x), ΦL(x′)⟩
h̄(x, x′) ≜ h(x, x′)1h(x,x′)≤M2 Bn

λL

.

Then

Pr(S2 < −t2, En) = Pr
(

1
(n/2)2

∑
i∈D0

∑
j∈D1 h(xi, xj) > 2t2, En

)
≤ Pr

(
1

(n/2)2
∑

i∈D0

∑
j∈D1 h̄(xi, xj) > 2t2

)
, (3.37)

where the last inequality used the fact that, for i ∈ D0, j ∈ D1,

En ⊂ {max(kP(xi, xi),kP(xj, xj)) ≤ Bn} ⊂
{
h(xi, xj) ≤M2 Bn

λL

}
,

using (3.34). We further compute

mh̄ = E[h̄(x1, x2)] ≤ E[h(x1, x2)] = E[ξ(x1)ξ(x2)⟨ΦL(x1), ΦL(x2)⟩]
= ∑

ℓ≤L E[ξ(x1)ξ(x2)ϕℓ(x1)ϕℓ(x2)]
= ∑

ℓ≤L(Ex∼P[ϕℓ(x)])2 = 0,
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and

σ2
h̄

= Var[h̄(x1, x2)] ≤ E[h̄(x1, x2)2] ≤ E[h(x1, x2)2]
= E

[
(ξ(x1)ξ(x2)⟨ΦL(x1), ΦL(x2)⟩)2

]
≤M2E(x,x′)∼P×P[⟨ΦL(x), ΦL(x′)⟩2]
= M2E(x,x′)∼P×P

[∑
ℓ,ℓ′≤L ϕℓ(x)ϕℓ′(x)ϕℓ(x′)ϕℓ′(x′)

]
= M2∑

ℓ,ℓ′≤L(E[ϕℓ(x)ϕℓ′(x)])2 = LM2.

Since Ex∼P[kP(x, x)] = ∑
ℓ λℓ ≥ LλL, we have L ≤

∥kP∥2
L2(P)

λL
, so that σ2

h̄
≤

M2∥kP∥2
L2(P)

λL
.

Applying Lem. 3.C.3 to h̄, which is bounded by M2 Bn

λL
and using the fact that mh̄ ≤ 0,

we have

Pr
(

1
(n/2)2

∑
i∈D0

∑
j∈D1 h̄(xi, xj) > 2t2

)
≤ Pr

(
1

(n/2)2
∑

i∈D0

∑
j∈D1 h̄(xi, xj)−mh̄ > 2t2

)

≤ exp

 −n(2t2)2

4
(

M2∥kP∥2
L2(P)

λL
+2M2 Bn

λL
t2/3
)
 . (3.38)

Thus combining (3.36), (3.37), (3.38), we get

Pr(S < 1/2− t/2, En) ≤ exp
(−4nt2

1
M2

)
+ exp

 −nt2
2(

M2∥kP∥2
L2(P)

λL
+2M2 Bn

λL
t2/3
)
 .

Finally, by symmetry and the union bound, for t ∈ (0, 1), t ∈ (0, t/2) and t2 = t/2−t1,
we have

Pr
(∑

i∈[n] wi < 1− t, En

)
≤ Pr (∑i∈D0 wi < 1/2− t/2, En) + Pr (∑i∈D1 wi < 1/2− t/2, En)
= 2 Pr(S < 1/2− t/2, En)

≤ 2

exp
(−4nt2

1
M2

)
+ exp

 −nt2
2(

M2∥kP∥2
L2(P)

λL
+2M2 Bn

λL
t2/3
)

 . (3.39)

Step 5. Putting it all together
Define the event

Fn =
{
mini∈[n] wi ≥ 0,

∑
i∈[n] wi ≥ 1

2

}
.
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Then, by the union bound,

Pr(F c
n) ≤ Pr(mini∈[n] wi < 0, En) + Pr(∑i∈[n] wi < 1

2 , En) + Pr(Ec
n).

Applying (3.35) and (3.39) to bound the last expression with t = 1/2, t1 = t2 = 1/8, we
have Pr(F c

n) ≤ ϵ2
n for ϵn defined in (3.24). On the event Fn, if we define w+ ∈ ∆n−1 via

w+
i ≜ wi∑

i∈[n] wi
,

then w+
i = αwi for i ∈ [n] and α ≜ 1∑

i∈[n] wi
≤ 2. Let w̃ ∈ ∆n−1 be the weight defined by

w̃1 = 1 and w̃i = 0 for i > 1.
Since wOPT is the best simplex weight, we have

MMD2
kP

(SwOPT
n ,P) ≤ min(MMD2

kP
(Sw+

n ,P), MMD2
kP

(Sw̃
n ,P)).

Hence

E
[
MMD2

kP
(SwOPT

n ,P)
]

= E
[
MMD2

kP
(SwOPT

n ,P)1Fn

]
+ E

[
MMD2

kP
(SwOPT

n ,P)1F c
n

]
≤ E

[
MMD2

kP
(Sw+

n ,P)1Fn

]
+ E

[
MMD2

kP
(Sw̃

n ,P)1F c
n

]
.

For the first term, we have the bound

E
[
MMD2

kP
(Sw+

n ,P)1Fn

]
= E

[∑
i,j∈[n] w+

i w+
j kP(xi, xj)1Fn

]
= E

[
α2∑

i,j∈[n] wiwjkP(xi, xj)1Fn

]
≤ 4E

[∑
i,j∈[n] wiwjkP(xi, xj)

]
≤ 8M

n

(
2M
n

Ex∼P[k2
P(x,x)]

λL
+∑

ℓ>L λℓ

)
,

where we applied (3.31) for the last inequality. For the second term, by the Cauchy-
Schwartz inequality,

E
[
MMD2

kP
(Sw̃

n ,P)1F c
n

]
≤
√

Pr(F c
n)
√
E
[(∑

i,j∈[n] kP(xi, xj)w̃iw̃j

)2
]

≤
√

Pr(F c
n)
√
E[kP(x1, x1)2].

Putting everything together we obtain (3.23).

■ 3.D Stein Kernel Thinning

In this section, we detail our Stein thinning implementation in Sec. 3.D.1, our kernel thin-
ning implementation and analysis in Sec. 3.D.2, and our proof of Thm. 3.3 in Sec. 3.D.3.
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♢ 3.D.1 Stein Thinning with sufficient statistics

For an input point set of size n, the original implementation of Stein Thinning of Riabiz
et al. [Ria+22] takes O(nm2) time to output a coreset of size m. In Alg. 3.D.1, we show
that this runtime can be improved to O(nm) using sufficient statistics. The idea is to
maintain a vector g ∈ Rn such that g = 2kP(Sn,Sn)w where w is the weight representing
the current coreset.

Algorithm 3.D.1 SteinThinning (ST) with sufficient statistics
Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], output size m
w ← 0 ∈ Rn

j ← arg mini∈[n] kP(xi, xi)
wj ← 1
g ← 2kP(Sn, xj) ▷ maintain sufficient statistics g = 2kP(Sn,Sn)w
for t = 1 to m− 1 do

j ← arg mini∈[n]{tgi + kP(xi, xi)}
w ← t

t+1w + 1
t+1ej

g ← t
t+1g + 2

t+1kP(Sn, xj)
end for
Return: w

♢ 3.D.2 Kernel Thinning targeting P

Algorithm 3.D.2 KernelThinning (KT) (adapted from Dwivedi and Mackey [DM22b,
Alg. 1])
Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], multiplicity n′ with

log2
n′

m
∈ N, weight w ∈ ∆n−1 ∩ (N0

n′ )n, output size m with n′

m
∈ 2N, failure probability δ

S← index sequence where k ∈ [n] appears n′wk times
t← log2

n′

m
∈ N

(I(ℓ))ℓ∈[2t] ← kt-split(kP,Sn[S], t, δ/n′) ▷ kt-split is from Dwivedi and Mackey
[DM22b, Algorithm 1a] and we set δi = δ for all i

I(ℓ) ← S[I(ℓ)] for each ℓ ∈ [2t]
I← KT-Swap(kP,Sn, (I(ℓ))ℓ∈[2t])
wKT ← simplex weight corresponding to I ▷ wi = number of occurrences of i in I

|I|
Return: wKT ∈ ∆n−1 ∩ (N0

m
)n ▷ Hence ∥wKT∥0 ≤ m
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Algorithm 3.D.3 KT-Swap (modified Dwivedi and Mackey [DM22b, Alg. 1b] to mini-
mize MMD to P)
Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], candidate coreset

indices (I(ℓ))ℓ∈[L]

m←
∣∣∣I(0)

∣∣∣ ▷ all candidate coresets are of the same size
I← I(ℓ∗) for ℓ∗ ∈ arg minℓ∈[L] MMDkP(Sn[I(ℓ)],P) ▷ select the best kt-split coreset
IST ← index sequence of SteinThinning(kP,Sn, m)▷ add Stein thinning baseline
C = {I, IST} ▷ shortlisted candidates
for I ∈ C do

g ← 0 ∈ Rn ▷ maintain sufficient statistics g = ∑
j∈[m] kP(xIj

,Sn)
Kdiag← (kP(xi, xi))i∈[n]
for j = 1 to m do

g ← g + kP(xIj
,Sn)

end for
for j = 1 to m do

∆ = 2(g − kP(xIj
,Sn)) + Kdiag ▷ this is the change in MMD2

kP
(Sn[I],P) if we were

to replace Ij

k ← arg mini∈[n] ∆i

g = g − kP(xIj
,Sn) + kP(xk,Sn)

Ij ← k
end for

end for
Return: I = arg minI∈C MMDkP(Sn[I],P)

Our KernelThinning implementation is detailed in Alg. 3.D.2. Since we are able to
directly compute MMDkP(Sw

n ,P), we use KT-Swap (Alg. 3.D.3) in place of the standard
kt-swap subroutine [DM22b, Algorithm 1b] to choose candidate points to swap in so
as to greedily minimize MMDkP(Sw

n ,P). To facilitate our subsequent SKT analysis, we
restate the guarantees of kt-split [DM22b, Theorem 2] in the sub-Gaussian format of
[SDM22, Definition 3].

Lemma 3.D.1 (Sub-Gaussian guarantee for kt-split). Let Sn be a sequence of n points
and k a kernel. For any δ ∈ (0, 1) and m ∈ N such that log2

n
m
∈ N, consider the kt-

split algorithm [DM22b, Algorithm 1a] with ksplit = k, thinning parameter t = log2
n
m

,
and δi = δ

n
to compress Sn to 2t coresets {S(i)

out}i∈[2t] where each S(i)
out has m points. Denote

the signed measure ϕ(i) ≜ 1
n

∑
x∈Sn

δx − 2t
n

∑
x∈S(i)

out
δx. Then for each i ∈ [2t], on an event

E (i)
equi with P(E (i)

equi) ≥ 1 − δ
2 , ϕ(i) = ϕ̃(i) for a random signed measure ϕ̃(i)5 such that, for

5This is the signed measure returned by repeated applications of self-balancing Hilbert walk (SBHW)
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any δ′ ∈ (0, 1),

Pr
(∥∥∥ϕ̃(i)k

∥∥∥
Hk

≥ an,m + vn,m

√
log( 1

δ′ )
)
≤ δ′,

where

an,m ≜ 1
m

(
2 +

√
8
3∥k∥n log(6(log2

n
m

)m
δ

) log(4Nk(B2(Rn), m−1))
)

,

vn,m ≜ 1
m

√
8
3∥k∥n log(6(log2

n
m

)m
δ

).

Proof of Lem. 3.D.1. Fix i ∈ [2t], δ ∈ (0, 1) and n, m ∈ N such that t = log2
n
m
∈ N.

Define ϕ ≜ ϕ(i). By the proof of Dwivedi and Mackey [DM22b, Thms. 1 and 2], there
exists an event Eequi with Pr(Ec

equi) ≤ δ
2 such that, on this event, ϕ = ϕ̃ where ϕ̃ is a signed

measure such that, for any δ′ ∈ (0, 1), with probability at least 1− δ′,
∥∥∥ϕ̃k∥∥∥

Hk

≤ infϵ∈(0,1),A:Sn⊂A 2ϵ + 2t
n

√
8
3∥k∥n log(6tn

2tδ )
[
log 4

δ′ + logNk(A, ϵ)
]
.

Note that on Eequi,
∥∥∥ϕ̃k∥∥∥

Hk

= ∥ϕk∥Hk
. We choose A = B2(Rn) and ϵ = 2t

n
= m−1, so that,

with probability at least 1− δ′, using the fact that
√

a + b ≤
√

a +
√

b for a, b ≥ 0,
∥∥∥ϕ̃k∥∥∥

Hk

≤ 2t+1

n
+ 2t

n

√
8
3∥k∥n log(6tn

2tδ )
[
log 4

δ′ + logNk(B2(Rn), m−1)
]

(3.40)

≤ 2t+1

n
+ 2t

n

√
8
3∥k∥n log(6tn

2tδ )
[√

log 1
δ′ +

√
log 4Nk(B2(Rn), m−1)

]
≤ an,m + vn,m

√
log( 1

δ′ ),

for an,m, vn,m in Lem. 3.D.1.

Corollary 3.D.1 (MMD guarantee for kt-split). Let S∞ be an infinite sequence of
points in Rd and k a kernel. For any δ ∈ (0, 1) and n, m ∈ N such that log2

n
m
∈ N,

consider the kt-split algorithm [DM22b, Algorithm 1a] with parameters ksplit = k and
δi = δ

n
to compress Sn to 2t coresets {S(i)

out}i∈[2t] where t = log2
n
m

, each with m points.
Then for any i ∈ [2t], with probability at least 1− δ,

MMDk(Sn, S(i)
out) ≤ 1

m

(
2 +

√
8
3∥k∥n log(6(log2

n
m

)m
δ

)
(
logNk(B2(Rn), m−1) + log 8

δ

))
.

(3.41)
[DM21, Algorithm 3]. Although SBHW returns an element of Hk, by tracing the algorithm, the returned
output is equivalent to a signed measure via the correspondence

∑
i∈[n] cik(xi, ·) ⇔

∑
i∈[n] ciδxi . The

usage of signed measures is consistent with Shetty, Dwivedi, and Mackey [SDM22].
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Proof of Cor. 3.D.1. Fix i ∈ [2t]. By taking δ′ = δ
2 in (3.40), we obtain (3.41). This

occurs with probability

Pr(MMDk(Sn,S(i)
out) < an,m + vn,m

√
log( 1

δ′ ))

=1− Pr
(
MMDk(Sn,S(i)

out) ≥ an,m + vn,m

√
log( 1

δ′ )
)

≥1− Pr
(
E (i)

equi, MMDk(Sn,S(i)
out) ≥ an,m + vn,m

√
log( 1

δ′ )
)
− Pr

(
E (i)

equi
c)

≥1− Pr
(∥∥∥ϕ̃(i)k

∥∥∥
Hk

≥ an,m + vn,m

√
log( 1

δ′ )
)
− Pr(E (i)

equi
c
)

≥1− δ
2 −

δ
2 = 1− δ.

♢ 3.D.3 Proof of Thm. 3.3: MMD guarantee for SKT

Thm. 3.3 will follows directly from Assum. (α,β)-kernel and the following statement for
a generic covering number.

Theorem 3.D.1. Let kP be a kernel satisfying Assum. 3.1. Let S∞ be an infinite sequence
of points. Then for a prefix sequence Sn of n points, m ∈ [n], and n′ ≜ m2⌈log2

n
m⌉, SKT

outputs wSKT in O(n2dkP) time that satisfies, with probability at least 1− δ,

∆MMDkP(wSKT) ≤
√(

1+log n′

n′

)
∥kP∥n+

1
m

(
2 +

√
8
3∥k∥n log(6(log2

n′
m

)m
δ

)
(
logNk(B2(Rn), m−1) + log 8

δ

))
.

Proof of Thm. 3.D.1. The runtime of SKT comes from the fact that all of SteinThinning
(with output size n), kt-split, and KT-Swap take O(dkPn

2) time.
By Riabiz et al. [Ria+22, Theorem 1], SteinThinning (which is a deterministic algo-

rithm) from n points to n′ points has the following guarantee

MMD2
kP

(Sw†
n ,P) ≤ MMD2

kP
(SwOPT

n ,P) +
(

1+log n′

n′

)
∥kP∥n,

where we denote the output weight of SteinThinning as w†. Using
√

a + b ≤
√

a +
√

b for
a, b ≥ 0, we have

MMDkP(Sw†
n ,P) ≤ MMDkP(SwOPT

n ,P) +
√(

1+log n′

n′

)
∥kP∥n.
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Fix δ ∈ (0, 1). By Cor. 3.D.1 with k = kP and t = log2
n′

m
, with probability at least 1− δ,

we have, for any i ∈ [2t],

MMDkP(Sw†
n ,S(i)

out) ≤ 1
m

(
2 +

√
8
3∥k∥n log(6(log2

n′
m

)m
δ

)
(
logNk(B2(Rn), m−1) + log 8

δ

))
,

where S(i)
out is the i-th coreset output by kt-split. Since KT-Swap can only decrease the

MMD to P, we have, by the triangle inequality of MMDkP ,

MMDkP(SwSKT
n ,P) ≤ MMDkP(S

(1)
out,P) ≤ MMDkP(S

(1)
out, Sw†

n ) + MMDkP(Sw†
n ,P),

which gives the desired bound.

Thm. 3.3 now follows from Thm. 3.D.1, the kernel growth definitions in Assum. (α,β)-
kernel, n ≤ n′ ≤ 2n, and that log2(n′

m
)m ≤ n′.

■ 3.E Resampling of Simplex Weights

Integral to many of our algorithms is a resampling procedure that turns a simplex-weighted
point set of size n into an equal-weighted point set of size m while incurring at most
O(1/

√
m) MMD error. The motivation for wanting an equal-weighted point set is two-

fold: First, in LSKT, we need to provide an equal-weighted point set to KT-Compress++,
but the output of LD is a simplex weight. Secondly, we can exploit the fact that non-zero
weights are bounded away from zero in equal-weighted point sets to provide a tighter
analysis of WeightedRPCholesky. While i.i.d. resampling also achieves the O(1/

√
m)

goal, we choose Resample (Alg. 3.E.3), a stratified residual resampling algorithm [DC05,
Sec. 3.2, 3.3]. In this section, we derive an MMD bound for Resample and show that it
is better in expectation than using i.i.d. resampling or residual resampling alone.

Let Dinv
w be the inverse of the cumulative distribution function of the multinomial

distribution with weight w, i.e.,

Dinv
w (u) ≜ min

{
i ∈ [n] : u ≤ ∑i

j=1 wj

}
.

Proposition 3.E.1 (MMD guarantee of resampling algorithms). Consider any kernel k,
points Sn = (x1, . . . , xn) ⊂ Rd, and a weight vector w ∈ ∆n−1.

(a) Using the notation from Alg. 3.E.1, let X, X ′ be independent random variables with
law Sw

n . Then, the output weight vector wi.i.d. ≜ w′ of Alg. 3.E.1 satisfies

E[MMD2
k(Swi.i.d.

n ,Sw
n )] = Ek(X,X)−Ek(X,X′)

m
. (3.42)
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Algorithm 3.E.1 i.i.d. resampling
Input: Weights w ∈ ∆n−1, output size m
w′ ← 0 ∈ Rn

for j = 1 to m do
Draw Uj ∼ Uniform([0, 1))
Ij ← Dinv

w (Uj)
w′

Ij
← w′

Ij
+ 1

m

end for
Return: w′ ∈ ∆n−1 ∩ (N0

m
)n

Algorithm 3.E.2 Residual resampling
Input: Weights w ∈ ∆n−1, output size m
w′

i ←
⌊mwi⌋

m
, ∀i ∈ [n]

r ← m−∑i∈[n]⌊mwi⌋ ∈ N
ηi ← mwi−⌊mwi⌋

r
, ∀i ∈ [n]

for j = 1 to r do
Draw Uj ∼ Uniform([0, 1))
Ij ← Dinv

η (Uj)
w′

Ij
← w′

Ij
+ 1

m

end for
Return: w′ ∈ ∆n−1 ∩ (N0

m
)n

(b) Using the notation from Alg. 3.E.2, let R, R′ be independent random variables with
law Sη

n. Then, the output weight vector wresid ≜ w′ of Alg. 3.E.2 satisfies

E[MMD2
k(Swresid

n ,Sw
n )] = r(Ek(R,R)−Ek(R,R′))

m2 . (3.43)

(c) Using the notation from Alg. 3.E.3, let Rj ≜ xIj
and R′

j be an independent copy of
Rj. Let R be an independent random variable with law Sη

n. Then, the output weight
vector wsr ≜ w′ of Alg. 3.E.3 satisfies

E[MMD2
k(Swsr

n ,Sw
n )] =

rEk(R,R)−
∑

j∈[r] Ek(Rj ,R′
j)

m2 . (3.44)

Proof of Prop. 3.E.1(a). Let Xi ≜ xIi
. As random signed measures, we have

Sw′
n − Sw

n = 1
m

∑
i∈[m] δXi

−∑i∈[n] wiδxi
.
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Algorithm 3.E.3 Stratified residual resampling (Resample)
Input: Weights w ∈ ∆n−1, output size m
w′

i ←
⌊mwi⌋

m
, ∀i ∈ [n]

r ← m−∑i∈[n]⌊mwi⌋ ∈ N
ηi ← mwi−⌊mwi⌋

r
, ∀i ∈ [n]

for j = 1 to r do
Draw Uj ∼ Uniform([ j

r
, j+1

r
))

Ij ← Dinv
η (Uj)

w′
Ij
← w′

Ij
+ 1

m

end for
Return: w′ ∈ ∆n−1 ∩ (N0

m
)n

Hence
MMD2

k(Sw′
n ,Sw

n )
= ((Sw′

n − Sw
n )× (Sw′

n − Sw
n ))k

= 1
m2
∑

i,i′∈[m] k(Xi, Xi′)− 2
m

∑
i∈[m],i′∈[n] wi′k(Xi, xi′) +∑

i,i′∈[n] wiwi′k(xi, xi′).
Since each Xi is distributed to Sw

n and Xi and Xi′ are independent for i ̸= i′, taking
expectation, we have
E[MMD2

k(Sw′
n ,Sw

n )] = 1
m
Ek(X, X) + m−1

m
Ek(X, X ′)− 2Ek(X, X ′) + Ek(X, X ′).

This gives the bound (3.42).

Proof of Prop. 3.E.1(b). Let Rj ≜ xIj
. As random signed measures, we have

Sw′
n − Sw

n =
(∑

i∈[n]
⌊mwi⌋

m
δxi

+ 1
m

∑
j∈[r] δRj

)
−∑i∈[n] wiδxi

= 1
m

∑
j∈[r] δRj

−∑i∈[n]

(
wi − ⌊mwi⌋

m

)
δxi

= 1
m

∑
j∈[r] δRj

− r
m

∑
i∈[n] ηiδxi

.

Hence
MMD2

k(Sw′
n ,Sw

n )
= ((Sw′

n − Sw
n )× (Sw′

n − Sw
n ))k

= 1
m2
∑

j,j′∈[r] k(Rj, Rj′)− 2r
m2
∑

j∈[r],i∈[n] ηik(Rj, xi) + r2

m2
∑

i,i′∈[n] ηiηjk(xi, xj). (3.45)
Since each Rj is distributed to Sη

n and Rj and Rj′ are independent for j ̸= j′, taking
expectation, we have

E[MMD2
k(Sw′

n , Sw
n )] = r

m2Ek(R, R) + r(r−1)
m2 Ek(R, R′)− 2r2

m2 Ek(R, R′) + r2

m2Ek(R, R′).
This gives the bound (3.43).
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Proof of Prop. 3.E.1(c). We repeat the same steps from the previous part of the proof
to get (3.45). In the case of (c), Rj’s are not identically distributed so the analysis is
different. Let R′ be an independent copy of R. Taking expectation of (3.45), we have

m2E[MMD2
k(Sw′

n ,Sw
n )]

= ∑
j∈[r] Ek(Rj, Rj) +∑

j∈[r]
∑

j′∈[r]\{j} Ek(Rj, Rj′)− 2r
∑

j∈[r] Ek(Rj, R) + r2Ek(R, R′).

Note ∑
j∈[r] Ek(Rj, Rj) = ∑

j∈[r] r
∫

[ j
r

, j+1
r

) k(xDinv
η (u), xDinv

η (u))du

= r
∫ 1

0 k(xDinv
η (u), xDinv

η (u))du = rEk(R, R),

where we used the fact that xDinv
η (U)

D= R for U ∼ Uniform([0, 1]). Similarly, we deduce
∑

j∈[r]
∑

j′∈[r]\{j} Ek(Rj, Rj′) = ∑
j∈[r]

(∑
j′∈[r] Ek(Rj, R′

j′)− Ek(Rj, R′
j)
)

= ∑
j∈[r](rEk(Rj, R′)− Ek(Rj, R′

j))
= r2Ek(R, R′)−∑j∈[r] Ek(Rj, R′

j),

and also ∑
j∈[r] Ek(Rj, R) = rEk(R, R′).

Combining terms, we get

m2EMMD2
k(Sw′

n ,Sw
n )

= rEk(R, R) + r2Ek(R, R′)−∑j∈[r] Ek(Rj, R′
j)− 2r2Ek(R, R′) + r2Ek(R, R′)

= rEk(R, R)−∑j∈[r] Ek(Rj, R′
j),

which yields the desired bound (3.44).

The next proposition shows that stratifying the residuals always improves upon using
i.i.d. sampling or residual resampling alone. We need the following convexity lemma.

Lemma 3.E.1 (Convexity of squared MMD). Let k be a kernel. Let Sn = (x1, . . . , xn)
be an arbitrary set of points. The function Ek : Rn → R defined by

Ek(w) ≜ ∥Sw
nk∥

2
Hk

= ∑
i,j∈[n] wiwjk(xi, xj)

is convex on Rn.

Proof of Lem. 3.E.1. Since k is a kernel, the Hessian H Ek = 2k(Sn,Sn) is PSD, and
hence Ek is convex.
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Proposition 3.E.2 (Stratified residual resampling improves MMD). Under the assump-
tions of Prop. 3.E.1, we have

E[MMD2
k(Swi.i.d.

n ,Sw
n )] ≥ E[MMD2

k(Swresid
n ,Sw

n )] ≥ E[MMD2
k(Swsr

n ,Sw
n )].

Proof of Prop. 3.E.2. Let K ≜ k(Sn,Sn). To show the first inequality, note that since
η = mw−⌊mw⌋

r
, by Prop. 3.E.1,

E[MMD2
k(Swresid

n ,Sw
n )] = r(Ek(R,R)−Ek(R,R′))

m2

=
r(
∑

i∈[n] Kiiηi−
∑

i,j∈[n] Kijηiηj)
m2

= 1
m

(∑
i∈[n] Kii

(
wi − ⌊mwi⌋

m

)
− m

r

(
w − ⌊mw⌋

m

)⊤
K
(
w − ⌊mw⌋

m

))
.

Hence

E[MMD2
k(Swi.i.d.

n ,Sw
n )]− E[MMD2

k(Swresid
n ,Sw

n )]

= 1
m

(∑
i∈[n] Kii

⌊mwi⌋
m

+ m
r

(
w − ⌊mw⌋

m

)⊤
K
(
w − ⌊mw⌋

m

)
− w⊤Kw

)
= 1

m

(
(1− θ)∑i∈[n] Kiiξi + θη⊤Kη − w⊤Kw

)
,

where we let ξ ≜ m
m−r

⌊mw⌋
m

and θ ≜ r
m

. Note that w = θη + (1− θ)ξ. By Lem. 3.E.1 and
Jensen’s inequality, we have

w⊤Kw = Ek(w) ≤ θEk(η) + (1− θ)Ek(ξ)
= θη⊤Kη + (1− θ)ξ⊤Kξ ≤ θη⊤Kη + (1− θ)∑i∈[n] Kiiξi,

where the last inequality follows from Prop. 3.E.1(a) with w = ξ and the fact that MMD
is nonnegative. Hence we have shown

E[MMD2
k(Swi.i.d.

n ,Sw
n )]− E[MMD2

k(Swresid
n ,Sw

n )] ≥ 0,

as desired.
For the second inequality, by Prop. 3.E.1, we compute

E[MMD2
k(Swresid

n , Sw
n )]− E[MMD2

k(Swsr
n ,Sw

n )] = r
m2

(
1
r

∑
j∈[r] Ek(Rj, R′

j)− Ek(R, R′)
)

.

Note that

Ek(R, R′) =
∫

[0,1)
∫

[0,1) k(xDinv
η (u), xDinv

η (v))dudv = Ek

(
(Dinv

η )#Uniform[0, 1)
)

,
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where we used T#µ to denote the pushforward measure of µ by T . Similarly,
1
r

∑
j∈[r] Ek(Rj, R′

j) = 1
r

∑
j∈[r]

∫
[ j

r
, j+1

r
)
∫

[ j
r

, j+1
r

) k(xDinv
η (u), xDinv

η (v))dudv

= 1
r

∑
j∈[r] Ek

(
(Dinv

η )#Uniform
[

j
r
, j+1

r

))
≤ Ek

(
(Dinv

η )#Uniform[0, 1)
)

= Ek(R, R′),

where in the last inequality we applied Jensen’s inequality since Ek is convex by Lem. 3.E.1.
Hence we have shown

E[MMD2
k(Swresid

n , Sw
n )]− E[MMD2

k(Swsr
n , Sw

n )] ≥ 0

and the proof is complete.

■ 3.F Accelerated Debiased Compression

In this section, we provide supplementary algorithmic details and deferred analyses for
LSKT (Alg. 3.4). In WeightedRPCholesky (Alg. 3.F.1), we provide details for the
weighted extension of Chen et al. [Che+22b, Alg. 2.1] that is used extensively in our algo-
rithms. The details of AMD [WAL23, Alg. 14] are provided in Alg. 3.F.2. In Sec. 3.F.1,
we give the proof of Thm. 3.4 for the MMD error guarantee of LD (Alg. 3.3). In Sec. 3.F.2,
we provide details on KT-Compress++ modified from Compress++ [SDM22] to minimize
MMD to P. Finally, Thm. 3.5 is proved in Sec. 3.F.3.

Algorithm 3.F.1 Weighted Randomly Pivoted Cholesky (WeightedRPCholesky) (exten-
sion of Chen et al. [Che+22b, Alg. 2.1])
Input: kernel k, points Sn = (xi)n

i=1, simplex weights w ∈ ∆n−1, rank r
k̃(i, j) ≜ k(xi, xj)

√
wi
√

wj ▷ reweighted kernel matrix function
F ← 0n×r, S← {}, d← (k̃(i, i))i∈[n]
for i = 1 to r do

Sample s ∼ d/
∑

j∈[n] dj

S← S ∪ {s}
g ← k̃(:, s)− F (:, 1 : i− 1)F (s, 1 : i− 1)⊤

F (:, i)← g/
√

gs

d← d− F (:, i)2 ▷ F (:, i)2 denotes a vector with entry-wise squared values of F (:, i)
d← max(d, 0) ▷ numerical stability fix, helpful in practice

end for
F ← diag((1/

√
wi)i∈[n])F ▷ undo weighting; treat 1/

√
wi = 0 if wi = 0

Return: S ⊂ [n] with |S| = r and F ∈ Rn×r
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Algorithm 3.F.2 Accelerated Entropic Mirror Descent (AMD) (modification of Wang,
Abernethy, and Levy [WAL23, Alg. 14])
Input: kernel matrix K ∈ Rn×n, number of steps T , initial weight w0 ∈ ∆n−1, aggressive

flag AGG
η ← 1

8w⊤
0 diag(K) if AGG else 1

8 maxi∈[n] Kii

v0 ← w0
for t = 1 to T do

βt ← 2
t+1

zt ← (1− βt)wt−1 + βtvt−1
g ← 2tηKzt ▷ this is γt∇f(zt) in Wang, Abernethy, and Levy [WAL23, Alg. 14] for
f(w) = w⊤Kw
vt ← vt−1 · exp(−g) ▷ component-wise exponentiation and multiplication
vt ← vt/ ∥vt∥1 ▷ vt = arg minw∈∆n−1⟨g, w⟩+ Dϕ

vt−1(w) for ϕ(w) = ∑
i∈[n] wi log wi

wt ← (1− βt)wt−1 + βtvt

end for
Return: wT ∈ ∆n−1

♢ 3.F.1 Proof of Thm. 3.4: Debiasing guarantee for LD

We start with a useful lemma that bounds w⊤(K − K̂)w by tr(K − K̂) for any simplex
weights w.

Lemma 3.F.1. For any PSD matrix A ∈ Rn×n and w ∈ ∆n−1, we have

w⊤Aw ≤ tr(Aw) ≤ maxi∈[n] Aii ≤ λ1(A),

where λ1(A) denotes the largest eigenvalue of A.

Proof of Lem. 3.F.1. Note that

w⊤Aw =
√

w
⊤ diag(

√
w)A diag(

√
w)
√

w =
√

w
⊤

Aw
√

w.

