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Abstract

We present methods for turning pair-wise registration algorithms into drift-free
trackers. Such registration algorithms are abundant, but the simplest techniques for
building trackers on top of them exhibit either limited tracking range or drift. Our
algorithms maintain the poses associated with a number of key frames, building a
view-based appearance model that is used and refined during tracking. The first
method we propose is batch oriented and is ideal for offline tracking. The second
is suited for recovering egomotion in large environments where the trajectory of
the camera rarely intersects itself and in other situations where many views are
necessary to capture the appearance of the scene. The third method is suitable for
situations where a few views are sufficient to capture the appearance of the scene,
such as object-tracking applications. We demonstrate the techniques on egomotion
and head-tracking examples and show that they can track for an indefinite amount
of time without accumulating drift.
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1 Introduction

Robust algorithms for estimating the change in the pose of an object from
one image to the next are abundant [2, 3, 10, 11, 22, 34]. These pose change
estimators are an appealing component for building trackers because they
provide a simple layer of abstraction between images and pose, code for them
is readily available, they tend to be very robust and accurate. Unfortunately,
the classical approaches for building trackers based on these techniques suffer
from several problems. One classical approach, sometimes known as differential
tracking, accumulates the pose changes between successive pairs of frames to
obtain the pose of the object in the current frame. Because each pose change is
noisy, the error in the accumulated pose grows over time, and resulting in drift.
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An alternative is to simply compute the pose change between each incoming
image and the first image in the image sequence. But because pairwise pose
change estimation algorithms have limited range, this approach cannot work
for arbitrarily large motions. We provide new methods that use these pose-
change estimators to build long-range trackers with limited drift.

Our solution generalizes these two classical approaches. Rather than comput-
ing pose changes between temporally adjacent frames, or between the current
frame and the first frame, our trackers compute pose changes between the cur-
rent frame and a number of key frames, or frames that previously appeared
in the image sequence. We show how to merge these pose changes to obtain
a pose for the current frame, to update the pose of the key frames, or the
trajectory of poses associated with all the frames seen so far.

The resulting trackers have indefinite range, and exhibit bounded drift when
tracking in a bounded pose space. Furthermore, these trackers are easy to
build, because the pose change estimation algorithm abstracts away details
such as the assumed image formation model, the mechanism for computing
feature correspondences, and the optimization procedure for registering the
images. By updating the pose of the key frames (or of the entire trajectory)
our tracker effectively maintains an image-based appearance model of the
object to track. This appearance model can later be used to initialize the
tracker on subsequent tracking sessions, or can be stitched into a 3D model of
the object [17].

We propose three related methods for performing these updates. The first is a
batch method, and serves as a good workhorse technique. The second method
is an online method well suited to egomotion problems, where capturing the
appearance of the scene can require an indefinite number of key frames. This
method retains all frames seen so far as candidate key frames, and updates the
pose associated with them in sub-linear time. We demonstrate this technique
by estimating the pose of a camera rig in a very large environment. The
third method is an online method suitable for maintaining the appearance of
relatively small objects, such as heads, that fit within the field of view of the
camera, and can thus be captured with just a few key frames. This method
recovers the pose of the objects and adjusts the pose of key frames using a
Kalman update. Because its complexity does not grow over time, this method
can track human heads without drift for an indefinite time.

2 Related Work

Our batch algorithms is closely related to the problem of globally consistent
registration, such as mosaicking of planar scenes [34,36] and stitching of laser
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range scans [4, 6, 9, 21, 31, 37, 39]. Our batch method is most similar to the
method of Lu and Milios [21], which computes pose differences between pairs
of laser range scans, and merges these pose differences into consistent poses
by solving a maximum likelihood problem. Other global registration methods
take into account additional details about the scans, and so do not use pairwise
registration as a subroutine: Stoddart and Hilton [37] attach virtual springs
between corresponding points among all pairs of scans and relax the system
to convergence. Chen and Medioni [4] rely on a version of the Iterated Closest
Point (ICP) algorithm to iteratively compute correspondences and transfor-
mations between the scans. Sawhney et al. [34] perform global registration
on the overlapping regions of the scans, which are assumed to be of planar
structures.

The idea of anchoring tracking against landmarks to reduce drift was exploited
in the rigid-body tracking work of Chiuso, Jin, Favaro, and Soatto, [5, 15],
who use the pose and appearance of patches to fix a coordinate system. By
anchoring the coordinate system against these features when they reappear in
the scene, their tracker eliminates the drift incurred from fixing the coordinate
system against a poorly estimated feature. Rather than anchoring against 3D
patches, our methods anchor against images using a pose change estimator.
In [40], the tracker is anchored against static 3D features that are provided to
the tracker before hand.

The literature on Simultaneous Localization And Mapping (SLAM) and Struc-
ture From Motion (SFM) and adaptive rigid body tracking [1, 5, 7, 13, 15, 18,
19,24] aims to update an appearance model of the environment (the map) or
of an object while simultaneously tracking the pose of the object or of the
camera. This body of work tends to differ from ours in that the appearance
model is represented as a set of geometric features, such as 3D lines and cor-
ners, or as an occupancy grid, rather than as a collection of pose-annotated
frames. Updating the model becomes more expensive as more features are
introduced into it, so McLauchlan [24] proposed an efficient online update
algorithm based on the Kalman filter update that allows certain features to
become fixed. Our update algorithm is similar. A notable exception is [14],
which captures appearance with a subspace model.

In the SLAM literature, both [38] and [9] represent the map as pose-annotated
key frames, as we do. As loops in the trajectory are detected, a propagation
step corrects backward poses in the loop. The updates are online, but increase
in complexity linearly in the length of the loop in the case of [38] and cubically
in the case of [9]. These algorithms are similar in purpose to the algorithm
presented in Section 5.

This article is a culmination of our work on building drift-free trackers [28,32,
33].
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3 Tracking Model

As each image becomes available, we compute its pose change with respect
to several past key frames using an off-the-shelf pose change estimator. Since
these pose changes are a function of the true pose of the object in the corre-
sponding images, we can combine these pose change measurements to update
our estimate of the pose of the object throughout the sequence. To do this, we
first describe a generative model for pose change estimators, and then describe
algorithms for approximating the maximum a posteriori (MAP) estimate of
the poses.

