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Abstract— We present the first sample-optimal sublinear the input data, and run in sublinear time [23], [10], [2],
time algorithms for the sparse Discrete Fourier Transform [11], [17], [4], [15], [14], [21], [6], [13]. Since sparsitis
over a two-dimensional/n x 4/n grid. Our algorithms are common (in video, audio, medical imaging, NMR spec-

analyzed for the average case signals. For signals Whoset GPS ismic dat t h It -
spectrum is exactly sparse, we present algorithms that use roscopy, , Seismic data, etc.), such results promise a

O(k) samples and run in O(klogk) time, where k is the  Significant impact on multiple application domains. The
expected sparsity of the signal. For signals whose spectrum most efficient algorithms prior to this paper are given

is approximately sparse, we have an algorithm that uses in [14], and offer the following performance guarantées:
O(klogn) samples and runs inO(klog?n) time, for k =

©(y/n). All presented algorithms match the lower bounds » For signals that are exactly-sparse (i.e., signals
on sample complexity for their respective signal models. that have exactly: nonzero Fourier coefficients), the
algorithm runs inO(klogn) time.
|. INTRODUCTION « For approximately sparse signals, the algorithm runs
The Discrete Fourier Transform (DFT) is a powerful in O(klognlog(n/k)) time, wherek is the number

tool whose applications encompass video and audio pro-  of large Fourier coefficients.
cessing [30], [12], [5], radar and GPS systems [13], [8], While those past algorithms have achieved efficient run-
medical imaging, spectroscopy [19], [24], the processning times, they suffer from important limitations. Perkap
ing of seismic data by the oil and gas industries [31]the main limitation is that their sample complexity bounds
and many other engineering tasks. Currently, the fastestre too high. In particular, the sample complexity of the
approach for computing the Discrete Fourier Transformexactly k-sparse algorithm i9(klogn). This bound is
uses the FFT algorithm. Given a signal of sizethe  suboptimal by a logarithmic factor, as it is known that one
FFT computes its frequency representatiorOifnlogn)  can recover any signal with nonzero Fourier coefficients
time. However, the emergence of big data problems, ifrom O(k) samples [3], albeit in super-linear time. The
which the processed datasets can exceed terabytes [2€hmple complexity of the approximately-sparse algorithm
has rendered the FFT's runtime too slow. Furthermoreis ©(klog(n)log(n/k)). This bound is also a logarithmic
in many domains (e.g., medical imaging [22], NMR factor away from the lower bound 6(k log(n/k)) [26].
spectroscopy [20]), data acquisition is costly or cumber- Reducing the sample complexity is highly desirable
some, and hence one may be unable to collect enougis it typically implies a reduction in signal acquisition
measurements to compute the desired Fourier transformime, measurement overhead and communication cost. For
These scenarios motivate the need for algorithms thaixample, in medical imaging the main goal is to reduce
compute the Fourier transform faster than the FFT, an¢he sample complexity in order to reduce the time the
use only a subset of the input data required by the FFTpatient spends in the MRI machine [22], or the radiation
Recent efforts in the area of Fourier sampling havejose she receives [29]. Similarly in spectrum sensing, a
focused on addressing the above need. The resultingwer average sampling rate enables the fabrication of
advances show that for sparse data (i.e., data that exhibisficient analog to digital converters (ADCs) that can
a limited number of dominating frequencies) one caracquire very wideband multi-GHz signals [32]. In fact,
design algorithms that operate only on a small subset ahe central goal of the area of compressed sensing is to
reduce the sample complexity.
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of them are designed for one-dimensional signals. Thitas errof2(o2n) with overwhelming probability, and that

is unfortunate, since multi-dimensional instances of DFTthe second term in the bound in Equation 1 is subsumed
are often particularly sparse. This situation is somewhaby the first term as long as the signal-to-noise ratio is at
alleviated by the fact that the two-dimensional DFT overmost polynomial, i.e.||Z|ls < n°Mo. See Sectiorglll

p x ¢ grids can be reduced to the one-dimensional DFTor further discussion.

over a signal of lengtipg [11], [16]. However, the reduc-  The running time and the sample complexity bounds
tion applies only ifp and ¢ are relatively prime, which of our algorithms are depicted in the following table
excludes the most typical case wf x m grids wherem  (assuming,/n is a power of2):

is a power of2. The only prior algorithm that applies to

generalm x m grids, due to [11], ha®(klog® n) sample l Allg' I Slnzt:;e [ Sazples [ le';nek [ Qsjug(p\t/'gsl
and time complexity fpr a rqther large va_luea)flf n is 2 sgarse jan klogk Any k

a power of2, a two-dimensional adaptation of the [15] k(log log n)0 ™M)

algorithm (outlined in [9]) has roughly (klog® n) time 3 || Approx. klogn klog’n | k=©(y/n)
and sample complexity. sparse

The key feature of our algorithms is that their sample
A. Our Results complexity bounds are optimal. For the exactly sparse
In this paper, we present the first sample-optimal subcase, the lower bound @t(k) is immediate. For the ap-

linear time algorithms for the Discrete Fourier Transformproximately sparse case, we note that €@ log(n/k))
over a two-dimensional/n x /n grid. Our algorithms |ower bound of [26] holds even if the spectrum is the sum
are analyzed in the average case. Our input distributionsf a k-sparse signal vector if0,1, —1}" and Gaussian
are natural. For the exactly sparse case, we assume thgise. The latter is essentially a special case of the
Bernoulli model: each spectrum coordinate is nonzerg@jistributions handled by our algorithm as shown in [9].
with probability & /n, in which case the entry assumes anFrom the running time perspective, our algorithms are
arbitrary value predetermined for that positfolror the  slightly faster than those in [14], with the improvement
approximately-sparse case, we assume that the spectr@curring for low values of:.