The condition that w ∈ ∆n−1 implies ∥
√

w∥2 = 1, so that
√

w
⊤

Aw
√

w ≤ λ1(Aw) ≤ tr(Aw).

To see tr(Aw) ≤ max i ∈ [n]Aii, note that tr(Aw) = ∑
i∈[n] Aiiwi ≤ maxi∈[n] Aii since

w ∈ ∆n−1..
Since λ1(A) = supx:∥x∥2=1 x⊤Ax, if we let i∗ ≜ arg mini∈[n] Aii, then the simplex weight

with 1 on the i∗-th entry has two-norm 1, so we see that maxi∈[n] Aii ≤ λ1(A).
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Our next lemma bounds the suboptimality of surrogate optimization of a low-rank
plus diagonal approximation of K.

Lemma 3.F.2 (Suboptimality of surrogate optimization). Let kP be a kernel satisfying
Assum. 3.1. Let Sn = (x1, . . . , xn) ⊂ Rd be a sequence of points. Define K ≜ kP(Sn,Sn) ∈
Rn×n. Suppose K̂ ∈ Rn×n is another PSD matrix such that K ⪰ K̂. Define D ≜ diag(K−
K̂), the diagonal part of K−K̂, and form K ′ ≜ K̂ +D. Let w′ ∈ arg minw∈∆n−1 w′⊤K ′w′.
Then for any w ∈ ∆n−1,

MMD2
kP

(Sw
n ,P) ≤ MMD2

kP
(SwOPT

n ,P) + tr((K − K̂)w) + maxi∈[n](K − K̂)ii

+ (w⊤K ′w − w′⊤K ′w′). (3.46)

Proof of Lem. 3.F.2. Since K = K ′ + (K − K̂)−D by construction, we have

w⊤Kw = w⊤K ′w + w⊤(K − K̂)w − w⊤Dw

≤ w⊤K ′w + w⊤(K − K̂)w
= (w⊤K ′w − w′⊤K ′w′) + w′⊤K ′w′ + w⊤(K − K̂)w
≤ (w⊤K ′w − w′⊤K ′w′) + w′⊤K ′w′ + tr((K − K̂)w),

where we used the fact that D ⪰ 0 and Lem. 3.F.1. Next, by the definition of w′, we have

w′⊤K ′w′ ≤ (wOPT)⊤K ′wOPT = (wOPT)⊤(K ′ −K)wOPT + (wOPT)⊤KwOPT

= (wOPT)⊤(D − (K − K̂))wOPT + (wOPT)⊤KwOPT

≤ (wOPT)⊤DwOPT + (wOPT)⊤KwOPT

≤ maxi∈[n](K − K̂)ii + (wOPT)⊤KwOPT,

where we used the fact K ⪰ K̂ in the penultimate step and Lem. 3.F.1 in the last step.
Hence we have shown our claim.

Lem. 3.F.2 shows that to control MMD2
kP

(Sw
n ,P), it suffices to separately control the

approximation error in terms of tr(K−K̂) and the optimization error (w⊤K ′w−w′⊤K ′w′).
The next result establishes that using WeightedRPCholesky, we can obtain polynomial
and exponential decay bounds for tr(K − K̂) in expectation depending on the kernel
growth of kP.

Proposition 3.F.1 (Approximation error of WeightedRPCholesky). Let k be a kernel
satisfying Assum. (α,β)-kernel. Let S∞ be an infinite sequence of points in Rd. For any
w ∈ ∆n−1, let F be the low-rank approximation factor output by WeightedRPCholesky(k,Sn, w, r).
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Define K ≜ k(Sn,Sn). If r ≥ (CdRβ
n+1√

log 2 +
√

log 2)2 − 1
log 2 , then, with the expectation taken

over the randomness in WeightedRPCholesky,

E
[
tr
(
(K − FF ⊤)w

)]
≤ Hn,r, (3.47)

where Hn,r is defined as

Hn,r ≜

8∑n
ℓ=U(r)(

Lk(Rn)
ℓ

) 2
α PolyGrowth(α, β),

8∑n
ℓ=U(r) exp(1− ( ℓ

Lk(Rn))
1
α ) LogGrowth(α, β),

(3.48)

for Lk defined in (3.8) and

U(r) ≜
⌊√

r+ 1
log 2

log 2 −
1

log 2

⌋
. (3.49)

Moreover, Hn,r satisfies the bounds in Thm. 3.4.

Proof of Prop. 3.F.1. Recall the notation Lk(Rn) = CdRβ
n

log 2 from (3.8). Define q ≜ U(r) so
that q is the biggest integer for which r ≥ 2q + q2 log 2. The lower bound assumption of r
is chosen such that q > Lk(Rn) > 0. By Chen et al. [Che+22b, Theorem 3.1] with ϵ = 1,
we have

E
[
tr
(
(K − FF ⊤)w

)]
≤ 2∑n

ℓ=q+1 λℓ(Kw). (3.50)

Since q > Lk(Rn), we can apply Cor. 3.B.1 to bound λℓ(Kw) for ℓ ≥ q + 1 and obtain
(3.47) since Hn,r (3.48) is constructed to match the bounds when applying Cor. 3.B.1 to
(3.50). It remains to justify the bounds for Hn,r in Thm. 3.4.

If k is PolyGrowth(α, β), by Assum. (α,β)-kernel we have α < 2. Hence

Hn,r = 8∑n
ℓ=q

(
Lk(Rn)

ℓ

) 2
α ≤ 8Lk(Rn) 2

α
∫∞

q−1 ℓ− 2
α dℓ = 8Lk(Rn) 2

α (q − 1)1− 2
α

= O
(√

r(R2β
n

r
) 1

α

)
,

where we used the fact that
∫∞

q−1 ℓ− 2
α dℓ = (q − 1)1− 2

α for α < 2, Lk(Rn) = O(Rβ
n), and

q = Θ(
√

r).
If k is LogGrowth(α, β), then

Hn,r = 8∑n
ℓ=q exp(1−

(
ℓ

Lk(Rn)

) 1
α ) = 8e

∑n
ℓ=q cℓ1/α ≤ 8e

∫∞
ℓ=q−1 cℓ1/α

,

where c ≜ exp(−Lk(Rn)−1/α) ∈ (0, 1). Defining m ≜ − log c > 0 and q′ = q − 1, we have∫∞
x=q′ cx1/αdx =

∫∞
x=q′ exp(−mx1/α)dx = αq′(mq′1/α)−αΓ(α, mq′1/α) = αm−αΓ(α, mq′1/α),

(3.51)
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where Γ(α, x) ≜
∫∞

x tα−1e−tdt is the incomplete gamma function. Since α > 0, by Pinelis
[Pin20, Thm. 1.1], we have

Γ(α, mq′1/α) ≤ (mq′1/α+b)α−(mq′1/α)α

αb
e−mq′1/α

,

where b is a known constant depending only on α. By the equivalence of norms on R2,
there exists Cα > 0 such that (x + y)α ≤ Cα(xα + yα) for any x, y > 0. Hence

Γ(α, mq′1/α) ≤ (mq′1/α+b)α

αb
e−mq′1/α ≤ Cα(mαq′+bα)

αb
e−mq′1/α

.

Hence from (3.51) we deduce
∑∞

ℓ=q′ cℓ1/α ≤ Cα(q′b−1 + bα−1m−α)e−mq′1/α
. (3.52)

Since m = − log c = Lk(Rn)−1/α, we can bound the exponent by

−mq′1/α = −(Lk(Rn)−1q′)1/α = −( q′ log 2
CdRβ

n
)1/α ≤ −(0.83

√
r−2.39

CdRβ
n

)1/α,

where we used the fact that q′ log 2 = (q−1) log 2 ≥ (
√

r+ 1
log 2

log 2 −
1

log 2 −2) log 2 ≥ 0.83
√

r−
2.39. On the other hand, since q′ = q − 1 ≥ L(Rn) = m−α, we can absorb the bα−1m−1

term in (3.52) into q and finally obtain the bounds for Hn,r in Thm. 3.4.

The last piece of our analysis involves bounding the optimization error (w⊤K ′w −
w′⊤K ′w′) in (3.46).

Lemma 3.F.3 (AMD guarantee for debiasing). Let K ∈ Rn×n be an SPSD matrix. Let
f(w) ≜ w⊤Kw. Then the final iterate xT of Nesterov’s 1-memory method [WAL23, Algo-
rithm 14] after T steps with objective function f(w), norm ∥·∥ = ∥·∥1, distance-generating
function ϕ(x) = ∑n

i=1 xi log xi, and initial point w0 = ( 1
n
, . . . , 1

n
) ∈ ∆n−1 satisfies

f(wT )− f(wOPT) ≤ 16 log n maxi∈[n] Kii

T 2 ,

where wOPT ∈ arg minx∈Rn f(x).

Proof of Lem. 3.F.3. We apply Wang, Abernethy, and Levy [WAL23, Theorem 14]. Hence
it remains to determine the smoothness constant L > 0 such that, for all x, y ∈ ∆n−1,

∥∇f(x)−∇f(y)∥∞ ≤ L ∥x− y∥1 ,

and an upper bound for the Bregman divergence Dϕ
w0(wOPT) = ∑n

i=1 wOPTi log wOPTi

(w0)i
=∑n

i=1 wOPTi log nwOPTi. To determine L, note ∇f(w) = 2Kw, so we have, for any x, y ∈
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∆n−1,

∥∇f(x)−∇f(y)∥∞ = 2 ∥K(x− y)∥∞ = 2 maxi∈[n] |Ki,:(x− y)|
≤ 2 maxi∈[n] ∥Ki,:∥∞ ∥x− y∥1 = 2

(
maxi∈[n] Kii

)
∥x− y∥1

= 2
(
maxi∈[n] Kii

)
∥x− y∥1 ,

where we used the fact that the largest entry in an SPSD matrix appears on its diagonal.
Thus we can take the smoothness constant to be

L = 2 maxi∈[n] Kii.

To bound Dϕ
w0(wOPT), note that by Jensen’s inequality,

Dϕ
w0(w) = ∑n

i=1 wi log nwi ≤ log(∑n
i=1 nw2

i ) = log n + log ∥w∥2
2 ≤ log n,

where we used the fact that ∥w∥2
2 ≤ ∥w∥1 = 1 for w ∈ ∆n−1.

With these tools in hand, we turn to the proof of Thm. 3.4. For the runtime of LD, it
follows from the fact that WeightedRPCholesky takes O((dkP + r)nr) time and one step
of AMD takes O(nr) time.

The error analysis is different for the first adaptive iteration and the ensuing adaptive
iterations. Roughly speaking, we will show that the first adaptive iteration brings the
MMD gap to the desired level, while the ensuing iterations do not introduce an excessive
amount of error.

Step 1. Bound ∆ MMDkP(w(1))
Let K ≜ kP(Sn,Sn) and F denote the low-rank approximation factor generated by

WeightedRPCholesky. Denote K̂ ≜ FF ⊤. Then K ′ = K̂ + diag(K − K̂). First,
note that since w(0) = ( 1

n
, . . . , 1

n
), Resample returns w̃ = w(0) with probability one. By

Lem. 3.F.2, we have, using
√

a + b ≤
√

a+
√

b for a, b ≥ 0 repeatedly and Lem. 3.F.1 that
tr((K − K̂)w) ≤ λ1(K − K̂) and maxi∈[n](K − K̂)ii ≤ λ1(K − K̂),

MMDkP(Sw(1)
n ,P) ≤ MMDkP(SwOPT

n ,P) +
√

2λ1(K − K̂) +
√

w(1)⊤
K ′w(1) − w′⊤K ′w′

≤ MMDkP(SwOPT
n ,P) +

√
2λ1(K − K̂) +

√
16 log n∥kP∥n

T 2 ,

where we applied Lem. 3.F.1 and Lem. 3.F.3 in the last inequality. Fix δ ∈ (0, 1). By
Markov’s inequality, we have

Pr(
√

λ1(K − K̂) >

√
E[λ1(K−K̂)]

δ
) ≤ δ.
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This means that with probability at least 1− δ, we have

MMDkP(Sw(1)
n ,P) ≤ MMDkP(SwOPT

n ,P) +
√

2E[λ1(K−K̂)]
δ

+
√

16 log n∥kP∥n

T 2 .

Note that the lower bound condition on r in Assum. (α,β)-params implies the lower
bound condition in Prop. 3.F.1. Hence, by Prop. 3.F.1 with w = ( 1

n
, . . . , 1

n
) and using the

identity λ1(K − K̂) ≤ tr(K − K̂) while noting that a factor of n appears, we have

MMDkP(Sw(1)
n ,P) ≤ MMDkP(SwOPT

n ,P) +
√

2nHn,r

δ
+
√

16∥kP∥n log n
T 2 .

Step 2. Bound the error of the remaining iterations
Fix δ > 0. The previous step shows that, with probability at least 1− δ

2 ,

MMDkP(Sw(1)
n ,P) ≤ MMDkP(SwOPT

n ,P) +
√

4nHn,r

δ
+
√

16∥kP∥n log n
T 2 .

Fix q > 1, and let w̃ be the resampled weight defined in the q-th iteration in Alg. 3.3.
Without loss of generality, we assume w̃i > 0 for all i > 0, since if wi = 0 then index i
is irrelevant for the rest of the algorithm. Thus, thanks to Resample, we have w̃i ≥ 1/n
for all i ∈ [n]. Let a/b denote the entry-wise division between two vectors. As in the
previous step of the proof, we let K ≜ kP(Sn,Sn), F be the low-rank factor output by
WeightedRPCholesky(kP,Sn, w̃, r), and K̂ = FF ⊤. For any w ∈ ∆n−1, recall the notation
Kw ≜ diag(

√
w)K diag(

√
w). Then we have

w⊤Kw = (w/
√

w̃)⊤ diag(Kw̃)(w/
√

w̃)
= (w/

√
w̃)⊤(diag(

√
w̃)K̂ diag(

√
w̃)) + diag(

√
w̃)(K − K̂) diag(

√
w̃)))(w/

√
w̃)

= w⊤K̂w + (w/
√

w̃)⊤(diag(
√

w̃)(K − K̂) diag(
√

w̃)))(w/
√

w̃)
≤ w⊤K̂w + maxi∈[n](1/w̃i) tr(diag(

√
w̃)(K − K̂) diag(

√
w̃))

≤ w⊤K̂w + n tr((K − K̂)w̃). (3.53)
Note that

K ′ = K̂ + diag(K − K̂) = K + (K̂ −K) + diag(K − K̂).

Since K ′ ⪰ K̂, we have

w(q)⊤
K̂w(q) ≤ w(q)⊤

K ′w(q) ≤ w̃⊤K ′w̃, (3.54)
where the last inequality follows from the if conditioning at the end of Alg. 3.3. In
addition,

w̃⊤K ′w̃ = w̃⊤(K + (K̂ −K) + diag(K − K̂))w̃
≤ w̃⊤Kw̃ + w̃⊤ diag(K − K̂)w̃

= w̃⊤Kw̃ +
√

w̃
⊤ diag((K − K̂)w̃)

√
w̃

≤ w⊤Kw̃ + tr((K − K̂)w̃),
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where we used the fact that K ⪰ K̂ and
∥∥∥√w̃

∥∥∥
2

= 1. Plugging the previous inequality
into (3.54) and then into (3.53) with w = w(q), we get

w(q)⊤
Kw(q) ≤ w̃⊤Kw̃ + (n + 1) tr((K − K̂)w̃). (3.55)

Taking square-root on both sides using
√

a + b ≤
√

a +
√

b for a, b ≥ 0 and the triangle
inequality, we get

MMDkP(Sw(q)
n ,P) ≤ MMDkP(Sw̃

n ,P) +
√

(n + 1) tr((K − K̂)w̃)

≤ MMDkP(Sw(q−1)
n ,P) + MMDkP(Sw(q−1)

n ,Sw̃
n ) +

√
(n + 1) tr((K − K̂)w̃).

By Markov’s inequality, we have

Pr(MMDkP(Sw(q−1)
n ,Sw̃

n ) >

√
4QE

[
MMD2

kP
(Sw(q−1)

n ,Sw̃
n )
]

δ
) ≤ δ

4Q

Pr(
√

tr((K − K̂)w̃) >

√
4QE[tr((K−K̂)w̃)]

δ
) ≤ δ

4Q
.

By Prop. 3.E.1(c), we have

E
[
MMD2

kP
(Sw(q−1)

n ,Sw̃
n )
]

= E
[
E
[
MMD2

kP
(Sw(q−1)

n , Sw̃
n )
∣∣∣w(q−1)

]]
≤ ∥kP∥n

n
.

Thus by the union bound, with probability at least 1 − δ
2Q

, using Prop. 3.F.1 (recall
low-rank approximation K̂ is obtained using w̃), we have

MMDkP(Sw(q)
n ,P) ≤ MMDkP(Sw(q−1)

n ,P) +
√

4Q∥kP∥n

nδ
+
√

4Q(n+1)Hn,r

δ
. (3.56)

Finally, applying union bound and summing up the bounds for q = 1, . . . , Q, we get, with
probability at least 1− δ,

∆ MMDkP(w(q)) ≤
√

2nHn,r

δ
+
√

16∥kP∥n log n
T 2 + (Q− 1)

(√
4Q∥kP∥n

nδ
+
√

4Q(n+1)Hn,r

δ

)
.

This matches the stated asymptotic bound in Thm. 3.4.

♢ 3.F.2 Thinning with KT-Compress++

For compression with target distribution P, we modify the original KT-Compress++
algorithm of [SDM22, Ex. 6]: in Halve and Thin of Compress++, we use kt-split with
kernel kP without kt-swap (so our version of Compress++ outputs 2g coresets, each of
size
√

n), followed by KT-Swap to obtain a size
√

n coreset. We call the resulting thinning
algorithm KT-Compress++. We show in Lem. 3.F.4 and Cor. 3.F.1 that KT-Compress++
satisfies an MMD guarantee similar to that of quadratic-time kernel thinning.



131 Section 3.F. Accelerated Debiased Compression

Algorithm 3.F.3 KT-Compress++ (modified Shetty, Dwivedi, and Mackey [SDM22,
Alg. 2] to minimize MMD to P)
Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], multiplicity n′

with n′ ∈ 4N, weight w ∈ ∆n−1 ∩ (N0
n′ )n, thinning parameter g, failure probability δ

S← index sequence where k ∈ [n] appears n′wk times
(I(ℓ))ℓ∈[2g] ← Compress++(g,Sn[S]) ▷ Shetty, Dwivedi, and Mackey [SDM22, Ex. 6] with

KT substituted with kt-split in Halve and Thin.
I(ℓ) ← S[I(ℓ)] for each ℓ ∈ [2g]
I← KT-Swap(kP,Sn, (I(ℓ))ℓ∈[2g])
wC++ ← simplex weights corresponding to I ▷ wi = number of occurrences of i in I

|I|
Return: wC++ ∈ ∆n−1 ∩ ( N0√

n
)n ▷ Hence ∥wC++∥0 ≤

√
n

Lemma 3.F.4 (Sub-gaussian guarantee for Compress++). Let Sn be a sequence of n
points with n ∈ 4N. For any δ ∈ (0, 1) and integer g ≥ ⌈log2 log(n + 1) + 3.1⌉, con-
sider the Compress++ algorithm [SDM22, Algorithm 2] with thinning parameter g, halv-
ing algorithm Halve(k) ≜ symmetrized6(kt-split(k, ·, 1,

n2
k

4n2g(g+(βn+1)2g)δ)) for an input
of nk ≜ 2g+1+k

√
n points and βn ≜ log2

(
n
n0

)
, and with thinning algorithm Thin ≜

kt-split(k, ·, g, g
g+(βn+1)2g δ). Then this instantiation of Compress++ compresses Sn to

2g coresets (S(i)
out)i∈[2g] of

√
n points each. Denote the signed measure ϕ(i) ≜ 1

n

∑
x∈Sn

δx −
1√
n

∑
x∈S(i)

out
δx. Then for each i ∈ [2g], on an event E (i)

equi with Pr(E (i)
equi) ≥ 1− δ

2 , ϕ(i) = ϕ̃(i)

for a random signed measure ϕ̃(i) such that, for any δ′ ∈ (0, 1),

Pr
(∥∥∥ϕ̃(i)k

∥∥∥
Hk

≥ a′
n

(
1 +

√
log( 1

δ′ )
))
≤ δ′,

where

a′
n = 4√

n

(
2 +

√
8
3∥k∥n log(6

√
n(g+( log2 n

2 −g)2g)
δ

) log(4Nk (B2(Rn), n−1/2))
)

.

Proof of Lem. 3.F.4. This proof is similar to the one for Shetty, Dwivedi, and Mackey
[SDM22, Ex. 6] but with explicit constant tracking and is self-contained, invoking only
Shetty, Dwivedi, and Mackey [SDM22, Thm. 4] which gives MMD guarantees for Com-
press++ given the sub-Gaussian parameters of Halve and Thin.

Recall that nk is the number of input points for the halving subroutine at recursion
level k in Compress++, and βn is the total number of recursion levels. Let SC denote

6Any halving algorithm can be converted into an unbiased one by symmetrization, i.e., returning
either the output half or its complement with equal probability [SDM22, Remark 3].
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the output of Compress [SDM22, Alg. 1] of size 2g
√

n. Fix δ, δ′ ∈ (0, 1). Suppose we
use Halve(k) ≜ symmetrized(kt-split(k, ·, 1, γkδ)) for an input of nk points for γk to be
determined. Suppose we use Thin ≜ kt-split(k, ·, g, γ′δ) for γ′ to be determined; this
is the kernel thinning stage that thins 2g

√
n points to 2g coresets, each with

√
n points.

Since the analysis is the same for all coresets, we will fix an arbitrary coreset without
superscript in the notation.

By Lem. 3.D.1, with notation t ≜ log 1
δ′ , there exist events Ek,j, ET, and random signed

measures ϕk,j, ϕ̃k,j, ϕT, ϕ̃T for 0 ≤ k ≤ βn and j ∈ [4k] such that

(a) Pr(Ec
k,j) ≤ γkδ

2 and Pr(Ec
T) ≤ γ′δ

2 ,

(b) 1Ek,j
ϕk,j = 1Ek,j

ϕ̃k,j and 1ETϕT = 1ETϕ̃T,

(c) We have

Pr
(∥∥∥ϕ̃k,jk

∥∥∥
Hk

≥ ank
+ vnk

√
t
∣∣∣∣{ϕ̃k′,j′}k′>k,j′≥1, {ϕ̃k′,j′}k′,j′<j

)
≤ e−t

Pr
(∥∥∥ϕ̃Tk

∥∥∥
Hk

≥ a′
n + v′

n

√
t
∣∣∣∣SC

)
≤ e−t,

where, by Lem. 3.D.1, and by increasing the sub-Gaussian constants if necessary,
we have

ank
≜ vnk

≜ ank,nk/2 = 2
nk

(
2 +

√
8
3∥k∥n log(3nk

γkδ
) log(4Nk

(
B2(Rn), 2

nk

)
)
)

,

a′
n ≜ v′

n ≜ a2g
√

n,
√

n = 1√
n

(
2 +

√
8
3∥k∥n log(6g

√
n

γ′δ
) log(4Nk (B2(Rn), n−1/2))

)
, and

(d) E
[
ϕ̃k,jk

∣∣∣{ϕ̃k′,j′}k′>k,j′≥1, {ϕ̃k′,j′}k′,j′<j

]
= 0.

Hence on the event E = ⋂
k,j Ek,j ∩ ET, these properties hold simultaneously. We will

choose {γk}k and γ′ such that Pr(Ec) ≤ δ
2 . By the union bound,

Pr(Ec) ≤ Pr(Ec
T) +∑βn

k=0
∑4k

j=1 Pr(Ec
k,j) ≤ γ′δ

2 +∑βn

k=0 4k γkδ
2 . (3.57)

On the event E , we apply Shetty, Dwivedi, and Mackey [SDM22, Thm. 4, Rmk. 7] to get
a sub-Gaussian guarantee for MMDk(Sn,Sout). We want to choose γk, γ′ such that the
rescaled quantities ζ̃H ≜ n0

2 an0 and ζ̃T ≜
√

na′
n satisfy ζ̃H = ζ̃T [SDM22, Eq. (13)], which

implies that we need
3n0
γ0δ

= 6g
√

n
γ′δ
⇐⇒ γ0

γ′ = 2g
g

. (3.58)

Hence if we take γ′ = g
g+(βn+1)2g and γk = n2

k

4n2g(g+(βn+1)2g) , then (3.58) holds and the upper
bound in (3.57) becomes δ

2 . Note that nkank
is non-decreasing in nk, so by Shetty, Dwivedi,
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and Mackey [SDM22, Theorem 4, Remark 7], Compress++(δ, g) outputs a signed measure
ϕ that, on the event E with Pr(Ec) ≤ δ

2 , equals another signed measure ϕ̃ that satisfies,
for any δ′ ∈ (0, 1),

Pr(
∥∥∥ϕ̃k∥∥∥

Hk

≥ ân + v̂n

√
log( 1

δ′ )) ≤ δ′,

where ân, v̂n satisfy max(ân, v̂n) ≤ 4a′
n whenever g ≥ ⌈log2 log(n + 1) + 3.1⌉.

Corollary 3.F.1 (MMD guarantee for Compress++). Let S∞ be an infinite sequence of
points in Rd and k a kernel. For any δ ∈ (0, 1) and n ∈ N such that n ∈ 4N, consider the
Compress++ with the same parameters as in Lem. 3.F.4 with g ≥ ⌈log2 log(n + 1) + 3.1⌉.
Then for any i ∈ [

√
n], with probability at least 1− δ,

MMDk(Sn,S(i)
out) ≤ 4√

n

(
2 +

√
8
3∥k∥n log(6

√
n(g+( log2 n

2 −g)2g)
δ

) log(4Nk (B2(Rn), n−1/2))
)(

1 +
√

log 2
δ

)
.

Proof. After applying Lem. 3.F.4 with δ′ = δ
2 and following the same argument as in the

proof of Cor. 3.D.1, we have, with probability at least 1− δ,

MMDk(Sn,S(i)
out) ≤ a′

n

(
1 +

√
log 2

δ

)
.

Plugging in the expression of a′
n from Lem. 3.F.4 gives the claimed bound.

♢ 3.F.3 Proof of Thm. 3.5: MMD guarantee for LSKT

First of all, the claimed runtime follows from the runtime of LD (Thm. 3.4), the O(dkP4gn log n)
runtime of Compress++, and the O(dkPn

1.5) runtime of KT-Swap.
Without loss of generality assume n ∈ 4N. Fix δ ∈ (0, 1). Let w⋄ denote the output

of LD, and wsr denote the output of Resample, both regarded as random variables. By
Thm. 3.4, we have, with probability at least 1− δ

3 ,

MMDkP(Sw⋄
n ,P) = MMDkP(SwOPT

n ,P) + O
(√

nHn,r

δ

)
+ O

(√
∥kP∥n max(log n,1/δ)

n

)
. (3.59)

By Prop. 3.E.1(c) with k = kP, we have the upper bound

E
[
MMD2

kP
(Swsr

n ,Sw⋄
n )
]

= E
[
E
[
MMD2

kP
(Swsr

n ,Sw⋄
n )
∣∣∣w⋄

]]
≤ ∥kP∥n

n
.

Thus, by Markov’s inequality,

Pr(MMDkP(Swsr
n , Sw⋄

n ) ≥
√

3∥kP∥n

nδ
) ≤ δ

3 .
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Hence, with probability at least 1− δ
3 , we have

MMDkP(Swsr
n ,Sw⋄

n ) ≤
√

3∥kP∥n

nδ
. (3.60)

Let S(i)
out denote the i-th coreset output by Thin in KT-Compress++ (Alg. 3.F.3). By

Cor. 3.F.1 with k = kP, we have, with probability at least 1− δ
3 ,

MMDkP(Swsr
n ,S(i)

out) = O

(√
∥kP∥n log n log(eNkP (B2(Rn),n−1/2)))

n
log e

δ

)
.

Since KT-Swap can never increase MMDkP(·,P), we have, by the triangle inequality,

MMDkP(SwLSKT
n ,P) ≤ MMDkP(S

(1)
out,P)

≤ MMDkP(S
(1)
out,Swsr

n ) + MMDkP(Swsr
n ,Sw⋄

n ) + MMDkP(Sw⋄
n ,P). (3.61)

By the union bound, with probability at least 1 − δ, the bounds (3.59), (3.60), (3.61)
hold, so that the claim is shown by adding together the right-hand sides of these bounds
and applying Assum. (α,β)-kernel.

■ 3.G Simplex-Weighted Debiased Compression

In this section, we provide deferred analyses for RT and SR/LSR, as well as the algorithmic
details of Recombination (Alg. 3.G.1) and KT-Swap-LS (Alg. 3.G.2).

♢ 3.G.1 MMD guarantee for RT

Proposition 3.G.1 (RT guarantee). Under Assums. 3.1 and (α,β)-kernel, given w ∈
∆n−1 and that m ≥ (CdRβ

n+1√
log 2 +

√
log 2)2 − 1

log 2 + 1, RecombinationThinning (Alg. 3.5)
outputs wRT ∈ ∆n−1 with ∥wRT∥0 ≤ m in O((dkP + m)nm + m3 log n) time such that with
probability at least 1− δ,

MMDkP(SwRT
n ,P) ≤ MMDkP(Sw

n ,P) +
√

2∥kP∥n

nδ
+
√

2nHn,m−1
δ

, (3.62)

where Hn,r is defined in (3.48).

Proof of Prop. 3.G.1. The runtime follows from the O((dkP + m)nm) runtime of Weight-
edRPCholesky, the O(dkPnm) runtime of KT-Swap-LS, and the O(m3 log n) runtime of
Recombination [Tch16] which dominates the O(m3) weight optimization step.

Recall w′ ∈ ∆n−1 from RT. The formation of F in Alg. 3.5 is identical to the formation
of F (with r = m−1) in Alg. 3.3 for q > 1. Thus by (3.53) with w = w′, K = kP(Sn,Sn),

w′⊤Kw′ ≤ w′⊤FF ⊤w′ + n tr((K − FF ⊤)w̃),
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where K = kP(Sn,Sn). By construction of w′ using Recombination, we have F ⊤w̃ =
F ⊤w′. Since K ⪰ FF ⊤, we have

w′⊤Kw′ ≤ w̃⊤FF ⊤w̃ + n tr((K − FF ⊤)w̃) ≤ w̃⊤Kw̃ + n tr((K − FF ⊤)w̃).

We recognize the right-hand side is precisely the right-hand side of (3.55) aside from
having a multiplier of n instead of n + 1 in front of the trace and that F is rank m − 1.
Now applying (3.56) with Q = 1

2 , w(q) = w′, w(q−1) = w, r = m−1, and noticing that KT-
Swap-LS and the quadratic-programming solve at the end cannot decrease the objective,
we obtain (3.62) with probability at least 1 − δ. Note that the lower bound of m in
Assum. (α,β)-params makes r = m− 1 satisfy the lower bound for r in Prop. 3.F.1.

♢ 3.G.2 Proof of Thm. 3.6: MMD guarantee for SR/ LSR

The claimed runtime follows from the runtime of SteinThinning (Alg. 3.D.1) or LD
(Thm. 3.4) plus the runtime of RT (Prop. 3.G.1).

Note the lower bound for m in Assum. (α,β)-params implies the lower bound condition
in Prop. 3.G.1. For the case of SR, we proceed as in the proof of Thm. 3.3 and use
Prop. 3.G.1. For the case of LSR, we proceed as in the proof of Thm. 3.5 and use
Thm. 3.4 and Prop. 3.G.1.

■ 3.H Constant-Preserving Debiased Compression

In this section, we provide deferred analyses for CT and SC/LSC.

♢ 3.H.1 MMD guarantee for CT

Proposition 3.H.1 (CT guarantee). Under Assums. 3.1 and (α,β)-kernel, given w ∈
∆n−1 and m ≥ (CdRβ

n+1√
log 2 + 2√

log 2)2 − 1
log 2 , CT outputs wCT ∈ Rn with 1⊤

n wCT = 1 and
∥wCT∥0 ≤ m in O((dkP + m)nm + m3) time such that, for any δ ∈ (0, 1), with probability
1− δ,

MMDkP(SwCT
n ,P) ≤ 2 MMDkP(Sw

n ,P) +
√

4Hn,m′

δ
,

where Hn,m is defined in (3.48) and m′ ≜ m + log 2− 2
√

m log 2 + 1.

Proof of Prop. 3.H.1. The runtime follows from the O((dkP + m)nm) runtime of Weight-
edRPCholesky, the O(nm) runtime of KT-Swap-LS, and the O(m3) runtime of matrix
inversion in solving the two minimization problems using (3.66).

To improve the clarity of notation, we will use w⋄ to denote the input weight w to
CT. For index sequences I, J ⊂ [n] and a kernel k, we use k(I, J) to indicate the matrix
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k(Sn[I],Sn[J]) = [k(xi, xj)]i∈I,j∈J, and similarly for a function f : Rn → R, we use f(I)
to denote the vector (f(xi))i∈I.