Let ys,t denote the measured pose change between frames t and s, and let
Y T = {ys,t}(s,t)∈O denote the set of measured pose changes up to time T ,
stacked vertically into a column vector. Let XT = {xt}t=1..T be the trajectory
of the object from time t = 1 to time t = T , stacked vertically into a column
vector. Finally, let xM denote the appearance model, which simply consists of
the poses of a set of key frames.

We define a prior p(XT ) on the trajectory of poses, and a likelihood p(Y T |XT )
on the trajectory, and show how to update p(xt, xM|Y T ), the posterior dis-
tribution over trajectories and the appearance model, as new pose changes
become available. This distribution captures our estimate and uncertainty in
the pose of the object and the appearance model given all measurements made
so far.

3.1 Trajectory Prior p(XT )

We will assume that the object’s pose follows a prior Markovian dynamics:

p(XT ) = p(x1)
T∏

t=2

p(xt|xt−1). (1)

The transition density p(xt|xt−1) is a distribution over the state of the object
at time t given only its the state at time xt−1. We will assume linear Gaussian
dynamics and let the state encode the pose of the object and the derivative
of the pose.

For example, define the state xt = [ ut vt u̇t v̇t ]> to be the 2D location and
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2D velocity to be tracked. A sensible state-transition model is:

xt = Axt−1 + ωt, (2)

A =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


(3)

where ωt is a zero-mean Gaussian random variable with covariance Λx. At each
time step, this model updates the pose by adding the velocity and some noise
to the previous pose, and updates the velocity by adding some random noise
to it. Such a model can describe 3D motion by including rotation and angular
velocity in the state. The recursive algorithms presented later can operate
with nonlinear transition densities of the form p(xt|xt−1) = N (xt|f(xt−1),Λx)
by linearizing f at the current estimate of xt at each iteration.

Equation (2) can be re-written in the form of Equation (1) as

p(xt|xt−1) = N (xt|Axt−1,Λx), (4)

where N (x|µ,Λ) denotes a multivariate Gaussian with mean µ and covariance
Λ.

3.2 Observation Model p(Y T |XT )

For certain types of transformations, the ideal pose change y∗s,t between frames
at time s and t is additively related to xs and xt, so that xt = y∗s,t + xs. This
holds, for example, if the poses represent translations. For other transforma-
tions, such as affine, the relationship is multiplicative, so that x̂t = ŷ∗s,tx̂s,
where the ·̂ operator reshapes a vector into a square matrix of the appropriate
size (vec (·) is the inverse operation, stacking the elements of a matrix into a
column vector). To discuss both types of motion models in one framework, we
use the notation xt = y∗s,t ⊕ xs to describe both operations, and y∗s,t = xt 	 xs

to describe the inverse operation. To stay consistent with both multiplication
and addition, these operators are associative but not commutative.

Observed pose changes are noisy versions of xt	xs. The distribution p(ys,t|xs, xt)
represents the uncertainty in pose-change estimation between two frames at
known poses xs and xt. Each pose change ys,t is assumed to be mutually
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Fig. 1. Independence structure between trajectory and measured pose changes. Each
hidden node xt is the pose associated with a frame. The observed nodes ys,t are
measured pose changes as recovered by a registration algorithm.

independent of other pose changes conditioned on xs and xt
1 :

p(Y T |XT ) =
∏

(s,t)∈O
p(ys,t|xs, xt). (5)

Figure 1 depicts the independence relationship between poses and pose-change
measurements.

To simplify computing the posterior distribution over XT , we approximate the
distribution p(ys,t|xs, xt) with a Gaussian, as explained in the appendix:

p(ys,t|xs, xt) ≈ N (ys,t|y∗,Λs,t) (6)

y∗ = xt 	 xs (7)

Λs,t = σ̂2

∑
p∈P

u̇(p, y∗)>∇It(p)>∇It(p)u̇(p, y∗)

−1

(8)

σ̂2 =
1

|P|
∑
i∈P

[Is(i + u(i, y∗))− It(i)]
2 , (9)

Under this approximation, the mean of the distribution is the true pose change.
The covariance is scaled by the reconstruction error σ̂2 after warping according
to the recovered pose change, and reflects the average sensitivity of the com-
ponents of the registration model at each pixel by the strength of the image

1 This independence assumption is a simplification: in general pose change mea-
surements that share a frame are dependent, even when conditioned on the true
poses. This is because the random variables ys,t|xs, xt and ys,u|xs, xu are obtained
by registering images, so that ys,t|xs, xt = f(Is, It) and ys,u|xs, xu = f(Is, Iu). These
images are in turn stochastic functions of the poses. Since ys,t|xs, xt and ys,u|xs, xu

are built from a common random variable Is, they are dependent on each other.
The independence assumption is exact when Is is a deterministic function of xs,
but in general, this independence assumption results in adequate performance and
greatly simplifies the model.
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features at that pixel. Equivalently, this can be re-written as

ys,t = xt 	 xs + ωs,t, (10)

where ωs,t is a zero-mean Gaussian with covariance Λs,t.

4 Method 1: Batch

The a posteriori most probable trajectory, given measurements Y T , is defined
as

X∗ = argmax
XT

p(XT |Y T ) = argmax
XT

p(Y T |XT )p(XT ). (11)

X∗ is the trajectory that is most consistent with the observations Y T according
to the generative model of the previous section.

In the following sections, we show that when the likelihood p(Y T |XT ) is linear
in XT (for example, when 	 is a simple difference) and p(XT ) is Gaussian,
X∗ can be found by solving a sparse linear least-squares problem [21, 33].
When p(Y T |XT ) is a Gaussian whose mean depends nonlinear on XT (when
	 involves matrix inversion), X∗ can be found offline by solving a sparse
nonlinear least-squares problem.

4.1 Linear-Gaussian Case

When p(xt|xt−1) is Gaussian and linear in xt−1 (for example, see Equation
(4)), XT is a zero-mean Gaussian random variable with

p(XT ) ∝ exp
(
−
(
XT

)>
Λ−1

X XT
)

, (12)

with the inverse covariance Λ−1
X block tri-diagonal.