z of the signal is a sum of two vectors: the signal Ap additional feature of the first algorithm (in the table)
vector, chosen from the Bernoulli distribution, and thejs jts simplicity and therefore its low “big-Oh” overhead.
noise vector, chosen from the Gaussian distribution (segs a result, this algorithm is easy to adapt for practical
Section §lll Preliminaries for the complete definition). applications. In [28], we have customized this algorithm
These or similat distributions are often used as test casegng applied it to 2D Magnetic Resonance Spectroscopy
for empirical evaluations of sparse Fourier Transform\rs). MRS is an advanced type of medical imaging
algorithms [18], [15], [21] or theoretical analysis of thei ysed to detect biomarkers of diseases [4]. In this particu-
performance [21]. lar application, our algorithm outperformed compressive
The algorithms succeed with a constant probability. Th&ensing and reduced the required measurements by almost
notion of success depends on the scenario considereglfactor of 3x, hence reducing the overall cost and the time

For the exactly sparse case, an algorithm is successful ffie patient has to spend in the MRI machine.
it recovers the spectrum exactly. For the approximately

sparse case, the algorithm is successful if it reports

signal with spectrunt such that:
F 9 2 e Our first algorithm fork-sparse signals is based on the
IZ = 2ll2 = O(o"n) + [|zll2/n", (1) following observation: The spike-train filter (i.e., unifo
whereo? denotes the variance of the normal distributionsSuP-sampling) is one of the most efficient ways for
defining each coordinate of the noise vector, and where Mapping the Fourier coefficients into buckets. For one-

is any constant. Note that akysparse approximation dimensiongl s.ignals however, this fil_ter is not amenaple
to randomization. Hence, when multiple nonzero Fourier
2Note that this model subsumes the scenario where the valuée of t coefficients collide into the same bucket, one cannot

nonzero coordinates are chosen i.i.d. from some distribitio efficiently resolve the collisions by randomizing the spike
A popular alternative is to use the hypergeometric distidoubver in il | f di . | si |
the set of nonzero entries instead of the Bernoulli distidou The ~ train filter. In contrast, for two-dimensional signals, we

advantage of the former is that it yields vectors of spamsigctlyequal ~ naturally obtain two distinct spike-train filters, which

to k. In this paper we opted for the Bernoulli model since it is sienpl correspond to subsampling the columns and subsampling
to analyze. However, both models are quite similar. In paaigcifor - .
large enougtk, the actual sparsity of vectors in the Bernoulli model is the rows. Hence, we can resolve CO||IdIng nonzero Fourier
sharply concentrated arourid coefficients by alternating between these two filters.

B. our Techniques
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1l 1Ll Fig. 2: Examples of obstructing sequences of nonzero

entries. None of the remaining rows or columns has a
sparsity of 1.
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to as the “OFDM trick”). The total time is dominated
by the cost of the two DFTs of the columns, which is
(c) Step 2: Column recovery (d) Step 3: Row recovery O(y/nlogn). Since the algorithm queries only a constant
. . number of columns, its sample complexity(./n).
— In general, the distribution of the nonzero entries over
the rows can be non-uniform —i.e., some rows may have
- multiple nonzero Fourier coefficients. Thus, our actual al-
gorithm alternates the above recovery process between the
columns and rows (see Figure 1 for an illustration). Since
the OFDM trick works only onl-sparse columns/rows,
we check thel-sparsity of each column/row by sampling
a constant number of additional entries. We then show
Fig. 1: An illustration of the “peeling” recovery process that, as long as the sparsity constanis small enough,
on an8 x 8 signal with 15 nonzero frequencies. In eachthis process recovers all entries in a logarithmic number
step, the algorithm recovers alsparse columns and rows steps with constant probability. The proof uses the fact
(the recovered entries are depicted in red). The proceskat the probability of the existence of an “obstructing
converges after a few steps. configuration” of nonzero entries which makes the process
deadlocked (e.g., see Figure 2) is upper bounded by a
small constant.

More specifically, recall that one way to compute the The algorithm is extended to the casefof= o(y/n)
two-dimensional DFT of a signat is to apply the one- via a reduction. Specifically, we subsample the signiay
dimensional DFT to each column and then to each rowthe reduction ratioR = «/n/k for some small enough
Suppose that = ay/n for a < 1. In this case, the constante in each dimension. The subsampled signal
expected number of nonzero entries in each row is lesg’ has dimension,/m x /m, where /m = . Since
than1. If everyrow contained exactly one nonzero entry, subsampling in time domain corresponds to “spectrum
then the DFT could be computed via the following two folding”, i.e., adding together all frequencies with inetic
step process. In the first step, we select the first twehat are equal modulg/m, the nonzero entries af are
columns of z, denoted byu(” and u{!), and compute mapped into the entries af’. It can be seen that, with
their DFTsu(®) and@(!). Let j; be the index of the unique constant probability, the mapping is one-to-one. If this is
nonzero entry in the-th row of z, and leta be its value. the case, we can use the earlier algorithm for sparse DFT
Observe thati!” = ¢ and@!" = aw=7" (wherew is  to compute the nonzero frequencies@y/m logm) =
a primitive /n-th root of unity), as these are the first O(v/klogk) time, usingO(k) samples. We then use the
two entries of the inverse Fourier transform of-@parse OFDM trick to identify the positions of those frequencies
signal ae;,. Thus, in the second step, we can retrievein 7.
the value of the nonzero entry, equal i 0), as well as Our second algorithm for the exactly sparse case works
the indexj; from the phase of the ratiﬁl(.l)/@(.o). (this  for all values of k. The main idea behind it is to
technique was introduced in [14], [21] and was referredlecode rows/columns with higher sparsity thianFirst,
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(e) Step 4: Column recovery (f) Step 5: Row Recovery