Recall the regularized kernel is kc ≜ kP+c. Suppose for now that c > 0 is an arbitrary
constant. Let I denote the indices output by WeightedRPCholesky in CT. Let

wc ≜ arg minw:supp(w)⊂I MMD2
kc

(Sw
n , Sw⋄

n ).

Note that wc is not a probability vector and may not sum to 1.
Step 1. Bound MMD2

kc
(Swc

n , Sw⋄
n ) in terms of WeightedRPCholesky approxi-

mation error
We start by using an argument similar to that of Epperly and Moreno [EM24, Prop.

3] to exploit the optimality condition of wc. Since

arg minw:supp(w)⊂I MMD2
kc

(Sw
n ,Sw⋄

n ) = arg minw:supp(w)⊂I w⊤
I kc(I, I)wI − 2w⋄⊤kc(Sn, I)wI,

by optimality, wc satisfies,

kc(I, I)wc
I = Sw⋄

n kc(I).

We comment that the index sequence I returned by WeightedRPCholesky makes kc(I, I)
invertible with probability 1: by the Guttman rank additivity formula of Schur comple-
ment [Zha06, Eq. (6.0.4)], each iteration of WeightedRPCholesky chooses a pivot with
a non-zero diagonal and thus increases the rank of the low-rank approximation matrix,
which is spanned by the columns of pivots, by 1. Hence

Swc

n kc(·) = kc(·,Sn)wc = kc(·, I)wc
I = kc(·, I)kc(I, I)−1kc(I, I)wc

I

= kc(·, I)kc(I, I)−1Sw⋄
n kc(I) = Sw⋄

n kcI(·),

where kcI(x, y) ≜ kc(x, I)kc(I, I)−1kc(I, y). Then

MMD2
kc

(Swc

n ,Sw⋄
n ) =

∥∥∥Sw⋄
n kc − Swc

n kc

∥∥∥2

kc
=
∥∥∥Sw⋄

n kc − Sw⋄
n kcI

∥∥∥2

kc
= w⋄⊤(kc − kcI)(Sn,Sn)w⋄.

Recall the index set I consists of the m pivots selected by WeightedRPCholesky on the
input matrix

K⋄
c ≜ kc(Sn,Sn)w⋄

.

Define

K̂⋄
c ≜ kcI(Sn,Sn)w⋄

.
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Thus, by Lem. 3.F.1,

MMD2
kc

(Swc

n ,Sw⋄
n ) = w⋄⊤(kc − kcI)(Sn,Sn)w⋄ =

√
w⋄⊤(K⋄

c − K̂⋄
c )
√

w⋄

≤ λ1(K⋄
c − K̂⋄

c ) ≤ tr(K⋄
c − K̂⋄

c ).

Step 2. Bound tr(K⋄
c − K̂⋄

c ) using the trace bound of the unregularized
kernel

Let JAKr denote the best rank-r approximation of an SPSD matrix A ∈ Rn×n in the
sense that

JAKr ≜ arg min X∈Rn×n

X=X⊤
A⪰X⪰0

rank(X)≤r

tr(A−X). (3.63)

By the Eckart-Young-Mirsky theorem applied to symmetric matrices [Dax+14, Theorem
19], the solution to (3.63) is given by r-truncated eigenvalue decomposition of A, so that

tr(A− JAKr) = ∑n
ℓ=r+1 λℓ(A).

Let q ≜ U(m) where U is defined in (3.49), so that by Chen et al. [Che+22b, Thm. 3.1]
with ϵ = 1, we have

E
[
tr(K⋄

c − K̂⋄
c )
]
≤ 2 tr(K⋄

c − JK⋄
c Kq).

We know one specific rank-q approximation of K⋄
c :

K̃⋄
c ≜ JK⋄Kq−1 + diag(

√
w⋄)c1n1

⊤
n diag(

√
w⋄),

which satisfies

K⋄
c − K̃⋄

c = K⋄ + diag(
√

w⋄)c1n1
⊤
n diag(

√
w⋄)− K̃⋄

c = K⋄ − JK⋄Kq−1.

Thus by the variational definition in (3.63), we have

tr(K⋄
c − JK⋄

c Kq) ≤ tr(K⋄
c − K̃⋄

c ) = tr(K⋄ − JK⋄Kq−1) = ∑n
ℓ=q λℓ(K⋄).

Note the last bound does not depend on c. The tail sum of eigenvalues in the last
expression is the same (up to a constant multiplier) as the one in (3.50) except for an
off-by-1 difference in the summation index. A simple calculation shows that for m′ ≜
m + log 2− 2

√
m log 2 + 1, we have U(m′) = U(m)− 1. Another simple calculation shows

that m ≥ (CdRβ
n+1√

log 2 + 2√
log 2)2 − 1

log 2 implies that m′ satisfies the lower bound requirement
of r in Prop. 3.F.1. Thus, arguing as in the proof that follows (3.50), we get

E
[
tr(K⋄

c − K̂⋄
c )
]
≤ Hn,m′ .
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Thus so far we have shown

E[MMD2
kc

(Swc

n ,Sw⋄
n )] ≤ E

[
tr(K⋄

c − K̂⋄
c )
]
≤ Hn,m′ .

By Markov’s inequality, with probability at least 1− δ, we have

MMDkc(Swc

n , Sw⋄
n ) ≤

√
Hn,m′

δ
.

Recall that MMDk(µ, ν) = ∥(µ− ν)k∥k for signed measures µ, ν. By the triangle inequal-
ity, we have

MMDkc(Swc

n ,P) ≤ MMDkc(Swc

n ,Sw⋄
n ) + MMDkc(Sw⋄

n ,P)
= MMDkc(Swc

n , Sw⋄
n ) + MMDkP(Sw⋄

n ,P),

where we used that fact that∑i∈[n] w⋄
i = 1 to get the identity MMDkc(Sw⋄

,P) = MMDkP(Sw⋄
,P).

Hence, with probability at least 1− δ,

MMDkc(Swc

n ,P) ≤ MMDkP(Sw⋄
n ,P) +

√
Hn,m′

δ
. (3.64)

Step 3. Incorporating sum-to-one constraint
We now turn wc into a constant-preserving weight while not inflating the MMD by

much. Define

w1 ≜ arg minw:supp(w)⊂I,
∑

i∈[n] wi=1 MMD2
kP

(Sw
n ,P). (3.65)

Note w1 is the weight right before KT-Swap-LS step in CT. Let KI = kP(I, I). Let 1I de-
note the |I|-dimensional all-one veector. The Karush-Kuhm-Tucker condition [Gho+21,
Sec. 4.7] applied to (3.65) implies that, the solution w1 is a stationary point of the La-
grangian function

L(wI, λ) ≜ w⊤
I KIwI + λ(1⊤

I wI − 1).

Then ∇wIL(w1
I, λ) = 0 implies 2KIw

1
I − λ1I = 0, so w1

I = λK−1
I 1I

2 . The Lagrangian
multiplier λ is determined by the constraint 1⊤

I wI = 1, so we find

w1
I = K−1

I 1I

1⊤
I K−1

I 1I
. (3.66)

Define

wc,P ≜ arg minw:supp(w)⊂I MMD2
kc

(Sw
n ,P).
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Since wc,P is optimized to minimize MMDkc to P on the same support as wc, we have

MMDkc(Swc,P
n ,P) ≤ MMDkc(Swc

n ,P).

The optimality condition for wc,P is

(KI + c1I1
⊤
I )w − c1I = 0,

and hence by the Sherman–Morrison formula,

wc,P
I = (KI + c1I1

⊤
I )−1c1I =

(
K−1

I −
cK−1

I 1I1⊤
I K−1

I
1+c1⊤

I K−1
I 1I

)
c1I = K−1

I 1I

1/c+1⊤
I K−1

I 1I
.

Let ρc ≜
1⊤

I K−1
I 1I

1/c+1⊤
I K−1

I 1I
, so that wc,P

I = ρcw
1
I. In particular, w1 and wc,P are scalar multiples

of one another. To relate MMDkP(Sw1
n ,P) and MMDkc(Swc,P

n ,P), note that

MMD2
kP

(Sw1
n ,P) = w1

I
⊤

KIw
1
I = wc,P

I
⊤

KIwc,P
I

ρ2
c

= wc,P
I

⊤
(KI+c1I1⊤

I )wc,P
I −c(1⊤

I wc
I)2

ρ2
c

= MMD2
kc

(Swc,P
n ,P)+2c1⊤

I wc
I−c−c(1⊤

I wc
I)2

ρ2
c

= MMD2
kc

(Swc,P
n ,P)−c(ρc−1)2

ρ2
c

.

So far the argument does not depend on any particular choice of c > 0. Let us now
discuss how to choose c. Note that

1⊤
I K−1

I 1I = m 1I√
m

⊤
K−1

I
1I√
m
≥ mλm(K−1

I ) ≥ m
λ1(KI) ≥

m
tr(KI) ≥

m∑
i∈[m] diag(K)↓

i

,

where diag(K)↓ denote the diagonal entries of K = kP(Sn,Sn) sorted in descending order.
Thus

ρc = 1
1

c1⊤
I K−1

I 1I
+1 ≥

1∑
i∈[m] diag(K)↓

i

mc
+1

.

Hence we can choose c to make sure ρc is bounded from below by a positive value. Recall
in CT, we take

c =
∑

i∈[m] diag(K)↓
i

m
,

so that ρc ≥ 1
2 and

MMD2
kP

(Sw1
n ,P) = MMD2

kc
(Swc,P

n ,P)−c(ρc−1)2

ρ2
c

≤ 4 MMD2
kc

(Swc,P
n ,P).

Hence by (3.64) and the fact that KT-Swap-LS and the final reweighting in CT only
improves MMD, we have, with probability at least 1− δ,

MMDkP(SwCT
n ,P) ≤ MMDkP(Sw1

n ,P) ≤ 2 MMDkc(Swc,P
n ,P) ≤ 2 MMDkc(Swc

n ,P)

≤ 2 MMDkP(Sw⋄
n ,P) + 2

√
Hn,m′

δ
,

where we use (3.64) in the last inequality.
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♢ 3.H.2 Proof of Thm. 3.7: MMD guarantee for SC / LSC

The claimed runtime follows from the runtime of SteinThinning (Alg. 3.D.1) or LD
(Thm. 3.4) plus the runtime of CT (Prop. 3.H.1).

Note the lower bound for m in Assum. (α,β)-params implies the lower bound condition
in Prop. 3.H.1. For the case of SC, we proceed as in the proof of Thm. 3.3 and use
Prop. 3.H.1. For the case of LSC, we proceed as in the proof of Thm. 3.5 by invoking
Thm. 3.4 and Prop. 3.H.1.

■ 3.I Implementation and Experimental Details

♢ 3.I.1 O(d)-time Stein kernel evaluation

In this section, we show that for Sn = (xi)i∈[n], each Stein kernel evaluation kp(xi, xj)
for a radially analytic base kernel (Def. 3.B.3) can be done in O(d) time after computing
certain sufficient statistics in O(nd2 + d3) time. Let M ∈ Rd×d be a positive definite
preconditioning matrix for kp. Let L be the Cholesky decomposition of M which can
be done in O(d3) time so that M = LL⊤. From the expression (3.17), we can achieve
O(d) time evaluation if we can compute ∥x− y∥2

M and M∇ log p(x) in O(d) time. For
M∇ log p(x), we can simply precompute M∇ log p(xi) for all i ∈ [n]. For ∥x− y∥2

M , we
have

∥x− y∥2
M = (x− y)⊤M−1(x− y) = (x− y)⊤(LL⊤)−1(x− y) =

∥∥∥L−1(x− y)
∥∥∥2

2
.

Hence it suffices to precompute L−1xi for all i ∈ [n], and we can precompute the inverse
L−1 in O(d3) time.

♢ 3.I.2 Default parameters for algorithms

For LD, we always use Q = 3. To ensure that the guarantees of Lem. 3.F.3 and Thm. 3.4
hold while achieving fast convergence in practice, we take the step size of AMD to be
1/(8∥kP∥n) in the first adaptive round and 1/(8∑i∈[n] w

(q−1)
i kP(xi, xi)) in subsequent

adaptive rounds. We use T = 7√n0 for AMD in all experiments.
We implemented our modified versions of KernelThinning and KT-Compress++ in

JAX [Bra+18] so that certain subroutines can achieve a speedup using just-in-time com-
pilation and the parallel computation power of GPUs. For Compress++, we use g = 4 in
all experiments as in Shetty, Dwivedi, and Mackey [SDM22]. For both KernelThinning
and KT-Compress++, we use choose δ = 1/2 as in the goodpoints library.

Each experiment was run with a single NVIDIA RTX 6000 GPU and an AMD EPYC
7513 32-Core CPU.
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♢ 3.I.3 Correcting for burn-in details

We use the four MCMC chains provided by Riabiz et al. [Ria+22] that include both the
sample points and their scores. The reference chain used to compute the energy distance
is the same one used in Riabiz et al. [Ria+22] for the energy distance and was kindly
provided by the authors.

In Tab. 3.I.1, we collect the runtime for the burn-in correction experiments.
Fig. 3.I.1, Fig. 3.I.2, Fig. 3.I.3, display the results of the burn-in correction experiment

of Sec. 3.5 repeated with three other MCMC algorithms: MALA without preconditioning,
random walk (RW), and adaptive random walk (ADA-RW). The results of P-MALA from
Sec. 3.5 are also included for completeness. For all four chains, our methods reliably
achieve better quality coresets when compared with the baseline methods.
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Figure 3.I.1: Correcting for burn-in with equal-weighted compression. For each
of four MCMC algorithms and using only one chain, our methods consistently outperform
the Stein and standard thinning baselines and match the 6-chain oracle.

♢ 3.I.4 Correcting for approximate MCMC details

Surrogate ground truth Following Liu and Lee [LL17], we took the first 10,000 data
points and generated 220 surrogate ground truth sample points using NUTS [HG+14] for
the evaluation. To generate the surrogate ground truth using NUTS, we used numpyro
[PPJ19]. It took 12 hours to generate the surrogate ground truth points using the GPU
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Figure 3.I.2: Correcting for burn-in with simplex-weighted compression. For each
of four MCMC algorithms and using only one chain, our methods consistently outperform
the Stein and standard thinning baselines and match the 6-chain oracle.

implementation, and we estimate it would have taken 200 hours using the CPU imple-
mentation.

SGFS For SGFS, we used batch size 32 and the step size schedule η/(1+t)0.55 where t
is the step count and η is the initial step size. We chose η from {10.0, 5.0, 1.0, 0.5, 0.1, 0.05, 0.01},
found η = 1.0 gave the best standard thinning MMD to get a coreset size of m = 210 ,
and hence we fixed η = 1.0 in all experiments. We used the version of SGFS [AKW12,
SGFS-f] that involves inversion of d×d matrices — we found the faster version (SGFS-d)
that inverts only the diagonal resulted in significantly worse mixing. We implemented
SGFS in numpy and ran it on the CPU.

Runtime The SGFS chain of length 224 took approximately 2 hours to generate
using the CPU. Remarkably, all of our low-rank methods finish within 10 minutes for
n0 = 220, which is orders of magnitude faster than the time taken to generate the NUTS
surrogate ground truth.

Additional results In Fig. 3.I.4, we plot the posterior mean mean-squared error
(MSE) for each compression method in the approximate MCMC experiment of Sec. 3.5.
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Figure 3.I.3: Correcting for burn-in with constant-preserving compression. For
each of four MCMC algorithms and using only one chain, our methods consistently out-
perform the Stein and standard thinning baselines and match the 6-chain oracle.

♢ 3.I.5 Correcting for tempering details

In the data release of Riabiz et al. [Ria+20], we noticed there were 349 sample points for
which the provided scores were NaNs, so we removed those points at the recommendation
of the authors.
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n0 ST LD (0.5) LD (0.4) KT KT-Compress++ RT (0.5) RT (0.4) CT (0.5) CT (0.4)

214 2.50 13.22 12.88 7.31 3.49 0.79 0.60 2.06 1.96
216 8.48 16.15 15.82 20.77 5.90 2.59 1.68 3.66 3.04
218 111.06 32.14 20.60 193.03 11.73 11.16 2.63 6.48 3.67
220 - 314.67 131.31 - 35.99 113.71 11.06 51.14 8.42

Table 3.I.1: Breakdown of runtime (in seconds) for the burn-in correction experiment
(d = 4) of Sec. 3.5. n0 is the input size after standard thinning from the length n = 2×106

chain (Rem. 3.2). Each runtime is the median of 3 runs. KT and KT-Compress++ output
m = √n0 equal-weighted points. RT and CT respectively output m = nτ

0 points with
simplex or constant-preserving weights for τ shown in parentheses. In addition, LD, RT,
and CT use the rank nτ

0. ST and KT took longer than 30 minutes for n0 = 220 and hence
their numbers are not reported.
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Figure 3.I.4: Posterior mean mean-squared error (MSE) for the ap-
proximate MCMC compression experiment of Sec. 3.5. MSE is computed as
∥ÊPZ −∑i∈[n0] wixi∥2

M/d where ÊPZ is the mean of the surrogate ground truth NUTS
sample.
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Algorithm 3.G.1 Recombination (rephrasing of Tchernychova [Tch16, Alg. 1] that takes
O(m3 log n) time)
Input: matrix A ∈ Rm×n with m < n and one row of A all positive, a nonnegative vector

x0 ∈ Rn
≥0.

function FindBFS(A, x0)
▷ The requirement of A and x0 are the same as the input. This subroutine takes O(n3)

time.
x← x0
U, S, V ⊤ ← SVD(A) ▷ any O(n3)-time SVD algorithm that gives USV ⊤ = A
V ← (V ⊤)m+1:n ▷ V ∈ R(n−m)×n so that the null space of A is spanned by the rows of

V
for i = 1 to n−m do

v ← Vi

k ← arg minj∈[n]:vj>0
xj

vj
▷ This must succeed because Av = 0 and A has an all-positive

row, so one of the coordinates of v must be positive.
x ← x − xk

vk
v ▷ This zeros out the k-th coordinate of x while still ensuring x is

nonnegative.
for j = i + 1 to n−m do

Vj ← Vj− Vj,k

vk
v ▷ {Vj}n−m

j=i+1 remain independent and have 0 on the k-th coordinate.
end for

end for
return: x ∈ Rn

≥0 such that Ax = Ax0 and ∥x∥0 ≤ m.
end function
x← x0
while ∥x∥0 > 2m do

Divide {i ∈ [n] : xi > 0} into 2m index blocks I1, . . . , I2m, each of size at most
⌊

∥x∥0
2m

⌋
.

Ai ← A:,Ii
xIi
∈ Rm,∀i ∈ [2m]

Form Â to be the m× 2m matrix with columns Ai ▷ Hence, one row of A contains all
positive entries.

x̂← FindFBS(Â,12m) ▷ ∥x̂∥0 ≤ n and Âx̂ = ∑
Aix̂i = ∑

Ai = ∑
A:,Ii

xIi
= Ax.

for i = 1 to 2m do
xIi
← x̂i · xIi

if x̂i > 0 else 0
end for
▷ After the update, the support of x shrinks by 2 while it maintains that Ax = Ax0.

end while
if ∥x∥0 ≥ m + 1 then

I← {i ∈ [n] : xi > 0}
xI = FindBFS(A:,I, xI)

end if
Return: x ∈ Rn

≥0 such that Ax = Ax0 and ∥x∥0 ≤ m.
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Algorithm 3.G.2 KT-Swap with Linear Search (KT-Swap-LS)
Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], weights w ∈ ∆n−1,

fmt ∈ {SPLX, CP}
S← {i ∈ [n] : wi ̸= 0}
▷ Maintain two sufficient statistics: g = Kw and D = w⊤Kw.
function Add(g, D, i, t)

g ← g + tkP(Sn, xi)
D ← D + 2tgi + t2kP(xi, xi)
return: (g, D)

end function
function Scale(g, D, α)

g ← αg
D ← α2D
return: (g, D)

end function
Kdiag← kP(Sn,Sn)
g ← 0 ∈ Rn

D ← 0
for i in S do

(g, D)← Add(g, D, i, wi)
end for
for i in S do

if wi = 1 then continue; ▷ We cannot swap i out if ∑j ̸=i wj = 0!
▷ First zero out wi.
(g, D)← Add(g, D, i,−wi)
(g, D)← Scale(g, D, 1

1−wi
)

wi = 0
▷ Next perform line search to add back a point.
α = (D− g)./(D− 2g + Kdiag); ▷ αi = arg mint MMD2

kP
(Stei+(1−t)w

n ,P) = arg mint(1−
t)2D + 2t(1− t)g + t2Kdiag

if fmt = SPLX then
α = clip(α, 0, 1); ▷ Clipping α to [0, 1]. This corresponds to
arg mint∈[0,1] MMD2

kP
(Stei+(1−t)w

n ,P).
end if
D′ ← (1− α)2D + 2α(1− α)g + α2Kdiag ▷ multiplications are element-wise
k ← arg mini D′

i

(g, D)← Scale(g, D, 1− αk)
(g, D)← Add(g, D, k, αk)

end for
Return: w ∈ ∆n−1



Part II
Optimizing Continuous Distributions with
Neural Parameterizations

In Part I, we saw optimizing over discrete distributions parameterized as weighted particles
can lead to high-quality sampling. While particles are convenient to work and theoretical
guarantees can be obtained for interpreting the optimization objective, for assessing the
quality of the resulting samples, and for analyzing the algorithmic convergence, discrete
representations of distributions have limitations. To list a few:

• For the generative modeling task, using particles alone cannot generate fresh sam-
ples unless more involved mechanism is used (e.g. Scarvelis, Borde, and Solomon
[SBS23], whose generation time is linear in the dataset size).

• Quantities such as densities are hard to extract from particles and approximations
such as kernel density estimation [Che17] need to be used.

• For high dimensions, it can take a large number of particles that is exponential in
dimension to accurately represent the distribution, even if the distribution is simple
such as a uniform measure in a box. For example, guarantees in Chapter 3 have
exponents in the kernel growth rates which can scale exponentially in d (Prop. 3.1).

To tackle the above limitations, in Part II, we parameterize continuous distributions
using neural networks in three different ways:

• as dual potentials to find the Wasserstein barycenter of continuous distributions
(Chapter 4),

• as pushforward maps to locate minima of non-convex classical optimization (Chap-
ter 5), and
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• as time-varying velocity fields to solve mass-conserving partial differential equations
(Chapter 6).

The central theme of Part II is to exploit convexity principles in deriving formulations
amenable with neural networks with state-of-the-art performance in the respective task.



Chapter 4

Continuous Regularized Wasserstein Barycenters

In this chapter, we show how convex duality can be used to derive a Wasserstein barycenter
formulation. This approach transitions from intractable optimization over distributions to
tractable optimization over continuous functions. These functions can then be effectively
parameterized as neural networks that are optimized using techinques from deep learning.
This chapter is based on the publication Li et al. [Li+20].

■ 4.1 Introduction

In statistics and machine learning, it is often desirable to aggregate distinct but similar
collections of information, represented as probability distributions. For example, when
temperature data is missing from one weather station, one can combine the tempera-
ture histograms from nearby stations to provide a good estimate for the missing sta-
tion [Sol+14]. Or, in a Bayesian inference setting, when inference on the full data set is
not allowed due to privacy or efficiency reasons, one can distributively gather posterior
samples from slices of the data to form a single posterior incorporating information from
all the data [Min+14; SLD18; Sri+15; Sta+17].

One successful aggregation strategy is to compute a barycenter of the input distribu-
tions. Given a notion of distance between distributions, the barycenter is the distribution
that minimizes the sum of distances to the individual input distributions. A popular
choice of distance is the Wasserstein distance based on the theory of optimal trans-
port. The corresponding barycenter, called the Wasserstein barycenter was first studied
in [AC11]. Intuitively, the Wasserstein distance is defined as the least amount of work
required to transport the mass from one distribution into the other, where the notion of
work is measured with respect to the metric of the underlying space on which the distribu-
tions are supported. The Wasserstein distance enjoys strong theoretical properties [Vil08;
FG15; San15], and efficient algorithms for its computation have been proposed in recent

149
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years [Cut13; Gen+16; Seg+17; PC19]. It has found success in many machine learning
applications, including Bayesian inference [EM12] and domain adaptation [CFT14].

Finding the Wasserstein barycenter is not an easy task. To make it computationally
tractable, the barycenter is typically constrained to be a discrete measure on a fixed
number of support points [CD14; Sta+17; Dvu+18; CCS18]. This discrete approximation,
however, can be undesirable in downstream applications, as it goes against the inherently
continuous nature of many data distributions and lacks the capability of generating fresh
samples when needed. To address this shortcoming, in this work we compute a continuous
approximation of the barycenter that provides a stream of samples from the barycenter.

Contributions. We propose a stochastic optimization algorithm to approximate the
Wasserstein barycenter without discretizing its support. Our method relies on a novel
dual formulation of the regularized Wasserstein barycenter problem where the regulariza-
tion is applied on a continuous support measure for the barycenter. The dual potentials
that solve this dual problem can be used to recover the optimal transport plan between
each input distribution and the barycenter. We solve the dual problem using stochastic
gradient descent, yielding an efficient algorithm that only requires sample access to the
input distributions. The barycenter can then be extracted as a follow-up step. Compared
to existing methods, our algorithm produces the first continuous approximation of the
barycenter that allows sample access. We demonstrate the effectiveness of our approach
on synthesized examples and on real-world data for subset posterior aggregation.

■ 4.2 Related Works

In [AC11], the notion of Wasserstein barycenters was first introduced and analyzed the-
oretically. Although significant progress has been made in developing fast and scal-
able methods to compute the Wasserstein distance between distributions in both dis-
crete [Cut13] and continuous cases [Gen+16; Seg+17], the search for an efficient and
flexible Wasserstein barycenter algorithm has been overlooked in the continuous setting.

To have a tractable representation of the barycenter, previous methods assume that
the barycenter is supported on discrete points. When the barycenter support is fixed a
priori, the problem boils down to estimating the weights of the support points, and effi-
cient projection-based methods can be used for discrete input measures [Ben+15; Sol+15;
CP16] while gradient-based solvers can be used for continuous input measures [Sta+17;
Dvu+18]. These fixed-support methods become prohibitive in higher dimensions, as the
number of points required for a reasonable a priori discrete support grows exponen-
tially. When the support points are free to move, alternating optimization of the sup-
port weights and the support points is typically used to deal with the non-convexity
of the problem [CD14]. More recent methods use stochastic optimization [CCS18] or the
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Franke–Wolfe algorithm [Lui+19] to construct the support iteratively. These free-support
methods, however, are computationally expensive and do not scale to a large number of
support points.

If the support is no longer constrained to be discrete, a key challenge is to find a
suitable representation of the now continuous barycenter, a challenge that is unaddressed
in previous work. We draw inspiration from [Gen+16], where the Wasserstein distance
between continuous distributions is computed by parameterizing the dual potentials in a
reproducing kernel Hilbert space (RKHS). Their work was followed by [Seg+17], where
neural networks are used instead of RKHS parameterizations. The primal-dual relation-
ship exhibits a bridge between continuous dual potentials and the transport plans, which
can the be marginalized to get a convenient continuous representation of the distribu-
tions. However, a direct extension of [Seg+17] to the barycenter problem will need to
parameterize the barycenter measure, resulting in an alternating min-max optimization
scheme. By introducing a novel regularizing measure that does not rely on the unknown
barycenter but only on a proxy support measure, we are able to encode the information
of the barycenter in the dual potentials themselves without explicitly parameterizing the
barycenter. This idea of computing the barycenter from dual potentials can be viewed
as a generalization of [CP16] to the continuous case where the barycenter is no longer
supported on a finite set known beforehand.

■ 4.3 Background on Optimal Transport

Throughout, we consider a compact set X ⊂ Rd equipped with a symmetric continuous
cost function c : X × X → R≥0. We denote by P(X ) the space of probability measures
on X . For any µ, ν ∈ P(X ), the Kantorovich formulation of optimal transport between µ
and ν is defined as:

W (µ, ν) ≜ inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y), (4.1)

where Π(µ, ν) ≜ {π ∈ P(X 2) : (Px)#π = µ, (Py)#π = ν} is the set of admissable
transport plans, Px(x, y) ≜ x and Py(x, y) ≜ y are the projections onto the first and
second coordinate respectively, and T#α denotes the pushforward of the measure α by
a function T . When c(x, y) = ||x − y||p2, the quantity W (µ, ν)1/p is the p-Wasserstein
distance between µ and ν.

The primal problem (4.1) admits an equivalent dual formulation [San15, Theorem
1.42]:

W (µ, ν) = sup
f,g∈C(X )

f⊕g≤c

∫
X

f(x) dµ(x) +
∫

X
g(y) dν(y), (4.2)

where C(X ) is the space of continuous real-valued functions on X , and (f ⊕ g)(x, y) ≜
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f(x) + g(y). The inequality f ⊕ g ≤ c is interpreted as f(x) + g(y) ≤ c(x, y) for µ-a.e. x
and ν-a.e. y. We refer to f and g as the dual potentials.

Directly solving (4.1) and (4.2) is challenging: even with discretization, the resulting
linear program can be large. Hence regularized optimal transport has emerged as a pop-
ular, efficient alternative [Cut13]. Let ξ ∈ P(X 2) be the measure on which we enforce a
relaxed version of the constraint f⊕g ≤ c. We call ξ the regularizing measure. In previous
work, ξ is usually taken to be the product measure µ⊗ν [Gen+16] or the uniform measure
on a discrete set of points [Cut13]. Given a convex function R : R → R, we define the
regularized version of (4.1) with respect to ξ, R as

W ξ
R(µ, ν) ≜ inf

π∈Π(µ,ν)
π≪ξ

∫
X ×X

c(x, y) dπ(x, y) +
∫

X ×X
R

(
dπ

dξ
(x, y)

)
dξ(x, y), (4.3)

where π ≪ ξ denotes that π is absolutely continuous with respect to ξ and dπ
dξ

denotes
the Radon-Nikodym derivative. In this work, we consider entropic and quadratic regular-
ization defined by

∀t ≥ 0, R(t) ≜
{

ϵ(t ln t− t) entropic
ϵ
2t2 quadratic.

(4.4)

As in the unregularized case, the primal problem (4.3) admits an equivalent dual formu-
lation for entropic [Gen+16; Cla+19] and quadratic [LMM19] regularization:

W ξ
R(µ, ν) = sup

f,g∈C(X )

∫
X

f(x) dµ(x)+
∫

X
g(y) dν(y)−

∫
X ×X

R∗ (f(x) + g(y)− c(x, y)) dξ(x, y),

(4.5)
where the function R∗ on the dual problem is determined as

∀t ∈ R, R∗(t) =
{

ϵ exp( t
ϵ
) entropic

1
2ϵ

(t+)2 quadratic.

The regularized dual problem has the advantage of being unconstrained thanks to the
penalization of R∗ to smoothly enforce f ⊕ g ≤ c. We can recover the optimal transport
plan π that solves (4.3) from the optimal dual potentials (f, g) that solves (4.5) using the
primal-dual relationship [Gen+16; LMM19]:

dπ(x, y) = H(x, y)dξ(x, y), where H(x, y) =

 exp
(

f(x)+g(y)−c(x,y)
ϵ

)
entropic(

f(x)+g(y)−c(x,y)
ϵ

)
+

quadratic.
(4.6)

Entropic regularization is more popula because in the discrete case it yields a problem
that can be solved with the celebrated Sinkhorn algorithm [Cut13]. We will consider
both entropic and quadratic regularization in our experimental setup, while the method
developed in the next section is applicable to more general regularization.
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■ 4.4 Regularized Wasserstein Barycenters

We now use the regularized Wasserstein distance (4.3) to define a regularized version of
the Wasserstein barycenter problem introduced in [AC11].

♢ 4.4.1 Primal and dual formulations

Given input distributions µ1, . . . , µn ∈ P(X ) and weights λ1, . . . , λn ∈ R≥0, the (unreg-
ularized) Wasserstein barycenter problem1 of these input measures with respect to the
weights is [AC11]:

inf
ν∈P(X )

n∑
i=1

λiW (µi, ν). (4.7)

Since this formulation is hard to solve in practice, we instead consider the following
regularized Wasserstein barycenter problem with respect to the regularized Wasserstein
distance (4.3) and some η ∈ P(X ):

inf
ν∈P(X )

n∑
i=1

λiW
µi⊗η
R (µi, ν). (4.8)

If we knew the true barycenter ν, one clear choice is η = ν. For (4.8) to make sense
without referring to ν, we must use another measure η as a proxy for ν. We call such η the
barycenter support measure. If no information about the barycenter is known beforehand,
we take η = Uniform(X ), the uniform measure on X . Otherwise we can choose η based
on the information we have.

