
NeuralFluid : Neural Fluidic System Design and
Control with Differentiable Simulation

Yifei Li
MIT CSAIL

Yuchen Sun
Georgia Institute of Technology

Pingchuan Ma
MIT CSAIL

Eftychios Sifakis
University of Wisconsin-Madison

Tao Du
Tsinghua University, Shanghai Qi Zhi Institute

Bo Zhu
Georgia Institute of Technology

Wojciech Matusik
MIT CSAIL

Abstract

We present NeuralFluid , a novel framework to explore neural control and design
of complex fluidic systems with dynamic solid boundaries. Our system features a
fast differentiable Navier-Stokes solver with solid-fluid interface handling, a low-
dimensional differentiable parametric geometry representation, a control-shape
co-design algorithm, and gym-like simulation environments to facilitate various
fluidic control design applications. Additionally, we present a benchmark of
design, control, and learning tasks on high-fidelity, high-resolution dynamic fluid
environments that pose challenges for existing differentiable fluid simulators. These
tasks include designing the control of artificial hearts, identifying robotic end-
effector shapes, and controlling a fluid gate. By seamlessly incorporating our
differentiable fluid simulator into a learning framework, we demonstrate successful
design, control, and learning results that surpass gradient-free solutions in these
benchmark tasks.

1 Introduction

Complex fluidic systems play an important role in many engineering and scientific disciplines, en-
compassing applications at different length scales ranging from biomedical implants [1], microfluidic
devices [2], hydraulic devices to and flying robots [3]. Understanding these fluid-solid coupling
mechanisms in nature and mimicking their control strategies in artificial designs is essential for
advancing our control and design capabilities to synthesize novel solid-fluid systems.

Devising neural control algorithms to accurately manipulate the behavior of a complex fluidic system
and optimize its performance remains challenging due to the intricate interplay between device
geometry, control policies, flow dynamics, and the inherent physical and optimization constraints
unique to each fluidic system. On one hand, differentiable simulation fluid-system interactions are
inherently difficult because simulation is dynamic, involving a sequence of forward and backward
steps interleaved with control signals that are computationally expensive. On the other hand, naively
employing traditional control algorithms, mainly derived from their solid counterparts, to control
fluidic systems remains difficult due to characterizing the infinite degrees of freedom of fluid flows
and their interactions with solid boundaries. The co-design of fluid-solid systems, involving both
shape and control, is critical to exploring the optimal performance of these systems.

Currently, the machine learning community lacks a computational Gym-like [4] environment to
facilitate the exploration of fluidic systems manifesting strong solid-fluid interactions and controllable

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Time

Controller Geometry

Differentiable Navier-Stokes Simulation Loss Computation

Backward Propagation
Forward Simulation

Geometry & Neural Control

Target

Simulated	

Target

Optimized	

Figure 1: Pipeline Overview. (1) Our pipeline starts with an initial parametric geometry and a
neural network parameterized controller. (2) The fluid dynamics is then simulated using a dynamic
Navier-Stokes solver. (3) The performance of the design and control is evaluated using a loss function,
the gradients of which are then back-propagated through our end-to-end differentiable framework.
(4) The gradient-based optimization iteratively improves the geometry and control to achieve the task
goal. This pipeline allows for efficient geometry and control co-optimization.

dynamic boundaries. Recent literature in robotic learning (e.g., [5]) has established unified multi-
physics differentiable simulation platforms to facilitate learning control policies for various fluid
interactions in daily scenarios. Similar ideas can be observed in [6, 7, 8], where differentiable
simulation plays a central role in accommodating various design and optimization tasks of dynamic
systems involving fluid dynamics. However, despite these inspiring advances, learning the control
policies and exploring the optimal performance of a dynamic fluidic system with complex boundary
conditions remains difficult due to their inherent complexities in differentiating solid boundary
behaviors and optimizing their fluidic consequences due to these boundary motions.

This paper presents a novel framework for a fully automated pipeline aimed at devising neural controls
for complex fluidic systems with dynamic boundaries. Our framework is designed to robustly control
complex fluidic systems that consist of externally driven soft boundaries and internal complex flow
behaviors, such as those systems underpinning an artificial heart or a microfluidic device.

NeuralFluid consists of three critical components to enable neural control of a complex fluidic system.
First, we devise a differentiable geometry representation to offer an expressive design space while
remaining low-dimensional, enabling efficient exploration by the optimization algorithm. Second, we
implement a differentiable fluid simulator with solid-fluid interface handling to accurately characterize
the dynamic fluid behavior and predict its spatiotemporal impact on the moving boundaries. We
back-propagate gradients at the solid-fluid interface to extend gradient computation to the geometry
iso-surface. Last, we provided an optimization framework to efficiently search the design space,
considering the underlying fluid dynamics and boundary conditions.

Our pipeline features a low-dimensional parametric geometry representation capable of expressing
complex shapes and a differentiable Navier-Stokes simulator with geometry gradient computation for
predicting dynamic fluid behavior in response to control signals. In addition, our pipeline leverages
gradient-based optimization for efficient design space exploration, co-optimization of the device
geometry and control, and accurate performance evaluation of the design under dynamic flows. To
showcase the practical implications and versatility of our approach, we have established a suite of
Gym-like [4] environments. These benchmarks are designed to test applications in robotics and
engineering, facilitating advancements in system identification, optimization of end-effector shapes
and controls, and the dynamic optimization of structures such as artificial hearts within a closed-loop
control framework. We showcase the effectiveness of our pipeline in facilitating different design and
control tasks, including amplifier, fluidic switch, flow modulator, shape and position identification,
closed-loop control of water gate and artificial heart.

We summarize our main contributions as follows:

• Development of a fast differentiable Navior-Stokes simulator for optimization in 2D and 3D
scenes.

2

• Development of a low-dimensional differentiable parametric geometry representation for
complex shapes embedded into the differentiable simulation pipeline.

• Gradient computation extension to geometry iso-surface to enable control and geometry
co-design and iso-surface optimization.

• Gym-like [4] environments and benchmarks to demonstrate applications in robotics and
engineering, including the design of amplifier, fluidic switch, flow modulator, geometry
system identification, and closed-loop control of a fluid gate and artificial heart.

2 Method

2.1 Pipeline Overview

We present an overview of our method in Fig. 1. Our pipeline defines the designs with a low-
dimensional parametric geometry representation (Sec. 2.2). The behavior and performance of the
design in the fluid environment are evaluated by a dynamic differentiable Navier-Stokes simulator
(Sec. 2.3). Both components are embedded in a gradient-based optimization framework that co-
optimizes both the geometric design and the control signal until convergence.