If the relationship between observation ys,t and xs and xt is additive, Equation
(7) becomes:

y∗s,t = Cxt −Cxs = Cs,tX
T (13)

Cs,t =
[
0 · · · −C · · · 0 · · · C · · ·

]
, (14)

The matrix C extracts the pose components of the state xt, so that, for ex-

ample, if xt = [ ut vt u̇t v̇t ]>, then Cxt = [ ut vt ]>. The matrix Cs,t has −C

at the location corresponding to s, C at the location corresponding to t, and
0 elsewhere.
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Stacking up the Cs,t into C and Λs,t into ΛY |X gives the likelihood

p(Y T |XT ) = N
(
Y T

∣∣∣CXT ,ΛY |X
)
. (15)

This linear-Gaussian likelihood, in conjunction with the Gaussian prior (12)
gives a Gaussian posterior p(XT |Y T ) over XT . The covariance ΛX|Y and the
mean mX|Y of this posterior can be obtained by solving these two equations
[30]:

Λ−1
X|Y = Λ−1

X + C>Λ−1
Y |XC (16)

Λ−1
X|Y mX|Y = C>Λ−1

Y |XY T . (17)

When there are T trajectory steps and |O| observations, this computation
can take O(T 3) if performed naively. Using the conjugate gradient method,
Equation (17) can be solved in O(T (T + |O|)): T iterations, each requiring a
matrix multiplication that takes time proportional to the number of nonzero
elements in Λ−1

X|Y .

4.2 Nonlinear Case

When Equation (7) relates ys,t nonlinearly with xt and xs, we can linearize the
relationship and apply the batch method of the previous section. The batch
solution provides a new point about which to linearize the relationship, and
the process is repeated.

In the case of affine transformations, for example, a first order Taylor series
approximation of Equation (7) about ˆ̄xt and ˆ̄xs gives [26]:

xt 	 xs = x̂tx̂
−1
s ≈ vec

(
ˆ̄xt ˆ̄x

−1
s

)
+ d

(
ˆ̄xt ˆ̄x

−1
s

)
(18)

d
(
ˆ̄xt ˆ̄x

−1
s

)
= (dˆ̄xt)ˆ̄x

−1
s + ˆ̄xtd(ˆ̄x−1

s ) = (dˆ̄xt)ˆ̄x
−1
s − ˆ̄xt ˆ̄x

−1
s (dˆ̄xs)ˆ̄x

−1
s (19)

dˆ̄xs = x̂s − ˆ̄xs (20)

dˆ̄xt = x̂t − ˆ̄xt. (21)

Substituting terms, and applying the identity vec (ABC) = (C>⊗A)vec (B),
where ⊗ is the Kronecker product [26], yields

y∗s,t − vec
(
ˆ̄xt ˆ̄x

−1
s

)
=
(
ˆ̄x−>s ⊗ I

)
xt −

(
ˆ̄x−>s ⊗ ˆ̄xt ˆ̄x

−1
s

)
xs, (22)

where I is the identity matrix. This relationship is now in the form of Equation
(13) and the method of the previous section can be applied.

Once the optimal Xs and Xt are found, the system is linearized again as per
Equation (22) and the operation is repeated.
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4.3 Selecting Pairs of Frames

Image registration is the main computational bottleneck of the batch method.
In practice, it is costly to compute the pose change between every pair of
frame (s, t), so O must be chosen with some discretion. In addition, regis-
tration algorithms work most reliably if the motion between the two views is
small. For example, when tracking a head, the 6-degrees-of-freedom registra-
tion algorithm we use in our experiments returns a reliable pose estimate if
the head has undergone a rotation of at most 10 degrees along any axis.

So we seek frame pairs (s, t) that yield high-quality registration (as quantified
by the trace of Λs,t) without actually performing registration on every pair
of images. To identify such frame pairs, we search for pairs of images that
are similar according to their sum of squared differences (SSD). If the SSD
between frames s and t is within threshold, (s, t) is inserted into O and ys,t is
computed using the registration algorithm.

5 Method 2: Online Updates.

In online tracking pose changes must be incorporated into the estimate of the
trajectory XT as soon as a new frame becomes available. We show an efficient
way to approximately update XT with pose change measurements as they
become available. Rather than re-running the batch algorithm of the previous
section each time, we propose simplifying the correlation between the pose
estimates to allow measurements to be incorporated in linear-time.

A new measurements is independent of past measurements conditioned on
XT , so the maximum a posterior XT can be updated recursively as follows:

max
XT

p(XT |Y T ) = max
XT

p(XT |Y T−1, ys,t) = max
XT

p(ys,t|XT )p(XT |Y T−1). (23)

This update uses p(XT |Y t−1) as a prior, and p(ys,t|XT ) as a likelihood. When
p(ys,t|XT ) is linear and Gaussian (see (13)), and p(XT |Y T−1 has covariance
ΛX , the posterior over XT can again be obtained in closed form by solving
ΛX|Y and mX|Y [30]:

Λ−1
X|Y = Λ−1

X + C>
s,t (Λs,t)

−1 Cs,t (24)

Λ−1
X|Y mX|Y = C>

s,t (Λs,t)
−1 ys,t. (25)

Solving for mX|Y using conjugate gradient takes O(T 2 +T |O|). That is, incor-
porating a single ys,t takes as much work as incorporating all of Y T all at once!
Our solution is to approximate ΛX by a tri-diagonal matrix. This makes Λ−1

X|Y
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invertible in time linear in T using forward-backward substitution, allowing
us to incorporate new measurements in time O(T ).

In this section, we present a method for simplifying Λ−1
X|Y to block tri-diagonal

form after each measurement is inserted. For Gaussian variables, a block tri-
diagonal covariance matrix corresponds to a Markovian independence struc-
ture. With minor adaptation, the method presented here can simplify Λ−1

X|Y
to any tree structure, but the tri-diagonal or Markov structure is appealing
because it is the simplest structure that allows the influence of measurements
to propagate throughout the entire trajectory XT , allowing loops to be closed
and resulting in smooth trajectories. Intuitively, a Markov structure imposed
between the poses of chronologically adjacent frames expresses the prior knowl-
edge that frames that are observed near the same time should have similar
poses. We demonstrate in Section 7.1 that a simpler structure such as a di-
agonal matrix, which does not allow for such propagation, does not result in
smooth trajectories. In general, after incorporating each measurement, the in-
dependence structure of p(XT |Y T ) is simplified into a Markov chain, which
simplifies the incorporation of the next measurement to O(T ) in the worst
case, and to a small constant in practice.

The approximation strategy follows the pattern of Assumed Density Filtering
(ADF) [25]: at each iteration, p(XT |Y T−1) is approximated with a simpler
distribution q(XT ) that factors as a Markov chain. To incorporate a new
measurement ys,t, we apply Bayes rule with q(XT ) as a prior and p(ys,t|xs, xt)
as likelihood:

p(XT |Y T ) ∝ p(ys,t|xs, xt)q(X
T ). (26)

To incorporate the next measurement, p(XT |Y T ) is again approximated with
a simpler distribution, and the process is repeated. Figure 2 summarizes this
process.