we give a deterministic worst-casealgorithm for 1- The check is done by samplif@(logn) coordinates and
dimensional sparse Fourier transforms that takés> +  checking whether their sum of squares is small. To prove
k(loglogn)®™M) time. This algorithm uses the relation- that this check works with high probability, we use the
ship between sparse recovery and syndrome decoding f#ct that a collection of random rows of the Fourier matrix
Reed-Solomon codes (due to [3]). Although a simplés likely to satisfy the Restricted Isometry Property (RIP)
application of the decoder yield3(n?) decoding time, we  of [7].
show that by using appropriate numerical subroutines one A technical difficulty in the analysis of the algorithm is
can in fact recover &-sparse vector fron®(k) samples that the noise accumulates in successive iterations. This
in time O(k2 + k(loglogn)®")).4 In particular, we use means that a,/log®") n fraction of the steps of the algo-
Berlekamp-Massey’s algorithm for constructing the error+ithm will fail. However, we show that the dependencies
locator polynomial and Pan’s algorithm for finding its are “local”, which means that our analysis still applies to
roots. For our fast average-casedimensional sparse a vast majority of the recovered entries. We continue the
Fourier transform algorithm, we fold the spectrum intoiterative decoding foitoglogn steps, which ensures that
B = ﬁgk bins for some large constadt. Since the all but al/logo(l) n fraction of the large frequencies are
positions of thek nonzero frequencies are random, itcorrectly recovered. To recover the remaining frequencies
follows that each bin receives= ©(log k) frequencies we resort to algorithms with worst-case guarantees.
with high probability. We then taked(t) samples of
the time domain signal corresponding to each bin, an
recover the frequencies corresponding to those bins in Our algorithms have natural extensions to dimensions
O(t? + t(loglogn)®M)) time per bin, for a total time higher than2. We do not include them in this paper as
of O(klogk + k(loglogn)°M). the description and analysis are rather cumbersome.
This approach works as long as the number of nonzero Moreover, due to the equivalence between the two-
coefficients per column/row are highly concentrateddimensional case and the one-dimensional case wihere
However, this is not the case fdr < /nlogn. We is a product of different prime powers [11], [16], our
overcome this difficulty by replacing a row by a sequencelgorithms also give optimal sample complexity bounds
of rows. A technical difficulty is that the process might for such values of. (e.g.,n = 6') in the average case.
lead to collisions of coefficients. We resolve this issue by
using a two level procedure, where the first level returns _ ) ) ) o )
the syndromes of colliding coefficients as opposed to the As described in the introduction, the most efficient prior
coefficients themselves; the syndromes are then decod@forithms for computing the sparse DFT are due to [14].
at the second level. For signals that are exactly-sparse, the first algorithm
The above description summarizes the second algd4ns iNO(klogn) time. For approximately sparse signals,
rithm. Due to space limitations, the full-description oéth the second algorithm runs i6(klog nlog(n/k)) time.
second algorithm along with the proofs of some lemmagormally, the latter algorithm works for any signal

are not included in this paper. They are however availabldnd computes an approximation vector that satisfies
on arxiv [9]. the ¢2/¢2 approximation guarantee, i.el|z — Z'|js <

Our third algorithm works forapproximatelysparse  C Millk-sparsey |7 — /|2, whereC' is some approximation
factor and the minimization is ovérsparse signals. Note

data, at sparsitY(y/n). Its general outline mimics that _ i i

of the first algorithm. Specifically, it alternates betweenthat this guarantee generalizes that of Equation (1).
decoding columns and rows, assuming that they lare _After this work was completed (see the arxiv ver-
sparse. The decoding subroutine itself is similar to thafion [9]), we became aware that another group has con-
of [14] and usesD(logn) samples. The subroutine first cyrrentl_y developed an efficient algorithm for. the one
checks whether the decoded entry is large; if not, th&imensional exactly:-sparse case where the size of the
spectrum is unlikely to contain any large entry, and the>'9nal7 is product of primes (i.e., can be formed as a 2D
subroutine terminates. The algorithm then subtracts thgiScrete Fourier transform problem) [25]. Their algorithm
decoded entry from the column and checks whether thiS @nalyzed for the average case and achie\@g sample
resulting signal contains no large entries in the spectruri@MPIexity and runs iO(klogk). In comparison, our
(which would be the case if the original spectrum wasdlgorithms achieve similar guarantees for the exaktly

approximatelyl-sparse and the decoding was successfulSParse case, but they further address the general case
where the signal is contaminated by noise.

“We note that, folk = o(log n), this is the fastest knowworst-case We also _mentlon another efficient algorithm, due
algorithm for the exactly sparse DFT. to [21], designed for the exactly-sparse model. The

8:. Extensions

II. RELATED WORK



average case analysis presented in that paper also showshe “signal” andw is the “noise”. In particular,%? is

that the algorithm ha® (k) expected sample complexity
and runs inO(klogk) time. However, the algorithm
assumes the input signalis specified as &nctionover

drawn from the Bernoulli model, wheré;m- is drawn
from {0, a; ;} at random independently for ea¢h j) for
some valuesy; ; and with E[| supp(z*)|] = k. We also

an interval0, 1] that can be sampled at arbitrary positions,require that|a; ;| > L for some parameteL. & is a

as opposed to a given discrete sequence sdmples as

complex Gaussian vector with variane€ in both the

in our case. Thus, though very efficient, that algorithmreal and imaginary axes independently on each coordinate;
does not solve the Discrete Fourier Transform problem.we notate this asi ~ N¢(0,021,). We will need that

Ill. PRELIMINARIES

L = Co+/n/k for a sufficiently large constartt, so that
E[llz*]|3] > CE[||@]]3].

