Introduction

. Imitation Learning mimic expert behavior
without access to an explicit reward signal.

. Expert demonstrations provided by humans,
however, often show significant variability.
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(a) Expert (b) BC

(c) GAIL

(d) InfoGAIL

« BC - deviates due to compounding errors.

. GAIL - fails to capture the latent structure.

Our method

- Can disentangle different behaviors (modes).

- Can do imitation learning from raw images.

- Can be used to anticipate actions.

Generative Adversarial Imitation Learning
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- Discriminator D tries to distinguish between
expert trajectories and ones from policy .

» Policy 7 tries to fool the discriminator.

min max £, [log D(s, a)] +

D

- |log(l — D(s, a))] (1)
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Interpretable Imitation Learning

. Introduce a latent variable/code c.

. Imitate while maximizing the mutual

information (MI) between
(1) the latent code
(2) the observed trajectories

min max rllog D(s, a)| + Ex|log(1 — D(s, a))]
| —AiLy(7, Q) (2)

. L/(7, Q) is a variational lower bound of MI

L/(ﬂ', Q) — 43c~p(c),a~7r(-|s,c)[|0g Q(C‘T)] T H(C) (3)
where @ is an approximation to the posterior.

Algorithm 1 InfoGAIL

Input: Initial parameters of policy, discriminator and
posterior approximation 6y, wy, Yg; expert trajectories
TE ~ T containing state-action pairs.

Output: Learned policy 7y

for i =0,1,2,... do

Sample latent codes: ¢; ~ p(c)

Sample trajectories: 7; ~ my(c;).

Sample state-action pairs x; ~ 7; and xg ~ TE.
Update w; to w;y1 by ascending with gradients

Ay, = %X/[vw; log D,,(s, a)|+ 3JXE[VM log(1—D,,(s, a))]
Update 9; to 1,1 by descending with gradients

Awi — _)\1 %Xi[vwi |Og Q¢i(c‘57 a)]
Update 6, to 6,1, using TRPO with the objective:

ﬂxl.[log DWIH(S’ 3)] — )\1L/(7T6’,'7 Q¢i+1)
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Figure: Visualization of different training stages.

InfoGAIL Training

- Reward Augmentation
Incorporate prior knowledge by adding
state-based incentives n(my) = Esr,[r(5)].

- Improved Objective
Using WGAN to alleviate the problems of

(1) vanishing gradient
(2) mode collapse
rg]ibn max 43779[Dw(57 a)] N {"WE[DCU(S? a)] o )‘077(7T6’)
| —A1L(mg, Qy) (4)

. Variance Reduction
Baselines, Replay Butffers, etc.

. Transfer Learning for Visual Inputs
Extract features from a pre-trained network.

Figure: Transfer learning for handling visual
inputs.

Experiments on Self-Driving

Interpretable Imitation Learning via Vision

. Using TORCS - a driving simulator

. Vision as only source of perceptual inputs

The learned policy

. successfully distinguishes expert behaviors.

. produces interpretable representations from
high-dimensional visual behavioral data.

. imitates each mode accordingly.

. low-level actions controlled by specitying
high-level latent codes.
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(a) GAIL (b) InfoGAIL
Figure: Passing a car.
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Figure: Visual inputs used for passing a car.

Table: Predictive Table: Ablation study

accuracy Method Rollout dist.
Method Acc. Behavior Cloning 701.83
Chance 50%, GAIL 914.45
K-means 55 4% Inf OGAIL\RB 1031.13
PCA 61.7% IIlfOGAIL\RA 1123.89

InfoGAIL (Ours) 81.9% InfoGAIL\WGAN  1177.72
SVM g5 g0,  INfoGAIL (Ours)  1226.68
CNN 90.8% Human 1203.51

Code: https:/ / github.com/ermongroup /infogail
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