In the linear-Gaussian case, it is possible to compute in O(T ) a Gaussian ap-
proximation q(XT ) with minimum Kullback-Leibler divergence to p(XT |Y T−1).
One way to do this is to invoke tools for covariance extension (see, for exam-
ple, [16, 20]). The remainder of this section describes our variant of these
techniques, which is formulated as a two-pass message-passing algorithm on a
loop. This approach is particularly well suited for this problem because mes-
sages need not be propagated beyond a node if the influence of the message
on the node is small. This allows early termination of the algorithm, allowing
it to take time sub-linear in T .
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(a) Measurement appears. (b) Hidden variables become corre-
lated a posteriori.

(c) The correlation structure is ap-
proximated to allow new measure-
ments to be incorporated easily.

Fig. 2. Using Assumed Density Filtering to maintain a Markov approximation to
the correlation induced by measurements on the trajectory.

5.1 Updating the Trajectory

We would like to approximate an arbitrary distribution that factors according
to p(X) =

∏
t pt(xt|Pa[xt]), with one that factors according to the Markov

property q(X) =
∏

t qt(xt|xt−1). Here, Pa[xt] are the parents of node xt in
the graph prescribed by the factorization of p(X). In Appendix B, we show
that the distribution q that is closest to p according to the Kullback-Leibler
divergence is

qt(xt|xt−1) = p(xt|xt−1). (27)

So the best conditional qt is built up from the conditional marginals of p.
Computing each qt in a graph is generally an expensive operation, but in a
graph with a single loop, it can be done in time proportional to the number
of nodes in the graph.

Instead of first computing p(XT |Y T ) and then simplifying it onto a suitable
q(XT ), we compute q directly from p(XT |Y T−1). We have just shown that
this q factors into conditional distributions qt(xt|xt−1) = p(xt|xt−1, ys,t, Y

T−1).
These factors are computed differently depending on their location in the
graph. In what follows, we omit the dependence on Y T−1 for brevity, and
assume that all distributions are conditioned on Y T−1.

5.1.1 Finding p(xτ |xτ−1, ys,t) for s < τ < t

Because for every s < τ < t, p(xτ |xτ−1, xt) = p(xτ |xτ−1, xt, ys,t) (see Figure
2), we have

p(ys,t, xτ−1, xτ , xt) = p(ys,t, xτ−1, xt)p(xτ |xτ−1, xt) (28)
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We can find p(xτ |xτ−1, y) by marginalizing out xt from p(ys,t, xτ−1, xτ , xt) and
normalizing. We can also find p(xτ |y) by marginalizing out both xt and xτ−1

and normalizing. Finally, we can compute p(y, xτ , xt) for the next τ in the
iteration.

There are two missing pieces for computing p(ys,t, xτ−1, xτ , xt): The first is
p(ys,t, xs, xt) = p(ys,t|xs, xt)p(xs, xt) for starting the recursion. p(y|xs, xt) is
the given measurement model, and p(xs, xt) can be obtained by marginalizing
over p(XT ). The second missing piece is p(xτ |xτ−1, xt). Note that this quantity
does not depend on the measurements and could be computed offline. The
recursion for calculating it is:

p(xτ |xτ−1, xt) ∝ p(xt|xτ )p(xτ |xτ−1) (29)

p(xt|xτ ) =
∫

dxτ+1 p(xt|xτ+1)p(xτ+1|xτ ) (30)

The second equation describes a recursion that starts from t and goes down to
s. It computes the influence of node τ on node t. Equation (29) is coupled to
this recursion and uses its output. Because this recursion runs in the opposite
direction of the recursion described by (28), p(xτ |xτ−1, xt) has to be computed
in a separate pass.

The forward and backward recursions visit every element of the chain once. To
speed up computation, we stop a recursion in either direction when it does not
modify the value of the current node significantly. This is an acceptable stop-
ping criterion because a small change in a node guarantees that the iterations
will not modify subsequent nodes significantly.

5.1.2 Finding p(xτ |xτ−1, ys,t) for 1 ≤ τ ≤ s

Starting from τ = s− 1, compute

p(ys,t|xτ ) =
∫

dxτ+1 p(ys,t|xτ+1)p(xτ+1|xτ ) (31)

p(xτ |ys,t) ∝ p(ys,t|xτ )p(xτ ) (32)

p(xτ |xτ−1, ys,t) ∝ p(ys,t|xτ )p(xτ |xτ−1) (33)

The recursion first computes the influence of xτ on the observation, then
computes the marginal and the transition probability.
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5.1.3 Finding p(xτ |xτ−1, ys,t) for t ≤ τ ≤ T

Starting from τ = t, compute

p(xτ |ys,t) =
∫

dxτ−1 p(xτ |xτ−1, ys,t)p(xτ−1|ys,t) (34)

p(xτ |xτ−1, ys,t) = p(xτ |xτ−1). (35)

The second identity follows from the independence structure on the right side
of observed nodes.

To handle nonlinear observations, one can again linearize the observation equa-
tion, as in Section 4.2. If so desired, after running the operation described in
this section, the procedure may be repeated to yield a better answer. In this
way, the procedure described here serves as an approximate Newton step.

5.2 Selecting Frame Pairs

At each time step t, the online algorithm must determine the set of frames
s < t to register against the frame at time t. Picking frames whose appearance
is similar to the current frame works well if there is a one-to-one mapping
between appearance and pose. But in some situations, for example objects
with repetitive texture such as floor tiles or a calibration cube with identical
sides, different poses yield the same appearance. To disambiguate between
these situations, key frames that sufficiently resemble the current frame in
appearance are registered only if their pose is likely to be within tracking
range of each other.

To assess the probability that the pose xs of a potential base frame is within
tracking range of the pose xt of the current frame, we compute the probability
that |xs − xt| is above some tracking range ∆x. If this probability is above a
threshold, then the two frames are deemed likely to be close in pose and ys,t

is measured. This probability can be estimated by evaluating∫
|xs−xt|≤∆x

p(xs, xt|Y T−1, yt−1,t) dxsdxt, (36)

which is the probability that xs and xt are within tracking range given all
measurements prior to measuring the pose change between s an t. The mean
and covariance of p(xs, xt|Y T−1, yt−1,t) can be read from the parameters of
p(XT |Y T−1, yt−1,t). Equation (36) can be quickly approximated by Monte
Carlo by drawing samples (xs, xt) from p(xs, xt|Y T−1, yt−1,t) and reporting
the ratio of samples where |xs − xt| ≤ ∆x to the total number of samples
drawn.
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6 Method 3: Sparse key frames.

