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Motivation and problem Our solution and contribution

Placenta

Value of 3D placenta segmentation Solution: Semi-supervised learning (SSL) to leverage unlabeled data and

- Placental biomarker S minimize the need of labeled data
- Visualization for monitoring and assessment

- Intervention planning / Contributions:

Challenge: labeling of 3D segmentation is expensive - a consistency regularization methods that leverages the spatial and

- Large deformations caused by maternal breathing, contractions, temporal characteristic of EPI time series data
and fetal motions. - the proposed method improves the accuracy and temporal coherency

- Functional EPl images have a lower in-plane resolution and more of segmentation and robustness against hard samples.

artifacts

Method: spatial-temporal consistency regularization

High-level idea: regularize segmentation
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Experiments
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Results 1: improvement in accuracy and Results 5: sample predictions ( , prediction in red) Results 6: regularized model has cleaner logits map
coherency of segmentation
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