DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact

Yifei Li, Tao Du, Kui Wu, Jie Xu, Wojciech Matusik
MIT CSAIL
Cloth simulation has wide applications...

Film/Game

Garment Design

Robotics

Virtual Try-On
Slow & Tedious Manual Workflow

Edit

Iter 1 Iter 2 Iter 3 Iter 4 ...

Simulate

Final Design
Differentiable Cloth Simulation

Goal: Optimize θ (e.g. cloth material) to perform a task (e.g. garment design)
Differentiable Cloth Simulation

Goal: Optimize θ (e.g. cloth material) to perform a task (e.g. garment design)

1. **Forward Simulation through time to obtain $L(\theta)$**

2. **Gradient Back Propagation** $\frac{\partial L}{\partial \theta} \rightarrow L$ to obtain $\frac{\partial L}{\partial \theta}$

3. Use gradient-based optimizer to update θ

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} - \frac{\partial L}{\partial \theta} \cdot k$$
Related Works

- Liang et al. 19 [NeurIPS]: Differentiable cloth simulation for inverse problems
- Ly et al. 20 [SIGGRAPH]: Projective Dynamics with dry frictional contact
- Du et al. 21 [TOG]: DiffPD: Differentiable Projective Dynamics
Contributions of DiffCloth

Fast Simulation + Gradient Derivation
- Projective-Dynamics-based forward simulation
- Novel gradient computation to speed up back-propagation

Accurate Contact Modeling
- Dry-frictional contact

Effective in Inverse Tasks
- Trajectory Optimization
- Closed-Loop Control
- Inverse Design
- System Identification
- Real-to-Sim
Simulating Cloth Dynamics

Implicit Euler integration is robust

Newton's 2nd Law with Implicit Euler:

\[x_{t+1} - h^2 M^{-1} f(x_{t+1}) = x_t + h v_t \]

\(x_t, v_t \) position, velocity

\(h \) timestep

\(M \) mass matrix

\(f \) force
Simulating Cloth Dynamics

Implicit Euler integration is robust but expensive

Using Newton’s method requires costly Hessian matrix computation and factorization of \(A_t \) at every timestep \textit{(slow)}
Fast Simulation with Projective Dynamics

local/global iterative scheme [Bouaziz et al. 14]

Global: Same system matrix P at every timestep

\[P^k x_t^{k+1} = b(p)^k_{t+1} \]

Local: parallel local projections \(p \)

enforce vertex-vertex frictional contact semi-implicitly to satisfy Signorine-Coulomb condition

\[P v^{k+1} = b(p)^k \]
\[:= f(p)^k + r^k \]

impulse contact impulse
PD with Dry Frictional Contact [Ly et al. 20]

enforce vertex-vertex frictional contact semi-implicitly to satisfy Signorine-Coulomb condition

\[P \, v^{k+1} = b(p)^k \]
\[:= f(p)^k + r^k \]

impulse **contact impulse**

Take Off \(f_N \geq 0 \)
\(r = 0 \)

Stick \(f_T \leq \mu f_N \)
\(r = -f \)

Slide \(f_T > \mu f_N \)
\(r_N = -f_N \)
\(r_T = -\mu f_N \)

Signorini Condition \(r = 0, v_N > 0 \)
\(||r_T|| < \mu r_N, v = 0 \)
\(||r_T|| = \mu r_N, v_N = 0, r_T || v_T, r_T \cdot u_t \leq 0 \)
\[P v_{t+1}^{k+1} = b_{t+1}^k \]

Gradient computation via adjoint method

\[\frac{\partial L}{\partial v_i} = M \left(P - \Delta P_i - \Delta R_i\right)^{-1} \frac{\partial L}{\partial v_{t+1}} \]

\(\Delta P \) Gradient for the projection vector \(p \)
\(\Delta R \) Gradient for the contact impulse response vector \(r \)
Slow Gradient Computation

\[P \, v_{t+1}^{k+1} = b_{t+1}^k \]

\[\frac{\partial L}{\partial v_t} = M \left(P - \Delta P_t - \Delta R_t \right)^{-1} \frac{\partial L}{\partial v_{t+1}} \]

\[\Leftrightarrow Z_t \text{ adjoint vector} \]
Slow Gradient Computation

\[P v_{t+1}^{k+1} = b_{t+1}^k \]

\[\frac{\partial L}{\partial v_t} = M \]

\[(P - \Delta P_t - \Delta R_t) z_t = \frac{\partial L}{\partial v_{t+1}} \]
Slow Gradient Computation

Can we exploit the source of efficiency in forward solve for backward solve?

\[P v_{t+1}^{k+1} = b_{t+1}^{k} \]

\[\frac{\partial L}{\partial v_t} = M \]

\[(P - \Delta P_t - \Delta R_t) z_t = \frac{\partial L}{\partial v_{t+1}} \]

constant
timestep-dependent
slow to factorize
Fast Gradient Computation

\[(P - \Delta P_t - \Delta R_t) z_t = \frac{\partial L}{\partial v_{t+1}}\]

Direct Solve

\[P z_{t+1}^{k+1} = (\Delta P_t + \Delta R_t) z_{t+1}^{k} + \frac{\partial L}{\partial v_{t+1}}\]

Iterative Solve: Good convergence in practice

Matrix Splitting

constant **timestep-dependent**

constant: pre-factorize
Fast Differentiable Cloth Simulation (Backward)
Iterative Solver Speedup (convergence $\epsilon = 1e-4$): 3x - 12x

<table>
<thead>
<tr>
<th></th>
<th>Cloth Grid Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12x12</td>
</tr>
<tr>
<td>Wind</td>
<td>2.9x</td>
</tr>
<tr>
<td>Slope</td>
<td>3.1x</td>
</tr>
</tbody>
</table>

Wind: minimal contact
Slope: maximal contact
Inverse Task Comparison with Gradient-Free Methods

Benchmark Test: Optimize force field on the cloth to reach the ring

![Graph showing comparison between gradient-based (LBFGS) and gradient-free (CMA-ES) methods. The graph illustrates the loss over optimization timesteps and speedup over optimization DoF.]

- Gradient-free (CMA-ES)
- Gradient-based (LBFGS)
Task: Identify wind model and material parameters to match target trajectory

4300 DoF | 250 Timesteps | $\Delta t = 1/90$s
6 Design Parameters: cloth stretching stiffness and sinusoidal wind model parameters
Trajectory Optimization

Task: Optimize manipulator end effector trajectories to pull a sock on the foot model

Optimized Trajectory

1700 DoF | 400 Timesteps | $\Delta t = 1/100s$

36 Design Parameters: Tangents and endpoints of the 4 Hermite Splines
Inverse Design

Task: Optimize dress material parameters so that the spinning angle of the dress is 50 degrees

19000 DoF | 125 Timesteps | $\Delta t = 1/120s$

2 Design Parameters: density and bending stiffness
Task: A generalizable NN controller that puts hat onto the head from any initial positions around the upper hemisphere

1700 DoF | 400 Timesteps | $\Delta t = 1/100$s
117000 Design Parameters: Network parameters of the 2-layer MLP
85x more sampling efficient compare with Reinforcement Learning baseline
A differentiable cloth simulator with dry frictional contact

Fast simulation with Projective Dynamics & fast back-propagation with iterative solver

More sampling efficient than gradient-free methods

Effective in a wide range of inverse tasks