For some tracking applications, only a few key frames are needed to capture
the appearance of the scene. In these cases, instead of updating the entire
trajectory, we update the pose of the current frame and of a few key frames
only. The pose of these frames is maintained as a state vector using a Kalman
filter, but during the prediction step, the filter removes old elements or inserts
new elements in the state vector as needed. The update step of the Kalman
filter incorporates new measurements. The resulting filter has a computational
complexity that grows cubically in the size of the state vector, so in practice
we limit the number of key frames to about 50.

At time t, the tracker maintains a Gaussian distribution p(xt, xM|Y T ) over
the pose of the current frame and the poses xM = {xM1 , xM2 , · · · } of the key
frames. Define the variable X as the vertical concatenation xt and xM:

X =
[
xt ; xM1 ; xM2 ; . . .

]
. (37)

The tracker need only maintain the mean mX and covariance ΛX of p(X|Y T ).
To incorporate a new measurement ys,t, the tracker applies a Kalman update
to p(X|Y T−1) to obtain p(X|Y T−1, ys,t). After all pairwise measurements in-
volving frame t have been performed, the tracker turns xt into a key frame,
and may decide to evict one of the older key frames. Then the tracker must
prepare to incorporate pose change estimates involving a new frame at time
t + 1. We examine each step separately.

6.1 Incorporating a new measurement

In the linear case, as before, incorporating ys,t with the prior p(X|Y T ) gives a
Gaussian p(X|Y T , ys,t) whose mean and covariance can be obtained by solving
for mnew

X|Y and Λnew
X|Y in

[Λnew
X ]−1 = [ΛX ]−1 + C>

s,tΛ
−1
s,t Cs,t (38)

[Λnew
X ]−1 mnew

X = [ΛX ]−1 mX + C>
s,tΛ

−1
s,t ys,t. (39)

The main computational burden in introducing a new measurement is solving
for mnew

X in Equation (39). [Λnew
X ]−1 will be dense after a few measurements,

so solving the linear system takes cubic time in the number of key frames.
We can bound the complexity of this updated by capping the number of key
frames. When pose change measurements are nonlinearly related to poses, the
relationship can be linearized prior to applying Equations (38) and (39) using
Equation (22).
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6.2 Preparing for a new frame

After incorporating all pose changes relating to frame t, the frame at time t
becomes a key frame, and the mean and covariance of X are augmented to
make room for the pose xt+1, to represent the distribution p(xt+1, xt, xM|Y T ).
If we have no a priori information about the pose xt+1, we simply set the
corresponding entry in the inverse covariance to 0. This translates to infinite
marginal variance on xt+1:

maug
X =

[
0 ; mX

]
(40)

[Λaug
X ]−1 =

0 0

0
[
Λold
X

]−1

 . (41)

Since the augmented blocks of ΛX are 0, we have assumed that a priori, xt+1

is independent of xt. If there is side knowledge about dynamics, it can be
incorporated in this step.

6.3 Evicting old key frames

When a key frame is no longer needed, it is marginalized out of the distribution
p(X|Y T ). This is accomplished by removing the corresponding elements of mX
and the corresponding rows and columns from ΛX .

In our tracker, a frame t− 1 is always used as a base frame for frame t. Often,
this frame is eliminated from the key frame set after estimating its pose change
with frame t. In addition, older key frames are sometimes dropped to make
room for key frames corresponding to poses that are more commonly visited.

6.4 Picking good key frames

To populate the key frames, we seek frames with accurate pose estimates and
that capture representative views of the object. After estimating the pose of
the current frame, the tracker determines whether the previous frame should
become a key frame. A key frame should be available whenever the object
returns near a previously visited pose. To identify poses that the object is
likely to revisit, the pose-space is tessellated into adjacent regions, each region
maintaining a key frame. A key frame is assigned to a region if it can be
ascertained that the pose of the key frame falls within the region with high
probability.
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The probability that xt−1 belongs to a region centered at xr is:

Pr[xt−1 ∈ B(xr)] =
∫

x∈B(xr)
N (x|E[xt−1], Λt−1)dx, (42)

where B(x) is the region centered around a location x, and E[xt−1] and Λt−1

can be read from mnew
X and Λnew

X .

If frame xt−1 belongs to a region with higher probability than any other frame
so far, it is deemed the best representative for that region, and it is assigned
to that region. If the pose does not belong to any region with sufficiently high
probability, or all regions already maintain key frames with higher probability,
the frame is discarded.

These criteria exhibit several desirable properties: 1) Frames are assigned to
regions near their estimated pose. 2) Frames with low certainty in their pose
do not become key frames, because the integral of a Gaussian under a fixed
volume decreases with the variance of the Gaussian. 3) key frames are replaced
when better key frames are found for a given region.

7 Experiments

The online algorithm of Section 6 is well-suited for scenes or objects whose
appearance can be captured with a few key frames. We apply it to a face
tracking application that uses stereo cameras. The algorithm of Section 5
retains the pose of all frames seen so far, and is well suited for situations
where the appearance of the scene or object cannot be well captured with
a few frames. We demonstrate it on an egomotion experiment in an large
environment whose appearance requires many views to capture. Since the
batch algorithm of Section 4 can also potentially use all frames as key frames,
we compare it against the online algorithm of Section 5 to evaluate the quality
of the Markov chain simplification the latter performs.

7.1 Egomotion in a room.

To demonstrate the online algorithm of Section 5, we manually maneuvered
a monocular camera rig inside a large environment and attempted to recover
the location of the camera. The camera faced upward and observed its motion
relative to the ceiling. The excursions were about three minutes long, produc-
ing about 6000 frames of data for each experiment. The trajectory was marked
on the floor before the experiment so we could revisit specific locations (see
the schematics of Figures 3 and 5). This was done to make the evaluation
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of the results simpler. The trajectory estimation worked at frame rate for the
duration of both trajectories, although it was processed offline to simplify data
acquisition.

