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Abstract— There has been an increasing interest in learning
dynamics simulators for model-based control. Compared with
off-the-shelf physics engines, a learnable simulator can quickly
adapt to unseen objects, scenes, and tasks. However, existing
models like interaction networks only work for fully observable
systems; they also only consider pairwise interactions within
a single time step, both restricting their use in practical
systems. We introduce Propagation Networks (PropNet), a
differentiable, learnable dynamics model that handles partially
observable scenarios and enables instantaneous propagation of
signals beyond pairwise interactions. With these innovations,
our propagation networks not only outperform current learn-
able physics engines in forward simulation, but also achieves
superior performance on various control tasks. Compared with
existing deep reinforcement learning algorithms, model-based
control with propagation networks is more accurate, efficient,
and generalizable to novel, partially observable scenes and tasks.

I. INTRODUCTION

Physics engines are critical for planning and control in
robotics. To plan for a task, a robot may use a physics engine
to simulate the effects of different actions on the environment
and then select a sequence of actions to reach a desired goal
configuration. The utility of the resulting action sequence
depends on the accuracy of the physics engine’s predictions;
so a high-fidelity physics engine plays an important role
in robot planning. Most physics engines used in robotics
(such as Mujoco [1] and Bullet [1]) use approximate contact
models, and recent studies [2], [3], [4] have demonstrated
discrepancies between their predictions and real-world data.
These mismatches make contact-rich tasks hard to solve with
these physics engines.

Recently, researchers have started building general-purpose
neural physics simulators, aiming to approximate complex
physical interactions with neural networks [5], [6]. They have
succeeded to model the dynamics of both rigid-bodies and
deformable objects (e.g., strings). More recent work has used
interaction networks for discrete and continuous control [7],
[8], [9], [10].

Interaction networks, however, have two major limitations.
First, interaction nets only consider pairwise interactions
between objects, restricting its use in real-world scenarios,
where simultaneous multi-body interactions often occur.
Typical examples include Newton’s cradle (Fig. 1a) or string
manipulation (Fig. 1b). Second, they need to observe the
full states of the environment; however, many real-world
control tasks involve dealing with partial observable states.
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(a) Newton’s Cradle (b) String Manipulation

(c) Box Pushing

Fig. 1: Challenges for existing differentiable physics simulators: Model-
ing the dynamics of (a) Newton’s cradle or (b) a string requires instantaneous
propagation of multi-object interaction. For (a), our goal is to control the
leftmost ball so that rightmost ball hits the target (transparent). For (b), our
goal is to control the string to reach the target (transparent), while the blue
and green circles are fixed obstacles. (c) Pushing a group of boxes to a
target configuration requires dynamics modeling under partial observations.
Here, camera is looking down and only red blocks are observable.

Fig. 1c shows an example, where the robot wants to push a
set of blocks into a target configuration; however, only the
red blocks on the surface are visible to the camera.

In this paper, we introduce Propagation Networks (Prop-
Net), a differentiable, learnable engine that simulates multi-
body object interactions. PropNet handles partially observable
situations by operating on a latent dynamics representation; it
also enables instantaneous propagation of signals beyond
pairwise interactions using multi-step effect propagation.
Specifically, by representing the scene as a graph, where
objects are the vertices and object interactions are the directed
edges, we initialize and propagate the signals through the
directed paths in the interaction graph at each time step.

Experiments demonstrate that PropNet consistently outper-
form interaction networks in forward simulation. PropNet’s
ability to accurately handle partially observable states bring
significant benefits for control. Compared with interaction nets
and state-of-the-art model-free deep reinforcement learning
algorithms, model-based control using propagation networks
is more sample-efficient, accurate, and generalizes better to
novel, partially observable scenarios.∗

II. RELATED WORK

A. Differentiable Physics Simulators

In recent years, researchers have been building differen-
tiable physics simulators in various forms [11], [12]. For
example, approximate, analytical differentiable rigid body

∗Video: https://youtu.be/vB8fg-yQs-I
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Fig. 2: Newton’s Cradle. (a) shows the initial states of a Newton’s cradle, based on which both the Interaction Networks and Propagation Networks try to
predict future states; (b-i) The Interaction Networks can only propagate the force along a single relation at a time step, thus results in a false prediction
(c-i); (b-ii) Our proposed method can propagate the force correctly which leads to the correct prediction (c-ii); (d) A downstream task that to achieve a
specific goal using the learned model; (e-i) Model-based control methods fail to produce the correct control using Interaction Networks while (e-ii) our
model can give the desired control signal.

simulators [12], [13] have been deployed for tool manipulation
and tool-use planning [14].

