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DiffCloth:		
Differentiable	Cloth	Simulation		
with	Dry	Frictional	Contact



Cloth	simulation	has	wide	applications…
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Differentiable	Cloth	Simulation
Goal: Optimize  (e.g. cloth material) to perform a task (e.g. garment design) θ

Dress	Design



Differentiable	Cloth	Simulation
Goal: Optimize  (e.g. cloth material) to perform a task (e.g. garment design) θ

Dress	Design

Continuous	Parameters

θ0
θ1
θ2
θ3

Simulation Loss	Computation		

L(θ)

Forward	Simulation	through	time	to	obtain	L(θ)1

Gradient	Back	Propagation	 	to	obtain	∂L
∂θ

← L
∂L
∂θ

2

θnew ← θold −
∂L
∂θ

⋅ k

3 Use	gradient-based	optimizer	to	update	θ
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frictional	contact

Liang	et	al.	19	[NeurIPS]	

Differentiable	cloth	simulation	
for	inverse	problems

Du	et	al.	21	[TOG]	

DiffPD:	Differentiable	Projective	
Dynamics



• Projective-Dynamics-based	forward	simulation		
• Novel	gradient	computation	to	speed	up	back-propagation

Contributions	of	DiffCloth

Dry-frictional	contact

•System	Identification

•Inverse	Design•Trajectory	Optimization

•Closed-Loop	Control
•Real-to-Sim

Fast	Simulation	+	
Gradient	Derivation

Accurate	Contact	
Modeling

Effective	in	Inverse	
Tasks



Simulating	Cloth	Dynamics

Newton’s	2nd	Law	with	Implicit	Euler

	xt+1	−	h2	M−1	f	(	xt+1	)	=	xt	+	h	vt

Implicit	Euler	integration	is	robust

,	 		postion,velocity	xt vt 	timesteph 		forcef	mass	matrix		M

xt+1xt

……

Forward	Simulation



	At	xt+1 = bt

Simulating	Cloth	Dynamics

xt+1xt

Using	Newton’s	method	requires	costly	Hessian	matrix		
computation	and	factorization	of		 		at	every	timestep	(slow)		At

……

Implicit	Euler	integration	is	robust	but	expensive



	P	xk+1
t+1 = b(p)k

t+1

Fast	Simulation	with	Projective	Dynamics 

xt+1xt

Global:	Same	system	matrix	P	at	every	timestep

……

local/global	iterative	scheme	[Bouaziz	et	al.	14]

Local:		parallel	local	projections	 	p

Sofien	Bouaziz,	Sebastian	Martin,	Tiantian	Liu,	Ladislav	Kavan,	and	Mark	Pauly.	2014.	Projective	dynamics:	fusing	constraint	projections	for	fast	simulation.	ACM	Trans.	Graph.



	P	vk+1 = b(p)k

	:=	f(p)k	+	rk

PD	with	Dry	Frictional	Contact	[Ly	et	al.	20]

impulse contact	impulse

enforce	vertex-vertex	frictional	contact	semi-implicitly	to	
satisfy	Signorine-Coulomb	condition

Mickaël	Ly,	Jean	Jouve,	Laurence	Boissieux,	and	Florence	Bertails-Descoubes.	2020.	Projective	dynamics	with	dry	frictional	contact.	ACM	Trans.	Graph



	P	vk+1 = b(p)k

	:=	f(p)k	+	rk

PD	with	Dry	Frictional	Contact	[Ly	et	al.	20]
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impulse contact	impulse

enforce	vertex-vertex	frictional	contact	semi-implicitly	to	
satisfy	Signorine-Coulomb	condition

Mickaël	Ly,	Jean	Jouve,	Laurence	Boissieux,	and	Florence	Bertails-Descoubes.	2020.	Projective	dynamics	with	dry	frictional	contact.	ACM	Trans.	Graph

	r = 0,vN > 0 	 | |rT | | < μrN, v = 0 	 | |rT | | = μrN, vN = 0,rT | |vT, rT ⋅ ut ≤ 0Signorini	Condition