This section introduces the notation, assumptions and

definitions used in the rest of this paper.

A. Notation: Throughout the paper we assume that is
a power of2. We use{m] to denote the s€f0, ..., m—1},
and [m] x [m] = [m]® to denote them x m grid
{(i,§) = i € [m],j € [m]}. We definew = e=271/vn
to be a primitive,/n-th root of unity andw’ = e=271/"
to be a primitiven-th root of unity. For any complex
numbera, we use¢(a) € [0,27) to denote thephase
of a. For a 2D matrixz € CY™*V™ its support is
denoted bysupp(z) C [vn] x [Vn]. We use|z|o to

denote|supp(x)|, the number of nonzero coordinates of

x. Its 2D Fourier spectrum is denoted By with

= 1 +jm
Lij = % Z Z w i Tlm
le[v/n] me[v/n]

IV. BASIC ALGORITHM FOR THEEXACTLY SPARSE
CASE

The algorithm for the noiseless case depends on the
sparsity k where k = E[|supp (Z)|] for a Bernoulli
distribution of the support.

A. Basic Exact Algorithmk = ©(y/n)

In this section, we focus on the reginie= O(\/n).
Specifically, we will assume thdt = a+/n for a (suffi-
ciently small) constang > 0.

The algorithm B\SICEXACT2DSFFT is described as
Algorithm IV.1. The key idea is to fold the spectrum into
bins using the comb filter defined i§ill and estimate
frequencies which are isolated in a bin. The algorithm
takes the FFT of a row and as a result frequencies in

Similarly, if y is a frequency-domain signal, its inversethe same columns will get folded into the same row

Fourier transform is denoted hy

bin. It also takes the FFT of a column and consequently

B. Definitions: The paper uses the comb filter usedfreguencies in the same rows wil get folded into the same

in [17], [15] (cf. [23]). The filter can be generalized 20
dimensions as follows:

Given (., 7.) € [v/n] x [v/n], and B,., B, that divide
v/n, then for all(4, j) € [B,] x [B.] set

yi’j = wi(\/ﬁ/BT)J"Trvj(\/ﬁ/BC)""Tc

Then, compute the 2D DFJ of y. Observe thafj is a
folded version ofi:

. A 7 (i+1B) 7o (j+mB.
Yij = E E LB, 4i;mBotjW (EHBr) =re(gtmBe)
1E[¥E] me[ %]

column bin. The algorithm then uses the OFDM trick
introduced in [14] to recover the columns and rows whose
sparsity is 1. It iterates between the column bins and row
bins, subtracting the recovered frequencies and estigatin
the remaining columns and rows whose sparsity is 1. An
illustration of the algorithm running on & 8 signal with

15 nonzero frequencies is shown in Fig. 1 in Sectan
The algorithm also takes a constant number of extra FFTs
of columns and rows to check for collisions within a bin
and avoid errors resulting from estimating bins where
the sparsity is greater than 1. The algorithm uses three
functions:

C. Distributions:In the exactly sparse case, we assume a , FoLDTOBINS. This procedure folds the spectrum

Bernoulli model for the support af. This means that for
all (i, 5) € [v/n] x [Vn],

Pr{(i,j) € supp (2)} = k/n
and thusE[|supp (Z)|] k. We assume an unknown

predefined matrix; ; of values inC; if z; ; is selected
to be nonzero, its value is set tQ ;.

In the approximately sparse case, we assume that thee

signal 7 is equal tox* + @ € CV™* V7" wherez*, ;

into B,. x B, bins using the comb filter describétl.
o BASICESTFREQ. Given the FFT of rows or columns,
it estimates the frequency in the large bins. If there
is no collision, i.e., if there is a single nonzero
frequency in the bin, it adds this frequency to the
resultw and subtracts its contribution to the row and
column bins.
BASICEXACT2DSFFT. This performs the FFT of
the rows and columns and then iteratesSBCEST



procedure FOLDTOBINS(x, B,, B¢, T, Tc)

[gi-]j = Ti(y/n/By)vrrg(va/Be)r. 107 (4,7)
return y, the DFT ofy
procedure BASICESTFREQ((™), (™), T, 1sCol)
w <+ 0.
Compute] = {j : ¥ . [al”] > 0}
for j € J do
b astjal?.
i < round¢(b)¥2) mod /n. > ¢(b) is the phas
of b.
s ago)_

€ [By] x

1%

> Test whether the row or column is 1-sparse

if (3, cr @ —sw 7 ==0) then

if 1sCol then > whether decoding column or rgw
”L/L}Z',j — S.

else
’L/ﬁjﬁi <« S.

for 7 € T do
a§7> +~0
B o) — s

return @, (), o™

procedure BASICEXACT2DSFFT(, k)
T + [2(] > We setc > 6
for € T do
a(™) < FOLDTOBINS(z, /7, 1,0, 7).
9" « FOLDTOBINS(z, 1, v/, 7,0).
Z+0
for ¢+ € [C'logn] do >l = {al") . 7 €T}
{w,2M, 5"} « BAsiCESTFREQ@™, o), T,
true).
Z < Z+w.
{w,9M),aM} « BASICESTFREQ(D™), u(™), T,
false).
Z 4 Z+w.
return z

7

Algorithm IV.1: Basic Exact 2D sparse FFT algorithm for
k=0(/n)

Lemma 4.2:The probability that any 1-sparsity test
invoked by the algorithm is incorrect is at most
O(1/n(e=5)72),

Theorem 4.3:For any constanty, the algorithm B\-
SICEXACT2DSFFT usesD(y/n) samples, runs in time
O(y/nlogn) and returns the correct vectarwith prob-
ablility at leastl — O(«) as long as: is a small enough
constant.