Among them, two notable efforts on learning differentiable
simulators include interaction networks [5] and neural physics
engines [6]. These methods restrict themselves to pairwise
interactions for generalizability. However, this limits their
ability to handle simultaneous, multi-body interactions. In
this paper, we tackle this problem by learning to propagate the
signals according to the interaction graph. Gilmer et al. [15]
have recently explored message passing networks, but with a
focus on quantum chemistry.

B. Model-Predictive Control with a Learned Simulator

Recent work on model-predictive control with deep net-
works [16], [17], [18], [19], [20] often learns an abstract-
state transition function, instead of an explicit account
of the environment [21], [22]. Subsequently, they use the
learned model or value function to guide the training of the
policy network. Instead, PropNet learns a general physics
simulator that takes raw object observations (e.g., positions,
velocities) as input. We then integrate it into classic trajectory
optimization algorithms for control.

There have been a few papers that exploit the power of
interaction networks for planning and control. Many of them
use interaction networks to imagine—rolling out approximate
predictions—to facilitate training a policy network [7], [8],
[9]. In contrast, we use propagation networks as a learned
dynamics simulator and directly optimize trajectories for
continuous control. By separating model learning and control,
our model generalizes better to novel scenarios. Recently,
Sanchez-Gonzalez et al. [10] also explored applying in-
teraction networks for control. Compared with them, our
propagation networks can handle simultaneous multi-body
interactions and deal with partially observable scenarios.

III. LEARNING THE DYNAMICS

A. Preliminaries

We assume that the interactions within a physical system
can be represented as a directed graph, G = 〈O,R〉, where
vertices O represent the objects, and edges R correspond to
relations (Fig. 3). Graph G can be represented as

O = {oi}i=1...|O| R = {rk}k=1...|R| (1)

Specifically, oi = 〈xi, aoi , pi〉, where xi = 〈qi, q̇i〉 is the state
of object i, containing its position qi and velocity q̇i. aoi
denote its attributes (e.g., mass, radius), and pi is the external
force on object i. For relations, we have

rk = 〈uk, vk, ark〉, 1 ≤ uk, vk ≤ |O|, (2)

where uk is the receiver, vk is the sender, and ark is the type
and attributes of relation k (e.g., collision, spring connection).

Our goal is to build a learnable physical engine to
capture the underlying physical interactions using function
approximators. We can then use it to infer the system
dynamics and predict the future from the observed interaction
graph G:

Gt+1 = φ(Gt), (3)

where Gt denotes the scene states at time t and φ is a learnable
dynamics model.

Below we review our baseline model Interaction Net-
works (IN) [5]. IN is a general-purpose, learnable physics
engine, performing object- and relation-centric reasoning
about physics. IN defines an object function fO and a
relation function fR to model objects and their relations
in a compositional way. The future state at time t + 1 is
predicted as

ek,t = fR(ouk,t, ovk,t, a
r
k), k = 1 . . . |R|,

ôi,t+1 = fO(oi,t,
∑
k∈Ni

ek,t), i = 1 . . . |O|, (4)

where oi,t = 〈xi,t, aoi , pi,t〉 denotes object i at time t, uk and
vk are the receiver and sender of relation rk, and Ni denotes
the relations where object i is the receiver.

B. Propagation Networks

IN defines a flexible and efficient model for explicit
reasoning of objects and their relations in a complex system.
It can handle a variable number of objects and relations
and has shown good performance in domains like n-body
systems, bouncing balls, and falling strings. However, one
fundamental limitation of IN is that at every time step t,
it only considers local information in the graph G and
cannot handle instantaneous propagation of forces, such as
the Newton’s cradle shown in Fig. 2, where ball A’s impact
produces a compression wave that propagates through the
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Fig. 3: Graphical illustration of the models. (a) The structure of Interaction
Networks as detailed in Eqn. 4; (b) The internal structure of Vanilla PropNet
is described in Eqn. 5, where the effects el and hl are propagated through
the propagators f l

O and f l
R along the directed relations in the graph G; (c)

The shared object encoding co and relation encoding cr are inputs to the
internal modules, where there are also residual connections for better effect
propagation as described in Eqn. 9 and 10.

balls immediately [23]. As force propagation is a common
phenomenon in rigid-body dynamics, this shortcoming has
limited IN’s practical applicability.