2.2 Geometry Representation

a) Closed 2D Surface b) Closed 3D Surface c) 3D Geometry

ρ11

ρ12ρ21
ρ22

ρ31

ρ32
ρ41

ρ42

(cx, cy)

2π
N

x
y

z

z0

z1

We represent our geometry
with a low-dimension rep-
resentation. Take the illus-
tration in the inset figure as
an example, here we intro-
duce the representation on
a high level, and refer the
readers to the appendix for
the full details. We param-
eterize a closed 2D surface
using its center c and a set
of connected Bezier curves
with their control points de-
fine in polar coordinates ρi for i ∈ [1, 2, . . . , 2N], where every two control points define a 2D Bezier
curve spanning 2π

N radians in the polar coordinate system. This representation offers a compact
way of defining diverse geometries. We further parameterize a closed 3D surface using a list of
2D surfaces defining the key cross-sections of the geometry along an extrusion axis z of the local
object frame, where each 2D surface is parameterized as described above. The parameterization
includes z = z0 and z1, which determines the Z plane of the first and last cross-section, along
with the parameters for each key 2D cross-section, which are assumed to be evenly spaced between
z ∈ [z0, z1].The continuous geometry interpolates the key cross-sections along the z-axis. Finally, we
construct more complex 3D geometries using operations from Constructive Solid Geometry (CSG):
Union and intersection, which allows us to define a 3D parametric heart model using the union of
four sub-geometries.

2.3 Differentiable Navier-Stokes Simulation

Our fluid dynamics is governed by the incompressible Navier-Stokes equations. These consist of the
momentum equation (Eq. 1a), accounting for temporal changes in velocity (u), advective acceleration,
viscous dissipation, and pressure (p) gradient forces for an incompressible fluid with fluid density ρ
and kinematic viscosity ν. The incompressibility condition (Eq. 1b) requires the divergence of the
velocity field must be zero to enforce the conservation of mass:

∂u

∂t
= −(u · ∇)u+ ν∇2u− 1

ρ
∇p, (1a)

∇ · u = 0 (1b)

3

2.3.1 Numerical Simulation

We build the fluid simulator by leveraging the operator-splitting method [9][10]. A single simulation
step comprises three sub-steps: advection, viscosity, and projection. See the Appendix B for details
on time discretization. The simulation domain is discretized on a standard Marker-and-Cell (MAC)
grid [11], with pressures stored at cell centers and velocities at cell faces. By employing the finite-
difference scheme on the MAC grid cells and faces, we construct the matrix 1

∆xG for gradient
operator and its negative transpose − 1

∆xGT for divergence operator. In the following sections, capital
letters will refer to matrices or the flattened vectors induced by the fields denoted by the corresponding
lowercase letters in Appendix B.

Advection We employ the semi-Lagrangian advection scheme, where the advected velocity field
Ũ

n+1
is a linear interpolation of the velocity field Un. The interpolation position function is a

function of Un can be put into a matrix form B, which results in:

Ũ
n+1

= B(Un)Un. (2)

Viscosity For incompressible fluid with a constant viscosity coefficient, the viscous force density is
the product of the Laplacian of velocity and the viscosity coefficient. For each axis, the Laplacian of
the corresponding velocity component is calculated on grid points using the finite difference method:

Û
n+1

=

(
I − ν∆t

∆x2
GT G

)
Ũ

n+1
. (3)

(𝑖 + 1
2 , 𝑗, 𝑘)

A B

D C

E

F(𝑖, 𝑗, 𝑘)

A

B

C

D

E

F

𝑥

𝑦

𝑧

Projection The projection step ensures the
incompressibility of the fluid. Solid un-
aligned with the grid may intersect with grid
faces, which can be captured with a cut-cell
method [12]. We introduce αn+1 to represent
the fluid proportion of a grid face. The solid’s
signed distance function (SDF) ϕn+1 and the
velocity un+1

s can derived from the solid geom-
etry. We first use marching cube to compute the
geometry zero contour. Next, we identify the intersection points between this contour and the grid
faces and compute αn+1 based on ϕ. For instance, in the inset figure, grid face (i+ 1

2 , j, k) is cut by

the contour, then αn+1
i+ 1

2 ,j,k
= SAEF

SABCD
= 1

2 · |AE|
|AB| ·

|AF |
|AD| =

1
2 · ϕn+1

A

ϕn+1
A −ϕn+1

B

· ϕn+1
A

ϕn+1
A −ϕn+1

D

.

The volume change rates for fluid and solid at grid cell (i, j, k), denoted as γn+1
f,i,j,k and γn+1

s,i,j,k

respectively, equal to the sum of flux on the cell’s surrounding faces, which can be calculated using
αn+1, fluid velocity un+1, and solid velocity un+1

s .

The incompressibility condition gives requires the sum of γn+1
f,i,j,k and γn+1

s,i,j,k to be zero, which gives

∆t

ρ∆x
GT Sn+1GPn+1 = GT Sn+1Û

n+1
+ GT (I − Sn+1)Un+1

s . (4)

where Sn+1 is a diagonal matrix induced by αn+1, and P is the pressure. After solving the linear
system, the fluid velocity is updated based on the pressure values:

Un+1 = Û
n+1

− ∆t

ρ∆x
GPn+1, (5)

2.3.2 Back-propagation through Time

We construct our back-propagation algorithm to mirror the sequence of operations carried out in the
forward pass but in a reversed order.

Given the gradients of the loss function J with respect to the velocity field u at time step n + 1,
denoted by ∂J

∂Un+1 , our goal is to compute the corresponding gradients at time step n, ∂J
∂Un .

4

Projection We begin by reversing the projection step to back-propagate ∂J
∂Un+1 to derive ∂J

∂Pn+1 and
∂J

∂Ûn+1 . Back-propagating through Eq.5 gives

∂J

∂Pn+1 = − ∆t

ρ∆x

∂J

∂Un+1 G. (6)

We can back-propagate the adjoint of Eq. 4 w.r.t Û
n+1

by defining the adjoint variable y and derive

∂J

∂Û
n+1 =

∂J

∂Un+1 + yGT Sn+1, (7)

where A = ∆t
ρ∆xGT Sn+1G, b = GT Sn+1Û

n+1
+GT (I−Sn+1)Un+1

s , and y is computed by solving
the linear system AyT = (∂J

∂Pn+1)
T .

Viscosity and Advection Back-propagating through viscosity and advection simply involves back-
propagating ∂J

∂Ûn+1 through Eq. 3 and Eq. 2, which allows us to derive:

∂J

∂Un =
∂J

∂Û
n+1

(
I − ν∆t

∆x2
GT G

)
.(

∂B
∂Un Un + B(Un)). (8)

The above equations provide the outline of the back-propagation process through a single time step
of from time step n+ 1 to n. To compute the gradients of the loss function J at any time step, we
iterate the back-propagation process over the full sequence of time steps.

2.3.3 Back-propagation through Geometry

The parametric geometry affects simulation through the solid-fluid boundary during the projection
step in Eq. 4. Specifically, the SDF of the geometry ϕn+1 affects the volume matrix Sn+1 and the
velocity (in the case of moving geometry) of the geometry Un+1

s affects the boundary condition. We
can back-propagate ∂J

∂Pn+1 w.r.t these two parameters to derive
∂J

∂Sn+1 = yGT (Û
n+1

− Un+1
s) + y

∂A
∂Sn+1 Pn+1, (9a)

∂J

∂Un+1
s

= −yGT Sn+1. (9b)

Further back-propagating ∂J
∂Sn+1 first through the SDF ϕ then through the distance computation and

∂J
∂Un+1

s
through geometry velocity function allows us to optimize through the geometry iso-surface.