Proof: From Lemma 4.1 and Lemma 4.2, the
algorithm returns the correct vectarwith probability at
leastl — O(a) — O(n=(¢=%)/2) =1 — O(a) for ¢ > 5.

The algorithm uses onhO(T') O(1) rows and
columns ofz, which yieldsO(1/n) samples. The running
time is bounded by the time needed to perfanfi) FFTs
of rows and columns (in GLDTOBINS) procedure, and
O(logn) invocations of BSICESTFREQ. Both compo-
nents take timed(y/nlogn).

B. Reduction to Basic Exact Algorithm:= o(v/n)

Algorithm REDUCEEXACT2DSFFT, which is for the
case where: = o(y/n), is described in Algorithm IV.2.
The key idea is to reduce the problem from the case
where k = o(y/n) to the case wheré = O(y/n). To
do that, we subsample the input time domain signaly
the reduction ratioR = a+/n/k for some small enough
a. The subsampled signal has dimension/m x \/m,
where /m = g This implies that the probability that
any coefficient inz’ is nonzero is at mosk? x k/n =
a’/k = (a®/k) x (k?/a?)/m = k/m, sincem = k2 /a?.
This means that we can use the algorithmsB-NOISE-
LESS2DSFFT in subsectio§lV-A to recover z’. Each
of the entries oft’ is a frequency inz which was folded
into z’. We employ the same phase technique used in [14]
and subsectio§IV-A to recover their original frequency
position inz.

The algorithm uses two functions:

o REDUCETOBASICSFFT: This folds the spectrum
into O(k) x O(k) dimensions and performs the
reduction to B\SICEXACT2DSFFT. Note that only
the O(k) elements ofz’ which will be used in
BASICEXACT2DSFFT need to be computed.

FREQbetween the rows and columns until is recovers , REDUCEEXACT2DSFFT: This invokes the reduc-

x.

Analysis of BASICEXACT2DSFFT. The analysis relies
on the following two lemmas which we prove in [9].
Lemma 4.1:For any constandv > 0, if a > 0 is a suf-

tion as well as the phase technique to recawer

Analysis of REDUCEEXACT2DSFFT. We state the fol-
lowing lemma which we prove in [9].
Lemma 4.4:For any constant, for sufficiently small

ﬁCientIy small constant, then assuming that all 1'Spar5ityl there is a one-to-one mapp|ng of frequency coefficients

tests in the procedure A3ICESTFREQ are correct, the

algorithm reports the correct output with probability at

leastl — O(«w).

from z to z’ with probability at leasfl — a.
Theorem 4.5:For any constantx > 0, there exists
a constantc > 0 such that ifk < c¢y/n then the



procedure REDUCETOBASICSFFT@, R, 7., 7.) procedure RoBUSTESTIMATECOL(w, v, T, T”, IsCol,
Definex;j = Zirtr, jrR+r. > With lazy evaluatior] J, Ranks)
return BASICEXACT2DSFFTa/, k) w <+ 0.
procedure REDUCEEXACT2DSFFT(, k) S+ {} b Setof changes, to be tested next roynd.
R« /™ for some constani < 1 such thatR|/n. for j€.J do
(%9 + REDUCETOBASICSFFTz, R,0,0) continue if Rankg(IsCol, j)] > loglogn.
419 « REDUCETOBASICSFFTz, R, 1,0) i + HIKPLOCATESIGNAL (a!"),T")
2(0) + REDUCETOBASICSFFT(z, R,0,1) > Procedure from [14]0(log” n) time
20 a + median,cr ujw™.
L « supga®9) N suppga™?) N supga(®) continue if |a| < L/2
for (¢,m) € L do > Nothing significant recovered
by a0 /g0 continue if Y°_ . @] —aw™ "> > L?|T] /10
;e roundgﬁ(br)@) mod v/ Diadﬂrecovery. probably not 1-sparse
_(0,1) A(o,o%ﬂ b < mean,cp usw™.
be Uy, Uy, if IsColthen > whether decoding column or row
j + roundé(b.) ¥2) mod /n Big b,
Bij + Uy else
return 2 Wia = b"
Algorithm 1V.2: Exact 2D sparse FFT algorithm fér= g;ki(ij EZLlCoI,i)] += Rank$(IsCol, )].
o(vn) for re TUT' do
@l @l o
algorithm REDUCEEXACT2DSFFT usesD(k) samples, UE : 1_ Qiz )A_ b
runs in timeO(klog k) and returns the correct vectar retumn w, u, v, S
with probablility at leastl — a. procedure ROBUST2DSFFT(, k)
Proof: By Theorem 4.3 and the fact that each coeffit ~ 7.7" C [v/n], |T| = |T"| = O(log n)
cient inz’ is nonzero with probability)(1/k), each invo- for e TUT' do
cation of the function RDUCETOBASICSFFT fails with (") + FOLDTOBINS(z, /1, 1,0,7).
probability at mosty. By Lemma 4.4, with probability at (") +— FOLDTOBINS(z, 1,/n, 7, 0).
leastl — «, we could recovetr correctly if each of the Z+0
calls to REDTOBASICSFFT returns the correct result. By] R «+ 1[21x[v2]  » Rank of vertex (iscolumn, index)
the union bound, the algorithmeE®UCEEXACT2DSFFT Seot + [V/1] > Which columns to test
fails with probability at mosty + 3 x a = O(«). for t € [C'logn] do
The algorithm usesO(1) invocations of B\SICEX- {W,w,V, Srow}
ACT2DSFFT on a signal of siz& (k) x O(k) in addition ROBUSTESTIMATECOL(w, v, T, T, true, Seor, R).
to O(k) time to recover the support using the OFDM trick Z zZ+ .
Noting that calculating the intersectidnof supports takes Srow  [v/n] if t =0 Try each row the first time
O(k) time, the stated number of samples and running time  {@, 7,4, Scoi}
then follow directly from Theorem 4.3. [ ] ROBUSTESTIMATECOL (v, w, T, T’,false S0, R).
Z+ z+w.
V. ALGORITHM FOR ROBUST RECOVERY return z