To address the above issues, we propose Propagation
Networks (PropNet) to handle the instantaneous propagation
of forces efficiently. Our method is inspired by message
passing, a classic algorithm in graphical models,

1) Effect propagation: Effect propagation requires multi-
step message passing along the directed edges in the graph
G. Forces ejected from ball A (Fig. 2) should be propagated
through the connected balls to ball B within a single time
step. Force propagation is hard to analyze analytically for
complex scenes. Therefore, we let PropNet learn to decide
whether an effect should be propagated further or withheld.

At time t, we denote the propagating effect from relation
k at propagation step l as elk,t, and the propagating effect
from object i as hli,t. Here, we have 1 ≤ l ≤ L, where L
is the maximum propagation steps within each step of the
simulation. Propagation can be described as

Step 0: h0
i,t = 0, i = 1 . . . |O|, (5)

Step l = 1, . . . , L: elk,t = f l
R(ouk,t, ovk,t, a

r
k, h

l−1
uk,t

, hl−1
vk,t

),

k = 1 . . . |R|, (6)

hl
i,t = f l

O(oi,t,
∑
k∈Ni

elk,t),

i = 1 . . . |O|, (7)

Output: ôi,t+1 = hL
i,t, i = 1 . . . |O|, (8)

where f lO denotes the object propagator at propagation step
l and f lR denotes the relation propagator. Depending on the
complexity of the task, the network weights can be shared
among propagators at different propagation steps.

We name this model Vanilla PropNet. Experimental results
show that the selection of L is task-specific, and usually a
small L (e.g., L = 3) can achieve a good trade-off between
the performance and efficiency.

2) Object- and relation-encoding with residual connections:
We notice that Vanilla PropNet is not efficient for fast online
control. As information such as states oi,t and attributes ark
are fixed at a specific time step, they can be shared without
re-computation between each sequential propagation step.

Hence, inspired by the ideas on fast RNNs training [24], [25],
we propose to encode the shared information beforehand
and reuse them along the propagation steps. We denote the
encoders for objects as f enc

O and the encoder for relations as
f enc
R . Then,

coi,t = f enc
O (oi,t), crk,t = f enc

R (ouk,t, ovk,t, a
r
k). (9)

In practice, we add residual links [26] between adjacent prop-
agation steps that connect hli,t and hl−1i,t . This helps address
the gradient vanishing/exploding problem and provides access
to the historical effects. The update rules become

elk,t = f lR(crk,t, h
l−1
uk,t

, hl−1vk,t
),

hli,t = f lO(coi,t,
∑
k∈Ni

el−1k,t , h
l−1
i,t ), (10)

where propagators f lO and f lR now take a new sets of inputs,
which is different from Vanilla PropNet.

Based on the assumption that the effects between propaga-
tion steps can be represented as simple transformations (e.g.,
identity-mapping in the Newton’s cradle), we can use small
networks as function approximators for the propagators f lO
and f lR for better efficiency. We name this updated model
Propagation Networks (PropNets).

C. Partially Observable Scenarios

For many real-world situations, however, it is often hard
or impossible to estimate the full state of the environments.
We extend Eqn. 3 using PropNets to handle such partially
observable cases by operating on a latent dynamics model:

τ(Gt+1) = φ(τ(Gt)), (11)

where τ is an encoding function that maps the current state
to a latent representation. Depending on the actual scenarios,
both φ and τ can be realized as PropNets. Note that in fully
observable environments, τ reduces to an identity mapping.

To train such a latent dynamics model, we seek to minimize
the loss function: Lforward = ‖τ(Gt+1) − φ(τ(Gt))‖. Using
this loss alone leads to trivial solutions such as φ(x) =
τ(x) = 0 for any valid x. We tackle this based on an intuitive
idea: an ideal encoding function τ should reserve information
about the scene state. Hence, we introduce a decoding function
ψ to ensure a nontrivial τ by minimizing an additional auto-
encoder reconstruction loss [27]: Lencode = ‖G−ψ(τ(G))‖.