2.3.4 Neural Fluid Control

We can train neural-network parameterized closed-loop fluid controllers with gradients fully computed
at both geometry and velocity throughout time. We parameterize our controllers with a two-layer
MLP. The controller takes as input the observation of the fluid velocity field at each frame and outputs
dynamic control signals that affect the geometry through our parametric geometry presentation, which
further affects the flow field. Our fully differentiable framework allows gradient-based methods to
train the controller efficiently. We implemented the backbone of our code in C++ and CUDA for
computational efficiency. We derived gradients for the geometry and simulation module analytically,
then exposed the differentiable simulation framework through pybind11 [13] to enable seamless
integration with deep learning libraries, which in our case is PyTorch [14].

3 Benchmarks and Applications

In this section, we introduce our fluidic design benchmarks and environments. We warp our environ-
ments using the standard protocol in the gym to facilitate learning practices. We present six fluidic
design and control tasks (Fig. 2) to assess the effectiveness of our computational pipeline for fluidic

5

Table 1: Task Specifications. We summarize the simulation and optimization configuration for the
design tasks shown in Sec. 3 and report the initial and optimized loss. We note that because our
implementation adopts CFL condition for numerical stability during simulation, the actual steps
simulated and back-propagated are higher than the numbers shown in “# Frames”.

Resolution # Frames # Param. ∂Lf

∂Design
∂Lf

∂Control
Loss (Lf)

Initial Optimized

Amplifier 64× 64 40 5 ✓ 13.401 0.005
Switch 64× 64 120 10 ✓ ✓ 13.162 1.893
Shape Identifier 128× 128 10 10 ✓ 70.152 0.759
Flow Modulator 40× 40× 40 100 34 ✓ ✓ 6.118 0.069
Neural Gate 40× 40× 40 50 4.5k ✓ 7.318 0.000
Neural Heart 48× 48× 48 180 7.1k ✓ ✓ 1.086 0.004

Amplifier Switch Shape Identifier Flow Modulator Neural Gate Neural Heart

Figure 2: Tasks Overview. In each task, the blue dashed line represents the inlet, the red dashed
line indicates the outlet, the white arrows show the flow direction, and the orange shapes and arrows
denote the geometry and its motion direction.

system design and learning. A comprehensive illustration of these design scenarios, including the
visualization of the optimization process, is provided in Appendix Sec C and our supplemental video.
Initial conditions are set for all optimizations using randomly sampled values. We use Adam as our
optimizer. We summarize the simulation configuration and optimization configuration as well as
relevant statistics in Table 1.

3.1 Task Overview

Amplifier This design problem aims to amplify a parallel horizontal inflow by three times from an
initial velocity of 5 units to 15 units. The device boundaries are parameterized as two symmetrically
placed cubic Bezier curves. The design variables are the control points and endpoints of the two
curves. The loss function is defined as the last frame L2 norm of the difference between the target
and optimized fluid velocity norm. We visualize the initial and optimized designs in Fig. 3a. We
overlay the design and the corresponding velocity field (colored by the norm) for both iterations.

Shape Identifier This task provides an example of system identification in a fluid environment by
identifying the shape and position of a geometry, given observations of the flow field. We randomly

In
it
ia
l

O
pt
im
iz
ed

0

15

7.5

Iteration

Lo
ss

Optimized

t0 50 100

 v = 5.748

k
=5

k
=3

 v = 9.283

Initial

θ1…8

θ9…16

θ17…24

θ25…32

inlet wall

outlet wall

vin = 2

 v = k ⋅ vin

objective

ω(t) = θ33t + θ34
Velocity StreamlineGeometry

(a) Amplifier (b) Flow Modulator

Figure 3: (a) Visualization of Amplifier. (b) Visualization of Flow Modulator.

6

Muscle 1

Muscle 2

Muscle 3

Muscle 4

Time Time

Time Time

Velocity

VelocityControl

Control

Figure 4: Artificial Heart. Left: visualization of the domain and the location of the muscles. Middle:
Optimized control policy rollout visualization. Right: Optimization results visualization. The top and
bottom diagrams visualize the cosine and the ECG target variants.

initialize the geometry in the domain. We define the loss function as the sum of the L2 norm of
the velocity field difference to the observed ground-truth flow field across time. The optimization
successfully reconstructs the shape and its position with random initialization (See Exp. 4.2).

Switch This task simultaneously optimizes the geometry and the constant rotational speed of a 2D
switch, allowing dynamic regulation of outlet flow velocity. A horizontal inflow at the left interacts
with the switch, splitting into two distinct streams towards the right side. The goal is to let the
time-dependent average velocity norm of the upper stream align with a predetermined flow profile.
We define the loss function as the sum of the L2 norm of the difference between the average velocity
norm of the fluid and the target velocity at each frame. The optimized design and control successfully
generate a linearly increasing upper stream velocity norm profile, matching the specified target.

Flow Modulator This task optimizes the geometry and control of a rotating 3D flow controller
to achieve a target average outlet flow (k× inflow) at the domain’s right boundary by the end of
the simulation. The controller’s geometry is parameterized by four 3D cross-sections, with rotation
controlled by a sinusoidal function. We define the loss as the L2 norm of the difference between the
average outlet and target velocity at the final frame. Fig. 3b illustrates the task: the top left shows
initial parameters and task specification, bottom left shows optimization trajectories, and the right
visualizes the optimized geometry and velocity streamline with two variants (k = 3, 5).

Neural Gate Controller We learn a closed-loop controller for a 3D fluid gate moving horizontally.
The controller is parameterized as a two-layer MLP. It observes the current outflow velocity through
the gate and outputs the next frame motion offset to control the outflow velocity to match a target.

3.2 Scalability to Complex Fluid Fields: A Case Study of Artificial Heart

We showcase the scalability of our method through an artificial heart design and control learning task
(Fig. 4). Artificial heart development is difficult due to the complex blood flow movement within
the heart. This case study provides a first step in studying the heart’s control strategies. We train
a closed-loop controller that outputs the per-time-step contraction signal of the four muscles of a
simplified heart model so that the outlet velocity matches a pre-defined target profile. The controller’s
states include temporal encoding of the current time step and the current outflow norm, and they are
parameterized using a two-layer MLP. The heart’s geometry is parameterized as the union of the
two inlets, one outlet, and the heart chamber. In two variants of the task, one target flow profile is
parameterized using a cosine curve (Fig 4 top), and one target flow profile mimics the shape of an
electrocardiogram (Fig 4 bottom). We define the loss function as the sum of the L2 norm of the
difference between the average velocity norm of the fluid and the target velocity at each frame. In
both variants, the trained controller successfully outputs signals that generate blood flow that matches
the target, demonstrating the effectiveness of our gradient-based optimization framework. We further
visualize the rollouts of the trained controllers at Fig 4 left.

7

Table 2: Time Performance. Our method achieves one order of magnitude speedup across all
resolutions compared to PhiFlow in both forward simulation and backward gradient propagation.