The algorithm for noisy recovery GBUST2DSFFT is Algorithm V.1: Robust 2D sparse FFT algorithm for=
shown in Algorithm V.1. The algorithm is very similar O(vn)
to the exactly sparse case. It first takes FFT of rows and
columns using BLDTOBINS procedure. It then iterates )
between the columns and rows, recovering frequencies - Analysis of Each Stage of Recovery
bins which are 1-sparse using the BRUSTESTIMATECOL Here, we show that each step of the recovery is correct
procedure. This procedure uses the function HIKPL with high probability using the following two lemmas.
CATESIGNAL from [14] to make the estimation of the The first lemma shows that with very low probability
frequency positions robust to noise. the ROBUSTESTIMATECOL procedure generates a false



negative (misses a frequency), false positive (adds with o = eL\/k/n = ©(eL/n'/*) for sufficiently small
fake frequency) or a bad update (wrong estimate of a.

frequency). The second lemma is analogus to lemma 4.2 |t will be useful to consider a bipartite graph represen-
and shows that the probability that the 1-sparse test failgytion G of z*. We construct a bipartite graph witin
when there is noise is low. The proof of these lemmas iipodes on each side, where the left side corresponds to
long and can be found in [9]. rows and the right side corresponds to columns. For each

Lemma 5.1:Consider the recovery of a column/rgiv  (©:7) € supp(z*), we place an edge between left nade

in ROBUSTESTIMATECOL, whereu andv are the results and right nqdey O_f We'ghtx_*(ivi)' _

of FOLDTOBINS on Z. Let y € CV™ denote thejth Our algorithm is a “peeling” procedure on this graph.
column/row ofz. Supposey is drawn from a permutation It iterates over the vertices, and can with a “good prob-
invariant distributiony = y/cad yresidue | ygauss \where  ability” recover an edge if it is the only incident edge
Min, e gupp(yheady [Yi] > L, [yresidue||, < eL, andy9euss  ON a vertex. Once the algorithm recovers an edge, it can
is drawn from the,/n-dimensional normal distribution remove it from the graph. The algorithm will look at the
Nc(O,UQIﬁ) with standard deviationr = eL/n'/4 column vertices, then the row vertices, then repeat; these
in each coordinate on both real and imaginary axesire referred to astages Supposing that the algorithm
We do not require thayhead, yresidue gndy9auss gre  succeeds at recovery on each vertex, this gives a canonical

independent except for the permutation invariance of theiprder to the removal of edges. Call this fbeal ordering.

sum. In the ideal ordering, an edgeis removed based on
Consider the following bad events: one of its incident vertices. This happens after all other

« False negativesupp(y"°e?) = {i} and ROBUSTES- edges reachable from without passing througle are
TIMATE CoL does not update coordinate removed. Define theank of v to be the number of such

. False positive: RBUSTESTIMATECOL updates réachable edges, and rank= rank(v)+1 (with rank(v)

some coordinaté but supp(y<*?) # {i}. undefined ifv is not used for recovery of any edge).

« Bad updatesupp(y"c*?d) = {i} and coordinatei Lemma 5.3:Let ¢,« be arbitrary constants, and a

is estimated by with ]b — yfe“d| > [Jyresidue||; +  sufficiently small constant depending enx. Then with
[loglogn 1 1 — « probability every component id is a tree and at

logn .

mostk/log®n edges have rank at ledsi log n.

Proof: Each edge of7 appears independently with
probability k/n = a/+/n. There are at mos{/n’ cycles
of length¢. Hence the probability that any cycle of length
t exists is at most?, so the chance any cycle exists is

« The probability of a false negative iy log® n. less tham? /(1 — a?) < /2 for sufficiently smalla.
« The probability of a false positive is/n°.

« The probability of a bad update is/ log® n.

For any constant and ¢ below a sufficiently small
constant, there exists a distribution over sSEt§” of size
O(logn), such that as a distribution ovgrandT,T" we
have

Each vertex has expected degree: 1. Exploring the
component for any vertex is then a subcritical branching

Lemma 5.2:Lety € C™ be drawn from a permutation Process, so the probability tha component has size at
invariant distribution with- > 2 nonzero values. Suppose leastloglogn is 1/log®n for sufficiently smalla. Then
that all the nonzero entries af have absolute value at for each edge, we know that removing it causes each of

least L. ChooseT C [m] uniformly at random witht := its two incident vertices to have component size less than
IT| = O(c3 logm). loglogn—1 with 1—1/log® n probability. Since the rank
Then, the probability that there existg/awith ||y/|o < i one more than the size of one of these components, the
1 and rank is less tharoglogn with 1 — 2/log®n probability.
1@ —¥)rl3 < eL?t/n Therefore, the expected number of edges with rank
at leastloglogn is 2k/log®n. Hence, with probability
is at mostc?(—<)“~? whenevere < 1/8. 1 — /2 there are at mostl/a)4k/log®n such edges;
adjustingc gives the result. |