IV. CONTROL USING LEARNED DYNAMICS

Compared to model-free approaches, model-based methods
offer many advantages, such as generalization and sample
efficiency, as it can approximate the policy gradient or value
estimation without exhausted trials and errors.

However, an accurate model of the environment is often
hard to specify and brings significant computational costs for
even a single-step forward simulation. It would be desirable
to learn to approximate the underlying dynamics from data.

A learned dynamics model is naturally differentiable. Given
the model and a desired goal, we can perform forward
simulation, optimizing the control inputs by minimizing a loss



between the simulated results and the goal. The model can
also estimate the uncertain attributes online by minimizing
the difference between the predicted future and the reality.
Alg. 1 outlines our control algorithm, which provides a good
testbed for evaluating the modeling of the dynamics.

a) Model predictive control using shooting methods:
Let Gg be our goal and û1:T be the control inputs (decision
variables), where T is the time horizon. These task-specific
control inputs are part of the dynamics graph. Typical
choices include observable objects’ initial velocity/position
and external forces/attributes on objects/relations. We denote
the graph encoding as Gτ = τ(G), and the resulting trajectory
after applying the control inputs as G = {Gτi }i=1:T . The task
here is to determine the control inputs by minimizing the gap
between the actual outcome and the specified goal Lg(G,Gg).

Our propagation networks can do forward simulation by
taking the dynamics graph at time t as input, and produce
the graph at next time step, Ĝτt+1 = φ(Gτt ). Let’s denote the
forward simulation from time step t as Ĝ = {Ĝτi }i=t+1...T

and the history until time t as Ḡ = {Gτi }i=1...t. We can back-
propagate from the loss Lg(Ḡ ∪ Ĝ,Gg) and use stochastic
gradient descent (SGD) to update the control inputs. This is
known as the shooting method in trajectory optimization [28].

If the time horizon T is too long, the learned model might
deviate from the ground truth due to accumulated prediction
errors. Hence, we use Model-Predictive Control (MPC) [29]
to stabilize the trajectory by doing forward simulation at
every time step as a way to compensate the simulation error.

b) Online adaptation: In many situations, without
actually interacting with the objects, inherent attributes such
as masses, friction, and damping are not directly observable.
PropNet can estimate these attributes online (denoted as A)
with SGD udpates by minimizing the difference between
the predicted future states and the actual future states
Ls(Ĝτt , Gτt ).

V. EXPERIMENTS

In this section, we proceed to evaluate our method’s
performance on both simulation and control in three scenarios:
Newton’s Cradle, String Manipulation and Box Pushing. We
also test how it generalizes and learns to adapt online.

A. Physics Simulation

We aim to predict the future states of physical systems. We
first describe the network used across tasks and then present
the setup of each task as well as the experimental results.

a) Model architecture.: For the IN baseline, we use the
same network as described in [5]. For Vanilla PropNet, we
adopt similar network structure where the relation propagator
f lR(1 ≤ l ≤ L) is an MLP with four 150-dim hidden layers
and the object propagator f lO(1 ≤ l ≤ L− 1) has one 100-
dim hidden layer. Both output a 100-dim propagation vector.
For fully observable scenarios, fLO has one 100-dim hidden
layer and outputs a 2-dim vector representing the velocity at
the next time step. For partially observable cases, fLO outputs
one 100-dim vector as the latent representation.

Algorithm 1 Control on Learned Dynamics at Time Step t
Input: Learned forward dynamics model φ

predicted dynamics graph encoding Ĝτt
current dynamics graph encoding Gτt
goal Gg , current estimation of the attributes A
current control inputs ût:T
states history Ḡ = {Gτi }i=1...t

forward simulation time N and time horizon T
Output: Controls ût:T , predicted next time step Ĝτt+1

Update A by descending with the gradients
∇ALs(Ĝτt , Gτt )

for i = 1, ..., N do
Forward simulation using the current graph encoding
Ĝτt+1 ← φ(Gτt )

Make a buffer for storing the simulation results
G ← Ḡ ∪ Ĝτt+1

for j = t+ 1, ..., T − 1 do
Forward simulation
Ĝτj+1 ← φ(Ĝτj ); G ← G ∪ Ĝτj+1

end for
Update ût:T by descending with the gradients
∇ût:T

Lg(G,Gg)
end for
Return ût:T and Ĝτt+1 ← φ(Gτt )