Forward Backward
Resolution PhiFlow (s) Ours (s) Speedup PhiFlow (s) Ours (s) Speedup

32 × 32 × 32 1.282 0.024 53.4× 1.546 0.095 16.3×
40 × 40 × 40 1.741 0.039 44.6× 1.983 0.121 16.4×
48 × 48 × 48 2.227 0.068 32.8× 2.412 0.158 15.3×
64 × 64 × 64 3.145 0.105 30.0× 4.094 0.301 13.6×

Table 3: Memory and time performance comparison with DiffTaichi
Memory (MB) Forward Time (s) Backward Time (s)

Resolution DiffTaichi Ours DiffTaichi Ours DiffTaichi Ours
32 × 32 × 32 685 292 0.081 0.024 0.074 0.027
40 × 40 × 40 1136 308 0.146 0.039 0.133 0.041
48 × 48 × 48 1805 322 0.228 0.068 0.183 0.064
64 × 64 × 64 5005 405 0.435 0.105 0.363 0.117

4 Experiments

4.1 Effects of Initialization on Optimization

This experiment studies the effect of random initialization in our fluid optimization tasks. Specifically,
we conduct an experiment on the 3D heart controller task, which utilizes a neural network with 7,100
parameters. For this task, we initialized the network parameters with five different random seeds,
tracking convergence under each condition. In the accompanying figure, we plot an extended version
of the training trajectory, scaled logarithmically for better visualization, to compare the convergence
of different random initializations. However, in practice, our method achieves the objective driven
by the loss within tens of iterations, as is evident from the steep initial descent in the optimization
curve. As shown in Fig. 5 left, the optimization consistently converges across all seeds, despite
variations in initial network behavior. This consistency indicates the robustness of our method to
random initialization even in high-dimensional optimization spaces, supporting its application to
complex tasks in differentiable physics. These curves offer valuable guidelines for practitioners using
our method in their deployments: the gradients from our approach are robust to hyper-parameters and
scalable to high-dimensional optimization problems.

4.2 Gradient-Based vs Gradient-Free Optimization

We study the effectiveness of our gradient-based method against gradient-free optimization methods
in the Neural Heart task (Fig. 5 right). We choose Proximal Policy Optimization (PPO) [15] as the
baseline for reinforcement learning and CMA-ES [16] for evolution strategies. This environment is
particular challenging due to the sensitivity of the bloodflow to the control signal changes across time,
which could result in large flow field change if adjacent rollouts have large changes. We initialize
all methods to output stochastic control signals of small noise for stable initial simulation. Our
gradient-based method quickly converges to near zero after 60 epochs, while both gradient-free
methods struggle in this environment. We argue that the rapid and successful convergence stems
from the clear gradient provided by our method. Note that our differentiable optimization pipeline
depends on the differentiability of the loss function (e.g., the imitation loss we used). This can be
problematic if the objective is too complex to be characterized in a differentiable manner, in which
case gradient-free methods are better alternatives. However, our framework will still excel due to its
outstanding forward simulation speed, which we will elaborate next.

8

(a) Initialization (b) Ours v.s. Gradient-free Methods

1 2 5 10 20 50 100

0

5

10

15

20 Seed 0
Seed 1
Seed 2
Seed 3
Seed 4

Figure 5: Ablation Studies. Left: Optimization trajectories for Neural Heart with 7100 parameters
under different initialization. Iterations are visualized on a log scale. Right: Log scaled loss-iteration
curves of our gradient-based method and other gradient-free optimization methods.

4.3 Time Performance Profiling and Comparison with PhiFlow

In this experiment, we demonstrate the performance efficiency of our framework through a compar-
ison with PhiFlow. While PhiFlow operates with a TensorFlow-GPU backend, our framework is
implemented in CUDA C++ and features a high-performance Geometric-Multigrid-Preconditioned-
Conjugate-Gradient (MGPCG) Poisson solver [17]. To address the needs of differential operators and
interpolations, which require access to neighboring cells in all directions, we divide the simulation
domain into cubic blocks, each corresponding to a CUDA block. When launching a CUDA kernel,
simulation data for each block is first loaded into shared memory, allowing efficient computation
directly in shared memory and reducing global memory accesses. Additionally, to increase memory
throughput, each block’s data is stored consecutively in global memory. Our matrix-free MGPCG
solver has a faster convergence rate than PhiFlow’s Conjugate Gradient solver and uses a hierarchical
grid data structure, with custom CUDA kernels for prolongation and restriction operations between
coarse and fine grids.

We benchmark both the one-step forward simulation time and gradient back-propagation time at
different resolutions, as shown in Table 2. The experiment runs on a workstation with an NVIDIA
RTX A6000 GPU, where our framework consistently outperforms PhiFlow by an order of magnitude
across all resolutions, benefiting both gradient-based and gradient-free optimization techniques. This
performance improvement is particularly advantageous in fluid simulation applications, including
robotics and video generation. Additionally, our system’s gym protocol compatibility [4] makes it
straightforward for practitioners to integrate and test our library. We plan to release our code and
documentation upon acceptance.

4.4 Memory and Time Performance Profiling and Comparison with DiffTaichi

Here we compare our solver with DiffTaichi, a differentiable programming framework, to highlight
the benefits of our approach in terms of scalability and efficiency. Our method, designed specifically
for differentiable fluid simulation, uses manually derived gradients, avoiding the need to store
intermediate computational graph at each timestep, unlike DiffTaichi, which relies on automatic
differentiation. Additionally, our adjoint derivation for the projection solve step is independent
of solver iterations, making our approach well-suited for advection-projection fluid simulations.
To demonstrate this, we implemented a Conjugate Gradient (CG) solver for the projection step
in DiffTaichi and compared time and memory performance across four grid resolutions in a 3D
optimization scenario (Table 3). Our results show that our solver requires substantially less memory,
with up to 12 times less memory usage than DiffTaichi at 64× 64× 64 resolution. This reduction
in memory stems from eliminating the need to store intermediate values during each CG iteration,
making our solver particularly suitable for high-resolution, long-term optimizations.

5 Related Work

Flow Control and Optimization Beginning with the pioneering work of [18], a vast literature
has been devoted to the optimization of fluid systems [19]. Given a predefined design domain with

9

boundary conditions, a typical optimization objective is to maximize some performance functional of
a fluid system (e.g., the power loss of the system) constrained by the physical equations. Similar to a
conventional structural optimization problem, the design domain is discretized. The optimization
algorithm decides for each element whether it should be fluid or solid to optimize some performance
functions such as power loss. Examples of flow optimization applications include Stokes flow
[18, 20, 21, 22], steady-state flow [23], weakly compressible flow [24], unsteady flow [25], channel
flow [26], ducted flow [27], viscous flow [28], fluid-structure interaction (FSI) [29, 30, 31], fluid-
thermal interaction [32, 33], microfluidics [34], aeronautics [35, 36], and aerodynamics [37, 38],
to name a few. [39] developed a dynamic differentiable fluid simulator and integrated the pipeline
with neural networks for learning controllers. In computer graphics, [40] developed a differentiable
framework to simulate and optimize flow systems governed by design specifications with different
types of boundary conditions, while [8] developed an anisotropic material model to handle different
boundary conditions using topology optimization framework. Both systems focus on the Stokes flow
model and have not explored applications with a dynamic flow system. [41] adapted the adjoint
method to control free-surface liquids.