B. Analysis of Overall Recovery Lemma 5.4:Let RoBUST2DSFFT’ be a modified B-

Recall that we are considering the recovery of a signaBusT2DSFFT that avoids false negatives or bad updates:
T =2 +© € CV"™V" wherez* is drawn from the whenever a false negative or bad update would occur,
Bernoulli model with expecte& = a+/n nonzero entries an oracle corrects the algorithm. With large constant
for a sufficiently small constant, and@w ~ N¢(0,02%1,,)  probability, ROBUST2DSFFT’ recovers such that there



exists a(k/ log®n)-sparse?’ satisfying Because [|y"esidue]|, / (,/M6L> <

logn —
12— 7 — 7|12 < 602n. Y ecsfanke) = rankv) = ranke) — 1, each new
- _ residual has magnitude at most
Furthermore, onlyO(k/log®n) false negtives or bad

updates are caught by the oracle. loglogn

Proof: One can choose the randomt by first rank(e)v log n L <el. @
selecting the topology of the grapgh, and then selecting . ,
the random ordering of the columns and rows of the?S Needed to complete the induction.
matrix. Note that reordering the vertices only affects the CVen that we follow the ideal ordering, we recover
ideal ordering by a permutation within each stage of V€'Y €dge of rank at mosbglogn. Furthermore, the
recovery; the set of edges recovered at each stage JFSIdUEé on every edge we recover is at mebt By
the ideal ordering depends only on the topologycaf ~L-€mma 5.3, there are at makf log" n edges that we do
Suppose that the choice of the topology of the grapii©t recover. From Equat2|on (22)’ t2he2 squat@dno;m of
satisfies the thesis of Lemma 5.3 (which occurs with Iargéhe residues is at r_nos’t’E f =€ g 4 _”/k'k <on fpr
constant probability). We will show that with large con- ¢ STall enough. Sln_cﬁwl? < 20”n with overwhelming
stant probability (over the space of random permutation8"oPability, there exists &’ so that

pf the rows_and columns),dBIUSTZDSFFT’ follows the 1Z-2 2|2 <2z -2 — 7|2 + 2||w|2 < 602n.
ideal ordering and the requirements of Lemma 5.1 are _
satisfied at every stage. Finally, we need to bound the number of times the ora-
For a recovered edge we define the “residuef*, —  cle catches false negatives or bad updates. The algorithm
Z.. We will show that ife has rankr, then|z*, — 2,| <  a@pplies Lemma 5.1 onlg/n+O(k) = O(k) times. Each
log log n time has al/log®n chance of a false negatives or bad
r el. .
logn update. Hence the expected number of false negatives or

During attempted recovery at any vertexduring the
ideal ordering (including attempts on vertices which do
not have exactly one incident edge), lgte CV™ be
the associated column/row af — z. We split y into
three partsy = yhead + yresidue + ygauss, Whereyhead
contains the elements of* not in supp(), y"esidue |2—2—7|3 < 60%n
contains z* — Z over the support of2, and y9auss
containsw (all restricted to the column/row correspond-
ing to v). Let S = supp(y"**’¥“¢) contain the set of

edges incident onv that have been recovered so far. . .
We have by the inductive hypothesis thmesmmnl < affectlogn positions in the output of ®UST2DSFFT.

oz log 1 X . ~. By Lemma 5.4, we can, with large constant probability,
2ees ranke)/ Sl Since the algorithm verifies ,n RopuST2DSFFT into ROBUST2DSFFET’ with only

bad updates i©(k/log® n). [ |

Lemma 5.5:For any constantx > 0, the algorithm
RoBUST2DSFFT can with probabilityl — « recoverz
such that there exists (& /log® ' n)-sparsez’ satisfying

using O(klogn) samples and(klog? n) time.
Proof: To do this, we will show that changing the
effect of a single call to RBUSTESTIMATECOL can only

that}_ . granke) < loglogn, we have O(k/ log® n) changes to calls to ®BUSTESTIMATECOL.
3 This means the outputs ofd8UST2DSFFT and of B-
[[yresidue||, < 4 |log”logn < ¢L. BUST2DSFFT’ only differ inO(k/log" ' n) positions.

logn We view ROBUSTESTIMATECOL as trying to estimate

Furthermorey is permutation invariant: if we condition & vertex. Modifying it can change from recovering one
on the values and permute the rows and columns of thedge (or none) to recovering a different edge (or none).
matrix, the algorithm will consider the permutgdn the ~ Thus, a change can only affect at most two calls to
same stage of the algorithm. ROBUSTESTIMATECOL in the next stage. Hence in

Therefore, the conditions for Lemma 5.1 hold. Thisstages, at most"~! calls may be affected, so at most
means that the chance of a false positivelj&°, so 2" edges may be recovered differently.
by a union bound, this never occurs. Because false nega-Because we refuse to recover any edge with rank at
tives never occur by assumption, this means we continuastlog logn, the algorithm has at mostg log n stages.
following the ideal ordering. Because bad updates neverdence at mostogn edges may be recovered differently

occur, new residuals have magnitude at most as a result of a single change t@ RUSTESTIMATECOL.
[ |

residue loglogn The algorithm in [14] can be generalized to the 2
ly i + 4/ ————e€L. . ; o .

logn dimensional case. The generalization can be found in [9].



Here, we restate the theorem which we will use to proveio] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and Mreiss.

the correctness of ourdB8UST2DSFFT algorithm.

Theorem 5.6:There is a variant of [14] algorithm that [11]

will, given z,Z € CV™"*V7™ returna’ with

IF—2-2|a <2 min_||7—2—2°|%+ ||F]2/n"

k-sparsex*

with probability 1 — o for any constantg, « > 0 in time
O(klog(n/k)log® n + |supp(2)|log(n/k)log n),
using O(k log(n/k) log® n) samples ofz.

Theorem 5.7:0ur overall algorithm can recover’
satisfying

17 =213 < 120%n + |[2]|3/n°

with probability 1 — « for any constants,« > 0 in
O(klogn) samples andD(klog?n) time, wherek =
a+/n for some constant > 0.