In these experiments, the pose parameters were (x, y) locations on the floor. All
experiments assume the motion dynamics detailed in Section 3.1. For each new
frame, pose changes were computed with respect to at most three base frames.
The selection of base frames was based on a comparison of the appearances of
the current frame and all past frames. The pose-change estimator was a Lucas-
Kanade optical flow tracker [23]. To compute pose displacements, we computed
a robust average of the flow vectors using an iterative outlier rejection scheme.
We used the number of inlier flow vectors as a crude estimate of the precision
of p(ys,t|xs, xt).

Figures 3 and 5 compare the algorithm of Section 5 against three others: a
naive differential tracker that accumulates the pose change between adjacent
frames, the batch approach of Section 4, and a variant of the online method
of Section 4 that projects the covariance matrix to a fully factorized form
after incorporating each pose change. Figure 4 plots the distance between
the location recovered the batch method and each of the three algorithms.
Although our recovered trajectories do not coincide exactly with the batch
solutions, ours are smooth and consistent.

In contrast, more naive methods of reconstructing trajectories do not exhibit
these two desiderata. Estimating the motion of each frame with respect to only
the previous base frame yields an unsmooth trajectory. Furthermore, loops can
not be closed correctly (for example, the robot is not found to return to the
origin).

Projecting the correlation structure to a fully factored form is a very simple
way of taking into account multiple base frames. This corresponds to using
a diagonal matrix to represent the correlation between the poses (instead of
the tri-diagonal inverse covariance matrix our algorithm uses). This method
also fails to meet our requirements: the resulting trajectory is not smooth, and
loops are not closed well.

The trajectories were each about 2000 frames long. The computational com-
plexity of the online algorithm of 5 is linear in the number of frames in the
worst case, but thanks to the stopping criterion of the algorithm, the first and
last frames both about 5 ms to incorporate (MATLAB code on a 1.2 Ghz
PIII), while incorporating a loop closure took about 20 ms.

By taking into account a minimum amount of correlation between frame poses,
loops have been closed correctly and the trajectory is correctly found to be
smooth.
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Fig. 3. Recovered trajectories from egomotion experiments. Axes are labeled in
centimeters. The camera smoothly followed the trajectory shown in the schematic on
the upper left, visiting the waypoints in the order specified by the numbers, starting
with waypoint 1. The image in the upper right shows a typical snapshot of the
ceiling. The bottom left panel compares the trajectory recovered by accumulating
pose changes between successive frames (thick dotted path) to the batch solution
of Section 4 (solid path). Loops are not closed well (bottom and left insets). The
middle panel compares the trajectory recovered by fully factorizing the covariance
after incorporating each measurement (dotted path) and the batch solution (solid
path). Loops are closed abruptly, resulting in large jumps in the trajectory (bottom
inset). The right panel compares the algorithm of Section 5 to the batch solution.
Loops are closed, and the trajectory is smooth. The average distance between pose
estimates between the batch solution and each online algorithm was 27 cm for naive
accumulation, 26 cm for the fully factorized solution, and 23 cm for the Markov
factorization solution.
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Fig. 4. The distance between the batch algorithm and the three other algorithms.
While the Markov factorization method exhibits some shrinkage early in the se-
quence, it overtakes the other two algorithms later on.

7.2 Key-frame-based 6-DOF Stereo Tracking.

In this experiment, we qualitatively compare three approaches for head-pose
tracking: differential tracking, tracking using the first and previous frames as
key frames, and the algorithm of Section 6. All three approaches use a 6-
DOF (degree-of-freedom) registration algorithm (described in [27] and in the
following subsection) to track and create an appearance model of a head un-
dergoing large movements in the near field (approximately one meter from
the camera) for several minutes. The camera system is a Videre Design stereo
camera pair [41] that delivers depth and intensity maps in real time. In the sec-
ond experiment, we present a quantitative analysis of our view-based tracking
approach by comparing it with the Inertia Cube2 inertial sensor.

7.2.1 6-DOF Registration Algorithm

At each time step, the camera system provides an intensity image It and a
depth image Zt. Given frames (It, Zt) and (Is, Zs), the registration algorithm
estimates a 6-DOF (3 rotation using the twist parameterization [29] and 3
translation parameters) pose change ys,t between these frames. It first identi-
fies the object of interest by assuming that it is the front-most object in the
scene, as determined by the range images Zs and Zt. For both frames, the fore-
ground pixels are grouped into a connected component, and the background is
masked out. The registration parameters are computed in several steps: First
the centers of mass of the regions of interest are aligned in 3D translation.
This provides a good starting point for aligning the images using 2D cross-
correlation in the image plane. The output of this alignment provides a good
initialization point for a finer-grained registration algorithm based on Itera-
tive Closest Point (ICP) and the Brightness Constancy Constraint Equation
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Fig. 5. See caption of Figure 3 for the setup. Naive accumulation does not close loops
well, full factorization results in abrupt jumps in the trajectory, and the Markov
factorization results in smooth trajectories that close loops well. The average dis-
tance between pose estimates between the batch solution and each online algorithm
was 26 cm for naive accumulation, 18 cm for the fully factorized solution, and 12
cm for the Markov factorization solution.

(BCCE).

The ICP algorithm iteratively computes correspondences between points in
the depth images and finds the 6-DOF transformation parameters that mini-
mize the distance between these pixels. By using depth values obtained from
the range images, the BCCE can also be used to recover 3D pose-change es-

20



timates [10]. We have found that the BCCE provides superior performance
in estimating rotations, whereas ICP provides more accurate translation esti-
mates.

The registration technique of [27] minimizes the sum of the objective func-
tions of ICP and BCCE iteratively, taking advantage of the strengths of both
algorithms. At each step of the minimization, correspondences are computed
for building the ICP cost function. Then the ICP and BCCE cost functions
are linearized, and the locally optimal solution is found using a robust least-
squares solver [12]. This process usually converges within 3 to 4 iterations. For
more details, see [27].

7.2.2 Head-Pose Tracking

We tested our view-based approach with sequences recorded at 5 Hz. The
tracking was performed using the method of Section 6. The pose space used
for acquiring the view-based model was evenly tessellated in rotation only. On
a 1.7 GHz Pentium 4, our C++ implementation of the tracking framework,
including frame grabbing, 3D-view registration, and pose updates, runs at 7
Hz.

Tracking requires no manual intervention: the tracker searches for a frontal
face in the scene using a face detector [42]. Because the face is frontal, we
use this first frame to establish the origin. The system begins with no key
frames, so accurate tracking in the early stages requires the user to move
slowly. As more key frames are acquired, the system becomes robust to very
fast movements. During steady state, the head tracker maintains about 50 key
frames.