Our method relies on the following dual formulation of (4.8):

Theorem 4.4.1. Let X ⊂ Rd be a compact domain. Consider input distributions µ1, . . . , µn ∈
P(X ), weights λ1, . . . , λn ∈ R≥0, a support measure η ∈ P(X ), and regularizing functions
R, R∗ so that W ξ

R admits primal and dual formulations (4.3) and (4.5) for any ξ ∈ P(X 2).
Suppose in addition that R∗ is convex and increasing. Then the dual problem of (4.8) is

sup
{(fi,gi)}n

i=1⊂C(X )2∑n

i=1 λigi=0

n∑
i=1

λi

(∫
fi dµi −

∫∫
R∗ (fi(x) + gi(y)− c(x, y)) dµi(x) dη(y)

)
. (4.9)

The (strong) duality holds in the sense that the infimum of (4.8) equals the supremum
of (4.9), and a solution to (4.8) exists. If {(fi, gi)}n

i=1 solves (4.9), then each (fi, gi) is a
solution to the dual formulation (4.5) of W µi⊗η

R (µi, ν), where ν is the barycenter solution
of (4.8).

1In some convention, there is an additional exponent in the summands of (4.7) such as∑n
i=1 λiW

2
2 (µi, ν) for the 2-Wasserstein barycenter. Here we absorb such exponent in (4.1), e.g.,

W (µi, ν) = W 2
2 (µi, ν).
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The proof given below relies on the convex duality theory of locally convex topological
spaces developed in [ET99].

Remark 4.1. Based on Thm. 4.4.1, we can recover the optimal transport plan πi be-
tween µi and the barycenter ν from the pair (fi, gi) that solves (4.9) via the primal-dual
relationship (4.6).

Proof of Thm. 4.4.1. We first prove the strong duality. Recall that X ⊂ Rd is compact.
We thus view C(X ) as a normed vector space with the supremum norm. Let V ≜
((C(X ))2)n be the direct sum vector space endowed with the natural norm, i.e., for u =
{(fi, gi)}n

i=1 ∈ V ,

∥u∥ ≜
n∑

i=1
(∥fi∥+ ∥gi∥).

For brevity, denote ξi ≜ µi ⊗ η. We use the notation ξi to suggest that a more general
support measure can be used to establish the strong duality. Define J : V → R to be, for
u = {(fi, gi)}n

i=1,

J(u) ≜
n∑

i=1
λi

(∫∫
R∗(fi(x) + gi(y)− c(x, y))dξi(x, y)−

∫
fi(x)dµi(x)

)

=
n∑

i=1
λi

(∫∫
R∗(fi ⊕ gi − c)dξi −

∫
fidµi

)
. (4.10)

Let Y ≜ C(X ). By the Riesz–Markov–Kakutani representation theorem, the continuous
dual space of Y is Y ∗ =M(X ), the space of regular Borel measures. Define B : V → Y
as, for u = {(fi, gi)}n

i=1,

B(u) = B({(fi, gi)}n
i=1) ≜ −

n∑
i=1

λigi.

Then the optimization (4.9) becomes, after negating the objective,

inf
u∈V

B(u)=0

J(u),

where the equality B(u) = 0 is component-wise (i.e. B(u) is the constant-zero function
in Y ). Similarly we use ≤, < to mean component-wise inequalities in C(X ). We claim
the above program is the same as

inf
u∈V

B(u)≤0

J(u). (4.11)
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This is because if u ∈ {u : B(u) ≤ 0}, then for any x ∈ X , ∑n
i=1 λigi(x) ≥ 0, and by

replacing every gi with gi−
∑n

i=1 λigi(x) the objective (4.11) can only gets smaller due to
the monotonicity of R∗.

The dual problem of (4.11) can be calculated as (see Chapter III.(5.23) in [ET99])

sup
ν≤0

inf
u∈V

{
−
∫

B(u)dν + J(u)
}

= sup
ν≤0

inf
{(fi,gi)}n

i=1⊂C(X )2
−
∫ (
−

n∑
i=1

λigi

)
dν +

n∑
i=1

λi

(∫∫
R∗(fi ⊕ gi − c)dξi −

∫
fidµi

)

= sup
ν≥0

inf
{(fi,gi)}n

i=1⊂C(X )2

n∑
i=1

λi

(∫∫
R∗(fi ⊕ gi − c)dξi −

∫
fidµi −

∫
gidν

)

= sup
ν≥0

n∑
i=1

λi inf
(fi,gi)∈C(X )2

(∫∫
R∗(fi ⊕ gi − c)dξi −

∫
fidµi −

∫
gidν

)
(4.12)

= sup
ν≥0

n∑
i=1
−λiW

ξi
R (µi, ν) (4.13)

=− inf
ν≥0

n∑
i=1

λiW
ξi
R (µi, ν). (4.14)

To get (4.13) we used the duality for regularized Wasserstein distance (4.5).
In order to apply classical results from convex analysis (for instance, Proposition 5.1

of Chapter III in [ET99]) to establish the strong duality and the existence of solutions,
we need to show:

(a) J is a convex l.s.c. (lower-semicontinuous) function.

(b) B is convex.

(c) For any ν ∈ Y ∗, ν ≥ 0, the map u 7→
∫

B(u)dν is l.s.c.

(d) {u ∈ V : B(u) ≤ 0} ≠ ∅.

(e) There exists u0 ∈ V such that −B(u0) < 0.

(f) The infimum in (4.11) is finite.

Since B is linear and Y = C(X ) in our case, the conditions (b)-(e) are satisfied automat-
ically. Convexity of J (a) follows because R∗ is convex so that, for uj = {(f (j)

i , g
(j)
i )}n

i=1,
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j ∈ {1, 2}, and θ ∈ [0, 1],

J(θu1 + (1− θ)u2)

=
n∑

i=1
λi

(∫∫
R∗((θf

(1)
i + (1− θ)f (2)

i )⊕ θ(g(1)
i + (1− θ)g(2)

i ))− c)dξi

−
∫

(θf
(1)
i + (1− θ)f (2)

i )dµi

)
≤ θ

n∑
i=1

λi

(∫∫
R∗(f (1)

i ⊕ g
(1)
i − c)dξi −

∫
f

(1)
i dµi

)

+ (1− θ)
n∑

i=1
λi

(∫∫
R∗(f (2)

i + g
(2)
i − c)dξi −

∫
f

(2)
i dµi

)
= θJ(u1) + (1− θ)J(u2).

Next we show that J is l.s.c. with respect to the norm topology on V . Since J is
convex and does not take on values ±∞, by Proposition III.2.5 of [ET99], it is enough to
show that J is bounded above in a neighborhood of 0. Fix any δ > 0. As before we write
u = {(fi, gi)}n

i=1 ∈ V . Then ∥u∥ < δ implies supx∈X max(fi(x), gi(x)) < δ for all i. Since
X is compact, supx,y∈X c(x, y) is bounded. Hence the integrand in (4.10) is bounded for
∥u∥ < δ as R∗ is increasing, and the conclusion that J is bounded on {u ∈ V : ∥u∥ < δ}
follows from the fact that both ξi and µi are probability measures for all i. This proves J
is continuous, and in particular l.s.c.

It remains to show that the infimum in (4.11) is finite. Note that for u ∈ V such that
B(u) ≤ 0, we have ∑n

i=1 λigi ≥ 0. Hence in this case, if let λ be the uniform measure on
X , then

J(u) =
n∑

i=1
λi

(∫∫
R∗(fi ⊕ gi − c)dξi −

∫
fidµi

)

≥
n∑

i=1
λi

(∫∫
R∗(fi ⊕ gi − c)dξi −

∫
fidµi

)
−
∫ (

n∑
i=1

λigi

)
dλ

=
n∑

i=1
λi

(∫∫
R∗(fi ⊕ gi − c)dξi −

∫
fidµi −

∫
gidλ

)

≥ −
n∑

i=1
λiW

µi⊗λ
R (µi, λ)

> −∞.

Thus by Proposition III.5.1 of [ET99], the problem (4.11) is stable (Definition III.2.2
in [ET99]), and in particular normal, so we have the strong duality (Proposition III.2.1,
III.2.2 in [ET99]), and the dual problem (4.14) has at least one solution. We comment
that this does not imply (4.11) has a solution.
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To show the solution ν∗ to (4.14) is actually a probability measure, suppose ν∗(X ) ̸= 1.
Consider the inner infimum in (4.12) for a particular i. For any t ∈ R, we can set f = t
and g = −t. Then ∫

R∗ (f ⊕ g − c)) dξi −
∫

fdµi −
∫

gdν∗

=
∫

R∗ (−c) dξi + t(ν∗(X )− µi(X ))

≤ R∗(0) + t(ν∗(X )− µi(X )),

where we used the fact that R∗ is increasing and c ≥ 0. Either sending t→∞ or t→ −∞
shows that the minimizer ν∗ must satisfy ν∗(X ) = µi(X ) = 1, for otherwise the infimum
would be −∞, which contradicts the strong duality and (f).

Finally we prove the last statement of Thm. 4.4.1. That is, if {(fi, gi)}n
i=1 solves (4.9),

then each pair (fi, gi) solves (4.5). Suppose that {(fi, gi)}n
i=1 solves (4.9). Let ν∗ denote

the solution to (4.8). Then ∑n
i=1 λigi = 0. Hence the supremum of (4.9) equals

n∑
i=1

λi

(∫
fidµi +

∫
gidν∗ −

∫∫
R∗(fi ⊕ gi − c)dµidη

)

≤
n∑

i=1
λiW

µi⊗η
R (µi, ν∗), (4.15)

where the inequality follows from the duality (4.5) of the regularized Wasserstein distance.
By the strong duality we just showed, the supremum of (4.9) equals the infimum (4.8)
which is (4.15). Hence the inequality in (4.15) is an equality, and we see that each pair
(fi, gi) solves (4.5).

♢ 4.4.2 Solving the regularized barycenter problem

Notice that (4.9) is convex in the potentials {fi, gi}n
i=1 with the linear constraint∑n

i=1 λigi =
0. To get an unconstrained version of the problem, we replace each gi with gi−

∑n
i=1 λigi.

Rewriting integrals as expectations, we obtain the following formulation equivalent to (4.9):

sup
{fi}n

i=1⊂C(X )
{gi}n

i=1⊂C(X )

EXi∼µi
Y ∼η

 n∑
i=1

λi

fi(Xi)−R∗

fi(Xi) + gi(Y )−
n∑

j=1
λjgj(Y )− c(Xi, Y )

 .

(4.16)
This new formulation is an unconstrained concave maximization.

The optimization space of (4.16) is infinite-dimensional. Following [Gen+16], we pa-
rameterize the potentials {fi, gi}n

i=1 and solve (4.16) using stochastic gradient descent. We
summarize our algorithm in Alg. 4.4.1. In their paper, the parameterization is done using
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reproducing kernel Hilbert spaces, which can be made more efficient using random Fourier
features [RR08]; this technique gives convergence guarantees but is only well-suited for
smooth problems. In [Seg+17], a neural network parameterization is used with the ben-
efit of approximating arbitrary continuous functions, but its convergence guarantees are
more elusive. We extend these techniques to solve (4.16). A comparison between neural
network parameterization and random Fourier parameterization is included in Fig. 2.

Once we approximate the optimal potentials {fi}n
i=1, {gi}n

i=1 in (4.16), as observed
in Rem. 4.1, we can recover the corresponding transport plan πi via the primal-dual
relationships (4.6).

This formulation can be easily extended to the discrete case. If the barycenter has a
fixed discrete support known a priori, we take η to be the uniform measure on the discrete
support and parameterize each gi as a real-valued vector. If the input distributions are
discrete, we can use an analogous discrete representation for each fi.

Algorithm 4.4.1 Stochastic gradient descent to solve the regularized barycenter prob-
lem (4.16)

Input: distributions µ1, . . . , µn with sample access, weights (λ1, . . . , λn), dual reg-
ularizer R∗, regularizing measure η, cost function c, gradient update function
GradientUpdate
Initialize parameterizations {(fθi

, gϕi
)}n

i=1
for l← 1 to nepochs do

for i← 1 to n do
Sample x(i) ∼ µi and y ∼ η

end for
ḡ ← ∑n

i=1 λigϕi
(y)

F ← ∑n
i=1 λi

(
fθi

(x(i))−R∗
(
fθi

(x(i)) + gϕi
(y)− ḡ − c(x(i), y)

))
for i← 1 to n do

θi ← GradientUpdate(θi,−∇θi
F )

ϕi ← GradientUpdate(ϕi,−∇ϕi
F )

end for
end for
Return: dual potentials {(fθi

, gϕi
)}n

i=1

♢ 4.4.3 Recovering the barycenter

By Thm. 4.4.1, for any i, once we solve the optimal potentials and recover the transport
plan πi ∈ P(X 2) using (4.6), the barycenter ν equals (Py)#πi. While this pushforward is
straightforward to evaluate when πi’s are discrete, in the continuous setting such marginal-
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ization is difficult, especially when the dimension of X is large. Below we consider a few
ways to recover the barycenter from the transport plans:

(a) Use numerical integration to approximate (Py)#πi(x) =
∫

πi(x, y) dy with proper
discretization of the space X , if πi has density (if the input distributions and η have
densities by (4.6)).

(b) Use Markov chain Monte Carlo (MCMC) methods to sample according to πi, again
assuming it has (unnormalized) density, and then take the second components of all
the samples.

Option (a) is only viable for small dimensions. Option (b) is capable of providing quality
samples, but is slow in practice and requires case-by-case parameter tuning. Both (a) and
(b) additionally require knowing the densities of input distributions to evaluate πi, which
may not be available in practice.

A different kind of approach is to estimate a Monge map approximating each πi.
Formally, a Monge map from µ ∈ P(X ) to ν ∈ P(X ) is a solution to

inf
T :X →X ,T#µ=ν

∫
X

c(x, T (x))dµ(x).

When the cost satisfies c(x, y) = h(x − y) with a convex h and µ has density, it is
linked to the optimal transport plan π between µ and ν by π = (id, T )#µ [San15]. With
regularization, such exact correspondence may not hold. Nevertheless π encodes the
crucial information of a Monge map when the regularization is small. If we can find Ti :
X → X that realizes πi for each i, then we can recover the barycenter as ∑n

i=1 λi(Ti)#µi.
In the unregularized case, all of (Ti)#µi should agree. In practice, we have found that
taking the weighted average of (Ti)#µi’s helps reduce the error brought by each individual
Ti. We consider the following variants of Monge map estimation:

(c) Compute pointwise barycentric projection [CFT14; Seg+17]. If c(x, y) = ∥x − y∥2
2,

then barycentric projection takes the simplified form

Ti(x) = EY ∼πi(·:x)[Y ]. (4.17)

(d) Recover an approximation of the Monge map using the gradient of the dual poten-
tials [TJ19]. For the case when c(x, y) = ∥x − y∥2

2 and the densities of the source
distributions exist, there exists a unique Monge map realizing the (unregularized)
optimal transport plan πi [San15]:

Ti(x) = x− 1
2∇fi(x).

While this does not strictly hold for the regularized case, it gives a cheap approxi-
mation of Ti’s.
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(e) Find Ti as a solution to the following optimization problem [Seg+17], where H is
defined in (4.6):

Ti ≜ arg min
T :X →X

E(X,Y )∼πi
[c(T (X), Y )] = arg min

T :X →X
EX∼µi

Y ∼η
[c(T (X), Y )H(X, Y )] . (4.18)

In [Seg+17] each Ti is parameterized as a neural network. In practice, the regularity
of the neural networks smooths the transport map, avoiding erroneous oscillations
due to sampling error in methods like barycentric projection (c) where each Ti is
estimated pointwise.

Compared to (a)(b), options (c)(d)(e) do no require knowing the densities of the input
distributions. See a comparison of these methods in Fig. 1.

■ 4.5 Implementation and Experiments

We tested the proposed framework for computing a continuous approximation of the
barycenter on both synthetic and real-world data. In all experiments we use equal weights
for input distributions, i.e., λi = 1

n
for all i = 1, . . . , n. Throughout we use the squared

Euclidean distance as the cost function, i.e., c(x, y) = ∥x− y∥2
2. Note that our method is

not limited to Euclidean distance costs and can be generalized to different cost functions in
Rd—even to distance functions on curved domains. The source code is publicly available
at https://github.com/lingxiaoli94/CWB.

Implementation details. The support measure η is set to be the uniform measure on a
box containing the support of all the source distributions, estimated by sampling.

For c(x, y) = ∥x − y∥2
2, we can simplify the (unregularized) Wasserstein barycenter

problem by considering centered input distributions [Álv+16]. Concretely, if the mean of
µi is mi, then the mean of the resulting barycenter is ∑n

i=1 λimi, and we can first compute
the barycenter of input distributions centered at 0 and then translate the barycenter to
have the right mean. We adopt this simplification since this allows us to reduce the size of
the support measure η when the input distributions are far apart. When computing the
Monge map (c)(d)(e), for each i, we further force (Ti)#µi to have zero mean by replacing
Ti with Ti − EX∼µi

[Ti(X)]. We have found that empirically this helps reduce the bias
coming from regularization when recovering the Monge map.

The stochastic gradient descent used to solve (4.16) and (4.18) is implemented in Ten-
sorflow 2.1 [Aba+16]. In all experiments below, we use Adam optimizer [KB14] with
learning rate 10−4 and batch size 4096 or 8192 for the training. The dual potentials
{fi, gi}n

i=1 in (4.16) are each parameterized as neural networks with two fully-connected
layers (d → 128 → 256 → 1) using the ReLU activation. Every Ti in (4.18) is parame-
terized with layers (d → 128 → 256 → d). We have tested with deeper/wider network

https://github.com/lingxiaoli94/CWB
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Source (a) Integrated (b) MCMC (c) Barycentric (d) Gradient map (e) [Seg+17]

Figure 1: Comparison of barycenter recovery methods.

architectures but have found no noticeable improvement. We change the choice of the
regularizer and the number of training iterations depending on the examples.

Qualitative results in 2 and 3 dimensions. Fig. 1 shows the results for methods (a)-(e)
from Sec. 4.4.3 on various examples. For each example represented as a row, we first train
the dual potentials using quadratic regularization with ϵ = 10−4 or ϵ = 10−5. Then each
method is run subsequently to obtain the barycenter. Alg. 4.4.1 takes less than 10 minutes
to finish for these experiments.2 For (a) we use a discretized grid with grid size 200 in 2D
and grid size 80 in 3D. For (b) we use Metropolis-Hastings to generate 105 samples with a
symmetric Gaussian proposal. The results from (a)(b) are aggregated from all transport
plans. For (c)(d)(e) we sample from each input distribution and then push the samples
forward using Ti’s to have 105 samples in total.

In short: (a) numerical integration shows the transport plans πi’s computed by (4.6)
are accurate and smooth; (b) MCMC samples match the barycenter in (a) but are expen-

2We ran our experiments using a NVIDIA Tesla V100 GPU on a Google cloud instance with 12
compute-optimized CPUs and 64GB memory.
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RL2 , ϵ = 10−3 RL2 , ϵ = 10−4 RL2 , ϵ = 10−5 Re, ϵ = 10−2 RFF, f = 1.0 RFF, f = 0.1

Figure 2: Comparison of regularization and parameterization choices. Labels at the
bottom row are the regularizer type and the value of the constant ϵ as in (4.4). RL2 , Re

means using quadratic and entropic regularization respectively. The last two columns
show the result of using random Fourier features [RR08] instead of neural networks, with
f indicating the scale of the frequencies used.

sive to compute and can be blurry near the boundaries; (c) barycentric projection yields
poor boundaries due to the high variance in evaluating (4.17) pointwise; (d) gradient-
based map has fragmented white lines in the interior; (e) the method by [Seg+17] can
inherit undesirable artifact from the input distributions—for instance, in the last column
of the second row the digit 3 looks pixelated.

Next, we compare the impact of the choice of regularization and parameterization in
Fig. 2. We use the digit 3 example (row 2 in Fig. 1) and run numerical integration (a)
to recover the barycenter. The first three columns confirm that smaller ϵ gives sharper
results as the computed barycenter tends to the unregularized barycenter. On the other
hand, entropic regularization yields a smoother marginal, but smaller ϵ leads to numerical
instability: we display the smallest one we could reach. The last two columns show that
parameterization using random Fourier features [RR08] gives a comparable result as using
neural networks, but the scale of the frequencies needs to be fine-tuned.

Multivariate Gaussians with varying dimensions. When the input distributions are
multivariate Gaussians, the (unregularized) barycenter is also a multivariate Gaussian,
and an efficient fixed-point algorithm can be used to recover its parameters [Álv+16].
We compute the ground truth barycenter of 5 randomly generated multivariate Gaus-
sians in varying dimensions using [Álv+16] and compare our proposed algorithm to other
state-of-the-art barycenter algorithms. Since measuring the Wasserstein distance of two
distributions in high dimensions is computationally challenging, we instead compare the
maximum likelihood estimation (MLE) parameters if we fit a Gaussian to the computed
barycenter samples and compare with the true parameters. See Tab. 1 for the results of
our algorithm with quadratic regularization compared with those from other state-of-the-
art free-support methods. Among the Monge map estimation methods, the gradient-based
Monge map (d) works the best in higher dimensions, and the result of (e) is slightly worse:
we believe this is due to the error accumulated in the second stochastic optimization used
to compute (4.18). For brevity, we only include (d) in Tab. 1. Note that discrete fixed-
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Table 1: Comparison of free-support barycenter algorithms on multivariate Gaussians of
varying dimensions. Reported are the covariance difference ∥Σ−Σ∗∥F where Σ is the MLE
covariance of the barycenter computed by each method, Σ∗ is the ground truth covariance,
and ∥·∥F is the Frobenius norm. Smaller is better. All experiments are repeated 5 times
with the mean and standard deviation reported. We use 5000 and 100 support points
in [CD14] and [CCS18] respectively, as these are the maximum numbers allowed for the
algorithms to terminate in a reasonable amount of time.

Dimension [CD14] [CCS18] Ours with (d) and RL2

2 7.28×10−4(9.99×10−5) 2.39×10−3(3.14×10−4) 1.98×10−3(1.17×10−4)
3 4.96×10−3(6.42×10−4) 8.97×10−3(9.22×10−4) 5.05×10−3(6.32×10−4)
4 1.35×10−2(1.73×10−3) 2.50×10−2(1.68×10−3) 1.22×10−2(1.44×10−3)
5 2.43×10−2(1.87×10−3) 5.05×10−2(2.22×10−3) 1.52×10−2(1.18×10−3)
6 4.38×10−2(2.04×10−3) 8.86×10−2(2.58×10−3) 2.37×10−2(3.24×10−3)
7 5.91×10−2(1.26×10−3) 1.24×10−1(1.63×10−3) 4.07×10−2(2.65×10−3)
8 8.31×10−2(1.23×10−3) 1.64×10−1(1.48×10−3) 4.23×10−2(3.14×10−3)

support algorithms will have trouble scaling to higher dimensions as the total number
of grid points grows exponentially with the number of dimensions. For instance, the co-
variance difference between the ground truth and those from running [Sta+17] with 105

support points in R4 is 5.99 × 10−2(±6.19 × 10−3), which is significantly worse than the
ones shown in Tab. 1. See Sec. 4.A.1 for more details. In this experiment, we are able to
consistently outperform state-of-the-art free-support methods in higher dimensions with
the additional benefit of providing sample access from the barycenter.

Subset posterior aggregation. To show the effectiveness of our algorithm in real-world
applications, we apply our method to aggregate subset posterior distributions using
barycenters, which has been shown as an effective alternative to the full posterior in
the massive data setting [Sri+15; SLD18; Sta+17]. We consider Poisson regression for
the task of predicting the hourly number of bike rentals using features such as the day of
the week and weather conditions.3 We use one intercept and 8 regression coefficients for
the Poisson model, and consider the posterior on the 8-dimensional regression coefficients.
We randomly split the data into 5 equally-sized subsets and obtain 105 samples from each
subset posterior using the Stan library [Car+17].

The barycenter of subset posteriors converges to the full data posterior [SLD18].
Hence, to evaluate the quality of the barycenter computed from the subset posterior
samples, we use the full posterior samples as the ground truth and report the differences
in covariance using sufficiently many samples from the barycenter, and compare against
other free-support barycenter algorithms (Tab. 2). See Sec. 4.A.2 for more details. To
show how the quality of the barycenter improves as more samples are used from our

3http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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Table 2: Comparison of subset posterior aggregation results in the covariance difference
∥Σ − Σ∗∥, where Σ is the covariance of the barycenter samples from each method, and
Σ∗ is that of the full posterior. All experiments are repeated 20 times with the mean
and standard deviation reported. As in Tab. 1, we use 5000 support points in [CD14]
and 100 support points in [CCS18] as these are the maximum numbers permitted for the
algorithms to terminate in a reasonable amount of time.

[CD14] [CCS18] Ours with (d) and RL2

2.56×10−7(2.17×10−9) 9.37×10−4(4.84×10−5) 2.43×10−7(6.57×10−8)

2500 5000 7500 10000 12500 15000
Number of samples

0.00484

0.00486

0.00488

0.00490
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∗ )

[CD14]

Ours

Figure 3: 2-Wasserstein distance versus the number of samples from the output of our
algorithm with (d). Same number of points are used from both the full posterior and
the computed barycenter to compute W LP

2 (ν, ν∗). The blue bar is the result of [CD14]
with 5000 support points. The caps around each solid dot indicate the standard deviation
across 20 independent trials.

barycenter, we plot the 2-Wasserstein distance versus the number of samples in Fig. 3.
Since computing W2(ν, ν∗) requires solving a large linear program, we are only able to
produce the result up to 15000 samples. This is also a limitation in [CD14] as each iter-
ation of their alternating optimization solves many large linear programs; for this reason
we are only able to use 5000 support points for their method. We see that as we use
more samples, W2 steadily decreases with lower variance, and we expect the decrease
to continue with more samples. With 15000 samples our barycenter is closer to the full
posterior than that of [CD14].

■ 4.6 Conclusion and Future Directions

Our stochastic algorithm computes the barycenter of continuous distributions without
discretizing the output barycenter, and has been shown to provide a clear advantage
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over past methods in higher dimensions. However the performance of our algorithm still
suffers from a curse of dimensionality when the dimension is too high. Indeed in this
case the support measure we fix from the beginning becomes a poor proxy for the true
barycenter, and an enormous batch size is required to evaluate the expectation in (4.16)
with reasonably small variance. One future direction is to find a way to estimate the
support measure dynamically, but choosing a representation for this task is challenging.
Another issue that can be addressed is to reduce regularization bias. This can either
happen by formulating alternative versions of the dual problem or by improving the
methods for estimating a Monge map.





Appendices

■ 4.A Experimental Details and Additional Results

♢ 4.A.1 Multivariate Gaussians with varying dimensions

We generate the multivariate Gaussians in dimension d used in Table 1 in the following
manner. The mean is chosen uniformly at random in [−1, 1]d. The covariance matrix
is obtained by first sampling a matrix A with uniform entries in [−0.3, 0.3] and then
taking AA⊤ as the covariance matrix. We reject A if its condition number (computed
with respect to 2-norm) is not in [2, 80].

We show in Table 4.A.1 additional results for our algorithm with different choices of
Monge map estimation methods and regularizers; in the last column we show the result
of [CD14] where we use Sinkhorn algorithm [Cut13] instead of LP (see Table 1 for results
with LP) to obtain the transport plan at every iteration.

Table 4.A.1: Additional results for the multivariate Gaussian experiment. Reported are
the covariance difference ∥Σ − Σ∗∥F where Σ is the MLE covariance of the barycenter
computed by each method, Σ∗ is the ground truth covariance, and ∥·∥F is the Frobenius
norm. Smaller is better. All experiments are repeated 5 times with the mean and standard
deviation reported. Here RL2 refers to quadratic regularization with ϵ = 10−4, and Re

refers to entropic regularization with ϵ = 0.1. The regularizing ϵ is further scaled with
respect to the diagonal length of the bounding box squared. For [CD14] with Sinkhorn
algorithm, we choose ϵ = 0.1.

d Ours with (d) and RL2 Ours with (e) and RL2 Ours with (d) and Re [CD14] with Sinkhorn

2 1.98×10−3(1.17×10−4) 2.38×10−3(2.48×10−4) 8.25 × 10−3(5.02 × 10−4) 5.22 × 10−2(5.09 × 10−4)
3 5.05×10−3(6.32×10−4) 5.70×10−3(6.90×10−4) 8.15 × 10−3(6.50 × 10−4) 7.46 × 10−2(3.87 × 10−4)
4 1.22×10−2(1.44×10−3) 1.27×10−2(1.19×10−3) 2.06 × 10−2(7.40 × 10−4) 8.78 × 10−2(1.40 × 10−3)
5 1.52×10−2(1.18×10−3) 2.33×10−2(2.86×10−3) 3.72 × 10−2(9.81 × 10−4) 1.00 × 10−1(7.30 × 10−4)
6 2.37×10−2(3.24×10−3) 3.27×10−2(2.63×10−3) 6.13 × 10−2(2.69 × 10−3) 1.10 × 10−1(7.93 × 10−4)
7 4.07×10−2(2.65×10−3) 4.83×10−2(2.90×10−3) 8.42 × 10−2(4.62 × 10−4) 1.16 × 10−1(5.44 × 10−4)
8 4.23×10−2(3.14×10−3) 4.79×10−2(2.46×10−3) 1.20 × 10−1(2.38 × 10−3) 1.18 × 10−1(7.07 × 10−4)
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To briefly comment on the runtime of our algorithm (with (d)) and that of [CD14]
and [CCS18], in the 8-dimensional Gaussian experiment from Table 1, our algorithm takes
around 15 minutes, [CD14] takes 20 minutes, while [CCS18] takes an hour or longer. The
simple form of Algorithm 4.4.1 and the convex nature of (4.16) give rise to fast convergence
of our approach.

♢ 4.A.2 Subset posterior aggregation

We adopted the BikeTrips dataset and preprocessing steps from https://github.com/
trevorcampbell/bayesian-coresets [CB19]. The posterior samples in the subset posterior
aggregation experiment are generated using NUTS sampler [HG+14] implemented by the
Stan library [Car+17]. To enforce appropriate scaling of the prior in the subset posteriors
we use stochastic approximation trick [SLD18], i.e. scaling the log-likelihood by the
number of subsets. Please see the code for further details.

In Table 4.A.2, we show additional results comparing [CD14] and our algorithm in
three different losses: difference in mean, covariance, and the (unregularized) 2-Wasserstein
distance computed using 5000 samples. See Figure 3 for a comparison with varying num-
ber of samples used to compute the 2-Wasserstein distance.

Table 4.A.2: Comparison of subset posterior aggregation results in difference in mean,
covariance, and 2-Wasserstein distance. All experiments are repeated 20 times with the
mean and standard deviation reported. Variables with a superscript star (µ∗, Σ∗, ν∗) are
quantities from the full posterior, and variables without a star are from the computed
barycenter. The mean and covariance are estimated with sufficiently many samples from
the barycenter, while the 2-Wasserstein distance is computed using 5000 samples from
both the barycenter and the full posterior.

Loss [CD14] Ours with (d) and RL2 Ours with (e) and RL2

∥µ − µ∗∥ 4.79×10−3(3.19×10−6) 4.79×10−3(5.96×10−7) 4.79×10−3(1.80×10−7)
∥Σ − Σ∗∥ 2.56×10−7(2.17×10−9) 2.43×10−7(6.57×10−8) 9.51×10−7(6.62×10−9)

W LP
2 (ν, ν∗) 4.85×10−3(8.90×10−6) 4.86×10−3(9.40×10−6) 4.96×10−3(6.10×10−6)

https://github.com/trevorcampbell/bayesian-coresets
https://github.com/trevorcampbell/bayesian-coresets


Chapter 5

Learning Proximal Operators to Discover Multi-
ple Optima

In Chapter 4, we saw how convex duality can be used to derive feasible formulation
with neural network parameterization. In this chapter, we show how non-convex classical
optimization with multiple global minima can be solved using a convex functional for-
mulation where minima are encoded as a pushforward generative model. In addition, we
show global convergence of training the neural network under overparameterization. This
chapter is based on the publication [Li+23a].

■ 5.1 Introduction

Searching for multiple optima of an optimization problem is a ubiquitous yet under-
explored task. In applications like low-rank recovery [GJZ17], topology optimization
[PFS21], object detection [Lin+14], and symmetry detection [Shi+20], it is desirable to
recover multiple near-optimal solutions, either because there are many equally-performant
global optima or due to the fact that the optimization objective does not capture user
preferences precisely. Even for single-solution non-convex optimization, typical methods
look for multiple local optima from random initial guesses before picking the best local
optimum. Additionally, it is often desirable to obtain solutions to a family of optimization
problems with parameters not known in advance, for instance, the weight of a regulariza-
tion term, without having to restart from scratch.

Formally, we define a multi-solution optimization (MSO) problem to be the mini-
mization minx∈X fτ (x), where τ ∈ T encodes parameters of the problem, X is the
search space of the variable x, and fτ : Rd → R is the objective function depending
on τ . The goal of MSO is to identify multiple solutions for each τ ∈ T , i.e., the set
{x∗ ∈ X : fτ (x∗) = minx∈X fτ (x)}, which can contain more than one element or even
infinitely many elements. In this work, we assume that X ⊂ Rd is bounded and that
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d is small, and that T is, in a loose sense, a continuous space, such that the objective
fτ changes continuously as τ varies. To make gradient-based methods viable, we further
assume that each fτ is differentiable almost everywhere. As finding all global minima in
the general case is extremely challenging, realistically our goal is to find a diverse set of
local minima.

