Consistency Regularization Improves Placenta Segmentation in Fetal EPI MRI Time Series Y. Liu, N. Karani, N. Dey, S. Mazdak Abulnaga, J. Xu, P. Ellen Grant, E. Abaci Turk, and P. Golland ## Motivation and problem Value of 3D placenta segmentation - Placental biomarker - Visualization for monitoring and assessment - Intervention planning #### Challenge: labeling of 3D segmentation is expensive - Large deformations caused by maternal breathing, contractions, and fetal motions. - Functional EPI images have a lower in-plane resolution and more artifacts ## Our solution and contribution **Solution:** Semi-supervised learning (SSL) to leverage unlabeled data and minimize the need of labeled data #### **Contributions:** - a consistency regularization methods that leverages the spatial and temporal characteristic of EPI time series data - the proposed method improves the accuracy and temporal coherency of segmentation and robustness against hard samples. # Method: spatial-temporal consistency regularization **High-level idea:** regularize segmentation model to be equivariant to geometry transformations and invariant to intensity transformations. EMA: exponential moving average Placenta Spatial Consistency $T \circ f(x; \theta) \iff f(T \circ x; \theta)$ Temporal Consistency $f(x_1; \theta) \Leftrightarrow \phi(x_1, x_2) \circ f(x_2; \theta)$ ## **Experiments** **Dataset:** 91 subjects. Median length of 216 frames per subject. Between 1 to 6 frames are manually segmented. Metrics: Dice and Temporal Dice Implementation details: We used DiceCE loss for supervised loss. We used cross validation to determine the weights for each loss and report the best performing results. ### Training settings: | | loss | data | |-------|------------------------------|---------------------| | Basic | Sup. | Labeled | | S | Sup. + Spatial | Labeled | | S+ | Sup. + Spatial | Labeled + Unlabeled | | S+T | Sup. + Spatial +
Temporal | Labeled + Unlabeled | **Results 1:** improvement in accuracy and coherency of segmentation **Results 2:** tighter mode and smaller long-tail in test Dice distribution **Results 3:** more improvement in hard samples **Results 4:** better sample efficiency than other SSL methods Results 5: sample predictions (ground truth in yellow, prediction in red) 0.73 0.90 Results 6: regularized model has cleaner logits map 0.64