Differentiable Physics Simulation Differentiable simulations emerge and boost as a powerful
tool to accommodate various optimization applications crossing graphics and robotics. A typical
example is DiffTaichi [42], which created a differentiable programming environment to compute the
gradients of physics simulations. A variety of physics simulation algorithms stemming from graphical
applications have been adapted to a differentiable framework to facilitate inverse design applications,
including fluids [43, 44, 45], position-based dynamics [7], cloth [46, 47], deformable objects [48],
articulated bodies [49], object control [50], and solid-fluid coupling systems [39, 51]. While [51]
proposed a method to differentiate Lagrangian fluid simulation, optimization of rigid geometry is not
discussed. Many applications across graphics and robotics have been explored, such as soft-body
design and locomotion [52, 53] and fluid manipulation [5]. However, none of these approaches
focused on enabling the inverse design of fluidic device systems in dynamic Navier-Stokes flow.

Computational Design The last decade has witnessed an increasing interest in the design of
computational tools and algorithms targeting the digital fabrication of physical systems. A broad
range of applications have been addressed, including the mechanical characters [54, 55, 56], inflatable
thin shells [57], foldable structures [58, 59], Voronoi structures [60], joints and puzzles [61], spinning
objects [62], buoyancy [63], gliders [64], multicopters [65], hydraulic walkers [66], origami robots
[67], articulated robots [68], and multi-material jumpers [69], to name just a few. Among these
applications, the problem of optimizing the shape and control of a 3D printable object to manifest
specific mechanical properties and functionalities has drawn particular attention. Examples of
designing mechanical properties by optimizing materials include optics [70, 71], mechanical stability
[72], strength [73], rest shape [74], and desired deformation [75, 76].

6 Conclusions, Limitation and Future Work

In this paper, we proposed a fully differentiable pipeline for neural fluidic system control and design,
addressing the challenges of complex geometry representation, differentiable fluid simulation, and
co-design optimization processes. Our pipeline features a low-dimensional parametric geometry
representation and a differentiable Navier-Stokes simulator for predicting fluid behavior. We demon-
strate the effectiveness of our pipeline in a number of complex control design tasks, ranging from
different fluidic functional controls to complex neural heart control.

There are certain limitations and avenues for future work. First, the current pipeline assumes the
standard Navier-Stokes model, which limits its applicability to Newtonian flow. Extending the
framework to handle non-Newtonian flows or multi-physics interactions would be an interesting
direction for future research. Additionally, the pipeline relies on parametric representation, which may
encounter challenges in navigating complex design spaces with high-dimensional or discontinuous
parameterizations such as coupling control design with topology optimization. Exploring alternative
optimization algorithms or incorporating surrogate models could enhance the efficiency and robust-
ness of the optimization process. Furthermore, while we demonstrate the effectiveness of our pipeline
in several control and design tasks, additional validation and bench-marking against real-world
physical experiments would be valuable to establish the pipeline’s reliability and generalizability.

10

References
[1] G. D. Ntouni, A. S. Lioumpas, and K. S. Nikita, “Reliable and energy-efficient communications

for wireless biomedical implant systems,” IEEE Journal of Biomedical and Health Informatics,
vol. 18, no. 6, pp. 1848–1856, 2014.

[2] D. Erickson and D. Li, “Integrated microfluidic devices,” Analytica Chimica Acta, vol. 507,
no. 1, pp. 11–26, 2004.

[3] K. Nonami, F. Kendoul, S. Suzuki, W. Wang, and D. Nakazawa, Autonomous flying robots:
unmanned aerial vehicles and micro aerial vehicles. Springer Science & Business Media,
2010.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[5] Z. Xian, B. Zhu, Z. Xu, H.-Y. Tung, A. Torralba, K. Fragkiadaki, and C. Gan, “Fluidlab: A
differentiable environment for benchmarking complex fluid manipulation,” ICLR, 2023.

[6] P. Ma, T. Du, J. Z. Zhang, K. Wu, A. Spielberg, R. K. Katzschmann, and W. Matusik, “Diffaqua:
A differentiable computational design pipeline for soft underwater swimmers with shape
interpolation,” ACM Transactions on Graphics (TOG), vol. 40, no. 4, p. 132, 2021.

[7] T. Du, K. Wu, P. Ma, S. Wah, A. Spielberg, D. Rus, and W. Matusik, “Diffpd: Differentiable
projective dynamics,” ACM Trans. Graph., vol. 41, no. 2, nov 2021. [Online]. Available:
https://doi.org/10.1145/3490168

[8] Y. Li, T. Du, S. Grama Srinivasan, K. Wu, B. Zhu, E. Sifakis, and W. Matusik, “Fluidic
topology optimization with an anisotropic mixture model,” ACM Trans. Graph., nov 2022.
[Online]. Available: https://doi.org/10.1145/3550454.3555429

[9] J. Stam, “Stable fluids,” Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques, p. 121–128, 1999.

[10] R. Bridson, Fluid simulation for computer graphics, 2nd ed. Boca Raton, FL, USA: AK
Peters/CRC Press, 2015.

[11] F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface,” Physics of Fluids, vol. 8, pp. 2182–2189, 1965.

[12] Y. T. Ng, C. Min, and F. Gibou, “An efficient fluid–solid coupling algorithm for single-phase
flows,” Journal of Computational Physics, vol. 228, no. 23, pp. 8807–8829, 2009.

[13] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11 — seamless operability between c++11
and python,” 2016, https://github.com/pybind/pybind11.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “PyTorch: An imperative style, high-performance deep learning
library,” in Neural Information Processing Systems, 2019.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” 2017.

[16] N. Hansen and S. Kern, “Evaluating the cma evolution strategy on multimodal test functions,”
vol. 3242, 2004, pp. 282–291.

[17] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid poisson solver for fluids simulation
on large grids,” ser. SCA ’10, 2010, p. 65–74.

[18] T. Borrvall and J. Petersson, “Topology optimization of fluids in stokes flow,” International
journal for numerical methods in fluids, vol. 41, no. 1, pp. 77–107, 2003.

[19] J. Alexandersen and C. S. Andreasen, “A review of topology optimisation for
fluid-based problems,” Fluids, vol. 5, no. 1, 2020. [Online]. Available: https:
//www.mdpi.com/2311-5521/5/1/29

11

https://doi.org/10.1145/3490168
https://doi.org/10.1145/3550454.3555429
https://www.mdpi.com/2311-5521/5/1/29
https://www.mdpi.com/2311-5521/5/1/29

[20] J. K. Guest and J. H. Prévost, “Topology optimization of creeping fluid flows using a darcy–
stokes finite element,” International Journal for Numerical Methods in Engineering, vol. 66,
no. 3, pp. 461–484, 2006.

[21] N. Aage, T. H. Poulsen, A. Gersborg-Hansen, and O. Sigmund, “Topology optimization of large
scale stokes flow problems,” Structural and Multidisciplinary Optimization, vol. 35, no. 2, pp.
175–180, 2008.

[22] V. J. Challis and J. K. Guest, “Level set topology optimization of fluids in stokes flow,” In-
ternational Journal for Numerical Methods in Engineering, vol. 79, no. 10, pp. 1284–1308,
2009.

[23] S. Zhou and Q. Li, “A variational level set method for the topology optimization of steady-state
navier-stokes flow,” Journal of Computational Physics, vol. 227, no. 24, pp. 10 178–10 195,
2008.

[24] A. Evgrafov, “Topology optimization of slightly compressible fluids,” ZAMM-Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied
Mathematics and Mechanics, vol. 86, no. 1, pp. 46–62, 2006.