For PropNet, we use an MLP with three 150-dim hidden
layers as the relation encoder f enc

O and one 100-dim hidden
layer MLP as the object encoder f enc

O . Light-weight neural
networks are used for the propagators f lO and f lR, both of
which only contain one 100-dim hidden layer.

b) Newton’s cradle.: A typical Newton’s cradle consists
of a series of identically sized rigid balls suspended from
a frame. When one ball at the end is lifted and released, it
strikes the stationary balls. Forces will transmit through the
stationary balls and push the last ball upward immediately.
In our setup, we assume full-state observation and the graph
G of n balls has 2n objects representing the balls and the
corresponding fixed pinpoints above the balls, as can be seen
in Fig. 2a, where n = 5. There will be 2n directed relations
describing the rigid connections between the fixed points and
the balls. Collisions between adjacent balls introduce another
2(n− 1) relations.

We generated 2,000 rollouts over 1,000 time steps, of which
85% of the rollouts are randomly chosen as the training set,
while the rest are held as the validation set. The model was
trained for 2,000 epochs with a mini-batch of 32. We use the
Adam optimizer [30] with an initial learning rate of 0.001. We
downscale the learning rate by 0.8 each time the validation
error stops decreasing for over 20 epoches.

Fig. 2a-c show some qualitative results, where we compare
IN and PropNet. IN can not propagate the forces properly:
the rightmost ball starts to swing up before the first collision
happens. Quantitative results also show that our method
significantly outperforms IN in tracking object positions. For
1,000 forward steps, IN results in an MSE of 336.46, whereas
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to Interaction Networks (IN).

PropNet achieves an MSE of 7.85.
c) String manipulation.: We then consider manipulating

a particle-based string in a 2D plane using a spring-mass
model, where one end of the string is fixed to a random point
near the center and the rest of the string is free to move.
Two circular obstacles are placed at random positions near
the string and are fixed to the ground. Random forces are
applied to the masses on the string and the string is moving
in compliant with the forces. We also include frictional forces
in this scenario. More specifically, for a string containing n
particles, there will be a total of n + 2 objects. Each pair
of adjacent masses on the string will have spring relations
connecting each other, resulting in 2(n− 1) directed edges
in the dynamics graph G. Each mass will have a collision
relation with each fixed obstacle, which adds to the graph
another 4n edges. Frictional force applied to each mass is
modeled as a directed edge connecting the mass itself.

We use the same network and training procedure as
described above. Fig. 4a and Fig. 5a show qualitative and
quantitative results, respectively. We train the models with
a 15-dim string and evaluated in situations where the string

length can vary between 10 and 20. As can be seen from the
figures, although in this case, the length of the underlying
force propagation is fewer than Newton’s Cradle’s, our
proposed method can still track the ground truth much more
accurately and outperform IN with a large margin.

d) Box pushing.: In this case, we are pushing a pile of
boxes forward (Fig. 4c). We place a camera at the top of the
scene, and only red boxes are observable. More challengingly,
the observable boxes are not tracked. Therefore, the visibility
of a specific box might change over time. The vertices in the
graph are then defined as the state of the observable boxes
and edges are defined as directional relations connecting
every pair of observable boxes. Specifically, if there are n
observable boxes, n(n−1) edges are automatically generated.
We augment the encoding function τ by averaging the object-
centric outputs before feeding to φ. The dynamics function φ
then takes both the scene representation and the action (i.e.,
position and velocity of the pusher) as input to perform an
implicit forward simulation. As it is hard to explicitly evaluate
a latent dynamics model, we evaluate the downstream control
tasks instead.

e) Ablation studies.: We also provide ablation studies on
how the number of propagation steps L influences the final
performance. Empirically, a larger L can model a longer
propagation path. They are however harder to train and
more likely to overfit the training set, often leading to poor
generalization. Fig. 5a and 5b show the ablation studies
regarding the choice of L. PropNet achieves a good accuracy
at L = 3, which also has a good speed/accuracy trade-off.
Vanilla PropNet achieves its best accuracy at L = 2 but
generalizes less well as L increases further. This shows the
benefits of using the shared encoding and residual connections
as described in Section III-B.2.
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B. Control

We now evaluate the applicability of the learned model
on control tasks. We first describe the three tasks: Newton’s
Cradle, String Manipulation, and Box Pushing, which include
both open-loop and feedback continuous control tasks, as well
as fully and partially observable environments. We evaluate
the performance against various baselines and test its ability
on generalization and online adaptation.

a) Newton’s cradle.: In this scenario, we assume full-
state observation and a control task would be to determine the
initial angle of the left-most ball, so as to let the right-most
ball achieve a specific height, which can be solved with an
accurate forward simulation model.