As a concrete example, for object detection, T could parameterize the space of images
and X could be the 4-dimensional space of bounding boxes (ignoring class labels). Then,
fτ (x) could be the minimum distance between the bounding box x ∈ X and any ground
truth box for image τ ∈ T . Minimizing fτ (x) would yield all object bounding boxes for
image τ . Object detection can then be cast as solving this MSO on a training set of
images and extrapolating to unseen images (Sec. 5.5.5). Object detection is a singular
example of MSO where the ground truth annotation is widely available. In such cases,
supervised learning can solve MSO by predicting a fixed number of solutions together with
confidence scores using a set-based loss such as the Hausdorff distance. Unfortunately,
such annotation is not available for most optimization problems in the wild where we only
have access to the objective functions—this is the setting that our method aims to tackle.

Our work is inspired by the proximal-point algorithm (PPA), which applies the
proximal operator of the objective function to an initial point iteratively to refine it
to a local minimum. PPA is known to converge faster than gradient descent even when
the proximal operator is approximated, both theoretically [Roc76; Roc21] and empirically
(e.g., Figure 2 of Hoheisel, Laborde, and Oberman [HLO20]). If the proximal operator of
the objective function is available, then MSO can be solved efficiently by running PPA
from a variety of initial points. However, obtaining a good approximation of the proxi-
mal operator for generic functions is difficult, and typically we have to solve a separate
optimization problem for each evaluation of the proximal operator [DG19].

In this work, we approximate the proximal operator using a neural network that is
trained using a straightforward loss term including only the objective and a proximal term
that penalizes deviation from the input point. Crucially, our training does not require
accessing the ground truth proximal operator. Additionally, neural parameterization al-
lows us to learn the proximal operator for all {fτ}τ∈T by treating τ as an input to the
network along with an application-specific encoder. Once trained, the learned proximal
operator allows us to effortlessly run PPA from any initial point to arrive at a nearby
local minimum; from a generative modeling point of view, the learned proximal operator
implicitly encodes the solutions of an MSO problem as the pushforward of a prior dis-
tribution by iterated application of the operator. Such a formulation bypasses the need
to predict a fixed number of solutions and can represent infinitely many solutions. The
proximal term in our loss promotes the convexity of the formulation: applying recent
results [KH19], we show that for weakly-convex objectives with Lipschitz gradients—in
particular, objectives with bounded second derivatives—with practical degrees of over-
parameterization, training converges globally and the ground truth proximal operator is
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recovered (Thm. 5.3.1 below). Such a global convergence result is not known for any
previous learning-to-optimize method [Che+22a].

Literature on MSO is scarce, so we build a benchmark with a wide variety of appli-
cations including level set sampling, non-convex sparse recovery, max-cut, 3D symmetry
detection, and object detection in images. When evaluated on this benchmark, our learned
proximal operator reliably produces high-quality results compared to reasonable alterna-
tives, while converging in a few iterations.

■ 5.2 Related Works

Learning to optimize. Learning-to-optimize (L2O) methods utlilize past optimization
experience to optimize future problems more effectively; see [Che+22a] for a survey.
Model-free L2O uses recurrent neural networks to discover new optimizers suitable for
similar problems [And+16; LM16; Che+17; Cao+19]; while shown to be practical, these
methods have almost no theoretical guarantee for the training to converge [Che+22a].
In comparison, we learn a problem-dependent proximal operator so that at test time
we do not need access to objective functions or their gradients, which can be costly to
evaluate (e.g. symmetry detection in Sec. 5.5.4) or unavailable (e.g. object detection in
Sec. 5.5.5). Model-based L2O substitutes components of a specialized optimization frame-
work or schematically unrolls an optimization procedure with neural networks. Related
to proximal methods, Gregor and LeCun [GL10] emulate a few iterations of proximal
gradient descent using neural networks for sparse recovery with an ℓ1 regularizer, ex-
tended to non-convex regularizers by Yang et al. [Yan+20]; a similar technique is applied
to susceptibility-tensor imaging in Fang et al. [Fan+23]. Gilton, Ongie, and Willett
[GOW21] propose a deep equilibrium model with proximal gradient descent for inverse
problems in imaging that circumvents expensive backpropagation of unrolling iterations.
Meinhardt et al. [Mei+17] use a fixed denoising neural network as a surrogate proximal
operator for inverse imaging problems. All these works use schematics of proximal meth-
ods to design a neural network that is then trained with strong supervision. In contrast,
we learn the proximal operator directly, requiring only access to the objectives; we do not
need ground truth for inverse problems during training.

Existing L2O methods are not designed to recover multiple solutions: without a prox-
imal term like in (5.2), the learned operator can degenerate even with multiple starts
(Sec. 5.D.3).

Finding multiple solutions. Many heuristic methods have been proposed to discover
multiple solutions including niching [BEB07; Li09], parallel multi-starts [LW18], and de-
flation [PFS21]. However, all these methods do not generalize to similar but unseen
problems.
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Predicting multiple solutions at test time is universal in deep learning tasks like multi-
label classification [TK07] and detection [Liu+20]. The typical solution is to ask the
network to predict a fixed number of candidates along with confidence scores to indicate
how likely each candidate is a solution [Ren+15; Li+19; Car+20]. Then the solutions will
be chosen from the candidates using heuristics such as non-maximum suppression [NV06].
Models that output a fixed number of solutions without taking into account the unordered
set structure can suffer from “discontinuity” issues: a small change in set space requires a
large change in the neural network outputs [ZHP19]. Furthermore, this approach cannot
handle the case when the solution set is continuous.

Wasserstein gradient flow. Our formulation (5.2) corresponds to one step of JKO dis-
cretization of the Wasserstein gradient flow where the energy functional is the the lin-
ear functional dual to the MSO objective function [JKO98; Ben+16]. See the details
in Sec. 5.E. Compared to recent works on neural Wasserstein gradient flows [Mok+21;
Par+23; Bun+22], where a separate network parameterizes the pushforward map for ev-
ery JKO step, our functional’s linearity makes the pushforward map identical for each
step, allowing end-to-end training using a single neural network. We additionally let the
network input a parameter τ , in effect learning a continuous family of JKO-discretized
gradient flows.

■ 5.3 Method

♢ 5.3.1 Preliminaries

Given the objective fτ : Rd → R of an MSO problem parameterized by τ , the corre-
sponding proximal operator [Mor62; Roc76; PB14] is defined, for a fixed λ ∈ R>0,
as

prox(x; τ) ≜ arg min
y

{
fτ (y) + λ

2∥y − x∥2
2

}
. (5.1)

The weight λ in the proximal term λ
2∥y − x∥2

2
1 controls how close prox(x; τ) is to x:

increasing λ will reduce ∥prox(x; τ)−x∥2. For the arg min in (5.1) to be unique, a sufficient
condition is that fτ is ξ-weakly convex with ξ < λ, so that fτ (y) + λ

2∥y − x∥2 is strongly
convex. The class of weakly convex functions is deceivingly broad: for instance, any
twice differentiable function with bounded second derivatives (e.g. any C2 function on a
compact set) is weakly convex. When the function is convex, prox(x; τ) is precisely one

1The usual convention is to use the reciprocal of λ in front of the proximal term. We use a different
convention to associate λ with the convexity of (5.1).
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step of the backward Euler discretization of integrating the vector field −∇fτ with time
step 1

λ
(see Section 4.1.1 of Parikh and Boyd [PB14]).

The proximal-point algorithm (PPA) for finding a local minimum of fτ iterates

xk ≜ prox(xk−1; τ),∀k ∈ N≥1,

with initial point x0 [Roc76]. In practice, prox(x; τ) often can only be approximated,
resulting in inexact PPA. When the objective function is locally indistinguishable from a
convex function and x0 is sufficiently close to the set of local minima, then with reasonable
stopping criterion, inexact PPA converges linearly to a local minimum of the objective:
the smaller λ is, the faster the convergence rate becomes (Theorem 2.1-2.3 of Rockafellar
[Roc21]).

♢ 5.3.2 Learning proximal operators

The fast convergence rate of PPA makes it a strong candidate for MSO: to obtain a diverse
set of solutions for any τ ∈ T , we only need to run a few iterations of PPA from random
initial points. The proximal term penalizes big jumps and prevents points from collapsing
to a single solution. However, running a subroutine to approximate prox(x; τ) for every
pair (x, τ) can be costly.

To overcome this issue, we learn the operator prox(·; ·) given access to {fτ}τ∈T . A naïve
way to learn prox(·; ·) is to first solve (5.1) to produce ground truth for a large number
of (x, τ) pairs independently using gradient-based methods and then learn the operator
using mean-squared error loss. However, this approach is costly as the space X × T can
be large. Moreover, this procedure requires a stopping criterion for the minimization in
(5.1), which is hard to design a priori.

Instead, we formulate the following end-to-end optimization over the space of func-
tions:

min
Φ:X ×T →X

Ex∼µ
τ∼ν

[
fτ (Φ(x, τ)) + λ

2∥Φ(x, τ)− x∥2
2

]
, (5.2)

where x is sampled from µ, a distribution on X , and τ is sampled from ν, a distribution
on T . To get (5.2) from (5.1), we essentially substitute y with the output Φ(x, τ) and
integrate over the product probability distribution µ⊗ ν.

To solve (5.2), we parameterize Φ : X × T → X using a neural network with additive
and multiplicative residual connections (Sec. 5.B). Intuitively, the implicit regularization
of neural networks aligns well with the regularity of prox(·; ·): for a fixed τ the proximal
operator prox(·; τ) is 1-Lipschitz in local regions where fτ is convex, while as the parameter
τ varies fτ changes continuously so prox(x; τ) should not change too much. To make
(5.2) computationally practical during training, we realize ν as a training dataset. For
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the choice of µ, we employ an importance sampling technique from Wang and Solomon
[WS19] as opposed to using Uniform(X ), the uniform distribution over X , so that the
learned operator can refine near-optimal points (Sec. 5.C). To train Φ, we sample a mini-
batch of (x, τ) to evaluate the expectation and optimize using Adam [KB14]. For problems
where the space T is structured (e.g. images or point clouds), we first embed τ into a
Euclidean feature space through an encoder before passing it to Φ. Such encoder is trained
together with operator network Φ. This allows us to use efficient domain-specific encoder
(e.g. convolutional networks) to facilitate generalization to unseen τ .

To extract multiple solutions at test time for a problem with parameter τ , we sample a
batch of x’s from Uniform(X ) and apply the learned Φ(·, τ) to the batch of samples a few
times. Each application of Φ approximates a single step of PPA. From a distributional
perspective, for k ∈ N≥0, we can view Φk—the operator Φ applied k times—as a generative
model so that the pushforward distribution, (Φk)#(Uniform(X )), concentrates on the set
of local minima approximates as k increases. An advantage of our representation is that
it can represent arbitrary number of solutions even when the set of minima is continuous
(Fig. 2). This procedure differs from those in existing L2O methods [Che+22a]: at test
time, we do not need access to {fτ}τ∈T or their gradients, which can be costly to evaluate
or unavailable; instead we only need τ (e.g. in the case of object detection, τ is an image).

♢ 5.3.3 Convergence of training

We have turned the problem of finding multiple solutions for each fτ in the space X into
the problem of finding a single solution for (5.2) in the space of functions. If the fτ ’s
are ξ-weakly convex with ξ < λ and µ, ν have full support, then the arg min in (5.1)
is unique for every pair (x, τ) and hence the functional solution of (5.2) is the unique
proxmal operator prox(·; τ).

If in addition the gradients of the objectives are Lipschitz, using recent learning theory
results [KH19] we can show that with practical degrees of over-parameterization, gradient
descent on neural network parameters of Φ converges globally during training. Suppose
our training dataset is S = {(xi, τi)}n

i=1 ⊂ X × T . Define the training loss, a discretized
version of (5.2) using S, to be, for g : X × T → X ,

L(g) ≜ 1
n

n∑
i=1

[
fτi

(g(xi, τi)) + λ

2∥g(xi, τi)− xi∥2
2

]
. (5.3)

Theorem 5.3.1 (informal). Suppose for any τ ∈ T , the objective fτ is differentiable, ξ-
weakly convex, and ∇fτ is ζ-Lipschitz with ξ ≤ λ. Then there exists a feed-forward neural
network with Ω̃(n) total parameters2 and common activation units, such that, when the
initial weights are drawn from a Gaussian distribution, with high probability, gradient

2We use Ω̃ notation in the standard way, i.e., f ∈ Ω̃(n)⇐⇒ ∃k ∈ N≥0 such that f ∈ Ω(n logk n).
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descent on its weights using a fixed learning rate will eventually reach the minimum loss
ming:X ×T →X L(g). The number of iterations needed to achieve ϵ > 0 training error is
O((λ + ζ)/ϵ), and when this occurs, if ξ < λ, then the mean-squared error of the learned
proximal operator compared to the true one is O( 2ϵ

(λ−ξ)) on training data.

We state and prove Thm. 5.3.1 formally in Sec. 5.A. Even though the optimization
over network weights is non-convex, training can still result in a globally minimal loss and
the true proximal operator can be recovered. In Sec. 5.D.2, we empirically verify that
when the objective is the ℓ1 norm, the trained operator converges to the true proximal
operator, the shrinkage operator. In Sec. 5.D.3, we study the effect of λ in relation to
the weakly-convex constant ξ for the 2D cosine problem and compare to an L2O particle-
swarm method [Cao+19].

We note a few gaps between Thm. 5.3.1 and our implementation. First, we use SGD
with mini-batching instead of gradient descent. Second, instead of feed-forward networks,
we use a network architecture with residual connections (Fig. 5.B.1), which works better
empirically. Under these conditions, global convergence results can still be obtained, e.g.,
via [ALS19, Theorems 6 and 8], but with large polynomial bounds in n, H for the network
parameters. Another gap is caused by the restriction of the function class of the objectives.
In several applications in Sec. 5.5, the objective functions are not weakly convex or have
Lipschitz gradients, or we deliberately choose small λ for faster PPA convergence; we
empirically demonstrate that our method remains effective.

■ 5.4 Performance Measures

Figure 1: Interpretation of Dt. In this example, the witness W is drawn uniformly from
the union of four squares. If At (resp. Bt) is the set of red (resp. blue) points, then
Pr(Dt ≈ 0) = 3

4 and Pr(Dt ≈ 0.5) = 1
4 , since Dt is only non-zero when W is in the

rightmost square. This aligns well with the intuition that 3
4 of the red points match with

the blue ones. In comparison, the Hausdorff distance between At and Bt is approximately
1, which is the same as the Hausdorff distance between the orange point and Bt, despite
the fact most of red points are close to the blue ones.
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Metrics. Designing a single-valued metric for MSO is challenging since one needs to
consider the diversity of the solutions as well each solution’s level of optimality. For
an MSO problem with parameter τ and objective fτ , the output of an MSO algorithm
can be represented as a (possibly infinite) set of solutions {xα}α ⊂ X with objective
values uα ≜ fτ (xα). Suppose we have access to ground truth solutions {yβ}β ⊂ X with
vβ ≜ fτ (yβ). Pick a threshold t ∈ R and denote At ≜ {xα : uα ≤ t}, Bt ≜ {yβ : vβ ≤ t}.
Let W be a random variable that is uniformly distributed on X . Define a random variable

Dt ≜
1
2∥πAt(W )− πBt(πAt(W ))∥2 + 1

2∥πBt(W )− πAt(πBt(W ))∥2,

where πS(x) ≜ arg mins∈S∥x−s∥2. We call W a witness of Dt, as it witnesses how different
At and Bt are near W . To summarize the law of Dt, we define the witnessed divergence
and witnessed precision at δ > 0 as

WDt ≜ E[Dt] and WPδ
t ≜ Pr(Dt < δ). (5.4)

Witnesses help handle unbalanced clusters that can appear in the solution sets. These
metrics are agnostic to duplicates, unlike the chamfer distance or optimal transport met-
rics. Compared to alternatives like the Hausdorff distance, WDt remains low if a small
portion of At, Bt are mismatched. We illustrate these metrics in Fig. 1. One can interpret
WDt as a weighted chamfer distance whose weight is proportional to the volume of the
ℓ2-Voronoi cell at each point in either set.

Particle Descent: Ground Truth Generation. A naïve method for MSO is to run
gradient descent until convergence on randomly sampled particles in X for every τ ∈ T .
We use this method to generate approximated ground truth solutions to compute the
metrics in (5.4) when the ground truth is not available. This method is not directly
comparable to ours since it cannot generalize to unseen τ ’s at test time. Remarkably, for
highly non-convex objectives, particle descent can produce worse solutions than the ones
obtained using the learned proximal operator (Fig. 5.D.7).

Learning Gradient Descent Operators. As there is no readily-available application-
agnostic baseline for MSO, we propose the following method that learns iterations of the
gradient descent operator. Fix Q ∈ N≥1 and a step size η > 0. We optimize an operator
Ψ via

min
Ψ:X ×T →X

Ex∼µ
τ∼ν
∥Ψ(x, τ)−Ψ∗

Q(x; τ)∥2
2, (5.5)

where Ψ∗
Q(x; τ) is the result of Q steps of gradient descent on fτ starting at x, i.e.,

Ψ∗
0(x; τ) = x, and Ψ∗

k(x; τ) = Ψ∗
k−1(x; τ)−η∇fτ (Ψ∗

k−1(x; τ)). Each iteration of minimizing
(5.5) requires Q evaluations of ∇fτ , which can be costly (e.g., for symmetry detection



177 Section 5.5. Applications

in Sec. 5.5.4). We use importance sampling similar to Sec. 5.C. An ODE interpretation
is that Ψ performs Q iterations of forward Euler on the gradient field ∇fτ , whereas
the learned proximal operator performs a single iteration of backward Euler. We choose
Q = 10 for all experiments except for symmetry detection (Sec. 5.5.4) where we choose
Q = 1 because otherwise the training will take > 200 hours. As we will see in Fig. 5.D.6,
aside from slower training, this approach struggles with non-smooth objectives due to the
fixed step size η, while the learned proximal operator has no such issues.

■ 5.5 Applications

We consider five applications to benchmark our MSO method, chosen to highlight the
ubiquity of MSO in diverse settings. We abbreviate pol for proximal operator learning
(proposed method), gol for gradient operator learning (Sec. 5.4), and pd for particle
descent (Sec. 5.4). Further details about each application can be found in Sec. 5.D. The
source code for all experiments can be found at https://github.com/lingxiaoli94/POL.

♢ 5.5.1 Sampling from level sets

Figure 2: Visualization of the solutions for the
conic section problem. Red, green, and blue in-
dicate the solutions by pd, gol, and pol respec-
tively. See Fig. 5.D.3 for more examples.

Formulation. Level sets provide a
concise and resolution-free implicit
shape representation [Mus+02; Par+19;
Sit+20]. Yet they are less intuitive
to work with, even for straightforward
tasks on discretized domains (meshes,
point clouds) like visualizing or inte-
gration on the domain. We present an
MSO formulation to sample from level
sets, enabling the adaptation of down-
stream tasks to level sets.

Given a family of functions {gτ :
X → Rq}τ∈T , for each τ suppose we
want to sample from the 0-level set g−1

τ (0). We formulate an MSO problem with objective
fτ (x) ≜ ∥gτ (x)∥2

2, whose global optima are precisely g−1
τ (0). We do not need assumptions

on level set topology or that the implicit function represents a distance field, unlike most
existing methods [Par+19; Den+20; CTZ20].

Benchmark. We consider sampling from conic sections. We keep this experiment simple
so as to visualize the solutions easily. Let X = [−5, 5]2 and T = [−1, 1]6. For τ =
(A, B, C, D, E, F ) ∈ T , define gτ to be gτ (x1, x2) ≜ Ax2 + Bxy + Cy2 + Dx + Ey + F .
Since fτ = (gτ )2 is a defined on a compact X , it satisfies the conditions of Thm. 5.3.1 for

https://github.com/lingxiaoli94/POL
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a large λ, but a large λ corresponds to small PPA step size. Empirically, small λ for pol
gave decent results compared to gol: Fig. 2 illustrates that pol consistently produces
sharper level sets for both hyperbolas (B2 − 4AC > 0) and ellipses (B2 − 4AC < 0).
Fig. 5.D.4 shows that pol yields significantly higher WPδ

t than gol for small δ, implying
that details are well recovered. Fig. 5.D.5 verifies that iterating the trained operator of
pol converges much faster than that of gol. It is straightforward to extend this setting
to sample from more complicated implicit shapes parameterized by τ .

♢ 5.5.2 Sparse recovery

Formulation. In signal processing, the sparse recovery problem aims to recover a signal
x∗ ∈ X ⊂ Rd from a noisy measurement y ∈ Rm distributed according to y = Ax∗ + e,
where A ∈ Rm×d, m < d, and e is measurement noise [BT09]. In applications like imaging
and speech recognition, the signals are sparse, with few non-zero entries [Mar+18]. Hence,
the goal of sparse recovery is to recover a sparse x∗ given A and y.

A common way to encourage sparsity is to solve least-squares plus an ℓp norm on the
signal:

min
x∈X
∥Ax− y∥2

2 + α∥x∥p
p, (5.6)

for α, p > 0 and ∥x∥p
p ≜

∑d
i=1(x2

i + ϵ)p/2 for a small ϵ to prevent instability. We consider
the non-convex case where 0 < p < 1. Compared to convex alternatives like in LASSO
(p = 1), non-convex ℓp norms require milder conditions under which the global optima of
(5.6) are the desired sparse x∗ [CS08; CG14].

To apply our MSO framework, we define τ = (α, p) ∈ T and fτ to be the objective (5.6)
with corresponding α, p. Compared to existing methods for non-convex sparse recovery
[LXY13], our method can recover multiple solutions from the non-convex landscape for a
family of α’s and p’s without having to restart. The user can adjust parameters α, p to
quickly generate candidate solutions before choosing a solution based on their preference.

Benchmark. Let X = [−2, 2]8, T = [0, 1]× [0.2, 0.5]. We consider highly non-convex ℓp

norms with p ∈ [0.2, 0.5] to test our method’s limits. We choose d = 8 and m = 4, and
sample the sparse signal x∗ uniformly in X with half of the coordinates set to 0. We then
sample entries in A i.i.d. from N (0, 1) and generate y = Ax∗ + e where e ∼ N (0, 0.1).
Although ∥x∥p

p is not weakly convex, pol achieves decent results (Fig. 5.D.6). Notably,
pol often reaches a better objective than pd (Fig. 5.D.7) while retaining diversity, even
though pol uses a much bigger step size ( 1

λ
= 0.1 compared to pd’s 10−5) and needs to

learn a different operator for an entire family of τ ∈ T . In Fig. 5.D.8, we additionally
compare pol with proximal gradient descent [Tib+10] for p = 1

2 where the corresponding
thresholding formula has a closed-form [CSX13]. Remarkably, we have observed superior
performance of pol against such a strong baseline.
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♢ 5.5.3 Rank-2 relaxation of max-cut

Formulation. MSO can be applied to solve combinatorial problems that admit smooth
non-convex relaxations. Here, we consider the classical problem of finding the maximum
cut of an undirected graph G = (V, E), where V = {1, . . . , n}, E ⊂ V × V , with edge
weights {wij} ⊂ R so that wij = 0 if (i, j) /∈ E. The goal is to find {xi} ∈ {−1, +1}V to
maximize ∑i,j wij(1− xixj).

Burer, Monteiro, and Zhang [BMZ02] propose solving minθ∈Rn

∑
i,j wij cos(θi − θj),

a rank-2 non-convex relaxation of the max-cut problem. This objective inherits weak
convexity from cosine, so it satisfies the conditions of Thm. 5.3.1. In practice, instead of
using angles as the variables which are ambiguous up to 2π, we represent each variable
as a point on the unit circle S1, so we choose X = (S1)n and T be the space of all edge
weights with n vertices. For τ = {τij} ∈ T corresponding to a graph with edge weights
{τij}, we define, for x ∈ X ,

fτ (x) ≜
∑
i,j

τijx
⊤
i xj. (5.7)

After minimizing fτ , we can find cuts using a Goemans and Williamson-type procedure
(1995). Instead of using heuristics to find optima near a solution [BMZ02], our method can
help the user effortlessly explore the set of near-optimal solutions without hand-designed
heuristics.

Benchmark. We apply our formulation to K8, the complete graph with 8 vertices. Hence
X = (S1)8 ⊂ R16. We choose T = [0, 1]28 as there are 28 edges in K8. We mix two types
of random graphs with 8 vertices in training and testing: Erdős-Rényi graphs with p = 0.5
and K8 with uniform edge weights in [0, 1]. Fig. 3 shows that pol can generate diverse
set of max cuts. Quantitatively, compared to gol, pol achieves better witnessed metrics
(Fig. 5.D.10).

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 3: 18 different max cuts (max cut value 10) of a graph generated by our method.
Red and blue vertices indicate the two vertex set separated by the cut. Vertex 0 is set to
blue to remove the duplicates obtained by swapping the colors. See Fig. 5.D.12 for more
results.
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♢ 5.5.4 Symmetry detection of 3D shapes

Formulation. Geometric symmetries are omnipresent in natural and man-made objects.
Knowing symmetries can benefit downstream tasks in geometry and vision [Mit+13;
Shi+20; ZLM21]. We consider the problem of finding all reflection symmetries of a
3D surface. Let τ be a shape representation (e.g. point cloud, multi-view scan), and
let Mτ ⊂ R3 denote the corresponding triangular mesh that is available for the train-
ing set. As reflections are determined by the reflectional plane, we set X = S2 × R≥0,
where x = (n, d) ∈ X denotes the plane with unit normal n ∈ S2 ⊂ R3 and intercept
d ∈ R≥0 (we assume d ≥ 0 to remove the ambiguity of (−n,−d) representing the same
plane). Let Rx : R3 → R3 denote the corresponding reflection. Perfect symmetries ofMτ

satisfy Rx(Mτ ) = Mτ . Let sτ : R3 → R be the (unsigned) distance field of Mτ given
by sτ (p) = minq∈Mτ∥p − q∥2. Inspired by Podolak et al. [Pod+06], we define the MSO
objective to be

fτ (x) ≜ Ep∼Mτ [sτ (Rx(p))], (5.8)

where a batch of p is sampled uniformly from Mτ when evaluating the expectation.
Although fτ is stochastic, since we use point-to-mesh distances to compute sτ , perfect
symmetries will make (5.8) zero with probability one. Compared to existing methods that
either require ground truth symmetries obtained by human annotators [Shi+20] or detect
only a small number of symmetries [Gao+20], our method applied to (5.8) finds arbitrary
numbers of symmetries including continuous ones and can generalize to unseen shapes,
without needing ground truth symmetries as supervision.

Benchmark. We detect reflection symmetries for mechanical parts in the MCB dataset
[Kim+20]. We choose T to be the space of 3D point clouds representing mechanical parts.
From the mesh of each shape, we sample 2048 points with their normals uniformly and
use DGCNN [Wan+19] to encode the oriented point clouds. Fig. 4 show our method’s
results on a selection of models in the test dataset; for per-iteration PPA results of our
method, see Fig. 5.D.13. Fig. 5.D.11 shows that pol achieves much higher witnessed
precision compared to gol.

♢ 5.5.5 Object detection in images

Formulation. Identifying objects in an image is a central problem in vision on which
recent works have made significant progress [Ren+15; Car+20; Liu+21]. We consider
a simplified task where we drop the class labels and predict only bounding boxes. Let
b = (x, y, w, h) ∈ X = [0, 1]4 denote a box with (normalized) center coordinates (x, y),
width w, and height h. We choose T to be the space of images. Suppose an image τ
has Kτ ground truth object bounding boxes {bτ

i }Kτ
i=1. We define the MSO objective to be
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Figure 4: Symmetry detection results. Each reflection is represented as a colored line
segment representing the normal of the reflection plane with one endpoint on the plane.
Pink indicates better objective values, while blue indicates worse. Our method is capable
of detecting complicated discrete symmetries as well as continuous families of cylindrical
reflectional symmetries.

fτ (x) ≜ minKτ
i=1∥bτ

i − x∥1; its minimizers are exactly {bτ
i }Kτ

i=1. Although the objective may
seem trivial, its gradients reveal the ℓ1-Voronoi diagram formed by bτ

i ’s when training
the proximal operator. Different from existing approaches, we encode the distribution
of bounding boxes conditioned on each image in the learned proximal operator without
needing to predict confidence scores or a fixed number of boxes. A similar idea based on
diffusion is recently proposed by Chen et al. [Che+23].

Benchmark. We apply the above MSO formulation to the COCO2017 dataset [Lin+14].
As τ is an image, we fine-tune ResNet-50 [He+16] to encode τ into a vector z that can
be consumed by the operator network (Fig. 5.B.1).

Table 1: Object detection results. WD∞ (resp. WP0.1
∞ ) is the witnessed divergence (resp.

precision) in (5.4) with t =∞ (i.e. keeping all solutions), averaged over 10 trials (standard
deviation < 10−3). Precision and recall are computed with Hungarian matching as no
confidence score is available for the usual greedy matching (see Sec. 5.D.8). frcnn(.S)
[Ren+15] means keeping predictions with confidence ≥ S% for Faster R-CNN.

method WD∞ WP0.1
∞ precision recall

frcnn(.80) 0.140 0.624 0.778 0.650
frcnn(.95) 0.162 0.589 0.887 0.515

fn 0.161 0.481 0.139 0.577
gol 0.251 0.243 0.508 0.282
pol (ours) 0.149 0.590 0.817 0.442

In addition to gol, we design a baseline method fn that uses the same ResNet-
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50 backbone and predicts a fixed number of boxes using the chamfer distance as the
training loss. Tab. 1 compares the proposed methods with alternatives and the highly-
optimized Faster R-CNN [Ren+15] on the test dataset. Since we do not output confidence
scores, the metrics are computed solely based on the set of predicted boxes. Our method
achieves significantly better results than fn and gol. Compared to the Faster R-CNN,
we achieve slightly worse results with 40.7% fewer network parameters. While Faster
R-CNN contains highly-specialized modules such as the regional proposal network, in our
method we simply feed the image feature vector output by ResNet-50 to a general-purpose
operator network. Incorporating specialized architectures like region proposal networks
into our proximal operator learning framework for object detection is an exciting future
direction. We visualize the effect of PPA using the learned proximal operator in Fig. 5.
Further qualitative results (Fig. 5.D.14) and details can be found in Sec. 5.D.8.

Figure 5: First 4 iterations of PPA using the learned proximal operator on 20 randomly
initialized boxes (leftmost column). Only a few iterations are needed for the boxes to
form distinctive clusters.

■ 5.6 Conclusion

Our work provides a straightforward and effective method to learn the proximal operator
of MSO problems with varying parameters. Iterating the learned operator on randomly
initialized points efficiently yields multiple optima to the MSO problems. Beyond promis-
ing results on our benchmark tasks, we see many exciting future directions that will
further improve our pipeline.

A current limitation is that at test time the optimal number of iterations to apply
the learned operator is not known ahead of time (see end of Sec. 5.D.1). One way to
overcome this limitation would be to train another network that estimates when to stop.
This measurement can be the objective itself if the optimum value is known a priori (e.g.,
sampling from level sets) or the gradient norm if objectives are smooth. One other future
direction is to learn a proximal operator that adapts to multiple λ’s. This way, the user
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can easily experiment with different λ’s and to enable PPA with growing step sizes for
super-linear convergence [Roc76; Roc21]. Another direction is to study how much we can
relax the assumption that X is a low-dimensional Euclidean space. Our method could
remain effective when X is a low-dimensional submanifold of a high-dimensional Euclidean
space. The challenges would be to constrain the proximal operator to a submanifold and
to design a proximal term that is more suitable than the ambient ℓ2 norm.





Appendices

■ 5.A Convergence of Training

We formally state and prove Thm. 5.3.1 via the following Prop. 5.A.1 and Prop. 5.A.2.

Proposition 5.A.1. Suppose

1. T ⊂ Rr for some r ∈ N≥1;

2. for any τ ∈ T , the objective fτ is differentiable, ξ-weakly convex, and ∇fτ is ζ-
Lipschitz, i.e.,

∥∇fτ (x1)−∇fτ (x2)∥2 ≤ ζ∥x1 − x2∥2,

with ξ ≤ λ.

3. the activation function σ(x) used is proper, real analytic, monotonically increasing
and 1-Lipschitz, e.g., sigmoid, hyperbolic tangent.

For any δ > 0, H ≥ 2, n ∈ N≥1, assume Φ is an H-layer feed-forward neural network
with hidden layer sizes m1, . . . , mH satisfying

m1, . . . , mH−2 ≥ Ω(H2 log(Hn2/δ)),
mH−1 ≥ Ω(log(Hn2/δ)), mH ≥ Ω(n).