[25] Y. Deng, Z. Liu, and Y. wu, “Topology optimization of steady and unsteady incompressible
navier–stokes flows driven by body forces,” Structural and Multidisciplinary Optimization,
vol. 47, 11 2012.

[26] A. Gersborg-Hansen, O. Sigmund, and R. B. Haber, “Topology optimization of channel flow
problems,” Structural and Multidisciplinary Optimization, vol. 30, no. 3, pp. 181–192, 2005.

[27] C. Othmer, E. de Villiers, and H. Weller, “Implementation of a continuous adjoint for topol-
ogy optimization of ducted flows,” in 18th AIAA Computational Fluid Dynamics Conference.
Reston, VA, USA: the American Institute of Aeronautics and Astronautics, 2007, p. 3947.

[28] E. Kontoleontos, E. Papoutsis-Kiachagias, A. Zymaris, D. Papadimitriou, and K. Giannakoglou,
“Adjoint-based constrained topology optimization for viscous flows, including heat transfer,”
Engineering Optimization, vol. 45, no. 8, pp. 941–961, 2013.

[29] G. H. Yoon, “Topology optimization for stationary fluid-structure interaction problems using
a new monolithic formulation,” International Journal for Numerical Methods in Engineering,
vol. 82, no. 5, pp. 591–616, 2010.

[30] W. J. P. Casas and R. Pavanello, “Optimization of fluid-structure systems by eigenvalues gap
separation with sensitivity analysis,” Applied Mathematical Modelling, vol. 42, pp. 269–289,
2017.

[31] C. S. Andreasen and O. Sigmund, “Topology optimization of fluid–structure-interaction prob-
lems in poroelasticity,” Computer Methods in Applied Mechanics and Engineering, vol. 258, pp.
55–62, 2013.

[32] T. Matsumori, T. Kondoh, A. Kawamoto, and T. Nomura, “Topology optimization for fluid–
thermal interaction problems under constant input power,” Structural and Multidisciplinary
Optimization, vol. 47, no. 4, pp. 571–581, 2013.

[33] K. Yaji, T. Yamada, S. Kubo, K. Izui, and S. Nishiwaki, “A topology optimization method for a
coupled thermal–fluid problem using level set boundary expressions,” International Journal of
Heat and Mass Transfer, vol. 81, pp. 878–888, 2015.

[34] C. S. Andreasen, A. R. Gersborg, and O. Sigmund, “Topology optimization of microfluidic
mixers,” International Journal for Numerical Methods in Fluids, vol. 61, no. 5, pp. 498–513,
2009.

[35] M. Mangano, S. He, Y. Liao, D.-G. Caprace, A. Ning, and J. R. R. A. Martins, “Aeroelastic
tailoring of wind turbine rotors using high-fidelity multidisciplinary design optimization,” Wind
Energy Science, Jan. 2023, (in review).

12

[36] Y. Yu, Z. Lyu, Z. Xu, and J. R. R. A. Martins, “On the influence of optimization algorithm and
starting design on wing aerodynamic shape optimization,” Aerospace Science and Technology,
vol. 75, pp. 183–199, Apr. 2018.

[37] A. Jameson, “Optimum aerodynamic design using cfd and control theory,” CFD Review, vol. 3,
06 1995.

[38] K. Maute and M. Allen, “Conceptual design of aeroelastic structures by topology optimization,”
Structural and Multidisciplinary Optimization, vol. 27, no. 1-2, pp. 27–42, 2004.

[39] T. Takahashi, J. Liang, Y.-L. Qiao, and M. C. Lin, “Differentiable fluids with solid coupling for
learning and control,” in AAAI, 2021.

[40] T. Du, K. Wu, A. Spielberg, W. Matusik, B. Zhu, and E. Sifakis, “Functional optimization of
fluidic devices with differentiable stokes flow,” ACM Trans. Graph., vol. 39, no. 6, Dec. 2020.
[Online]. Available: https://doi.org/10.1145/3414685.3417795

[41] A. McNamara, A. Treuille, Z. Popović, and J. Stam, “Fluid control using the adjoint
method,” ACM Trans. Graph., vol. 23, no. 3, p. 449–456, aug 2004. [Online]. Available:
https://doi.org/10.1145/1015706.1015744

[42] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand, “DiffTaichi:
Differentiable programming for physical simulation,” in ICLR, 2020.

[43] P. Holl, V. Koltun, K. Um, and N. Thuerey, “phiflow: A differentiable pde solving framework
for deep learning via physical simulations,” in Advances in Neural Information Processing
Systems (NeurIPS) Workshop, 2022.

[44] P. Holl, V. Koltun, and N. Thuerey, “Learning to control pdes with differentiable physics,” 2020.

[45] B. List, L.-W. Chen, and N. Thuerey, “Learned turbulence modelling with differentiable fluid
solvers: physics-based loss functions and optimisation horizons,” Journal of Fluid Mechanics,
vol. 949, Sep. 2022. [Online]. Available: http://dx.doi.org/10.1017/jfm.2022.738

[46] Y. Li, T. Du, K. Wu, J. Xu, and W. Matusik, “Diffcloth: Differentiable cloth
simulation with dry frictional contact,” ACM Trans. Graph., mar 2022. [Online]. Available:
https://doi.org/10.1145/3527660

[47] Y. Li, H.-y. Chen, E. Larionov, N. Sarafianos, W. Matusik, and T. Stuyck, “DiffAvatar:
Simulation-ready garment optimization with differentiable simulation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Los Alamitos, CA, USA: IEEE Computer Society, June 2024. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.00418

[48] Y. Qiao, J. Liang, V. Koltun, and M. Lin, “Differentiable simulation of soft multi-body systems,”
Advances in Neural Information Processing Systems, vol. 34, 2021.

[49] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin, “Efficient differentiable simulation of articulated
bodies,” in International Conference on Machine Learning. PMLR, 2021, pp. 8661–8671.

[50] ——, “Scalable differentiable physics for learning and control,” in ICML, 2020.

[51] Z. Li, Q. Xu, X. Ye, B. Ren, and L. Liu, “Difffr: Differentiable sph-based fluid-rigid coupling
for rigid body control,” ACM Trans. Graph., vol. 42, no. 6, Dec 2023. [Online]. Available:
https://doi.org/10.1145/3618318

[52] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W. Matusik,
“Chainqueen: A real-time differentiable physical simulator for soft robotics,” 2018. [Online].
Available: https://arxiv.org/abs/1810.01054

[53] A. Spielberg, A. Zhao, Y. Hu, T. Du, W. Matusik, and D. Rus, “Learning-in-the-loop optimiza-
tion: End-to-end control and co-design of soft robots through learned deep latent representations,”
in Neural Information Processing Systems, 2019.

13

https://doi.org/10.1145/3414685.3417795
https://doi.org/10.1145/1015706.1015744
http://dx.doi.org/10.1017/jfm.2022.738
https://doi.org/10.1145/3527660
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.00418
https://doi.org/10.1145/3618318
https://arxiv.org/abs/1810.01054

[54] S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R. W. Sumner, W. Matusik, and
B. Bickel, “Computational design of mechanical characters,” ACM Transactions on Graphics
(TOG), vol. 32, no. 4, p. 83, 2013.