Figure 6 shows tracking results from a video sequence in which the subject
underwent rotations of about 110 degrees and translations of about 80 cm, in-
cluding translation along the Z-axis. While this sequence was 2 minutes long,
in practice, tracking can continue indefinitely under these conditions. We have
run experiments where the tracker was stable for 30 minutes, limited only by
the patience of the subject. The tracker is tolerant of most hazards, includ-
ing lighting variations and occlusions, as long as the segmentation algorithm
provides good foreground pixels. In the current implementation, the segmen-
tation algorithm simply returns pixels near the camera, so intervening objects
can interfere with tracking. The left column of Figure 6 shows that a differen-
tial tracker based on our pose-change estimation algorithm drifts after a short
while on this sequence. When tracking with only the first and previous frames
as key frames (center column), the pose estimate is accurate when the subject
is near-frontal but drifts when moving outside this region. The view-based
approach (right column) gives accurate poses during the entire the sequence
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First and 
previous frames

Adaptive
View-based model

Fig. 6. Comparison of face tracking results using a 6-DOF registration algorithm.
Rows represent results at 31.4, 52.2, 65, 72.6, 80, 88.4, 113, and 127 seconds into the
video. Each image shows the foreground pixels and a rendered cube representing
the pose of the head. The thickness of the lines defining the box around each face is
inversely proportional to the uncertainty in the pose estimate (the determinant of
the covariance of xt, read from ΛX ). The number of indicator squares below the box
indicate the number of base frames used during tracking. Background pixels and
pixels where no range data was available are shown in black. Differential tracking
(left column) drifts after a few seconds. Tracking with only the first and the previous
frame is inaccurate for long excursions away from the first frame, but tracking does
not drift (center column). Adaptively adding new key frames provides the best
accuracy and suffers no drift.
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Fig. 7. The key frames acquired during one sequence, organized according to their
pose. The key frames are spread evenly in the space of rotations to provide additional
base frames for as many frames as possible.

for both large and small movements. Usually, the view-based tracker used 2
or 3 base frames (including the previous frame) to estimate each pose.

Figure 7 shows the key frames acquired during a tracking session. Figure 8
demonstrates how loop closures reduce drift and cause key frames to undergo
adjustments.

To quantitatively analyze our algorithm, we compared our results to an Inertia
Cube2 sensor from InterSense. Inertia Cube2 is an inertial 3-DOF orientation
tracking system. The sensor was mounted on the inside structure of a con-
struction hat. By sensing gravity and the earth’s magnetic field, Inertia Cube2

estimates for the X and Z axes (where Z points outside the camera and Y
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Fig. 8. Because key frames are correlated, closures can refine the pose of many key
frames. The left panel shows two degrees of rotation of 15 key frames (solid squares)
and of the current estimate of the pose of the head (outlined square). The light
square is the key frame used for registration. It can be seen from the misalignment
of the overlaid cube that the estimate pose of the head is slightly wrong. When
the next frame becomes available, the current frame is compared against two key
frames. Because one of these key frames was acquired much earlier, this closes a
loop (right panel). The estimate of the pose of the head is corrected, and the key
frames on the upper leg are adjusted as a result of the closure (the crosses depict
the position of these key frames in the left panel).
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420360270

Fig. 9. To gather ground truth, the subject wore on his head an inertial sensor,
whose output is compared with that of our adaptive view-based tracker in Figure
10.

points up) are mostly drift-free, but the Y-axis estimate can suffer from drift.
InterSense reports an absolute pose accuracy of 3◦ RMS when the sensor is
moving.

We recorded 4 sequences, using the Inertia Cube2 sensor. The sequences were
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Fig. 10. Comparison of the head-pose estimation from our adaptive view-based
approach with the measurements from the Inertia Cube2 sensor. The Inertia Cube2

only recovers rotations, so only the rotation axes are shown. The root mean squared
difference between the output of the inertial sensor and our adaptive view-based
tracker was about 2.8◦, which is within the accuracy of the Inertia Cube2 itself.

recorded at 6 Hz and their average length was 801 frames (∼133 sec). During
recording, subjects underwent rotations of about 125 degrees and translations
of about 90 cm, including translation along the Z axis. Figure 9 shows the pose
estimates of our adaptive view-based tracker for one of the sequences. Figure
10 compares the tracking results of this sequence with those of the inertial
sensor. Since the inertial sensor can only recover rotations, we only compare
these parameters. The average root mean squared distance to the output of
the inertial sensor is 2.8◦, which means our results are accurate to within the
resolution of the Inertia Cube2 sensor.
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8 Conclusion

We have shown how to turn pose-change estimators into accurate drift-free
trackers. Our algorithms use pose-change estimators to track poses while si-
multaneously updating a view-based appearance model. This makes it rela-
tively easy to build trackers, since pose change estimators are available off-the-
shelf. We derived a Gaussian approximation to represent the uncertainty in
the output of parametric pose-change estimators. Three tracking recipes were
presented, each suitable for different situations. The batch method is exact and
uses all frames as key frames. The online method of Section 5 is appropriate
for situations where many key frames are needed, but it grows linearly in the
number of frames used. By contrast, the complexity of the online method of
Section 6 does not grow over time. This algorithm is well suited for situations
where the appearance of the scene can be captured with a small number of
key frames. Our experiments showed that these trackers can run for a very
long time without significant drift.

A Uncertainty in Parametric Pose-Change Estimation

Some pose change estimators do not provide an uncertainty measure over
their output. We present here a generic form for a distribution p(ys,t|xs, xt)
that captures the uncertainty in the pose change estimate obtained from a
large class of pose change estimators. We assume that p(ys,t|xs, xt) can be
approximated by a Gaussian N (ys,t|y∗, Λs,t), where y∗ = xt 	 xs is the true
pose change, and proceed to derive a form for Λs,t. We assume that the pose
change estimator minimizes a least-squares registration error using a known
motion model 2 .

Note that p(ys,t|xs, xt) is a function of the true poses, but that registration
algorithms operate on images. When the appearance of an image is largely
governed by the pose, so that the distributions p(I|x) are peaked, we have
p(ys,t|xs, xt) ≈ p(ys,t|Is, It) as a function of ys,t. We therefore proceed by finding
a Gaussian approximation to the distribution p(ys,t|Is, It).

