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Our work 

 Propose an unified framework of batch 
mode active learning 

 Instantiate the framework using 
classifiers based on sparse 
representation (BMSAL) 

  Explore the reliability of BMSAL in 
different data sets 
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Why active learning 

 Labeling is Expensive 

 Which to be labeled is curial 

 

Supervised Learning 

Semi-supervised Labeling 

KNN 

KNN 



Framework 

 To Reduce the unreliability of random labeling 

 BMAL(Batch Mode Active Learning) 
Framework 

Choosing 
 

informative  
set 

User  
 

Labeling 

Semi- 
 

Supervised 
Learning 

Given a set S of almost unlabeled samples and 
desired size K, find a set of K samples which are 
most informative 



How? 

 Existing Heuristics 
 Most uncertainty 

 Closest to SVM decision boundary 

 Maximizing Fisher Information Matrix 

 … 

 But 
 Is heuristics reliable? 

 Are there any unified framework? 



Classifiers: a review 

 Classifiers are well-founded and well-
learned 
 SVM, KNN, …… 

 They could be restated as: given an 
objective function f, we want to find class 
c*, s.t. 

 

    where         is the sample to be classified 
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Correspondence 

 Correspondence:  

   BMAL is to choose the sample set best 
minimizing the corresponding classifier 
function f for any possible labeling 

 

 

 If distribution is not available: 
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BMSAL 

 BMSAL is an instance of BMAL 
corresponding to sparse classifiers 

 



Linear Subspace Assumption 

 Samples in the same class forms a linear 
subspace with very small dimension 

 Different classes forms disjoint 
subspaces 

 Sparse Representation 

 

A

Columns are bases of these 
subspaces, i.e. 

x

A given Sample 
(without noise) 

Sparse 
Representation 

 

 nA  21

 is the sparsest solution: Non-zero entries are only 
those correspond to the bases of the class 



Sparse Classifiers (I) 

 L1 (l1-minimization) 
 Approximation 

 

 L1 classifier select class c* that minimizes: 
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L1 classifier finds the class that minimizes the error 
when representing x using the sparsest solution 

All entries are 0, except that entries 
corresponding to the bases of class c are 
same with *  



Sparse Classifiers (II) 

 NS (Nearest Subspace) 
 Approximation to L1: the sparsest solution of x has 

the same projection as x itself onto the subspace 
of the class that x belongs to 

 NS selects class c* that minimizes 
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xc is projection of x onto subspace of class c 

NS classifier finds the class whose subspace is 
nearest to x 



Sparse Classifiers (III) 

 NN (Nearest Neighbor) 
 Approximation to NS: The projection of x 

should be the same with the base closest to 
x 

 NN  selects class c* that minimizes 

 

NN classifier finds the class whose subspace has a 
base vector with minimized distance to x 

11
||||)( xAbxxAxf ccc 

bc is the base vector of the subspace corresponding 
to class c and which minimizes the distance to x  



BMSAL 

Kind Sparse Classifier BMSAL 

L1 

NS 

NN 

 Corresponding Objective functions 
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BMSAL: choose columns of D to minimize g(D) 



BMSAL: Shared Properties 

 Monotonic 
 The objective function g decreases as the 

number of selected samples to be labeled 
increases 

 (Approx) Submodularity 
 The speed that g decreases will get slower 

(with bounded errors) when number of 
samples to be labeled increases 

Proofs could be found in the paper 



BMSAL: Algorithms 

 Due to the shard properties, we can get 
a greedy algorithm, with bounded error 
rate ~ (1-1/e) 

 We further optimize the greedy 
algorithm for large-scale data sets  

Proofs could be found in the paper 
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Experiments 

 Two Goals: 
 Provide empirical evidence about the 

performance of BMSAL 

 Check the performance of sparse 
representation based BMSAL in non-linear 
data sets that does NOT satisfy the linear 
subspace assumption 



Synthetic Data Set 

 Setup 
 Binary Classification in the two-spirals data 

 Methods: 
 L1-BMSAL + L1 

 NS-BMSAL + NS 

 NN-BMSAL + NN  



Result in Synthetic Sets 

 Precision Result 

Method Average Precision 

NN-BMSAL + NN 56% 

NS-BMSAL + NS 52% 

L1-BMSAL + L1 98% 

NN-BMSAL NS-BMSAL 

They are all 
crowded 
here 

NO 
samples 
to be 
labeled 
here! 



Piece-wise Argument 

 Assumption: original point is far 

 Piece-wise: point in each piece could be 
approximately viewed as linear 
combination of the two ends 



Real-world Data set 

 Document Classification sets: 
 UCI 20NewsGroups 

 WebKB 

 Baseline 
 Random Choosing 

 Fisher Information based 

 SVM-based BMAL 



Result in Real-world Data 

 L1-BMSAL+L1 
outperforms 
others 

 Extensive 
experiments 
show that L1 
is also reliable 
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Future Work 

 Reliability of Sparse representation 
 We have only provide logical and empirical 

evidence 

 Provide theoretical foundations of BMSAL 
in non-linear application 

 Exploit BMAL corresponding with other 
family of classifiers 



 Thank you! 

 Q&A 