[55] B. Thomaszewski, S. Coros, D. Gauge, V. Megaro, E. Grinspun, and M. Gross, “Computational
design of linkage-based characters,” ACM Transactions on Graphics (TOG), vol. 33, no. 4,
p. 64, 2014.

[56] D. Ceylan, W. Li, N. J. Mitra, M. Agrawala, and M. Pauly, “Designing and fabricating mechani-
cal automata from mocap sequences,” ACM Transactions on Graphics (TOG), vol. 32, no. 6, p.
186, 2013.

[57] M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross,
“Designing inflatable structures,” ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 63,
2014.

[58] S. Felton, M. Tolley, E. Demaine, D. Rus, and R. Wood, “A method for building self-folding
machines,” Science, vol. 345, no. 6197, pp. 644–646, 2014.

[59] C. Sung and D. Rus, “Foldable joints for foldable robots,” Journal of Mechanisms and Robotics,
vol. 7, no. 2, p. 021012, 2015.

[60] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-Or, and B. Chen,
“Build-to-last: strength to weight 3d printed objects,” ACM Transactions on Graphics (TOG),
vol. 33, no. 4, p. 97, 2014.

[61] T. Sun, C. Zheng, Y. Zhang, C. Yin, C. Zheng, K. Zhou, Y. Yue, B. Smith, C. Batty, Z. Xu et al.,
“Computational design of twisty joints and puzzles.” ACM Trans. Graph., vol. 34, no. 4, pp.
101–1, 2015.

[62] M. Bächer, E. Whiting, B. Bickel, and O. Sorkine-Hornung, “Spin-it: optimizing moment of
inertia for spinnable objects,” ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 96, 2014.

[63] L. Wang and E. Whiting, “Buoyancy optimization for computational fabrication,” Computer
Graphics Forum (Proceedings of Eurographics), vol. 35, no. 2, 2016.

[64] T. Martin, N. Umetani, and B. Bickel, “Omniad: data-driven omni-directional aerodynamics,”
ACM Transactions on Graphics (TOG), vol. 34, no. 4, p. 113, 2015.

[65] T. Du, A. Schulz, B. Zhu, B. Bickel, and W. Matusik, “Computational multicopter design,”
2016.

[66] R. MacCurdy, R. Katzschmann, Y. Kim, and D. Rus, “Printable hydraulics: A method for
fabricating robots by 3d co-printing solids and liquids,” 2016.

[67] A. Schulz, C. Sung, A. Spielberg, W. Zhao, R. Cheng, E. Grinspun, D. Rus, and W. Matusik,
“Interactive robogami: An end-to-end system for design of robots with ground locomotion,” The
International Journal of Robotics Research, vol. 36, no. 10, pp. 1131–1147, 2017.

[68] A. Spielberg, B. Araki, C. R. Sung, R. Tedrake, and D. Rus, “Functional co-optimization of
articulated robots,” in ICRA. IEEE, 2017, pp. 5035–5042.

[69] D. Chen, D. I. Levin, W. Matusik, and D. M. Kaufman, “Dynamics-aware numerical coarsening
for fabrication design,” ACM Trans. Graph., vol. 34, no. 4, 2017.

[70] M. Hašan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz, “Physical reproduction of
materials with specified subsurface scattering,” ACM Trans. Graph., vol. 29, no. 4, 2010.

[71] Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo, “Fabricating spatially-varying subsurface
scattering,” ACM Trans. Graph., vol. 29, no. 4, 2010.

[72] O. Stava, J. Vanek, B. Benes, N. Carr, and R. Měch, “Stress relief: improving structural strength
of 3d printable objects,” ACM Trans. Graph., vol. 31, no. 4, 2012.

14

[73] Q. Zhou, J. Panetta, and D. Zorin, “Worst-case structural analysis,” ACM Trans. Graph., vol. 32,
no. 4, 2013.

[74] X. Chen, C. Zheng, W. Xu, and K. Zhou, “An asymptotic numerical method for inverse elastic
shape design,” ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014), vol. 33,
no. 4, Aug. 2014.

[75] B. Bickel, M. Bächer, M. A. Otaduy, H. R. Lee, H. Pfister, M. Gross, and W. Matusik, “Design
and fabrication of materials with desired deformation behavior,” ACM Trans. Graph., vol. 29,
no. 4, 2010.

[76] B. Zhu, M. Skouras, D. Chen, and W. Matusik, “Two-scale topology optimization with mi-
crostructures,” ACM Trans. Graph., vol. 36, no. 4, jul 2017.

A Geometry Representation Implementation

2D Geometry We define a closed 2D surface using N connected cubic Bezier curves parameterized
in the polar coordinate frame. A point c is defined on the surface to establish the center of a polar
coordinate frame. Each Bezier curve spans an arc of 2π

N radians on the polar coordinate plane,
and its control points are symmetrically placed, each at an angular displacement of 2π

3N radians
from their corresponding curve endpoint. The shape of each Bezier curve, and consequently the
overall surface, is manipulated via two scalar parameters, ρ1 and ρ2, dictating the polar coordinate
distance of the two control points. The i-th cubic Bezier curve is defined by two control points
p0 = (ρi1 cos θ, ρ

i
1sinθ) + c and p1 = (ρi2 cos θ, ρ

i
2sinθ) + c, where c is the reference center point.

The endpoints e0, e1 are computed by ensuring ei1 = e(i+1)%N
0 and colinearity of each pair of

pi
1, ei1,p(i+1)%N

0 . This representation offers a compact way of defining diverse geometries.

3D Geometry We parameterize a closed 3D surface using 2D surfaces defining the key cross-
sections of the geometry along the z-axis of the local object frame, where each 2D surface is
parameterized by N cubic Bezier curves. The parametrization includes z = z0 and z1, which
determines the Z plane of the first and last cross-section and the parameters for each key cross-section.
The i− th key cross-section is defined by the center ci and control point parameters ρi1, ρ

i
2 for each

of i ∈ [1, 2, . . . , N]. The key cross-sections are assumed to be evenly spaced along the z-axis. Then,
given z0 ≤ z ≤ z1, the cross-section of the closed surface at Z = z is defined by interpolating the
centers and control points of all key cross-sections using the interpolation scheme

cz =

n∑
i=1

ci(
z − z0
z1 − z0

)i (10a)

ρj =

n∑
i=1

ρi
j(

z − z0
z1 − z0

)i (10b)

B Temporal Discretization of the Governing Equation

We build the fluid simulator by leveraging the operator-splitting method [9][10]. Each simulation
step comprises of advection, viscosity, and projection.

Advection We employ the semi-Lagrangian advection scheme specified in (Eqs. 11 and 12) to
propagate velocity through the fluid domain:

ũn+1/2 − un

∆t/2
= −un · ∇un, (11)

ũn+1 − un

∆t
= −ũn+1/2 · ∇un. (12)

15

Viscosity For incompressible fluid with a constant viscosity coefficient, the viscous force density
is equivalent to the product of the Laplacian of velocity and the viscosity coefficient. We employ
explicit time integration to update the fluid velocity in response to the viscous force.