Proof: By Lemma 5.5, we can recover an(k)-
sparsez such that there exists it/ log®™ ! n)-sparsez’
with

|17 — 2 — 2|2 < 60n.

with arbitrarily large constant probability for any consta

¢ using O(klog® n) time andO(klogn) samples. Then
by Theorem 5.6, we can recove&ain O(klog? n) time
and O(klog*™“n) samples satisfying

17 -2 2|13 < 120°n + ||Z]|5/n°
and hencer’ := z + 2’ is a good reconstruction faf. m

REFERENCES

[1] A. Akavia. Deterministic sparse Fourier approximatioa fooling
arithmetic progressionsCOLT, pages 381-393, 2010.

[2] A. Akavia, S. Goldwasser, and S. Safra.
predicates using list decodingOCS 44:146-159, 2003.

[3] M. Akcakaya and V. Tarokh. A frame construction and a urseé¢
distortion bound for sparse representationSignal Processing,
IEEE Transactions on56(6):2443 —2450, june 2008.

[4] O. C. Andronesi, G. S. Kim, E. Gerstner, T. Batchelor, A. A.
Tzika, V. R. Fantin, M. G. V. Heiden, and A. G. Sorensen.

Detection of 2-hydroxyglutarate in idh-mutated glioma patse
by in vivo spectral-editing and 2d correlation magnetic reswe
spectroscopy. 4:116ra4, 2012.

[5] V. Bahskarna and K. Konstantinidesnage and video compression

standards : algorithms and architectures Kluwer Academic
Publishers, 1995.

[6] P. Boufounos, V. Cevher, A. C. Gilbert, Y. Li, and M. J. &iss.
What's the frequency, kenneth?: Sublinear fourier samplifhthe
grid. RANDOM/APPROX2012.

[7] E. Candes and T. Tao.
random projections: Universal encoding strategiéSEE Trans.
on Info.Theory 2006.

[8] Y. Chan and V. Koo. An Introduction to Synthetic ApertuRadar
(SAR). Progress In Electromagnetics Research2B08.

[9] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, &n&hi.

Proving hardecor

Near optimal signal recovery from

(12]
(23]
[14]
(15]

(16]

(17]

(18]

(29]

[20]

[21]
(22]
(23]
(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

Sample-Optimal Average-Case Sparse Fourier Transform in Two

Dimensions.arXiv:1303.1209 2013.

10

Near-optimal sparse Fourier representations via samp&T§HC
2002.

A. Gilbert, M. Muthukrishnan, and M. Strauss. Improvemhe
bounds for near-optimal space Fourier representatior&PIE
Conference, Wavelet2005.

B. G. Haskell, A. Puri, and A. N. NetravaliDigital video : an
introduction to MPEG-2 Chapman and Hall, 1997.

H. Hassanieh, F. Adib, D. Katabi, and P. Indyk. Fastes gia the
sparse fourier transforrMOBICOM, 2012.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nediroal
algorithm for sparse Fourier transforr8TOG 2012.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple an
practical algorithm for sparse Fourier transfor80ODA 2012.

M. Iwen. Improved approximation guarantees for sublinea
time Fourier algorithms.Applied And Computational Harmonic
Analysis 2012.

M. A. Iwen. Combinatorial sublinear-time Fourier algbms.
Foundations of Computational Mathematid®:303-338, 2010.

M. A. lwen, A. Gilbert, and M. Strauss. Empirical evalizat

of a sub-linear time sparse dft algorithmCommunications in
Mathematical Science$, 2007.

A. Kak and M. Slaney.Principles of Computerized Tomographic
Imaging Society for Industrial and Applied Mathematics, 2001.
K. Kazimierczuk and V. YU. Accelerated nmr spectroscogy b
using compressed sensingAngewandte Chemie International
Edition, 2011.

D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub<iar time
fourier algorithms.arXiv:1207.6368 2012.

M. Lustig, D. Donoho, J. Santos, and J. Pauly. Compressading
mri. Signal Processing Magazine, IEEE5(2):72—-82, 2008.

Y. Mansour. Randomized interpolation and approximatiin
sparse polynomialsiCALP, 1992.

D. Nishimura.Principles of Magnetic Resonance Imagirgpciety

for Industrial and, 2010.

S. Pawar and K. Ramchandran. Computing a k-sparse nHengt
Discrete Fourier Transform using at most 4k samples and O(k log
k) complexity . InISIT, 2013.

E. Price and D. P. Woodruff.1 + €)-approximate sparse recovery.
FOCS 2011.

E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and .G. P
Nolan. Computational solutions to large-scale data managemen
and analysis. 2011.

L. Shi, O. Andronesi, H. Hassanieh, B. Ghazi, D. Katedd

E. Adalsteinsson. MRS Sparse-FFT: Reducing AcquisitiameTi
and Artifacts for In Vivo 2D Correlation Spectroscopy. In
ISMRM’13, Int. Society for Magnetic Resonance in Medicine
Annual Meeting and Exhibitiqr2013.

E. Sidky. What does compressive sensing mean for X-ray CT
and comparisons with its MRI application. I8onference on
Mathematics of Medical Imagin@011.

G. Wallace. The JPEG still picture compression stand&dm-
munications of the ACM1991.

O. Yilmaz. Seismic Data Analysis: Processing, Inversion, and In-
terpretation of Seismic Daté&Society of Exploration Geophysicists,
2008.

J. Yoo, S. Becker, M. Loh, M. Monge, E. Cazs] and A. E-
Neyestanak. A 100MHz—2GHz 12.5x subNyquist rate receiver i
90nm CMOS. InlEEE RFIC 2012.