Let D denote the total number of weights in Φ. Then D = Ω̃(n). Moreover, there
exists a learning rate η ∈ RD such that for any dataset S = {(xi, τi)}n

i=1 of size n with
the training loss L defined as in (5.3), for any ϵ > 0, with probability at least 1 − δ
(over random Gaussian initial weights θ0 of Φ), there exists t = O(cr(λ + ζ)/ϵ) such
that L(Φ(·, ·; θt)) ≤ L∗ + ϵ, where ∥θt∥2

2 stays bounded, L∗ ≜ ming∈X ×T →X L(g) is the
global minimum of the functional L, (θk)k∈N is the sequence generated by gradient descent
θk+1 ≜ θk − η ⊙∇θL(Φ(·, ·; θk)), and cr depends only on L and the initialization θ0.

185
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Proof of Prop. 5.A.1. The theorem is an application of Theorem 1 in Kawaguchi and
Huang [KH19] with the following modifications.

For i ∈ [n], define ℓi(x) ≜ fτi
(x) + λ

2∥x− xi∥2
2. To check Assumption 1 of Kawaguchi

and Huang [KH19], observe

∇xℓi(x) = ∇fτi
(x) + λ(x− xi),

∇2
xℓi(x) = ∇2fτi

(x) + λId.

Hence the assumption that fτi
is ξ-weakly convex implies that

∇2fτi
(x) + λId ≽ ∇2fτi

(x) + ξId ≽ 0.

Hence ℓi is convex. The assumption that ∇fτi
is ζ-Lipschitz implies, for any x1, x2 ∈

X × T ,

∥∇ℓi(x1)−∇ℓi(x2)∥2 = ∥∇fτi
(x1)−∇fτi

(x2) + λ(x2 − x1)∥2

≤ ∥∇fτi
(x1)−∇fτi

(x2)∥2 + λ∥x1 − x2∥2

≤ (λ + ζ)∥x1 − x2∥2.

Hence ∇ℓi is (λ + ζ)-Lipschitz.
An input vector to the neural network Φ is the concatenation (x, τ) ∈ Rd+r. Kawaguchi

and Huang [KH19] assume that the input data points are normalized to have unit length.
This is not an issue, as we can scale down (xi, τi) uniformly to be contained in a unit
ball, then pad τi one extra coordinate to make ∥(xi, τi)∥2 = 1 for all i ∈ [n], similar to
the argument given in the footnotes before Assumption 2.1 of Allen-Zhu, Li, and Song
[ALS19].

Lastly, we mention explicitly lower bounds for the layer sizes that are used in the
proof of Theorem 1 of Kawaguchi and Huang [KH19] (see the paragraph below Lemma
3), instead of stating a single bound on the total number of weights in the statement of
Theorem 1. This is because Theorem 1 only states that there exists a network of size Ω̃(n)
for which training converges, whereas every network satisfying the layer-wise bounds will
have the same convergence guarantee.

Next we show that once the training loss is ϵ away from the global minimum, we can
guarantee that the approximation error on the training data in the mean-squared sense
is small: i.e., the learned operator Φ(·, ·; θ) is close to the true proximal operator (5.1).

Proposition 5.A.2. Suppose for any τ ∈ T , the objective fτ is differentiable and ξ-weakly
convex with ξ < λ, where λ is the proximal regularization weight of the training loss L(g)
defined in (5.3). Let θ be the weight of the network Φ such that L(Φ(·, ·; θ)) ≤ L∗ + ϵ
where L∗ ≜ ming∈X ×T →X L(g) is the global minimum of the functional L. Let prox(·; ·) be



187 Section 5.B. Network Architectures

the true proximal operator defined in (5.1). Then the mean-squared error on the training
data is bounded by

1
n

n∑
i=1
∥Φ(xi, τi; θ)− prox(xi; τi)∥2

2 ≤
2ϵ

λ− ξ
.

Proof. Clearly L∗ = L(prox(·; ·)), i.e., the minimum of L is achieved with the true prox-
imal operator. Define hi : X → R by hi(x) ≜ fτi

(x) + λ
2∥x − xi∥2

2, so that we can write
L(g) = 1

n

∑n
i=1 hi(g(xi, τi)). By the assumption on weak convexity, each hi is (λ − ξ)-

strongly convex. This implies for any x, y ∈ X ,

hi(x) ≥ hi(y) +∇hi(y)⊤(x− y) + λ− ξ

2 ∥x− y∥2
2. (5.9)

The minimum of hi is achieved at prox(xi; τi) by the definition of prox. Differentiability
and convexity imply ∇hi(prox(xi; τi)) = 0. Hence setting y = prox(xi; τi) in (5.9) implies,
for any x ∈ X ,

hi(x)− hi(prox(xi; τi)) ≥
λ− ξ

2 ∥x− prox(xi; τi)∥2
2.

Now by the definition of (5.3),

ϵ ≥ L(Φ(·, ·; θ))− L∗ = L(Φ(·, ·; θ))− L(prox(·, ·))

= 1
n

n∑
i=1

[hi(Φ(xi, τi; θ))− hi(prox(xi; τi))]

≥ 1
n

n∑
i=1

λ− ξ

2 ∥Φ(xi, τi; θ)− prox(xi; τi)∥2
2.

Rearranging terms we obtain the desired result.

■ 5.B Network Architectures

The network architecture we use to parameterize the operators for both pol and gol is
identical and is shown in Fig. 5.B.1. The encoder of τ will be chosen depending on the
application. For our conic section (5.5.1), sparse recovery (5.5.2), and max-cut (5.5.3)
benchmarks, the encoder is just the identity map. For symmetry detection (5.5.4), τ
is a point cloud and we use DGCNN [Wan+19]. For object detection (5.5.5), we use
ResNet-50 [He+16]. Inspired by Dinh, Sohl-Dickstein, and Bengio [DSB16], we include
both additive and multiplicative coupling in the residual blocks. At the same time, since
we do not need bijectivity of the operator (and proximal operators should not be) nor
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HardTanh
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Figure 5.B.1: Network architecture for the operators used in pol and gol. We use ReLU
as the activation after all intermediate linear layers, except for predicting the scaling in the
residual block, where we use HardTanh to ensure s ∈ [−2, 2]. For the shared 2-layer fully-
connected network, the hidden layer sizes are 256, 128. For the 3-layer fully-connected
network in each residual block, the hidden layer sizes are 128, 128, 128.

access to the determinant of the Jacobian, we do not restrict ourselves to a map with
triangular structure as in Dinh, Sohl-Dickstein, and Bengio [DSB16]. We use 3 residual
blocks for all applications, except for symmetry detection where we use 5 blocks which
give slightly improved performance.

Our architecture is economical: the model size (excluding the application-specific en-
coder) is under 2MB for all applications we consider. This also makes iterating the
operators fast at test time. Note that the application-specific encoder only needs to be
run once at each test time τ as the encoded vector z can be reused (Fig. 5.B.1).
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■ 5.C Importance Sampling via Unfolding PPA

Directly optimizing (5.2) or (5.5) using mini-batching may not yield an operator that can
refine a near-optimal solution, if µ is taken to be Uniform(X ), the uniform measure on
X (more precisely, the d-dimensional Lebesgue measure restricted to X and normalized
to a probability distribution). Instead, we would like to sample from a distribution that
puts more probability density on near-optimal solutions. We achieve this goal as follows,
inspired by Wang and Solomon [WS19]. Let Φ denote the network with weights after t
training iterations. For k ∈ N≥0, denote µk ≜ (Φk)#(Uniform(X )). For a fixed K ∈ N≥1,
we set µ ≜ 1

K+1
∑K

k=0 µk. Then, for training iteration t + 1, we optimize the objective
(5.2) or (5.5) with the constructed µ. Note this modification does not introduce any bias
for pol (similarly for gol), in the sense that the optimal solution to (5.2) is still the
true proximal operator since µ has full support, yet it puts more density in near-optimal
regions as t increases. In practice, we choose K = 5 or K = 10. For the choice of other
hyper-parameters, see Sec. 5.D.1.

■ 5.D Detailed Results

♢ 5.D.1 Hyperparameters

Unless mentioned otherwise, the following hyper-parameters are used.
In each training iteration of pol and gol, we sample 32 problem parameters from

the training dataset of T , and 256 of x’s from Uniform(X ) when computing (5.2) or (5.5)
using the importance sampling trick in Sec. 5.C. The learning rate of the operator is kept
at 10−4 for both pol and gol, and by default we train the operator network for 2× 105

iterations. This is sufficient for the loss to converge for both pol and gol in most cases.
Since gol requires multiple evaluations of the gradient of the objective, it typically trains
two or more times slower than pol. For the proximal weight λ of pol, we choose it based
on the scale of the objective and the dimension of X ; see Tab. 5.D.1. All training is done
on a single NVIDIA RTX 3090 GPU.

For the step size η in gol, we start with 1
λ

(so same step size as pol in the for-
ward/backward Euler sense) and then slowly increase it (so fewer iterations are needed
for convergence) without degrading the metrics. When evaluating (5.5), we set Q = 10
in all experiments except for symmetry detection, where we use Q = 1 because otherwise
the training will take > 200 hours. For pd, we choose a step size small enough so as
to not miss significant minima and a sufficient number of iterations for the loss (i.e. the
objectives) to fully converge.

For evaluation, the number of iterations to apply the trained operators is chosen to be
enough so that the objective converges. This number will be chosen separately for each
application and method. By default, 1024 solutions are extracted from each method, and
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Table 5.D.1: Choices of λ for all applications considered. X is the search space of solutions,
and d is the dimension of the Euclidean space where we embed X (so it might be greater
than the intrinsic dimension of X ).

Application X d λ
conic section (5.5.1) [−5, 5]2 2 0.1

sparse recovery (5.5.2) [−2, 2]8 8 10.0
max-cut (5.5.3) (S1)8 16 10.0

symmetry detection (5.5.4) S2 × R≥0 4 1.0
object detection (5.5.5) [0, 1]4 4 1.0

1024 witnesses are sampled to compute WDt and WPδ
t , averaged over test dataset and

over 10 trials with standard deviation provided (in most cases the standard deviation is
two orders of magnitude smaller than the metrics). We filter out solutions that do not lie
in X .

A limitation for both pol and gol is that when the solution set is continuous, too
many applications of the learned operator can cause the solutions to collapse. We suspect
this is because even with the importance sampling trick (Sec. 5.C), during training the
operators may never see enough input that are near-optimal to learn the correct refinement
needed to recover the continuous solution set. A future direction is to have another
network to predict a confidence score for each x ∈ X so that at test time the user knows
when to stop iterating the operator, e.g., when the objective value and its gradient are
small enough; see the discussion in Sec. 5.6.

♢ 5.D.2 Convergence to the proximal operator

To empirically verify Prop. 5.A.2, that our method can faithfully approximate the true
proximal operators of the objectives, we conduct the following simple experiments. We
consider the function f(x) = ∥x∥1 for x ∈ X = [−1, 1]d and treat T as a singleton. Its
proximal operator prox(x) = arg miny∥y∥1 + ∥y − x∥2

2 is known in closed form as the
shrinkage operation, defined coordinate-wise as:

prox(x)i =


xi − 1/2 xi ≥ 1/2

0 |xi| ≤ 1/2
xi + 1/2 xi ≤ −1/2.

(5.10)

For each dimension of d = 2, 4, 8, 16, 32, we train an operator network Φ (Fig. 5.B.1)
using (5.2) as the loss with learning rate 10−3. Fig. 5.D.1 shows the mean-squared-error
∥Φ(x)− Φ∗(x)∥2

2 scaled by 1
d

and averaged over 1024 samples vs. the training iterations,
where Φ∗ is the shrinkage operation (5.10). We see that the trained operator indeed



191 Section 5.D. Detailed Results

0 2000 4000 6000 8000 10000
training iteration

0.000

0.005

0.010

0.015

0.020

‖Φ
(x

)
−

Φ
∗ (
x

)‖
2 2/
d

d = 2

d = 4

d = 8

d = 16

d = 32

Figure 5.D.1: Convergence to the true proximal operator of f(x) = ∥x∥1.

converges to Φ∗ as predicted by Prop. 5.A.2, and the convergence speed is faster in smaller
dimensions.

♢ 5.D.3 Effect of the proximal term

In this section, we study the necessity of the proximal term λ
2∥Φ(x, τ) − x∥2 in (5.2).

Without such a term, the learned operator can degenerate. For example, consider (1) in
[Che+22a], which minimizes minΦ

∑T
t=1 wtf(xt) with xt+1 = xt−Φ(xt,∇f(xt), . . .) for all

t (with adapted notation). Suppose x∗ is one global optimum of f but is not the only
one. Then Φ(x, . . .) := x − x∗ clearly minimizes the objective, yet the update steps will
always set xt = x∗ regardless of the initial positions.

To further illustrate the effect of different choices of λ, consider the 2D cosine function
f(x) = −∑2

i=1 10 cos(2πxi) for x ∈ X = [−5, 5]2 and a singleton T . This function is
ξ-weakly convex with ξ = 40π2 < 400 and has global minima forming a grid (all local
minima are global minima). On the left of Fig. 5.D.2, we see that when λ = 400 > ξ—in
which case the condition of Thm. 5.3.1 is met—pol recovers all optima. In comparison,
for λ = 10, the outer ring of solutions is missing, and with λ = 0, 1 most optima are
missing in the grid.

To demonstrate how existing L2O methods can fail to recover multiple solutions, we
conduct the same experiment on the L2O particle-swarm method by Cao et al. [Cao+19],
which recovers a swarm of particles that are close to optima. We use the default parame-
ters in the provided source code except changing the objective to the 2D cosine function
and the standard deviation of the initial random particles to 1. As the method by Cao
et al. [Cao+19] could produce particles outside X = [−5, 5]2, we add an additional term
0.01∥x∥2 to the objective f(x); without such a term the particle swarm simply collapses to
a single point far away from the origin. The results are shown on the right of Fig. 5.D.2.
We see that even with 256 independent random starts and with population size 4, this
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Figure 5.D.2: Left: the result of pol after 10 iterations with λ = 0, 1, 10, 400 for the
2D cosine function which has weakly convex constant ξ = 40π2 < 400. Right: particle
swarms recovered by Cao et al. [Cao+19] for after 10 iterations from 256 independent
runs. The population size of the swarm is 4 (default value in their source code).

method fails to recover most of the optima, in particular in non-positive quadrants.

♢ 5.D.4 Sampling from conic sections

Setup. For this problem, the training dataset contains 220 samples of τ ∈ T , while the
test dataset has size 256. In our implementation and similarly in other benchmarks we do
not store the dataset on disk, but instead generate them on the fly with fixed randomness.
The τ ’s are sampled uniformly in T . pd is run for 5×104 steps with learning rate 1.0. For
step sizes, we choose λ = 0.1 for pol and η = 1.0 for gol. We found that the training of
gol explodes when η > 1.0. Meanwhile, pol is able to take bigger ( 1

λ
= 10.0) steps while

staying stable during training (but might fail to recover solutions due to large step size).
To obtain solutions, we use 5 iterations for pol, while for gol we use 100 iterations since
it converges slower (and more iterations won’t improve the results).

Results. We visualize for the conic section problem in Fig. 5.D.3 for 16 randomly
chosen τ ∈ T . In Fig. 5.D.4 we plot of δ vs. WPδ

t (5.4) to quantitatively verify how
good pol and gol are at recovering the level sets, where we treat the results by pd as
the ground truth. Both visually and quantitatively, we see that pol outperforms gol.
Fig. 5.D.5 compares the convergence speed when applying the learned iterative operators
at test time: clearly pol converges much faster.
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Figure 5.D.3: Visualization of the solutions for the conic section problem. Red indicates
the solutions by pd which we treat as ground truth. Green and blue indicate the solutions
by gol (Sec. 5.4) and pol (proposed method) respectively.
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Figure 5.D.4: The plot of δ vs. WPδ
t for the conic section problem (t = 0.05, 0.1, 0.2).

The vertical dashed line indicates WDt. 50 equally spaced δ values are used to draw the
plot. Here ρgt indicates the percentage of pd solutions that have objectives ≤ t, and ρ
similarly indicates the percentage of solutions for each method with objectives below t.
We sample 1024 witnesses to compute WPδ

t , averaged over 256 test problem instances.
The plot is averaged over 10 trials of witness sampling (the fill-in region’s width indicates
the standard deviation). Here the standard deviations are all less than 10−3 so the fill-in
regions are too small to be visible.

♢ 5.D.5 Non-convex sparse recovery

Setup. For this problem, the training dataset contains 1024 samples of τ = (α, p), while
the test dataset has 128 samples. The τ ’s are sampled uniformly in T = [0, 1]× [0.2, 0.5].
We extract 4096 solutions from each method after training. For pd, we run 5× 105 steps
of gradient step with learning rate 10−5. We found that due to the highly nonconvex
landscape of the problem, bigger learning rates will cause pd to miss significant local
minima. For step sizes, we choose λ = 10 for pol (so this corresponds to step size 0.1
for backward Euler) and η = 0.1 for gol. To obtain solutions, pol requires less than 20
iterations to converge, while for gol over 100 iterations are needed.

Results. We show the histogram of the solutions’ objective values for pd, gol,
and pol in Fig. 5.D.7 for 4 problem instances. Fig. 5.D.6 visualizes the solutions for 8
problem instances projected onto the last two coordinates. gol fails badly in all instances.
Remarkably, despite the non-convexity of the problem and the much larger step size (0.1
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Figure 5.D.5: Convergence speed comparison at test time for the conic section problem.
For pol and gol, the x-axis is the number of iterations used. For pd, the x-axis is
the number of gradient descent steps, multiplied by 100. The horizontal axis shows the
number of iterations, and the vertical axis shows the value of fτ (x), averaged over all
current solutions (fill-in region’s width indicates standard deviation). The three plots
shown correspond to the problem instances in the first three columns in Fig. 5.D.3. Once
the operator has been trained, pol converges in less than 5 steps, while gol converges
slower (gol is already trained with the largest step size without causing training to
explode).

compared to 10−5), pol yields solutions on par or better than pd when p is small. For
instance, for the second and third columns in Fig. 5.D.6 (corresponding to second and
third columns in Fig. 5.D.7), pd (in red) misses near-optimal solutions that pol (in blue)
captures. As such the results of pd can be suboptimal, so we do not compute witness
metrics here.

Figure 5.D.6: Visualization of the solutions’ objective values for the conic section problem.
Red indicates the solutions by pd which we treat as ground truth. Green and blue indicate
the solutions by gol and pol (proposed method) respectively.

Comparison with proximal gradient descent. For p = 1
2 , 2

3 , thresholding formulas
exist for the ℓp norm [CSX13]. That is, the proximal operator of ∥x∥p

p has a closed-form.
This allows us to apply proximal gradient descent [Tib+10] to solve (5.6). When p = 1
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Figure 5.D.7: Histograms of the objectives for non-convex sparse recovery on 4 problem
instances. We denote τ = (α, p) at the top, corresponding to a sparsity-inducing function
of the form α∥x∥p

p.

(i.e. when the problem reduces to LASSO), this reduces to the popular iterative soft-
thresholding algorithm (ISTA) which converges significantly faster than gradient descent.

We compare the convergence speed of pol to that of proximal gradient descent (de-
noted pgd) for the p = 1

2 case. We also include pd for reference. The generation of data
(i.e. A and y in (5.6)) is the same as before. For pol we use the same setup with λ = 10
as before (corresponding to step size 0.1) except we restrict p to 1

2 during training and we
train only for 1000 steps (note the test-time α is unseen during training). For pgd we use
0.04 as the step size because using 0.05 for the step size would lead to divergence of pgd
— the objective would go to infinity. For pd we use 0.05 as the step size. We run all three
methods for 200 steps (for pol this corresponds to 200 steps of PPA after training) and
visualize the convergence and histograms of the objective for each method in Fig. 5.D.8.
We see that pol converges faster than pgd even when pgd is highly specialized to the
p = 1

2 case (where the thresholding formula has a closed form).

Figure 5.D.8: Convergence (left figure) and histograms (right figure) of the objective for
the p = 1

2 non-convex sparse recovery problem with α = 0.627. For the convergence figure
on the left, the horizontal axis shows the number of iterations, and the vertical axis shows
the value of fα(x), averaged over all current solutions (fill-in region’s width indicates
standard deviation). pgd denotes the proximal gradient descent method [Tib+10] with
the closed-form thresholding formula by Cao, Sun, and Xu [CSX13].

Other sparsity-inducing regularizers. Our method can be applied to sparse re-
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covery problems with other sparsity-inducing regularizers in a straightforward manner.
Consider minimax concave penalty (MCP) from Yang et al. [Yan+20] defined component-
wise as:

MCP(x; τ) ≜
{
|x| − τx2 |x| ≤ 1

2τ
1

4τ
|x| > 1

2τ
,

which is τ -weakly convex. We repeat the same setup as in Sec. 5.5.2 but with objectives

fτ (x) ≜ ∥Ax− y∥2
2 +

d∑
i=1

MCP(xi; τ), (5.11)

for τ ∈ [0.5, 2]. Note pgd is viable to solve (5.11) because the proximal operator of MCP
has a closed-form. We run pgd for 2 × 104 iterations with step size 10−4 to make sure
it converges fully. We show the histogram of the solutions’ objective values for pd, gol,
pol, and pgd in Fig. 5.D.9. Our results are consistent with those in Fig. 5.D.7: pol is on
par with pd and significantly outperforms gol. pol also performs better than pgd which
is only applicable because the regularizer MCP has a closed-form proximal operator.
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Figure 5.D.9: Histograms of the objectives for sparse recovery with minimax concave
penalty (MCP) on 4 problem instances.

♢ 5.D.6 Rank-2 relaxation of max-cut

Setup. An additional feature of (5.7) is that the variables are constrained to (S1)8 ⊂ R16.
Hence for pol and gol we always project the output of the operator network to the
constrained set (normalizing to unit length before computing the loss or before iterating),
while for pd we apply projection after each gradient step.

We generate a training dataset of 220 graphs and a test dataset of 1024 graphs using
the procedure described in Sec. 5.5.3: half of the graphs will be Erdős-Rényi graphs with
p = 0.5 and the remaining half being K8 with edge weights drawn from [0, 1] uniformly.
For pd, we use learning rate 10−4. For step sizes of pol and gol, we choose λ = 10.0
and η = 10.0.

We choose to directly feed the edge weight vector τ ∈ R28 to the operator network
(Sec. 5.B). We find this simple encoding works better than alternatives such as graph
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convolutional networks. This is likely because x ∈ X = (S1)8 requires order information
from the encoded τ , so graph pooling operation can be detrimental for the operator net-
work architecture. Designing an equivariant operator network that is capable of effectively
consuming larger graphs is an interesting direction for future work.

Results. If a cut happens to be a local minimum of the relaxation, then it is a
maximum cut (Theorem 3.4 of Burer, Monteiro, and Zhang [BMZ02]). However, finding
all the local minima of the relaxation is not enough to find all max cuts as max cuts can
also appear as saddle points (see the discussion after Theorem 3.4 of Burer, Monteiro, and
Zhang [BMZ02]). Hence solving the MSO (5.7) is not enough to identify all the max cuts.
Nevertheless, we can still compare pol and gol against pd based solely on the relaxed
MSO problem corresponding to the objective (5.7). In Fig. 5.D.10, we plot δ vs. WPδ

t
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Figure 5.D.10: The plot of δ vs. WPδ
t for the max-cut problem. See the caption of

Fig. 5.D.4 for the meaning of the symbols. As different edge weights lead to different
minima values, we choose the threshold t in a relative manner: the actual threshold used
will be t times the best objective value found by pd.

(5.4) to verify the quality of the solutions obtained by pol and gol compared to pd.
We see that pol more faithfully recovers the solutions generated by pd with consistently
higher witnessed precision.

Empirically, we found the proposed pol can identify a diverse family of cuts. We visu-
alize the multiple cuts obtained by pol for a number of graphs in Fig. 5.D.12. Although
some cuts are not maximal, they are likely due to the relaxation — not all fractional
solutions correspond to a cut — and not because of the proposed method. As evident in
Fig. 5.D.10, they are still very close to the local minima of (5.7) generated by pd.

♢ 5.D.7 Symmetry detection of 3D shapes

Setup. Since the variables in (5.8) is constrained to X = S2×R≥0, we always project the
output of the operator network to the constrained set: for x = (n, d) ∈ X , we normalize
n to have unit length and take absolute value of d. The same projection is applied after
each gradient step in pd.

To generate training and test datasets, we use the original train/test split of the MCB
dataset [Kim+20] but filter out meshes with more than 5000 triangles and keep up to
100 meshes per category to make the categories more balanced. During each training
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Figure 5.D.11: The plot of δ vs. WPδ
t for symmetry detection on the test dataset of Kim

et al. [Kim+20] (t = 10−4, 10−3, 10−2, 10−1). See the caption of Fig. 5.D.4 for the meaning
of the various notations. We do not show WDt as the vertical bars here because gol’s
WDt is much higher than pol’s and is out of the range for the horizontal axis. We sample
1024 witnesses to compute WPδ

t , averaged over 10 trials of witness sampling (the fill-in
region’s width indicates the standard deviation).

iteration, a fresh batch of point clouds are sampled (these are τ ’s) from the meshes in
the current batch. For step sizes, we choose λ = 1.0 for pol and η = 10.0 for gol. The
training of pol and gol takes about 30 hours. For pd, we run gradient descent for 500
iterations for each model, which is sufficient for convergence.

We use the official implementation of DGCNN by Wang et al. [Wan+19] as the encoder
with the modification that we change the input channels to 6-dimension to consume ori-
ented point clouds and we turn off the dropout layers which do not improve performance.

The objective (5.8) involves sτ which requires point-to-mesh projection. We imple-
mented custom CUDA functions to speed up the projection. Even so, it remains the
bottleneck of training. Since gol requires multiple evaluations, it is extremely slow and
can take more than a week. As such, we set Q = 1 in (5.5). Both pol and gol are trained
for 105 iterations with batch size 8. At test time iterating the operator networks does not
need to evaluate the objective nor the sτ ’s; moreover, only point clouds are needed.

Results. We show the witness metrics in Fig. 5.D.11; quantitatively, pol exhibits far
higher witnessed precision values than gol. We show a visualization of iterations of PPA
with the learned proximal operator in Fig. 5.D.13. In particular, our method is capable
of detecting complicated discrete reflectional symmetries as well as a continuous family
of reflectional symmetries for cylindrical objects.

♢ 5.D.8 Object detection in images

Setup. We use the training and validation split of COCO2017 [Lin+14] as the training
and test dataset, keeping only images with at most 10 ground truth bounding boxes. For
training, we use common augmentation techniques such as random resize/crop, horizontal
flip, and random RGB shift, to generate a 400×400 patch from each training batch image,
with batch size 32. For evaluation, we crop a 400×400 image patch from each test image.
For step sizes, we choose λ = 1.0 for pol and η = 1.0 for gol. We train both pol and
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gol for 106 steps. This takes about 100 hours. To extract solutions, we use 100 iterations
for pol (for most images it only needs 5 iterations to converge) and 1000 iterations for
gol (the convergence is very slow so we run it for a large number of iterations).

We fine-tune PyTorch’s pretrained ResNet-50 [He+16] with the following modifica-
tions. We first delete the last fully-connected layer. Then we add an additional linear
layer to turn the 2048 channels into 256. We then add sinusoidal positional encodings to
pixels in the feature image output by ResNet-50 followed by a fully-connected layers with
hidden layer sizes 256, 256, 256. Finally average pooling is used to obtain a single feature
vector for the image.

For Faster R-CNN (frcnn), we use the pretrained model from PyTorch with ResNet-
50 backbone and a regional proposal network. It should be noted that frcnn is designed
for a different task that includes prediction of class labels, and thus it is trained with
more supervision (object class labels) than our method and it uses additional loss terms
for class labels.

For the alternative method fn that predicts a fixed number of boxes, we attach a fully-
connected layer of hidden sizes [256, 256, 80] with ReLU activation to consume the pooled
feature vector from ResNet-50. The output vector of dimension 80 is then reshaped to
20 × 4, representing the box parameters of 20 boxes. We use chamfer distance between
the set of predicted boxes and the set of ground truth boxes as the training loss.

Results. In Tab. 1, we compute witness metrics and traditional metrics including
precision and recall. As our method does not output confidence scores, we cannot use
common evaluation metrics such as average precision. To calculate precision and recall,
which normally would require an order given by the confidence scores, we instead build
a bipartite graph between the predicted boxes and the ground truth, adding an edge
if the Intersection over Union (IoU) between two boxes is greater than 0.5. Then we
consider predictions that appear in the Hungarian max matching as true positives, and
the unmatched ones false positives. Then precision is defined as the number of true
positives over the total number of predictions, while recall is defined as the number of
true positives over the total number of ground truth boxes. When computing metrics for
pol and gol, we run mean-shift algorithm with RBF bandwidth 0.01 to find the centers
of clusters and use them as the predictions. As shown in Fig. 5, the clusters formed by
pol are usually extremely sharp after a few steps, and any reasonable bandwidth will
result in the same clusters.

In Fig. 5.D.14, we show the detection results by our method for a large number of test
images chosen at random.
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Figure 5.D.12: Visualization of the cuts obtained by applying Goemans-Williamson-type
procedure to randomly selected solutions of pol. The graphs are chosen among the ones
that have at least 8 solutions uniformly at random without human intervention. Each
row contains the multiple solutions for the same graph with binary weights. Two colors
indicate the two vertex sets separated by the cut. Dashed lines indicate edges in the cut.
For each graph we annotate the number of cuts on top. The 0th vertex is always in blue
to remove the obvious duplicates obtained by swapping the two colors on each vertex.
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Figure 5.D.13: Visualization of PPA with learned proximal operator on selected models
from the test dataset of Kim et al. [Kim+20]. Iterations 0, 1, 2, 5, 10, 15, 20 are shown,
where the 0th iteration contains the initial samples from Uniform(X ). Pink indicates
lower objective value in (5.8), while light blue indicates higher.
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Figure 5.D.14: Randomly selected object detection results by pol on COCO17 validation
split. Each test image is 400× 400 patch cropped from the original image with a random
scaling by a number between 0.5 and 1. In each image we display all 1024 bounding boxes
without clustering, most of which are perfectly overlapping. For some images there is a
bounding box for the whole image (check if the image has an orange border). There is no
class label associated with each box.
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■ 5.E Connection to Wasserstein Gradient Flows

In this section we show that we can view (5.2) as solving the JKO discretization of
Wasserstein gradient flows at every time step, under the assumption that the measures
along the JKO discretization are absolutely continuous.

If F(µ) is a linear functional of the form F(µ) =
∫

fdµ on P(X ), the space of prob-
ability distributions in X with X compact, then the JKO discretization of the gradient
flow of F at step t + 1 with step size 1/λ is

µt+1 = arg min
µ∈P2(X )

{∫
fdµ + λ

2 W 2
2 (µt, µ)

}
,

where W2 is the Wasserstein-2 distance and we assume µt is absolutely continuous. Let

F(µ) ≜
∫

fdµ + λ

2 W 2
2 (µt, µ).

Let us also define another functional such that for a Borel map T : X → X ,

G(T ) ≜
∫

f(T (x))dµt(x) + λ

2

∫
∥T (x)− x∥2

2dµt(x).

First given µ ∈ P(X ), since X is compact (so in particular all probability distributions
have finite second moments), by Brenier’s theorem [AGS05, Theorem 6.2.4], there exists a
Borel map T (the Monge map) such that T#µt = µ and W 2

2 (µt, µ) =
∫
∥T (x)−x∥2

2dµt(x).
Hence for such µ and T we have G(T ) = F(µ), and thus minµ∈P2(Rd)F(µ) ≥ minT G(T ).

Next given a Borel T , let µ = T#µt. By Brenier’s theorem, let T ′ be the Monge map
corresponding to W2(µt, µ) so that µ = T ′

#µt and
∫
∥T ′(x) − x∥2

2dµt(x) = W2(µt, µ) ≤∫
∥T (x) − x∥2

2dµt(x). This shows that F(µ) ≤ G(T ) and hence minµ∈P2(Rd)F(µ) ≤
minT G(T ). Thus minµ∈P2(Rd)F(µ) = minT G(T ).

If µt has full support, then the best T ∗ ≜ arg minT G(T ) is obtained pointwise and it
becomes the proximal operator of f (cf. (5.2)). In particular, T ∗ does not depend on µt.





Chapter 6

Self-Consistent Velocity Matching of Probability
Flows

In Chapters 4 and 5, we demonstrated that neural networks can effectively parameter-
ize continuous distributions, achieving strong performance. In this chapter, we optimize
for a probability flow (µt)t where each µt is a probability distribution, and moreover, the
probability flow is jointly continuous in time and space as dictated by the continuity equa-
tion. Specifically, we exploit the self-consistency principle to solve a wide class of partial
differential equations (PDEs) using neural network paramterization without spatial or
temporal discretization. For optimization, we introduce an iterative method that solves
a convex least square problem at each iteration, circumventing the significant computa-
tional challenges encountered in prior methods. This chapter is based on the publication
[LHS23].

