Batch Mode Sparse Active Learning

Lixin Shi, Yuhang Zhao Tsinghua University

Our work

- Propose an unified framework of batch mode active learning
- Instantiate the framework using classifiers based on sparse representation (BMSAL)
- Explore the reliability of BMSAL in different data sets

Outline

- * Active Learning
- * BMSAL* Experiments
- * Future Work

Why active learning

- * Labeling is Expensive
- Which to be labeled is curial

Framework

- * To Reduce the unreliability of random labeling
- BMAL(Batch Mode Active Learning)
 Framework

Given a set 5 of almost unlabeled samples and desired size K, find a set of K samples which are most informative

How?

- * Existing Heuristics
 - * Most uncertainty
 - * Closest to SVM decision boundary
 - * Maximizing Fisher Information Matrix

* But

* ...

- * Is heuristics reliable?
- * Are there any *unified* framework?

Classifiers: a review

- Classifiers are well-founded and welllearned
 - * SVM, KNN,
- They could be restated as: given an objective function *f*, we want to find class *c**, s.t.

 $c^* = \arg \min f_c(s)$ where $s \in S$ is the sample to be classified

Correspondence

* Correspondence:

BMAL is to choose the sample set best minimizing the corresponding classifier function *f* for any possible labeling

$$\arg\min_{|D|=k} \left\{ \mathbb{E}_{D\text{'s label}} \left(\sum_{s \in S} \mathbb{E}_{\text{class } c} f_c(s) \right) \right\}$$

If distribution is not available:

 $\arg\min_{|D|=k} \left\{ \max_{D'\text{s label}} \left(\sum_{s \in S} \min_{\text{class } c} f_c(s) \right) \right\}$

Outline

- * Active Learning* BMSAL
- * Experiments* Future Work

BMSAL

BMSAL is an instance of BMAL corresponding to sparse classifiers

Linear Subspace Assumption

- Samples in the same class forms a linear subspace with very small dimension
- Different classes forms disjoint subspaces

* Sparse Representation

Columns are bases of theseSparseA given Samplesubspaces, i.e. $A = [\beta_1 \ \beta_2 \ \cdots \ \beta_n]$ Representation(without noise)

 α is the sparsest solution: Non-zero entries are only those correspond to the bases of the class

α

X

Sparse Classifiers (I)

* L1 (I1-minimization)

* Approximation $\alpha * \text{is sparsest} \Leftrightarrow \alpha * = \arg \min \|\alpha\|_{0}^{\text{Aprox}} \Leftrightarrow \alpha * = \arg \min \|\alpha\|_{1}^{1}$ * L1 classifier select class c* that minimizes: $f_{c}(x) = \|A \cdot (\widehat{\delta_{c}}(\alpha^{*}) - x\|_{1}^{1}), \text{ where } \alpha^{*} = \arg \min \{\|\alpha\|_{1} : x = A\alpha\}$ All entries are 0, except that entries corresponding to the bases of class c are same with α^{*}

L1 classifier finds the class that minimizes the error when representing x using the sparsest solution

Sparse Classifiers (II)

* NS (Nearest Subspace)

- Approximation to L1: the sparsest solution of x has the same projection as x itself onto the subspace of the class that x belongs to
- * NS selects class c* that minimizes

 $f_c(x) = \left\| A \cdot \delta_c(\alpha^*) - x \right\|_1 \approx \left\| A x_c - x \right\|_1$

 \underline{x}_{c} is projection of x onto subspace of class c

NS classifier finds the class whose subspace is nearest to x

Sparse Classifiers (III)

- * NN (Nearest Neighbor)
 - Approximation to NS: The projection of x should be the same with the base closest to x
 - * NN selects class c* that minimizes

$$f_{c}(x) = \|A \cdot x_{c} - x\|_{1} \approx \|Ab_{c} - x\|_{1}$$

 b_c is the base vector of the subspace corresponding to class c and which minimizes the distance to x

NN classifier finds the class whose subspace has a base vector with minimized distance to x

BMSAL

* Corresponding Objective functions

Kind Sparse Classifier

BMSAL

L1
$$f_c(x) = \|A \cdot \delta_c(\alpha^*) - x\|_1 g(D) = \sum_{x \in S} \min\{\|\alpha\|_1 : D\alpha = x\}$$

NS $f_c(x) = \|Ab_c - x\|_1$ $g(D) = \sum_{x \in S} \|x - DD^*x\|_2^2$
NN $f_c(x) = \|Ax_c - x\|_1$ $g(D) = \sum_{x \in S} \min_{b \in D} \|x - b\|_2^2$

BMSAL: choose columns of D to minimize g(D)

BMSAL: Shared Properties

* Monotonic

 The objective function g decreases as the number of selected samples to be labeled increases

* (Approx) Submodularity

 The speed that g decreases will get slower (with bounded errors) when number of samples to be labeled increases

Proofs could be found in the paper

BMSAL: Algorithms

- Due to the shard properties, we can get a greedy algorithm, with bounded error rate ~ (1-1/e)
- We further optimize the greedy algorithm for large-scale data sets

Proofs could be found in the paper

Outline

- * Active Learning* BMSAL
- * Experiments
- * Future Work

Experiments

* Two Goals:

- * Provide empirical evidence about the performance of BMSAL
- Check the performance of sparse representation based BMSAL in non-linear data sets that does NOT satisfy the linear subspace assumption

Synthetic Data Set

* Setup

- * Binary Classification in the two-spirals data
- * Methods:
 - * L1-BMSAL + L1 * NS-BMSAL + NS * NN-BMSAL + NN

Result in Synthetic Sets

* Precision Result

Piece-wise Argument

- * Assumption: original point is far
- Piece-wise: point in each piece could be approximately viewed as linear combination of the two ends

Real-world Data set

- * Document Classification sets:
 - * UCI 20NewsGroups
 - * WebKB
- * Baseline
 - * Random Choosing
 - * Fisher Information based
 - * SVM-based BMAL

Result in Real-world Data

* L1-BMSAL+L1 outperforms others * Extensive experiments show that L1 is also reliable

Outline

* Active Learning
* BMSAL
* Experiments
* Future Work

Future Work

- * Reliability of Sparse representation
 - * We have only provide logical and empirical evidence
 - * Provide theoretical foundations of BMSAL in non-linear application
- Exploit BMAL corresponding with other family of classifiers