ûn+1 − ũn+1

∆t
= ν∇2ũn+1 (13)

Projection The projection step involves an update of the pressure and the velocity field (Eq. 14a)
to ensure the satisfaction of the incompressibility condition (Eq. 14b).

un+1 − ûn+1

∆t
= −1

ρ
∇pn+1, (14a)

∇ · un+1 = 0. (14b)

On boundaries, the pressure is regulated by two conditions: the Dirichlet boundary condition (Eq.
15a) and the non-penetrating Neumann boundary condition (Eq. 15b) given computed geometry
velocity un+1

s : {
pn+1 = 0, x ∈ ∂Ωn+1

f , (15a)

un+1 · n = un+1
s · n, x ∈ ∂Ωn+1

b . (15b)

The pressure field for the subsequent time step pn+1 is determined by solving the resultant Poisson
equation (Eq. 16).

∆t

ρ
∇2pn+1 = ∇ · ûn+1. (16)

C Additional Optimization Task Details and Visualization

C.1 Switch

We visualize the initial and optimized design for the amplifier task in Fig. 6.

Initial Design

Optimized Design

10

15

20

25

30

u

t

simulated
target

t

r(t) = θ0 + θ1t

ρ = [θ2, …, θ9]

3010 20
10

15

20

25

30

Figure 6: Fluidic Switch. The switch rotates dynamically across time (dotted lines). The shape
of the switch is parameterized as a 2D Polar Bezier, whose parameters, along with the parameters
of the rotation signal are subject to optimization. The top and bottom of the illustration visualize
information from the initial and optimized iteration respectively. For each iteration, we visualize the
design geometry (left) and corresponding streamlines of the flow field (right) at 7 key-frames evenly
sampled across time. We additionally plot the target (green) and outlet velocity norm profile (orange)
across time and visualize their difference in grey shaded area.

D Experiment on Fluid Solver Validation – Kármán Vortex Street

To further validate the performance of our solver, we conducted an additional experiment simulating
the formation of a classic Kármán Vortex Street. This experiment was executed at a resolution
of 512 × 1024 and illustrates the capability of our solver in capturing complex fluid dynamics
phenomena. As shown in Fig. 7, we simulate a horizontal flow passing around a cylindrical obstacle

16

at three distinct kinematic viscosity values: inviscid (ν = 0), moderate viscosity (ν = 0.01), and
high viscosity (ν = 0.1).

Each viscosity setting demonstrates the characteristic vortex shedding pattern associated with Kármán
Vortex Street formation. These results confirm our solver’s ability to replicate this well-known
phenomenon and offer insights into the effect of varying viscosity on vortex behavior. This validation
experiment supports the accuracy and versatility of the solver across different fluid conditions.

vorticity	ω

N
o	
Vi
sc
os
it
y

Lo
w
	V
is
co
si
ty

H
ig
h	
Vi
sc
os
it
y

0

0.5

1

ν
=0

ν
=0

.00
2

ν
=0

.02

Figure 7: Solver Validation. Visualization of Karman Vortex Street under different viscosity con-
ditions. Here, we illustrate the results of the classic Karman Vortex Street test for three different
kinematic viscosity values (From top to down ν = 0.0, ν = 0.002 and ν = 0.02), simulated using
our differentiable simulator within a domain size 512 × 1024. Each figure visualizes the vortex
patterns, and the results demonstrate how increased viscosity leads to a notable change in vortex
formation and dissipation.

E Gradient Stability and Solver Steps Statistics

Gradient stability in differentiable physics is a well-known challenge, particularly given the potential
for gradient explosion or vanishing when gradients are accumulated across numerous solver steps.
In our approach, however, we have not encountered significant issues with gradient stability. This
stability is likely due to the accuracy of the gradients produced by our framework and the robustness
of our numerical solver. To illustrate this, we provide gradient norm statistics over the full course
of optimization for three tasks of varying complexity in Table 4, demonstrating consistent gradient
magnitudes without evidence of explosion or vanishing. For additional robustness, our implementation
includes gradient clipping with a threshold of 1.0, which can mitigate gradient explosion in particularly
challenging scenarios. This technique ensures gradients remain within manageable limits and
contributes to the overall stability of our optimization pipeline.

Furthermore, the actual number of solver steps required to advance between frames in our solver
depends on the Courant-Friedrichs-Lewy (CFL) condition, which is maintained to ensure numerical
stability. Additional statistics on solver steps over one optimization cycle across various tasks are
provided in the upper portion of Table 4, offering further insight into the computational demands and
stability characteristics of our approach.

17

Metric Statistic Shape Identifier Heart 3D Gate 3D
Steps Mean, Std (11, 0) (54, 0) (58, 0)

Gradient Norm Min, Max (0.46, 252.37) (1.61, 820.82) (5.13, 169.21)
Mean, Std (28.04, 38.00) (65.96, 109.40) (40.71, 34.36)

Table 4: Statistics of the gradient norm and step count over the full course of optimization for three
tasks of varying complexity.

Table 5: Gradient Validation for Shape Identifier Task
Gradient Values by Parameter (P1 to P6)

P1 P2 P3 P4 P5 P6
Analytic 0.048 0.394 0.314 0.046 0.133 0.067

Finite Diff 0.048 0.396 0.314 0.046 0.134 0.066
Abs Diff -1.7e-4 -2.1e-3 5.2e-4 -3.4e-4 -1.4e-3 7.2e-4
Elem Err 0.004 0.005 0.002 0.007 0.011 0.011

Gradient Values by Parameter (P7 to P11)
P7 P8 P9 P10 P11

Analytic 0.087 0.008 -0.022 0.540 -0.058
Finite Diff 0.086 0.008 -0.025 0.540 -0.059
Abs Diff 2.1e-4 -9.6e-5 2.2e-3 2.4e-4 9.5e-4
Elem Err 0.003 0.012 0.098 0.000 0.016

F Experiment on Gradient Validation

To ensure the correctness of the gradients in our differentiable simulation framework, we validated
the analytical gradients of all kernels, functions, and the entire simulation and optimization pipeline
using finite difference approximations. Specifically, we employed the central difference method with
a step size of 1.2 × 10−5 to approximate the gradients numerically and compared them with the
analytical gradients calculated by our solver.

In this validation experiment, we consider the end-to-end gradients for the Shape Identifier Task,
which involves optimizing over 11 parameters. The analytical gradients, finite difference gradients,
their absolute differences, and element-wise errors are reported in Table 5. For this task, we observed
a relative error of 0.0047 for the gradient vector, confirming the high accuracy of our analytical
gradients.

18

	Introduction
	Method
	Pipeline Overview
	Geometry Representation
	Differentiable Navier-Stokes Simulation
	Numerical Simulation
	Back-propagation through Time
	Back-propagation through Geometry
	Neural Fluid Control

	Benchmarks and Applications
	Task Overview
	Scalability to Complex Fluid Fields: A Case Study of Artificial Heart

	Experiments
	Effects of Initialization on Optimization
	Gradient-Based vs Gradient-Free Optimization
	Time Performance Profiling and Comparison with PhiFlow
	Memory and Time Performance Profiling and Comparison with DiffTaichi

	Related Work
	Conclusions, Limitation and Future Work
	Geometry Representation Implementation
	Temporal Discretization of the Governing Equation
	Additional Optimization Task Details and Visualization
	Switch

	Experiment on Fluid Solver Validation – Kármán Vortex Street
	Gradient Stability and Solver Steps Statistics
	Experiment on Gradient Validation