■ 6.1 Introduction

Mass conservation is a ubiquitous phenomenon in dynamical systems arising from fluid
dynamics, electromagnetism, thermodynamics, and stochastic processes. Mathematically,
mass conservation is formulated as the continuity equation:

∂tpt(x) = −∇ · (vtpt),∀x, t ∈ [0, T ], (6.1)

where pt : Rd → R is a scalar quantity such that the total mass
∫

pt(x) is conserved with
respect to t, vt : Rd → Rd is a velocity field, and T > 0 is total time. We will assume, for
all t ∈ [0, T ], pt ≥ 0 and

∫
pt(x)dx = 1, i.e., pt is a probability density function. We use µt

to denote the probability measure with density pt. Once a pair (pt, vt) satisfies (6.1), the
density pt is coupled with vt in the sense that the evolution of pt in time is characterized
by vt (Sec. 6.3.1).

205
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We consider the subclass of mass-conserving PDEs that can be written succinctly as

∂tpt(x) = −∇ · (ft(x; µt)pt),∀x, t ∈ [0, T ], (6.2)

where ft(·; µt) : Rd → Rd is a given function depending on µt, with initial condition
µ0 = µ∗

0 for a given initial probability measure µ∗
0 with density p∗

0.
Different choices of ft lead to a large class of mass-conserving PDEs. For instance,

given a functional F : P2(Rd)→ R on the space of probability distributions with finite
second moments, if we take

ft(x; µt) ≜ −∇W2F(µt)(x), (6.3)

where ∇W2F(µ) : Rd → Rd is the Wasserstein gradient of F , then the solution to (6.2)
is the Wasserstein gradient flow of F [San15, Chapter 8]. Thus, solving (6.2) efficiently
allows us to optimize in the probability measure space. If we take

ft(x; µt) ≜ bt(x)−Dt(x)∇ log pt(x), (6.4)

where bt is a velocity field and Dt(x) is a positive-semidefinite matrix, then we obtain
the time-dependent Fokker-Planck equation [RR96], which describes the time evolution
of the probability flow undergoing drift bt and diffusion with coefficient Dt.

A popular strategy to solve (6.2) is to use an Eulerian representation of the density
field pt on a discretized mesh or as a neural network [RPK19]. However, these approaches
do not fully exploit the mass-conservation principle and are usually limited to low dimen-
sions. Shen et al. [She+22] and Shen and Wang [SW24] recently introduced the notion of
self-consistency for the Fokker-Planck equation and more generally McKean-Vlasov type
PDEs. This notion is a Lagrangian formulation of (6.2). They apply the adjoint method
to optimize self-consistency. In this work, we extend their notion of self-consistency to
mass-conserving PDEs of the general form (6.2). Equipped with this formulation, we
develop an iterative optimization scheme called self-consistent velocity matching. With
the probability flow parameterized as a neural network, at each iteration, we refine the
velocity field vt of the current flow to match an estimate of ft evaluated using the network
weights from the previous iteration. Effectively, we minimize the self-consistency loss with
a biased but more tractable gradient estimator.

This simple scheme has many benefits. First, the algorithm is agnostic to the form
of ft, thus covering a wider range of PDEs compared to past methods. Second, we no
longer need to differentiate through differential equations using the adjoint method as
in Shen and Wang [SW24], which is orders of magnitude slower than our method with
worse performance in high dimensions. Third, this iterative formulation allows us to
rewrite the velocity-matching objectives for certain PDEs to get rid of computationally
expensive quantities such as ∇ log pt in the Fokker-Planck equation (Prop. 6.3.1). Lastly,
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our method is flexible with probability flow parameterization: we have empirically found
that the two popular ways of parameterizing the flow—as a time-varying pushforward
map [Bil+21] and as a time-varying velocity field [Che+18]—both have merits in different
scenarios.

Our method tackles mass-conserving PDEs of the form (6.2) in a unified manner
without temporal or spatial discretization. Despite using a biased gradient estimator,
in practice, our method decreases the self-consistency loss efficiently (second column of
Fig. 2). For PDEs with analytically-known solutions, we quantitatively compare with
the recent neural JKO-based methods [Mok+21; FTC21; ASM21], the adjoint method
[SW24], and the particle-based method [BV23]. Our method faithfully recovers true so-
lutions with quality on par with the best previous methods in low dimensions and with
superior quality in high dimensions. Our method is also significantly faster than com-
peting methods, especially in high dimensions, at the same time without discretization.
We further demonstrate the flexibility of our method on two challenging experiments for
modeling flows splashing against obstacles and smooth interpolation of measures where
the comparing methods are either not applicable or have noticeable artifacts.

■ 6.2 Related Works

Classical PDE solvers for mass-conserving PDEs such as the Fokker-Planck equation
and the Wasserstein gradient flow either use an Eulerian representation of the density
and discretize space as a grid or mesh [BCW10; CCH15; Pey15] or use a Lagrangian
representation, which discretizes the flow as a collection of interacting particles simulated
forward in time [CL99; WW10]. Due to spatial discretization, these methods struggle
with high-dimensional problems. Hence, the rest of the section focuses solely on recent
neural network-based methods.

Physics-informed neural networks. Physics-informed neural networks (PINNs) are promi-
nent methods that solve PDEs using deep learning [RPK19; Kar+21]. The main idea is to
minimize the residual of the PDE along with loss terms to enforce the boundary conditions
and to match observed data. Our notion of self-consistency is a Lagrangian analog of the
residual in PINN. Our velocity matching only occurs along the flow of the current solution
where interesting dynamics happen, while in PINNs the residual is evaluated on colloca-
tion points that occupy the entire domain. Hence our method is particularly suitable for
high-dimensional problems where the dynamics have a low-dimensional structure.

Neural JKO methods. Recent works [Mok+21; ASM21; FTC21] apply deep learning
to the time-discretized JKO scheme [JKO98] to solve Wasserstein gradient flow (6.3). By
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pushing a reference measure through a chain of neural networks parameterized as input-
convex neural networks (ICNNs) [AXK17], these methods avoid discretizing the space.
Mokrov et al. [Mok+21] optimize one ICNN to minimize Kullback-Leibler (KL) divergence
plus a Wasserstein-2 distance term at each JKO step. This method is extended to other
functionals by Alvarez-Melis, Schiff, and Mroueh [ASM21]. Fan, Taghvaei, and Chen
[FTC21] use the variational formulation of f -divergence to obtain a faster primal-dual
approach.

An often overlooked problem of neural JKO methods is that the total training time
scales quadratically with the number of JKO steps: to draw samples for the current
step, initial samples from the reference measure must be passed through a long chain
of neural networks, along with expensive quantities like densities. However, using too
few JKO steps results in large temporal discretization errors. Moreover, the optimization
at each step might not have fully converged before the next step begins, resulting in
an unpredictable accumulation of errors. In contrast, our method does not suffer from
temporal discretization and can be trained end-to-end. It outperforms these neural JKO
methods with less training time in experiments we considered.

Velocity matching. A few recent papers employ the idea of velocity matching to con-
struct a flow that follows a learned velocity field. Langosco, Fortuin, and Strathmann
[LFS21] simulate the Wasserstein gradient flow of the KL divergence by learning a ve-
locity field that drives a set of particles forward in time for Bayesian posterior inference.
The velocity field is refined on the fly based on the current positions of the particles.
Boffi and Vanden-Eijnden [BV23] propose a similar method that applies to a more gen-
eral class of time-dependent Fokker-Planck equations. These two methods approximate
probability measures using finite particles which might not capture high-dimensional dis-
tributions well. Liu, Gong, and Liu [LGL22], Lipman et al. [Lip+22], and Albergo and
Vanden-Eijnden [AV22] use flow matching for generative modeling by learning a velocity
field that generates a probability path connecting a reference distribution to the data
distribution. Yet these methods are not designed for solving PDEs.

Most relevant to our work, Shen et al. [She+22] propose the concept of self-consistency
for the Fokker-Planck equation, later extended to McKean-Vlasov type PDEs [SW24].
They observe that the velocity field of the flow solution to the Fokker-Planck equation
must satisfy a fixed-point equation. They theoretically show that, under certain regularity
conditions, a form of probability divergence between the current solution and the true so-
lution is bounded by the self-consistency loss that measures the violation of the fixed-point
equation. Their algorithm minimizes such violation using neural ODE parameterization
[Che+18] and the adjoint method. Our work extends the concept of self-consistency to a
wider class of PDEs in the form of (6.2) and circumvents the computationally demanding
adjoint method using an iterative formulation. We empirically verify that our method
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is significantly faster and reduces the self-consistency loss more effectively in moderate
dimensions than that of Shen and Wang [SW24] (Fig. 2).

■ 6.3 Self-Consistent Velocity Matching

♢ 6.3.1 Probability flow of the continuity equation

A key property of the continuity equation (6.1) is that any solution (pt, vt)t∈[0,T ] (provided
pt is continuous with respect to t and vt is bounded) corresponds to a unique flow map
{Φt(·) : Rd → Rd}t∈[0,T ] that solves the ordinary differential equations (ODEs) [AGS05,
Proposition 8.1.8]

Φ0(x) = x,
d
dt

Φt(x) = vt(Φt(x)), ∀x, t ∈ [0, T ], (6.5)

and the flow map satisfies µt = (Φt)#µ0 for all t ∈ [0, T ], where (Φt)#µ0 to denote
the pushforward measure of µ0 by Φt. Moreover, the converse is true: any solution
(Φt, vt) of (6.5) with Lipschitz continuous and bounded vt is a solution of (6.1) with
µt = (Φt)#µ0 [AGS05, Lemma 8.1.6]. Thus the Eulerian viewpoint of (6.1) is equivalent
to the Lagrangian viewpoint of (6.5). We next exploit this equivalence by modeling the
probability flow using the Lagrangian viewpoint so that it automatically satisfies the
continuity equation (6.1).

♢ 6.3.2 Parametrizing probability flows

Our algorithm will be agnostic to the exact parameterization used to represent the prob-
ability flow. As such, we need a way to parameterize the flow to access the following
quantities for all t ∈ [0, T ]:

• Φt : Rd → Rd, the flow map, so Φt(x) is the location of a particle at time t if it is at x
at time 0.

• vt : Rd → Rd, the velocity field of the flow at time t.

• µt ∈ P(Rd), the probability measure at time t with sample access and density pt.

We will assume all these quantities are sufficiently continuous and bounded to ensure the
Eulerian and Lagrangian viewpoints in Sec. 6.3.1 are equivalent. This can be achieved
by using continuously differentiable activation functions in the network architectures and
assuming the network weights are finite similar to the uniqueness arguments given in
[Che+18]. We can now parameterize the flow modeling either the flow map Φt or the
velocity field vt as a neural network.
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Time-dependent Invertible Push Forward (TIPF). We first parameterize a
probability flow by modeling Φt : Rd → Rd as an invertible network for every t. The
network architecture is chosen so that Φt has an analytical inverse with a tractable Ja-
cobian determinant, similar to [Bil+21]. We augment RealNVP from [DSB16] so that
the network for predicting scale and translation takes t as an additional input. To en-
force the initial condition, we need Φ0 to be the identity map. This condition can be
baked into the network architecture [Bil+21] or enforced by adding an additional loss
term EX∼µ∗

0
∥Φ0(X) − X∥2. For brevity, we will from now on omit in the text this ad-

ditional loss term. The velocity field can be recovered via vt(x) = ∂tΦt(Φ−1
t (x)). To

recover the density pt of µt = (Φt)#µ0, we use the change-of-variable formula log pt(x) =
log p∗

0(Φ−1
t (x)) + log det

∣∣∣JΦ−1
t (x)

∣∣∣ (see (1) in Dinh, Sohl-Dickstein, and Bengio [DSB16]).
Neural ODE (NODE). We also parameterize a flow by modeling vt : Rd → Rd

as a neural network; this is used in Neural ODE [Che+18]. The network only needs to
satisfy the minimum requirement of being continuous. The flow map and the density can
be recovered via numerical integration: Φt(x) = x +

∫ t
0 vs(Φs(x))ds and log pt(Φt(x)) =

log p∗
0(x)−

∫ t
0 ∇·vs(Φs(x))ds, a direct consequence of (6.1) also known as the instantaneous

change-of-variable formula [Che+18]. To obtain the inverse of the flow map, we integrate
along −vt. With NODE, the initial condition µ0 = µ∗

0 is obtained for free.
We summarize the advantages and disadvantages of TIPF and NODE as follows.

While the use of invertible coupling layers in TIPF allows exact access to samples and
densities, TIPF becomes less effective in higher dimensions as many couple layers are
needed to retain good expressive power, due to the invertibility requirement. In contrast,
NODE puts little constraints on the network architecture, but numerical integration can
have errors. Handling the initial condition is trivial for NODE while an additional loss
term or special architecture is needed for TIPF. As we will show in the experiments, both
strategies have merits.

♢ 6.3.3 Formulation

We now describe our algorithm for solving mass-conserving PDEs (6.2). A PDE of this
form is determined by ft(·; µt) : Rd → Rd plus the initial condition µ∗

0. If a probability flow
µt with flow map Φt and velocity field vt satisfies the following self-consistency condition,

vt(x) = ft(x; µt),∀x in the support of µt, (6.6)

then the continuity equation of this flow implies the corresponding PDE (6.2) is solved.
Conversely, the velocity field of any solution of (6.2) will satisfy (6.6). Hence, instead
of solving (6.2) which is a condition on the density pt that might be hard to access, we
can solve (6.6) which is a more tractable condition. Shen et al. [She+22] and Shen and
Wang [SW24] develop this concept for the Fokker-Planck equation and McKean-Vlasov
type PDEs; here we generalize it to a wider class of PDEs of the form (6.2).
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Let θ be the network weights that parameterize the probability flow using TIPF or
NODE. The flow’s measure, velocity field, and flow map at time t are denoted as µθ

t , vθ
t ,

Φθ
t respectively. One option to solve (6.6) would be to minimize the self-consistency loss

min
θ

∫ T

0
EX∼µθ

t

[
∥vθ

t (X)− ft(X; µθ
t )∥2

]
dt. (6.7)

This formulation is reminiscent of PINNs [RPK19] where a residual of the original PDE
is minimized. Direct optimization of (6.7) is challenging: while the integration over [0, T ]
and µθ

t can be approximated using Monte Carlo, to apply stochastic gradient descent, we
must differentiate through µθ

t and ft: this can be either expensive or intractable depending
on the network parameterization. The algorithm by Shen and Wang [SW24] minimizes
(6.7) with the adjoint method specialized to Fokker-Planck equations and McKean-Vlasov
type PDEs; extending their approach to more general PDEs requires a closed-form formula
for the time evolution of the quantities within ft, which at best can only be obtained on
a case-by-case basis.

Instead, we propose the following iterative optimization algorithm to solve (6.7). Let
θk denote the network weights at iteration k. We define iterates

θk+1 ≜ θk − η∇θ|θ=θk
F (θ, θk), (6.8)

where

F (θ, θk) ≜
∫ T

0
E

X∼µ
θk
t

[
∥vθ

t (X)− ft(X; µθk
t )∥2

]
dt. (6.9)

Effectively, in each iteration, we minimize (6.9) by one gradient step where we match the
velocity field vθ

t to what it should be according to ft based on the network weights θk

from the previous iteration. This scheme can be interpreted as a gradient descent on 6.7
using the biased gradient estimate ∇θF (θ, θk)—see Sec. 6.A for a discussion. We call this
iterative algorithm self-consistent velocity matching.

If ft depends on the density of µt only through the score ∇ log pt (corresponding to a
diffusion term in the PDE), then we can apply an integration-by-parts trick [HD05] to get
rid of this density dependency by adding a divergence term of the velocity field. Suppose
ft is from the Fokker-Planck equation (6.4). Then the cross term in (6.9) after expanding
the squared norm has the following alternative expression.

Proposition 6.3.1. For every t ∈ [0, T ], for ft defined in (6.4), assume vθ
t , Dt are bounded

and continuously differentiable, and µθ′
t is a measure with a continuously differentiable

density pθ′
t that vanishes in infinity and not at finite points. Then we have

EX∼µθ′
t

[
vθ

t (X)⊤ft(X; µθ′

t )
]

= EX∼µθ′
t

[
vθ

t (X)⊤bt(X) +∇ ·
(
D⊤

t (X)vθ
t (X)

)]
. (6.10)
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We provide the derivation in Sec. 6.B. With Prop. 6.3.1, we no longer need access to
∇ log pt when computing ∇θF . This is useful for NODE parameterization since obtaining
the score would otherwise require additional numerical integration.

Our algorithm is summarized in Alg. 6.3.1. We use Adam optimizer [KB14] to mod-
ulate the update (6.8). For sampling time steps t1, . . . , tL in [0, T ], we use stratified
sampling where tl is uniformly sampled from [ (l−1)T

L
, lT

L
]; such a sampling strategy results

in more stable training in our experiments. We implemented our method using JAX
[Bra+18] and FLAX [Hee+20]. See Sec. 6.C for the implementation details.

Algorithm 6.3.1 Self-consistent velocity matching
Input: ft(·, ·), µ∗

0, T , Ntrain, B, L
Initialize network weights θ
for k = 1, . . . , Ntrain do

θ′ ← θ
Sample x1, . . . , xB ∼ µ∗

0, t1, . . . , tL ∼ [0, T ]
yb,l ← Φθ′

tl
(xb), ∀b = 1, . . . , B, l = 1, . . . , L

θ ← θ − η∇θ
1

BL

∑
b,l∥vθ

tl
(yb,l)− ftl

(yb,l; µθ′
tl

)∥2

end for
Output: optimized θ

■ 6.4 Experiments

We show the efficiency and accuracy of our method on several PDEs of the form (6.2). We
start with three Wasserstein gradient flow experiments (Sec. 6.4.1, Sec. 6.4.2, Sec. 6.4.3).
Next, we consider the time-dependent Fokker-Planck equation that simulates attraction
towards a harmonic mean in Sec. 6.4.4. Finally, in Sec. 6.4.5, we apply our framework to
generate complicated low-dimensional dynamics including flows splashing against obsta-
cles and smooth interpolation of measures. We will use SCVM-TIPF and SCVM-NODE
to denote our method with TIPF and NODE parameterization respectively. We use JKO-
ICNN to denote the method by Mokrov et al. [Mok+21], JKO-ICNN-PD to denote the
method by Fan, Taghvaei, and Chen [FTC21] (PD for “primal-dual”), ADJ to denote
the adjoint method by Shen and Wang [SW24], SDE-EM to denote the Euler-Maruyama
method for solving the SDE associated with the Fokker-Planck equation, and DFE (“dis-
crete forward Euler”) to denote the method by Boffi and Vanden-Eijnden [BV23]. We
implemented all competing methods in JAX—see more details in Sec. 6.C—and we com-
pare quantitatively against these methods when possible.

In Tab. 6..1, we compare the time complexity of training the described methods, where
we show that SCVM-TIPF and SCVM-NODE have low computational complexity among
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all methods.
Evaluation metrics. For quantitative evaluation, we use the following metrics. To

compare measures with density access, following Mokrov et al. [Mok+21], we use the
symmetric Kullback-Leibler (symmetric KL) divergence, defined as SymKL(ρ1, ρ2) ≜
KL(ρ1 ∥ ρ2) + KL(ρ2 ∥ ρ1), where KL(ρ1 ∥ ρ2) ≜ EX∼ρ1 [log dρ1(X)

dρ2(X) ]. Sample estimates
of KL can be negative which complicates log-scale plotting, so when this happens, we
consider an alternative f -divergence Df (ρ1 ∥ ρ2) ≜ EX∼ρ2 [ (log ρ1(X)−log ρ2(X))2

2 ] whose sam-
ple estimates are always non-negative. We similarly define the symmetric f -divergence
SymDf (ρ1, ρ2) ≜ Df (ρ1 ∥ ρ2) + Df (ρ2 ∥ ρ1). For particle-based methods, we use ker-
nel density estimation (with Scott’s rule) to obtain the density function before computing
symmetric KL or f -divergence. We also consider the Wasserstein-2 distance [Bon+11] and
the Bures-Wasserstein distance [KSS21]; these two measures only require sample access.
All metrics are computed using i.i.d. samples. See Sec. 6.C.6 for more details.

♢ 6.4.1 Sampling from mixtures of Gaussians

We consider computing the Wasserstein gradient flow of the KL divergence F(µ) =
KL(µ ∥ µ∗) where we have density access to the target measure µ∗. To fit into our
framework, we set ft(x; µt) = ∇ log p∗(x)−∇ log pt(x) which matches (6.4) with bt(x) =
∇ log p∗(x) and Dt(x) = Id. Following the experimental setup in Mokrov et al. [Mok+21]
and Fan, Taghvaei, and Chen [FTC21], we take µ∗ to be a mixture of 10 Gaussians
with identity covariance and means sampled uniformed in [−5, 5]d. The initial measure is
µ∗

0 = N (0, 16Id). We solve the corresponding Fokker-Planck PDE for a total time of T = 5
and for d = 10, . . . , 60. As TIPF parameterization does not scale to high dimensions, we
only consider SCVM-NODE in this experiment.

Fig. 1 shows the probability flow produced by SCVM-NODE in dimension 60 at dif-
ferent time steps; as we can see, the flow quickly converges to the target distribution.

Figure 1: Probability flow produced by SCVM-NODE for a 60-dimensional mixture of
Gaussians at irregular time steps. Samples are projected onto the first two PCA compo-
nents and kernel density estimation is used to generate the contours.

In Fig. 2, we quantitatively compare our method with Mokrov et al. [Mok+21], Fan,
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Taghvaei, and Chen [FTC21], and Shen and Wang [SW24]. Training time is reported for
all methods.

• In the left two columns of Fig. 2, we find that even though the adjoint method ADJ
[SW24] minimizes the self-consistency loss (6.7) directly, the decay of self-consistency
can be much slower than that of SCVM-NODE as the dimension increases. We suspect
this is due to the amount of error accumulated in the adjoint method which involves
two numerical integration passes to obtain the gradient. Moreover, ADJ requires up to
third-order spatial derivatives of the parameterized neural velocity field which can be
inaccurate even if the consistency loss is low—in comparison SCVM-NODE only re-
quires one integration pass and the first-order spatial derivative of the network. Despite
the bias of the gradient used in SCVM-NODE, it finds more efficient gradient trajec-
tories than ADJ. Additionally, ADJ takes 80 times longer to train than SCVM-NODE
in dimension 10, and scaling up to higher dimensions becomes prohibitive.

• The rightmost column of Fig. 2 shows SCVM-NODE achieves far lower symmetric KL
compared to the JKO methods. The gradient flow computed by JKO methods does not
decrease KL divergence monotonically, likely because the optimization at each JKO
step has yet to reach the minimum even though we use 2000 gradient updates for each
step. For both JKO methods, the running time for each JKO step increases linearly
because samples (and for JKO-ICNN also log det terms) need to be pushed through a
growing chain of ICNNs; as a result, the total running time scales quadratically with the
number of JKO steps. JKO methods also take about 40 times as long evaluation time
as SCVM-NODE in dimension 60 since density access requires solving an optimization
problem for every JKO step. On top of the computational advantage and better results,
our method also does not have temporal discretization: after being trained, the flow
can be accessed at any time t (Fig. 1).

♢ 6.4.2 Ornstein-Uhlenbeck process

We consider the Wasserstein gradient flow of the KL divergence with respect to a Gaussian
with the initial distribution being a Gaussian, following the same experimental setup in
Mokrov et al. [Mok+21] and Fan, Taghvaei, and Chen [FTC21]. In this case, the gradient
flow at time t is a Gaussian G(t) with a known mean and covariance; see Sec. 6.D.1 for
details. We quantitatively compare all methods in Fig. 3:

• ADJ achieves the best results in dimensions d = 5 and d = 10. However, this is at
the cost of high training time: in dimension 10, ADJ takes 341 minutes to train, while
SCVM-TIPF and SCVM-NODE take 23 and 9 minutes respectively for the same 20k
training iterations. As such, we omit ADJ in higher-dimensional comparisons.
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Figure 2: Quantitative comparison for the mixture of Gaussians experiment. The left
two columns plot the symmetric KL (at t = T compared against the target measure) and
consistency (6.7) versus the training iterations for SCVM-NODE (ours) and ADJ [SW24].
The rightmost column plots the symmetric KL across time t (compared against the target
measure) for SCVM-NODE and the JKO methods in high dimensions. Training time: for
d = 10, SCVM-NODE takes 7.37 minutes, ADJ takes 585.2 minutes; for d = 60, SCVM-
NODE takes 23.9 minutes, JKO-ICNN takes 375.2 minutes, and JKO-ICNN-PD takes
24.4 minutes.

• Both our SCVM-TIPF and SCVM-NODE achieve good results second only to ADJ
in dimensions 5 and 10. In low dimensions, SCVM-TIPF results in lower probability
divergences than SCVM-NODE likely due to having exact density access. Although
not shown, SCVM-TIPF also satisfies the initial condition well (numbers at t = 0 are
comparable to those at t = 0.25 in the left two columns in Figure 3).

• For the two JKO methods, they result in much higher errors for t ≤ 0.5 compared to
later times: this is expected because the dependency of G(t) on t is exponential, so
convergence to µ∗ is faster in the beginning, yet a constant step size is used for JKO
methods.

• For DFE, the result is highly sensitive to the forward Euler step size ∆t. We choose step
size ∆t = 0.01 which empirically gives the best results among {0.1, 0.01, 0.001, 0.0001}.
As DFE achieves far lower symmetric KL divergence or f -divergence compared to
alternatives, we only include its Bures-Wasserstein distance in high dimensions where
its number is slightly worse than alternatives (bottom right plot of Fig. 3).
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Figure 3: Quantitative results for the OU process experiment. The left two columns show
the metrics (symmetric KL, symmetric f -divergence, and Bures-Wasserstein distance)
versus time t of various methods computed against the closed formed solution G(t) in
dimension d = 5, 10. The right column shows the metrics averaged across t versus dimen-
sion d in higher dimensions.

♢ 6.4.3 Porous medium equation

Following Fan, Taghvaei, and Chen [FTC21], we consider the porous medium equation
with only diffusion: ∂tpt = ∆pm

t with m > 1. Its solution is the Wasserstein gradi-
ent flow of F(µ) =

∫ 1
m−1p(x)mdx where p is the density of µ with ∇W2F(µ)(x) =

∇( m
m−1pm−1(x))—see Sec. 6.D.2 for details. We consider only SCVM-TIPF and JKO

methods here.
We show the efficiency of SCVM-TIPF compared to JKO-ICNN in dimension d =

1, 2, . . . , 6. We exclude JKO-ICNN-PD because it produces significantly worse results.
We visualize the density pt of the solution from SCVM-TIPF and JKO-ICNN on the top
of Fig. 4 in dimension 1 compared to p∗

t . Both methods approximate p∗
t well with SCVM-
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TIPF being more precise at small t; this is consistent with the observation in Fig. 2 where
JKO methods result in bigger errors for small t.
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Figure 4: Top: visualization of the densities of p∗
t and pt for the porous medium equa-

tion in dimension 1 at varying time steps t for SCVM-TIPF and JKO-ICNN. Bottom:
total variation distance, symmetric f -divergence, and Wasserstein-2 distances across di-
mensions at t = 0.004 and t = 0.025 between pt and p∗

t for solving the porous medium
equation.

On the bottom row of Fig. 4, we plot the total variation (TV) distance, the symmetric
f -divergence, and the Wasserstein-2 distance (details on the TV distance are given in
Appendix 6.C.6) between the recovered solution pt and p∗

t for both methods at t = 0.004
and t = 0.025. Note that the values of all metrics are very low implying that the solution
from either method is very accurate, with SCVM-TIPF more precise in TV distance and
symmetric f -divergence, especially for d > 3. Like with the experiments in previous
sections, JKO-ICNN is much slower to train: in dimension 6, training JKO-ICNN took
102 minutes compared to 21 minutes for SCVM-TIPF.

♢ 6.4.4 Time-dependent Fokker-Planck equation

In this section, we qualitatively evaluate our method for solving a PDE that is not a
Wasserstein gradient flow. In this case, JKO-based methods cannot be applied. Consider
the OU process from Sec. 6.4.2 when the mean β and the covariance matrix Γ become
time-dependent as βt and Γt. The resulting PDE is a time-dependent Fokker-Planck
equation of the form (6.4) with

ft(X, µt) = Γt(βt −X)−D∇ log pt(X). (6.11)
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In this configuration, when the initial measure p0 is Gaussian, the solution µt can again
be shown to be Gaussian with mean and covariance following an ODE—see Sec. 6.D.3
for more details. We consider, in dimension 2 and 3, time-dependent attraction towards
a harmonic mean βt = a(sin(πωt), cos(πωt)) using the expression of βt from Boffi and
Vanden-Eijnden [BV23], augmented to βt = a(sin(πωt), cos(πωt), t) in dimension 3.

We apply both SCVM-TIPF and SCVM-NODE to this problem and compare our
results with alternatives. Similar to Fig. 3, as shown in Fig. 5, both SCVM-TIPF and
SCVM-NODE achieve results on par with ADJ, with both SCVM methods being 30
times faster than ADJ in dimension 10. DFE results in good Wasserstein-2 metrics but
worse divergences. Visualization of the evolution of a few sampled particles are given in
Fig. 6.D.2 and Fig. 6.D.3.

In Sec. 6.D.4, we augment (6.11) with an interaction term to simulate a flock of
(infinitely many) birds, resulting in a non-Fokker-Planck PDE that can be readily solved
by our method.
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Figure 5: Symmetric KL divergence and Wasserstein-2 distances across time for d = 2, 3
between the recovered flows and the ground truth for the time-dependent Fokker-Planck
equation.

♢ 6.4.5 Additional qualitative low-dimensional dynamics

To demonstrate the flexibility of our method, we apply our algorithm to model more
general mass-conserving dynamics than the ones considered in the previous sections.
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Flow splashing against obstacles. We model the phenomenon of a 2-dimensional
flow splashing against obstacles using a Fokker-Planck equation (6.4) where bt encodes
the configuration of three obstacles that repel the flow (See Sec. 6.D.5 for details). We
solve this PDE using SCVM-NODE for T = 5 and visualize the recovered flow in (6).
When solving the same PDE using SDE-EM, the flow incorrectly crosses the bottom right
obstacle due to a finite time step size (Fig. 6.D.7). When using DFE, the path of initial
samples appears jagged (right of Fig. 6.D.6); our method has no such issue and results
in continuous sample paths (left of Fig. 6.D.6). Method ADJ suffers from numerical
instability and cannot be trained without infinite loss in this example.

Figure 6: A flow splashing against three obstacles (in purple) produced by SCVM-NODE.
Particles are colored based on the initial y coordinates.

Smooth interpolation of measures. To illustrate the flexibility of our method,
we demonstrate two ways to formulate the problem of smoothly interpolating a list of
measures. First, we model the interpolation as a time-dependent Fokker-Planck equation
and use it to interpolate MNIST digits 1, 2, and 3, starting from a Gaussian (Fig. 7).
Next, we adopt an optimal transport formulation and use it to generate an animation
sequence deforming a 3D hand model to a different pose and then to a ball, similar to
the setup in Zhang, Smirnov, and Solomon [ZSS22]. Note that the optimal transport
formulation is not solvable using competing methods. See Sec. 6.D.6 for more details.

Figure 7: Smooth interpolation of measures. Top: interpolating MNIST digits 1 to 3.
Bottom: interpolating hand from the initial pose to a different pose and then to a ball.
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■ 6.5 Conclusion

By extending the concept of self-consistency from Shen et al. [She+22], we present an
iterative optimization method for solving a wide class of mass-conserving PDEs without
temporal or spatial discretization. In all experiments considered, our method achieves
strong quantitative results with significantly less training time than JKO-based methods
and the adjoint method in high dimensions.

Below we highlight a few future directions. First, as discussed, the two ways to
parameterize a probability flow, TIPF, and NODE, both have their specific limitations.
Finding a new parameterization that combines the advantages of both TIPF and NODE
is an important next step. Secondly, we hope to extend our approach to incorporate more
complicated boundary conditions. Finally, given that the proposed algorithm is highly
effective empirically, it would be an interesting theoretical step to explore its convergence
properties.



Appendices

Appendix
In this appendix, we provide details and further justification of the proposed method. In
Sec. 6.A, we provide an interpretation of the update (6.9) as a gradient descent step with
a biased gradient. In Sec. 6.B, we explain the integration-by-parts trick used to prove
(6.3.1). In Sec. 6.C, we provide implementation details of all considered methods. In
Sec. 6.D, we provide additional experimental details and results.

■ 6.A Biased Gradient Interpretation

Assume µθ
t has density pθ

t . Using f θ
t (x) to denote ft(x; µθ

t ) from (6.7), the self-consistency
loss can be written as,

L(θ) ≜
∫ T

0

∫
pθ

t (x)∥vθ
t (x)− f θ

t (x)∥2dxdt.

SCVM-TIPF SCVM-NODE ADJ JKO-ICNN JKO-ICNN-PD
O(STd2) O(STNoded) O(STNoded

3) O(ST 2d3) O(ST 2d)

Table 6..1: Time complexity of training for S iterations for the methods considered, in
terms of dimension d. We assume for simplicity that the same batch size is used, the
training is done for T time steps, and any network forward pass takes O(d) time. For
SCVM-NODE and ADJ, Node denotes the number of ODE integration steps. For SCVM-
TIPF, RealNVP is used to build the coupling layer, and we use d coupling layers, hence the
extra multiple of d. For ADJ, the d3 term comes from the third-order spatial derivatives.
For JKO-ICNN, the d3 term is due to computing the log-determinant term. For both
JKO methods, the quadratic dependency on T is due to maintaining a growing chain of
neural networks of size T as described in the related works section.