This is an open-loop control task where we only have
control over the initial condition. We thus use a simplified
version of Alg. 1. Given the initial physics graph and a learned
dynamics model, we iteratively do forward simulation and
update the control inputs by minimizing the loss function
Lg(G,Gg). In this specific task, the loss Lg is the L2 distance
between the target height of the right-most ball and the highest
height that has been achieved in G.

We initialize the swing up angle as 45◦ and then optimize
the angle with a learning rate of 0.1 for 50 iterations using
Adam optimizer. We compare our model with IN. Qualitative
results are shown in Fig. 2e. Quantitatively, PropNet’s output
angle has an MSE of 3.08 from the ground truth initial angle,
while the MSE for interaction nets is 296.66.

b) String Manipulation.: Here we define the task as
to move the string to a target configuration, where the only
controls are the top two masses at the moving end of the string
(Fig. 4b). The controller tries to match the target configuration
by “swinging” the string, which requires to leverage the
dynamics of the string. The loss Lg here is the L2 distance
between the resulting configuration and the goal configuration.

We first assume the attributes of the physics graph is known
(e.g., mass, friction, damping) and compare the performance
between Proportional-Derivative controller (PD) [31], Model-
free Deep Reinforcement Learning (Actor-Critic method
optimized with PPO [32] - DRL), as well as Interaction

Networks (IN) and Propagation Networks (PropNet) with
Alg. 1. Fig. 6 shows quantitative results, where bars marked
as “Normal” are the results in this task (a hand-tuned PD
controller has an MSE of 2.50). PropNet outperforms the
competing baselines. Fig. 4b shows a qualitative sample.
Compared with the PD controller, our method leverages the
dynamics and manages to match the target, instead of naively
matching the free end of the string.

We then consider situations where some of the attributes are
unknown and can only be guessed before actually interacting
with the objects. We randomly add noise of 15% of the
original scale to the attributes as the initial guesses. The
“Bias” bars in Fig. 6 show that models trained with ground-
truth attributes will encounter performance drop when the
supplied attributes are not accurate. However, model-based
methods can do online adaptation using the actual output
from the environment as feedback to correct the attribute
estimation. By updating the estimated attributes over the first
20 steps of the time horizon with standard SGD, we can
improve the manipulation performance so as to catch up with
the situations where attributes are accurate (bars marked as
“Adapt” in Fig. 6).

We further test whether our model generalizes to new
scenarios, where the length of the string is varied between
10 to 20. As can be seen in Fig. 6, our proposed method can
still achieve a good performance, even though the original
PropNet is only trained in situations with a fixed length 15
(PD has an MSE of 2.72 for generalization).

c) Box Pushing: In this case, we aim to push a pile
of boxes to a target configuration within a predefined time
horizon (Fig. 4c). We assume partial observation where
a camera is placed at the top of the scene, and we can
only observe the states of the boxes marked in red. The
model trained with partial observation is compared with two
baselines: DRL and IN. The loss function Lg used for MPC
is the L2 distance between the resulting scene encoding and
the target scene encoding.

We evaluate the performance by the Chamfer Distance [33]
between the observable boxes at the end of the episode and
the target configurations. The negative of the distance is used
as the reward for DRL. Fig. 4c and Fig. 6b show qualitative
and quantitative results, respectively. Our method outperforms
the baselines due to its explicit modeling of the dynamics
and its ability to handle multi-object interactions.

VI. CONCLUSION

We have presented propagation networks (PropNet), a
general learnable physics engine that outperforms the pre-
vious state-of-the-art with a large margin. We have also
demonstrated PropNet’s applicability in model-based control
under both fully and partially observable environments. With
propagation steps, PropNet can propagate the effects along
relations and model the dynamics of a long-range interactions
within a single time step. We have also proposed to improve
PropNet’s efficiency by adding residual connections and
shared encoding.
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