

Cloth simulation has wide applications...

Slow & Tedious Manual Workflow

Differentiable Cloth Simulation

Goal: Optimize θ (e.g. cloth material) to perform a task (e.g. garment design)

Dress Design

Differentiable Cloth Simulation

Goal: Optimize θ (e.g. cloth material) to perform a task (e.g. garment design)

Dress Design

1 Forward Simulation through time to obtain $L(\theta)$

2 Gradient Back Propagation $\frac{\partial L}{\partial \theta} \leftarrow L$ to obtain $\frac{\partial L}{\partial \theta}$

 $^{\circ}$ Use gradient-based optimizer to update θ

$$\theta_{new} \leftarrow \theta_{old} - \frac{\partial L}{\partial \theta} \cdot k$$

Related Works

Differentiable cloth simulation for inverse problems

Projective Dynamics with dry frictional contact

DiffPD: Differentiable Projective Dynamics

Contributions of DiffCloth

Fast Simulation + Gradient Derivation

- Projective-Dynamics-based forward simulation
- Novel gradient computation to speed up back-propagation

Accurate Contact Modeling

Dry-frictional contact

Effective in Inverse Tasks

- Trajectory Optimization
- •Inverse Design

• Real-to-Sim

- Closed-Loop Control
- System Identification

Simulating Cloth Dynamics

 x_t, v_t postion, velocity

Implicit Euler integration is robust

h timestep M mass matrix f force

Simulating Cloth Dynamics

Implicit Euler integration is robust but expensive

Using Newton's method requires costly Hessian matrix computation and factorization of A_t at every timestep (slow)

Fast Simulation with Projective Dynamics

local/global iterative scheme [Bouaziz et al. 14]

Global: Same system matrix P at every timestep

Local: parallel local projections *p*

PD with Dry Frictional Contact [Ly et al. 20]

enforce vertex-vertex frictional contact semi-implicitly to satisfy Signorine-Coulomb condition

$$P v^{k+1} = b(p)^k$$

$$:= f(p)^k + r^k$$
impulse contact impulse

PD with Dry Frictional Contact [Ly et al. 20]

 $||r_T|| = \mu r_N, v_N = 0, r_T ||v_T, r_T \cdot u_t \le 0$

enforce vertex-vertex frictional contact semi-implicitly to satisfy Signorine-Coulomb condition

Signorini Condition $r = 0, v_N > 0$

$$P \, v^{k+1} = b(p)^k$$

$$:= f(p)^k + r^k$$
 impulse contact impulse

 $||r_T|| < \mu r_N, v = 0$

gradient computation via adjoint method

 ΔP Gradient for the projection vector p ΔR Gradient for the contact impulse response vector r

Can we exploit the source of efficiency in forward solve for backward solve?

Fast Gradient Computation

Direct Solve

Iterative Solve: Good convergence in practice

Fast Differentiable Cloth Simulation (Backward)

Iterative Solver Speedup (convergence $\epsilon = 1\text{e-4}$): 3x - 12x

Wind: minimal contact

Slope: maximal contact

	Cloth Grid Resolution		
	12x12	24x24	48x48
Wind	2.9x	5.7x	10.6x
Slope	3.1x	6.8x	12.0x

Iterative Solver Speedup

Inverse Task Comparison with Gradient-Free Methods @

Benchmark Test: Optimize force field on the cloth to reach the ring

Task: Identify wind model and material parameters to match target trajectory

4300 DoF \mid 250 Timesteps \mid Δt = 1/90s 6 Design Parameters: cloth stretching stiffness and sinusoidal wind model parameters

Trajectory Optimization

Task: Optimize manipulator end effector trajectories to pull a sock on the foot model

1700 DoF | 400 Timesteps | Δt = 1/100s 36 Design Parameters: Tangents and endpoints of the 4 Hermite Splines

Inverse Design

Task: Optimize dress material parameters so that the spinning angle of the dress is 50 degrees

Initial Guess

Optimized

19000 DoF | 125 Timesteps | $\Delta t = 1/120s$ 2 Design Parameters: density and bending stiffness Task: A generalizable NN controller that puts hat onto the head from any initial positions around the upper hemisphere

1700 DoF | 400 Timesteps | Δt = 1/100s 117000 Design Parameters: Network parameters of the 2-layer MLP 85x more sampling efficient compare with Reinforcement Learning baseline

Summary & Takeaway

A differentiable cloth simulator with dry frictional contact

Fast simulation with Projective Dynamics & fast back-propagation with iterative solver

More sampling efficient than gradient-free methods

Effective in a wide range of inverse tasks