221
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Assuming all terms involving θ are differentiable with respect to θ, the gradient of L(θ)
with respect to the neural network parameters θ can be written as:

∇L(θ) =
∫ T

0

∫
∇θp

θ
t (x)∥vθ

t (x)− f θ
t (x)∥2dxdt

+ 2
∫ T

0

∫
pθ

t (x)Jθv
θ
t (x)⊤(vθ

t (x)− f θ
t (x))dxdt (6.12)

− 2
∫ T

0

∫
pθ

t (x)Jθf
θ
t (x)⊤(vθ

t (x)− f θ
t (x))dxdt.

Here we use Jθ to denote the Jacobian with respect to θ. On the other hand, the gradient
used in the updates (6.8) is ∇θF (θ, θ′) at θ′ = θ:

∇θF (θ, θ′)
∣∣∣∣∣
θ′=θ

= 2
∫ T

0

∫
pθ

t (x)Jθv
θ
t (x)⊤(vθ

t (x)− f θ
t (x))dxdt. (6.13)

We see that (6.13) is exactly the middle term (6.12). Hence our formulation can be
interpreted as doing gradient descent with a biased gradient estimator. It remains a future
work direction to theoretically analyze the amount of bias in (6.13) and the condition
under which the dot product ⟨∇L(θ),∇θF (θ, θ′)|θ′=θ⟩ ≥ 0. The central challenge would
be to relate Jθv

θ
t and Jθf

θ
t ; this depends on the neural network architecture and the type

of the PDE.

■ 6.B Integration-by-Parts Trick

This is a common trick used in score-matching literature [HD05].

Proof of Prop. 6.3.1. Fix t > 0. The form of ft in (6.4) is

ft(x; µt) = bt(x)−Dt(x)∇ log pt(x).

Hence

EX∼µθ′
t

[
vθ

t (X)⊤ft(X; µθ′

t )
]

= EX∼µθ′
t

[
vθ

t (X)⊤bt(X)
]
− EX∼µθ′

t

[
vθ

t (X)⊤Dt(X)∇ log pθ′

t (X)
]

.

The second term can be written as

EX∼µθ′
t

[
vθ

t (X)⊤Dt(X)∇ log pθ′

t (X)
]

=
∫

vθ
t (x)⊤Dt(x)∇ log pθ′

t (x)dpθ′

t (x)

=
∫

vθ
t (x)⊤Dt(x)∇pθ′

t (x)/pθ′

t (x) · pθ′

t (x)dx

=
∫

vθ
t (x)⊤Dt(x)∇pθ′

t (x)dx

= −
∫
∇ · (Dt(x)⊤vθ

t (x))pθ′

t (x)dx

= −EX∼µθ′
t

[
∇ · (Dt(X)⊤vθ

t (X))
]

,
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where we use integration-by-parts to get the second last equation and the assumption
that vθ

t , Dt are bounded and pθ
t (x)→ 0 as ∥x∥ → ∞.

■ 6.C Implementation Details

♢ 6.C.1 Network architectures for SCVM

For TIPF, our implementation follows Dinh, Sohl-Dickstein, and Bengio [DSB16]. Each
coupled layer uses 3-layer fully connected networks with layer sizes 64, 128, 128 for both
scale and translation prediction. We use twice as many coupling layers as the dimension
of the problem while each coupling layer updates one coordinate; we found using fewer
layers with random masking gives much worse results.

For NODE, we use a 3-layer fully connected network for modeling the velocity field
with layer size 256. We additionally add a low-rank linear skip connection x 7→ A(t)x+b(t)
where A(t) = L(t)L⊤(t) and L(t) is a d× 20 matrix to make A(t) low-rank.

We use SILU activation [EUD18] which is smooth for all layers for both TIPF and
NODE. For NODE, we apply layer normalization before applying activation. We also
add a sinusoidal embedding for the time input t plus two fully connected layers of size 64
before concatenating it with the spatial input.

The numerical integration for NODE is done using Diffrax library [Kid21] with a
relative and absolute tolerance of 10−4; we did not find considerable improvement when
using a lower tolerance.

We use the integration-by-parts trick for SCVM-NODE whenever possible. Since
TIPF has tractable log density, we do not use such a trick and optimize (6.9) directly for
SCVM-TIPF which we found to produce better results.

♢ 6.C.2 Hyperparameters

Unless mentioned otherwise, we choose the following hyperparameters for Alg. 6.3.1. We
set Ntrain = 105 or 2× 105, B = 1000, L = 10 or 20. We use Adam [KB14] with a cosine
decay learning rate scheduler, with initial learning rate 10−3, the number of decay steps
same as Ntrain, and α = 0.01 (so the final learning rate is 10−5). Since we are effectively
performing gradient descent using a biased gradient, we set b2 = 0.9 in Adam (instead of
the default b2 = 0.999), so that the statistics in Adam can be updated more quickly; we
found this tweak improves the results noticeably.

♢ 6.C.3 Implementation of JKO methods

We base our JAX implementation of ICNN on the codebase by the original ICNN author:
https://github.com/facebookresearch/w2ot. Compared to the original ICNN imple-
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mentation by Amos, Xu, and Kolter [AXK17], we add an additional convex quadratic skip
connections used by Mokrov et al. [Mok+21], which we found to be crucial for the OU
process experiment. For ICNNs, we use hidden layer sizes 64, 128, 128, 64. The quadratic
rank for the convex quadratic skip connections is set to 20. The activation layer is taken
to be CELU.

To implement the method by Fan, Taghvaei, and Chen [FTC21], we model the dual
potential as a 4-layer fully connected network with layer size 128, with CELU activation.
For the gradient flow of KL divergence and generalized entropy (used in Sec. 6.4.3), we
follow closely the variational formulation and the necessary change of variables detailed
in Fan, Taghvaei, and Chen [FTC21, Corollary 3.3, Corollary 3.4].

In order to compute the log density at any JKO step, following Mokrov et al. [Mok+21],
we need to solve a convex optimization to find the inverse of the gradient of an ICNN. We
use the LBFGS algorithm from JAXopt [Blo+22] to solve the optimization with tolerance
10−2 (except for Sec. 6.4.3 we use a tolerance of 10−3 to obtain finer inverses, but it takes
6x longer compared to 10−2).

We always use 40 JKO steps, consistent with past works. For each JKO step, we
perform 1000 stochastic gradient descent using Adam optimizer with a learning rate of
10−3, except for the mixture of Gaussians experiment, we use 2000 steps—using fewer
steps will result in worse results. We have tested with the learning rate schedules used in
Fan, Taghvaei, and Chen [FTC21] and Mokrov et al. [Mok+21] and did not notice any
improvement.

♢ 6.C.4 Implementation of ADJ method

We implement the adjoint method carefully following the formulation in Shen and Wang
[SW24]. The neural network for parameterizing the velocity field is identical to the one
used in SCVM-NODE. The ODE integration also uses the same hyperparameters as that
of SCVM-NODE. This way we can compare ADJ with SCVM-NODE in a fair manner
since they only differ in the gradient estimation.

♢ 6.C.5 Implementation of DFE method

We implement DFE following the algorithm outlined in Boffi and Vanden-Eijnden [BV23].
We use 5000 particles. For score estimation, we use the same network architecture as in
NODE. At each time step, we optimize the score network 100 steps. We found the result
of DFE depends tremendously on the time step size ∆t. For the OU process experiment in
dimension 60, when ∆t = 0.1, 0.01, 0.001, 0.0001, the resulting Bures-Wasserstein distance
at the final time to the target measure is 28.11, 0.31, 0.46, 9.21 respectively. Surprisingly,
a smaller ∆t can result in bigger errors. We choose ∆t = 0.01 since it gives the best
results.
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♢ 6.C.6 Evaluation metrics

For all our experiments, calculations of all metrics are repeated 20 times on 1000 samples
from each distribution. Our plots show both the average and the standard deviation
calculated over these 20 repetitions.

When estimating symmetric KL divergence using samples, due to the finite sample
size and the numerical error in estimating the log density, the estimated divergence can
be very close to zero or even negative (when this occurs we take absolute values). This
explains why the standard deviation regions touch the x-axis in the log-scale plots in
Fig. 3.

To compute Bures-Wasserstein distance [KSS21], we first fit a Gaussian to the samples
of either distribution and then compute the closed-form Wasserstein-2 distance between
the two Gaussians.

For the porous medium equation (Sec. 6.4.3), the total variation distance is used in
Fig. 4 and Fig. 6.D.1 to compare the estimated and ground-truth solutions. It is approx-
imated by the L1 distance between the densities calculated over 50000 samples uniformly
distributed on the compact [−1.25xmax, 1.25xmax] with xmax = C/

(
β(t + t0)

−2α
d

)
being

the bound of the support of p∗
t .

■ 6.D Additional Experimental Details

♢ 6.D.1 Ornstein-Uhlenbeck process

The OU process is the Wasserstein gradient flow of the KL divergence with respect to a
Gaussian µ∗ = N (β, Γ−1) where β ∈ Rd and Γ is a d× d positive-definite matrix. When
the initial distribution is µ∗

0 = N (0, Id), the gradient flow at time t is known to be a
Gaussian distribution G(t) with mean (Id− e−tΓ)β and covariance Γ−1(Id− e−2tΓ)+e−2tΓ.
We set the total time T = 2.

♢ 6.D.2 Porous medium equation

This flow has as closed-form solution given by the Barenblatt profile [Váz07] when initial-
ized accordingly:

p∗
t (x)=(t + t0)−α

(
C − β∥x∥2(t + t0)

−2α
d

) 1
m−1

+
,

where t0 > 0 is the starting time, α = m
d(m−1)+2 , β = (m−1)α

2dm
, and C > 0 is a free constant.

Similar to Fan, Taghvaei, and Chen [FTC21], we choose m = 2 and total time T = 0.025.
The initial measure follows a Barenblatt distribution supported in [−0.25, 0.25]d (C is
chosen accordingly) with t0 = 10−3. We use Metropolis-Hastings to sample from µ0.
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Figure 6.D.1: Metrics (TV, Symmetric f -divergence and Wasserstein-2 distance) across
time for dimensions 3 and 6 between the estimated µt and the ground-truth µ∗

t when
solving the Porous Medium Equation.

♢ 6.D.3 Time-dependant Fokker-Planck equation

We consider a time-dependent Fokker-Planck equation of the form (6.4) with the velocity
field

ft(X, µt) = Γt(X − βt)−Dt∇ log pt(X).

When the initial measure p0 is Gaussian, the solution µt can again be shown to be Gaussian
with mean mt and covariance Σt solutions of the differential equations:{

m′
t = −Γt(mt − βt)

Σ′
t = −ΓtΣt − ΣtΓ⊤

t + 2Dt.

In practice, we experiment with constant Γt = diag(1, 3) and Dt = σ2Id. We also experi-
ence in dimension 3 by considering and Γt = diag(1, 3, 1). We set a = 3, ω = 1, σ =

√
0.25

and pick as initial distribution p0 a Gaussian with mean b0 and covariance σ2Id. We set
the total time to T = 10.

We plot in Fig. 6.D.2, for dimension 2, snapshots at different time steps of parti-
cles following the flow given by our method with TIPF parametrization. We only show
SCVM-TIPF because SCVM-NODE gives visually indistinguishable trajectories. We also
plot in Fig. 6.D.3 the evolution of particles simulated by Euler-Maruyama (EM-SDE)
discretization of the Fokker-Planck equation. Corresponding animated GIFs be found at
this link.

https://drive.google.com/drive/folders/1uKHA_t35-vk9u5IlO8dM8_z0sRqndmrU?usp=sharing
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t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0 t = 4.5

Figure 6.D.2: Evolution of particles (in blue) following the flow learned with SCVM-TIPF
for the time-dependent OU process (Sec. 6.4.4). In red is the moving attraction trap.

♢ 6.D.4 Flock of birds

We model the dynamics of a flock of birds by augmenting the time-dependent Fokker-
Planck equation (6.11) with an interaction term:

ft(X, µt) = Γt(βt −X) + αt(X − E[µt])−D∇ log pt(X).

This is similar to the harmonically interacting particles experiment in Boffi and Vanden-
Eijnden [BV23], but we use a population expectation E[µt] instead of an empirical one in
modeling the repulsion from the mean. Since ft needs to access E[µt], the resulting PDE
is not a Fokker-Planck equation (6.4) and hence not solvable using the method in Boffi
and Vanden-Eijnden [BV23] but can be solved with our method by estimating E[µt] using
Monte Carlo samples from µt. We use a similar setup as in Sec. 6.4.4, except we now
use an “infinity sign” attraction βt = a(cos(2πωt), 0.5 sin(2πωt)) along with a sinusoidal
αt = 2 sin(πwt). Depending on the sign of αt, particles are periodically attracted towards
or repulsed from their mean. Both SCVM-TIPF and SCVM-NODE produce similar visual
results as shown in Fig. 6.D.4 and Fig. 6.D.5.

We use a constant Γt = Id and a constant diffusion matrix D = σ2Id. We set a = 3,
ω = 0.5, and σ =

√
0.25. We pick as initial distribution p0 a Gaussian with mean (0, 0)

and covariance σ2Id. We set the total time to T = 10.
We respectively show in Fig. 6.D.4 and Fig. 6.D.5 simulations of particles following

the flow learned with SCVM-TIPF and SCVM-NODE. Corresponding animated GIFs be
found at this link.

https://drive.google.com/drive/folders/1orihlMZu8hfFaRr3kBdMbDABQcHaskTF?usp=sharing
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t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0 t = 4.5

Figure 6.D.3: Evolution of particles (in blue) obtained by SDE-EM discretization for the
time-dependent OU process (Sec. 6.4.4). In red is the moving attraction trap.

♢ 6.D.5 Flow splashing against obstacles

We use the following formulation for modeling the flow. Each obstacle is modeled as a
line segment. The endpoints of the three obstacles are:

((0, 3), (3, 0.5)), ((1, 0), (1.5, 0)), ((−2,−4), (6, 0)).

We model the dynamics as a Fokker-Planck equation where ft of the form (6.4) is defined
as

bt(x) = (qsink − x) + 20
3∑

i=1

x− πOi
(x)

∥x− πOi
(x)∥pN (0,0.04)(∥x− πOi

(x)∥),

Dt(x) = I2,

where qsink = (4, 0), and πOi
(x) is the projection of x onto obstacle i represented as a line

segment, and pN (0,0.04) is the density of an 1-dimensional Gaussian with variance 0.04.
The initial distribution is chosen to be N (0, 0.25I2). We train SCVM-NODE for 104

with an initial learning rate of 10−4. Training takes 5.4 minutes. The time step size for
SDE-EM used to produce Fig. 6.D.7 is 0.005. Corresponding animated GIFs be found at
this link.

♢ 6.D.6 Smooth interpolation of measures

Suppose we are to smoothly interpolate M measures ν1, . . . , νM with densities q1, . . . , qM ,
and we want the flow to approximate νi at time ri. To achieve this goal, we present two
formulations using different choices of ft. We use SCVM-NODE in this section.

https://drive.google.com/drive/u/2/folders/1XwYVDYRbaJC_YKblDhSzUfouTUQKrucB
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t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0 t = 4.5

Figure 6.D.4: Evolution of particles following the flow trained with TIPF parametrization
on the flock of birds PDE (Section 6.4.5). In red shows the moving attraction mean.

Measure interpolation using time-dependent Fokker-Planck equations. We model
the dynamics as a Fokker-Planck equation where ft of the form (6.4) is taken to be

bt(x) =
M∑

i=1
ϕ(t− ri)(∇ log qi(x)−∇ log pt(x))

Dt(x) = I2,

where ϕ(t) is defined as the continuous bump function

ϕ(t) =


1.0 |t| < 0.5h
(0.6h− |t|)/(0.1h) |t| < 0.6h
0.0 otherwise,

for bandwidth h = 1.0.
Below we provide details for the MNIST interpolation result in the top row of Fig. 7.

We use the first three images of 1, 2, 3 from the MNIST dataset. To construct νi from a
digit image, we use a mixture of Gaussians where we put one equally-weighted Gaussian
with covariance 0.022I2 on the pixels with values greater than 0.5 (images are first nor-
malized to have values in [0, 1]). The initial distribution is N ((0.5, 0.5), 0.04I2). To train
SCVM-NODE, we use an initial learning rate of 10−4 with cosine decay for a total of 105

iterations. This takes roughly 1 hour to train.

Measure interpolation using optimal transport. An alternative way to interpolate
measures using our framework is to use optimal transport to define ft. Recall µt denotes
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t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0 t = 4.5

Figure 6.D.5: Evolution of particles following the flow trained with NODE parametrization
on the flock of birds PDE (Section 6.4.5). In red shows the moving attraction mean.

the probability flow at time t. We then define

ft(x) =
M∑

i=1
ϕ(t− ri)∇W2W 2

2 (µt, νi),

where W 2
2 is the squared Wasserstein-2 distance and ∇W2W 2

2 is its Wasserstein gradi-
ent. In practice, we compute ∇W2W 2

2 using sample access and we employ the debiased
Sinkhorn divergence [GPC18; Fey+19] implemented in the JAX OTT library [Cut+22].
This formulation differs from the one in Zhang, Smirnov, and Solomon [ZSS22] in that
here we prescribe the precise PDE based on ft, whereas in Zhang, Smirnov, and Solomon
[ZSS22] an optimal transport loss is used to fit the keyframes along with many regulariz-
ers on the velocity field vt to promote the smoothness and other desirable properties. In
contrast, we do not use any regularizer on vt.

To train SCVM-NODE to produce the hand-hand-ball animation sequence in the
bottom row of Fig. 7, we first sample 20000 points from the interior of the three meshes
(a hand mesh, a hand mesh in a different pose, and a ball mesh), and we set νi to be
the empirical measure of the corresponding point cloud. Note that different from the
first formulation using Fokker-Planck equations, in the optimal transport formulation,
throughout we only require sample access from each νi. We use an initial learning rate
of 10−4 with cosine decay for a total of 5 × 104 iterations. This takes 4.5 hours, which
is significantly longer than the training time in Zhang, Smirnov, and Solomon [ZSS22]
(reported to be 15 minutes). We leave further improvement of our method to interpolate
measures faster as future work.

To render the animation, we sample 20000 points and render the point cloud at each
time step using metaballs along with smoothing, similar to the procedure in Zhang,
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Figure 6.D.6: Trajectory of 200 random particles across time using the same setup as
in Fig. 6. Left are sample paths obtained by our method, and right are sample paths
obtained by DFE [BV23].

Figure 6.D.7: Same setup as in Fig. 6 but with SDE-EM. We see the paths of the particles
are not continuous. Moreover, the particles spill over the obstacle on the bottom right due
to a finite time step size. In comparison, SCVM-NODE does not have such a problem.

Smirnov, and Solomon [ZSS22]. We did not use the barycentric interpolation postprocess-
ing step in Zhang, Smirnov, and Solomon [ZSS22] which makes sure the key measures vi’s
are fit exactly in the resulting animation. We also did not use unbalanced optimal trans-
port, which as reported in Zhang, Smirnov, and Solomon [ZSS22] can make the fingers of
the hand more separated, but requires careful parameter tuning.





Chapter 7

Conclusion

■ 7.1 Common Themes

This thesis has developed scalable methodologies for distributional optimization, showcas-
ing a suite of techniques that address the three challenges—parameterization, modeling,
and algorithms—as summarized in Tab. 1.1. These three challenges cannot be addressed
in isolation and must be considered holistically in the context of a new distributional
optimization problem. While the techniques presented are tailored for specific tasks, they
share several common themes that can serve as a guide for future research in this field.

Kernels facilitate optimization over discrete distributions. The key to formulating
discrete distributional optmization is to identify the interaction among the discrete pop-
ulation. In Part I, such interaction comes in the form of a kernel—a symmetric, positive
definite function. We introduce two methods for generating high-quality samples in Chap-
ters 2 and 3 based on the minimization of an interaction energy of the form

n∑
i,j=1

wiwjk(xi, xj),

where (xi)n
i=1 are sample points and (wi)n

i=1 are associated weights. Modeling the inter-
action using a kernel provides several benefits:

(a) The continuous analog of our objective,
∫
k(x, y)dµ(x)dµ(y), has a unique mini-

mizer µ∗ in the space of distribution under the domain compactness condition (see
Prop. 2.1(b)). Moreover, the n-point discrete minimizer converges weakly to µ∗ as
n → ∞ [BHS19, Cor. 4.2.9]. This discrete-to-continuous connection is essential in
deriving the mollified interaction descent algorithm in Chapter 2.

233



Chapter 7. Conclusion 234

(b) When the sample points are fixed, the problem reduces to a finite-dimensional con-
vex optimization over weights, minw w⊤Kw, where K ≜ (k(xi, xj))ij is positive
definite. This structure allows the use of efficient optimization algorithms such as
the accelerated mirror descent, as demonstrated in Alg. 3.3.

(c) For a kernel k, we can invoke the Mercer representation theorem (Lem. 3.B.1) to
obtain the eigenvalues and eigenfunctions of the associated integral operator. We
exploited such decomposition to analyze the spectral decay of the kernel (Sec. 3.B.1)
and to provide MMD guarantees for the best simplex weights for i.i.d. input (Thm. 3.C.1).
Such analysis forms the basis of the debiased compression algorithms introduced in
Chapter 3, particularly those based on low-rank-based algorithms, as their guaran-
tees depend on the spectral decay rate of the kernel.

(d) Kernel-based methods, in contrast to Markov chain Monte Carlo approaches, lend
themselves well to parallel implementation. We implemented the sampling scheme of
Chapter 2 and all subroutines in Chapter 3 using modern machine-learning libraries
such as PyTorch and JAX, enabling efficient use of computational resources like
GPUs and multi-core CPUs.

Convexity enchances neural network training in continuous optimization. In Part II,
we explore how various parameterizations across methods ultimately conform to a unified
form:

min
θ

EX∼Ξ[F (Φθ(X), X)], (7.1)

where Ξ is a distribution with sample access, Φθ : Rd → Rm is a neural network with
weights θ, and F : Rm × Rd → R is a function that is convex and differentiable with
respect to the first argument. Specifically,

• In Chapter 4, the objective (4.16) is recast as (7.1) by setting

Ξ = µ1 ⊗ · · · ⊗ µn ⊗ η,

Φθ((xi)n
i=1, y) = ((fθi

(xi))n
i=1, (gϕi

(xi))n
i=1),

F ((fi)n
i=1, (gi)n

i=1, (xi)n
i=1, y) =

n∑
i=1

λi

R∗

fi + gi −
n∑

j=1
λjgj − c(xi, y)

− fi

 .

Here, Φθ is a neural network built from smaller neural networks (fθi
)n

i=1 and (gϕi
)n

i=1.
The function F is convex in the first argument since R∗ is convex and the compo-
sition of a convex function and an affine function is convex.
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• In Chapter 5, to view the objective (5.2) in the form (7.1), we set

Ξ = µ⊗ ν

F (Φ, (x, τ)) = fτ (Φ) + λ

2∥Φ− x∥2
2,

which is convex in Φ as long as fτ is λ-weakly convex.

• In Chapter 6, at iteration k + 1 of the self-consistent velocity matching algorithm
(Alg. 6.3.1), we minimize the objective (6.9) over θ with θk being the weights from
the previous iteration, which can be viewed in the form (7.1) via

Ξ = Uniform[0, T ]⊗ µθk
t ,

Φθ(t, x) = vθ
t (x),

F (Φ, (t, x)) = ∥Φ− ft(x; µθk
t )∥2

2,

where Uniform[0, T ] denotes the uniform distribution on [0, T ].

In our implementations, we use stochastic gradient descent to minimize (7.1) over network
weights where the stochasticity comes from mini-batches sampled from Ξ.

If we minimize (7.1) over the space of all functions Φ : Rd → Rm, then the global
optimum Φ∗ is obtained point-wise, i.e., it satisfies

∀x ∈ supp(Ξ), Φ∗(x) ∈ arg min
y

F (y, x). (7.2)

Since F (·, x) is convex for each x, intuitively, the gradients will steer the network weights
towards the convex set arg miny F (y, x). This intuition is captured in Thm. 5.3.1, where
we show that, for a discrete Ξ, training neural networks with an objective like (7.1)
converges globally with sufficient overparameterization: the number of network weights
is at least Ω̃(|supp(Ξ)|).

While we have argued that (7.1) can be solved efficiently using neural networks, trans-
lating distributional optimization problems into this functional form can be challenging.

Decomposition leads to tractable distributional optimization sub-problems. Through-
out, we have demonstrated how complex distributional optimization problems can be
effectively decomposed into more manageable sub-problems. For example,

• In Chapter 3, the overall strategy of each debiased compression method is two-
phased: first debiasing the input points, followed by compression of the debiased
points. Methods that simultaneously debias and compress the input points such as
Riabiz et al. [Ria+22] often fail to generate better-than-i.i.d. samples.
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• In Chapter 5, while the goal is to find a generative model that generates all minima
of a classical optimization problem, we focus on optimizing for the proximal operator
as an intermediate step, which enables the proximal-point algorithm during inference
to quickly locate multiple minima.

• In Chapter 6, direct minimization of the self-consistency loss (6.7) is challenging
due to intractable gradients. Instead, we perform Picard-style fixed-point iterations,
where each iteration only requires solving a least-square problem that can be cast
in the form of (7.1).

This phenomenon is not limited to the instances studied in this thesis. For example,
in diffusion generative modeling [Cao+24], while the end goal is to model a continuous
distribution capable of generating fresh samples, the training happens during denoising
score matching [Kar+22, Eq. 2] which targets a tractable convex objective of the form
(7.1). Subsequently, at inference, the trained denoising model is used as a building block
for generation via solving stochastic or deterministic differential equations.

■ 7.2 Future Directions

Our investigation has opened several promising avenues for future work in distributional
optimization. Below, we outline key directions suggested by the findings in this thesis.

Breaking the quadratic-time barrier of particle-based sampling methods. While vari-
ational inference (VI) methods tend to exhibit faster convergence in practice, the go-to
choice for Bayesian inference is still MCMC enabled by many well-tested software pack-
ages such as STAN [Car+17]. One central limitation of the particle-based VI methods,
such as SVGD [Liu17] and MIED (Chapter 2), is that each update takes Ω(n2) time,
making it prohibitive to generate more than a few thousand samples. Our investigation
suggests two promising directions to break this quadratic-time barrier.

(a) In Chapter 3, we obtain sub-quadratic-time compression algorithms that compress
n points to a potentially weighted coreset of size m ≪ n. In each update step of
the particle-based VI methods, instead of aggregating the influence of all n points,
we could optionally aggregate the influence only from this coreset, thus reducing
the per-iteration time complexity from Ω(n2) to O(nm). The challenge is to show
the resulting algorithm still converges to the correct distribution with biased update
steps. Alternatively, we can apply the debiasing algorithm in Chapter 3 as postpro-
cessing. Furthermore, it is possible to devise a fast incremental coreset update rule
to avoid recomputing the coreset from scratch at each iteration.
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(b) In Chapter 6, if we were able to evaluate the hypothesis velocity field ft(x; µt)
where µt is the empirical measure of the particles, then we could simply move the
particles along ft(x; µt) at each update step. This suggests that we can optimize for
a neural network to approximate ft(x; µt) given sample access to µt. Then, we can
query the update direction at any given point in constant time by evaluating the
network. This idea has been explored in Langosco, Fortuin, and Strathmann [LFS21]
and Boffi and Vanden-Eijnden [BV23]. However, several important aspects require
deeper investigation. First, how does the approximation error in ft(x; µt) propagate
to an error on the sampling algorithm? Secondly, since the network is trained on
a discrete set of points, it can overfit and fail to generalize, yet future evaluations
will almost certainly land outside this discrete support; this might explain the high
sensitivity of the choice of step sizes for the method by Boffi and Vanden-Eijnden
[BV23] as discussed in Sec. 6.4.2. One potential solution is to train with noise added
like in denoising diffusion models [Kar+22], but this will likely result in bias.

Capturing mode proportions for multi-modal distributions. As pointed out in Sec. 3.6,
when the target distribution has multiple isolated modes, sampling methods that are based
solely on the target score, such as SVGD and MIED (Chapter 2), can fail since the score
function alone does not capture the relative density between modes. We suggest two ways
to incorporate the relative density information.

(a) Bénard, Staber, and Da Veiga [BSD24] suggest using a regularized kernel Stein
discrepancy where the regularizer uses density information and leads to correct
mode proportions; it is an interesting question whether similar techniques can be
employed to improve the debiased compression methods in Chapter 3, and moreover,
whether such regularization can be utilized in particle-based VI methods.

(b) Lu, Lu, and Nolen [LLN19] suggest augmenting the overdamped Langevin dynamics
with the birth-death process, resulting in a new particle-based sampling method
that allows the global move of the probability mass from one mode to another
in order to balance the mode proportions. Since the birth-death process requires
global information, each step takes time quadratic in the number of samples. It is
possible that the ideas mentioned in the previous paragraph could help break this
quadratic-time barrier. Another interesting direction is whether we can simulate
the same dynamics using the techniques developed in Chapter 6 without having to
use particle discretization.

Distributional optimization in higher dimensions. Several of our methods suffer from
the curse of dimensionality:
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• In Chapter 3, the kernel growth constants in Assum. (α,β)-kernel often scale lin-
early with the dimension, yet these constants appear in the exponents of certain
terms in the error rates.

• In Chapter 4, prior to optimization, it is necessary to select a proxy for the barycen-
ter measure. We used the uniform measure, which becomes increasingly inadequate
in higher dimensions.

• In Chapter 5, the ground space needs to be low-dimensional so that uniform samples,
which are used as initial guesses for the proximal-point algorithm, can effectively
cover all minima.

While the curse of dimensionality is hard to circumvent in general, we suggest two ideas
to mitigate this issue.

(a) While our methods are initially presented with the ground space being Euclidean,
most can naturally extend to a lower-dimensional non-Euclidean geometry or a
latent space This implies that for addressing high-dimensional distributional op-
timization problems, one could reduce the dimensionality through representation
learning techniques [Zha+18; LHS20] and subsequently atackle the reduced prob-
lem in lower dimension. The key challenge is then translating the original problem
to a lower-dimensional one, for instance, including how metrics and kernels should
be adjusted.

(b) In Chapter 6, our self-consistent velocity matching framework demonstrates signif-
icantly better scalability with dimensionality compared to previous state-of-the-art
methods for solving mass-conserving dynamics. One reason for this advantage is that
in (6.9), the mini-batches used for each gradient update are drawn from the current
probability flow, whose interesting dynamics occur in a very small region within
the time-space domain. This suggests that more broadly, when optimizing (7.1),
employing importance sampling techniques to select mini-batches from a different
distribution Ξ′ could lead to reduced variance. This will not alter the optimization
problem, since the globally optimal solution of (7.1) is obtained point-wise.

Convergence theory involving derivatives of neural networks. An extension of the for-
mulation (7.1) is to allow the objective taking spatial derivatives of the neural network Φθ.
We have already used such extended formulation in (6.10) thanks to the integration-by-
parts trick. Moreover, neural-network-based numerical methods such as Raissi, Perdikaris,
and Karniadakis [RPK19] frequently minimize losses that are convex in derivatives of the
network output. In these cases, the optimal functional solution is no longer characterized
as a point-wise optimal as in (7.2) and will instead exhibit a more complex structure
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with non-local dependencies. As a result, the global convergence theory we applied in
Chapter 5 is no longer applicable. Interestingly, in practice, we still observe the loss de-
creasing to zero (e.g. Fig. 2). On the other hand, when the space is discrete, opimization
the variable becomes a vector, and the continuous differential operators can be replaced
by matrices without altering the convexity of the problem at hand (e.g. Sorkine et al.
[Sor+04]). This hints that the same global convergence result might still apply, yet a
formal convergence theory studying this aspect is missing.

Convergence of neural networks training with infinite data. Each method described
in Part II solves an optimization problem of the form (7.1) by performing stochastic gradi-
ent descent using mini-batches of samples from a distribution Ξ with a continuous support.
Aside from the scenarios considered in this thesis, the need to compute expectations over
a continuous measure with infinite data arises frequently, in particular in low-dimensional
settings such as in Raissi, Perdikaris, and Karniadakis [RPK19]. On the other hand, ex-
isting convergence theories of overparameterized neural networks [KH19; ALS19] typically
assume training on a finite dataset, and the number of network parameters required to
obtain global training convergence increases as the dataset size grows. Understanding the
convergence and generalization of deep neural networks in the infinite-data regime using
stochastic gradient descent remains an unresolved yet critical question. Empirically, we
have found using infinite data mitigates overfitting issues. On a different note, so far we
have been using i.i.d. samples to form mini-batches, and it is worth exploring whether
using better-than-i.i.d. samples, e.g., using the techniques from Chapter 3, would lead to
faster convergence.
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