We assume that the pose change estimators in question are parametric motion
estimators that search for the mode of the following distribution as a function

2 An alternative idea, suggested by one of the anonymous reviewers, is that
p(ys,t|xs, xt) can be learned from labeled data.

26



of ys,t:

p(ys,t|Is, It) ∝ exp

(
− 1

2σ2

∑
i∈P

[Is(i + u(i, ys,t))− It(i)]
2

)
, (A.1)

where P are the pixels of It and the summation is over these pixels, and
σ2 is an unknown variance parameter. The function u warps a pixel i by an
amount dictated by its second argument. Finding the mode of this distribution
amounts to finding the pose change that minimizes the residual between the
two images under the family of warpings u.

To approximate p(ys,t|Is, It), we substitute the maximum likelihood estimate
of σ, and set the mean y∗ of the approximating Gaussian to xt 	 xs, which
will be near a mode of p(ys,t|Is, It) when there is not much imaging noise.
The covariance Λs,t will be set to the inverse curvature of log p(ys,t|Is, It) at
ys,t = y∗ following Laplace’s approximation [8].

To justify this choice of covariance matrix, take the second order Taylor series
expansion of log p(ys,t|Is, It) about y∗. The first order term vanishes because
the first derivative is zero near the mode:

log p(ys,t|Is, It) ≈ log p(y∗|Is, It) + (ys,t − y∗)>H(ys,t − y∗). (A.2)

Exponentiating gives a Gaussian approximation to the posterior:

p(ys,t|Is, It) ≈ κ exp
(
(ys,t − y∗)>H(ys,t − y∗)

)
= N

(
ys,t

∣∣∣y∗,−1

2
H−1

)
(A.3)

This approximation effectively fits a Gaussian near the mode of p(ys,t|Is, It),
matching its curvature there.

The Hessian of the log of the distribution in Equation (A.1) at ys,t = y∗ is

H = − 1

σ̂2

∑
i∈P

u̇(i, y∗)>∇Is(i + u(i, y∗))>∇Is(i + p(i, y∗))u̇(i, y∗)

+ r(y∗)∇2Is(i + u(i, y∗)),

(A.4)

where r(y∗) is the residual of the images after warping Is by y∗. At y∗, the
residual is very small, and Is(i + u(i, y∗)) ≈ It(i), so the Hessian at y∗ can be
approximated by

H ≈ − 1

σ̂2

∑
i∈P

u̇(i, y∗)>∇It(i)
>∇It(i)u̇(i, y∗) (A.5)

Finally, the maximum likelihood estimate of σ can be found by differentiating
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p(ys,t|Is, It) with respect to σ, and setting to zero:

σ̂2 =
1

|P|
∑
i∈P

[Is(i + u(i, y∗))− It(i)]
2 , (A.6)

where |P| denotes the number of pixels in P . Putting everything together, we
get the Gaussian approximation

p(ys,t|xs, xt) ≈ N (ys,t|y∗, Λs,t) (A.7)

y∗ = xt 	 xs (A.8)

Λs,t = σ̂2

[∑
i∈P

u̇(i, y∗)>∇It(i)
>∇It(i)u̇(i, y∗)

]−1

. (A.9)

Equation (A.9) has an intuitive interpretation. The variance σ̂2 is the RMS
reconstruction error after warping according to the recovered pose change. The
summation measures the average sensitivity of each component of u, weighted
by the strength of the features in the image. This is because ∇It(i)

>∇It(i)
represents the strength of a feature at location x (see [35]), and u̇(i) is the
sensitivity to ys,t at various points in the image.

In the translational case, u(i, y) = i + y. So ∂
∂y

u(i, y) = I. The covariance
becomes

Λtranslation = σ̂2

[∑
i∈P

∇It(i)
>∇It(i)

]−1

, (A.10)

which is just the reconstruction error weighted by a measure of how textured
the image is.

In the case of an affine tracker, the partial of u is:

∂

∂y
u(i, y) =

i1 i2 1 0 0 0

0 0 0 i1 i2 1

 . (A.11)

If we set∇It(i)
>∇It(i) = I, effectively assigning the same texture to all points,

the covariance becomes

Λaff = σ̂2



∑
i∈P



i21 i1i2 i1

i1i2 i22 i2

i1 i2 1

0

0

i21 i1i2 i1

i1i2 i22 i2

i1 i2 1





−1

. (A.12)
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Consistent with intuition, points away from the center of the coordinate system
reduce the uncertainty in the multiplicative portion of the affine transforma-
tion more than the central points. In addition all points contribute equally to
the translation parameters.

B Minimum KL-Divergence Simplification of a Factored Distribu-
tion

We would like to approximate a distribution p(X) =
∏

t pt(xt|Pa[xt]) with
a distribution q(X) =

∏
t qt(xt|Qa[xt]) whose factors qt(xt|Qa[xt]) depend on

a subset of the variables that appear in the corresponding factors of p (ie,
Qa[xt] ⊂ Pa[xt]). We want q to be as close as possible to p in the KL-divergence
sense, where the KL-divergence between two distributions p and q is defined as
KL (p‖q) =

∫
X p(X) ln p(X)

q(X)
. It is well known that the closest such q is obtained

by dropping the additional edges from the factors of p.

To see this, expand the KL divergence:

KL (p‖q) =
∫

X
p(X) ln

∏
t pt(xt|Pa[xt])∏
t qt(xt|Qa[xt])

(B.1)

=
∫

X
p(X)

∑
t

ln
pt(xt|Pa[xt])

qt(xt|Qa[xt])
(B.2)

=
∑

t

∫
xt,Pa[xt]

p(xt, Pa[xt]) ln
pt(xt|Pa[xt])

qt(xt|Qa[xt])
. (B.3)

Since each term in the summation can be optimized over qt separately, after
dropping terms that do not depend on q and flipping signs, we get

q∗t (xt|Qa[xt]) = arg max
qt

∫
xt,Pa[xt]

pt(xt, Pa[xt]) ln qt(xt|Qa[xt]) (B.4)

= arg max
qt

∫
Qa[xt]

p(Qa[xt])
∫

xt

pt(xt|Qa[xt]) ln qt(xt|Qa[xt])

(B.5)

= pt(xt|Qa[xt]). (B.6)

The last statement follows because the inner integral in Equation (B.5) is the
KL divergence between pt(xt|Qa[xt]) and qt(xt|Qa[xt]).
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