	P	vk+1
t+1 = bk

t+1

(P − ΔPt − ΔRt)−1 ∂L
∂vt+1

∂L
∂vt

= M

Slow	Gradient	Computation

xt+1xt

……

Back-Propagation

	Gradient	for	the	projection	vector	 	
	Gradient	for	the	contact	impulse	response	vector	 	

ΔP p
ΔR r

gradient	computation	via	adjoint	method



	P	vk+1
t+1 = bk

t+1

∂L
∂vt

= M (P − ΔPt − ΔRt)−1 ∂L
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Slow	Gradient	Computation

xt+1xt

……

:= zt adjoint	vector
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Slow	Gradient	Computation

xt+1xt
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	P	vk+1
t+1 = bk

t+1

∂L
∂vt

= M zt

Slow	Gradient	Computation

xt+1xt

……

)	zt =
∂L

∂vt+1
(P − ΔPt − ΔRt

constant	 timestep-dependent		
slow	to	factorize

Can	we	exploit	the	source	of	efficiency	in	forward	solve	for	backward	solve?	



P	zk+1
t = (ΔPt + ΔRt)zk

t +
∂L

∂vt+1

Matrix	Splitting

Iterative	Solve:	Good	convergence	in	practice

(	P − ΔPt − ΔRt	)	zt =
∂L

∂vt+1

Direct	Solve

Fast	Gradient	Computation

constant timestep-dependent constant:	pre-factorize



Fast	Differentiable	Cloth	Simulation	(Backward)
Iterative	Solver	Speedup	(convergence	 1e-4):	3x	-	12xϵ =

Cloth	Grid	Resolution

12x12 24x24 48x48

Wind 2.9x 5.7x 10.6x

Slope 3.1x 6.8x 12.0x

Wind:	minimal	contact

Slope:	maximal	contact

Iterative	Solver	Speedup



Inverse	Task	Comparison	with	Gradient-Free	Methods
Benchmark	Test:	Optimize	force	field	on	the	cloth	to	reach	the	ring	

Gradient-based	(LBFGS)

Gradient-free	(CMA-ES)
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4300	DoF		|	250	Timesteps	|	 	=	1/90s		
6	Design	Parameters:	cloth	stretching	stiffness	and	sinusoidal	wind	model	parameters	

Δt

Task:	Identify	wind	model	and	material	parameters	to	match	target	trajectory	



1700	DoF	|	400	Timesteps	|	 	=	1/100s	
36	Design	Parameters:	Tangents	and	endpoints	of	the	4	Hermite	Splines

Δt

Task:	Optimize	manipulator	end	effector	trajectories	to	pull	a	sock	on	the	foot	model



Task:	Optimize	dress	material	parameters	so	that	the	spinning	angle	of	the	dress	is	50	degrees

19000	DoF	|	125	Timesteps	|	 	=	1/120s		
2	Design	Parameters:	density	and	bending	stiffness

Δt



1700	DoF	|	400	Timesteps	|	 	=	1/100s	
117000	Design	Parameters:	Network	parameters	of	the	2-layer	MLP

Δt

Task:	A	generalizable	NN	controller	that	puts	hat	onto	the	head	from	any	initial	positions		
around	the	upper	hemisphere



85x	more	sampling	efficient	compare	with	Reinforcement	Learning	baseline

Gradient-based
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Summary	&	Takeaway

github.com/omegaiota/DiffCloth liyifei@csail.mit.edu people.csail.mit.edu/liyifei/diffcloth/

More	sampling	efficient	than		
gradient-free	methods

Effective	in	a	wide	range	of	inverse	tasks

Fast	simulation	with	Projective	Dynamics		
&	fast	back-propagation	with	iterative	solver	

A	differentiable	cloth	
simulator	with	dry	
frictional	contact


