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Abstract

Statistical shape-and-texture appearance models use image morphing to define a

rich, compact representation of object appearance. They are useful in a variety of

applications including object recognition, tracking and segmentation. These tech-

niques, however, have been limited to objects with Lambertian surface reflectance,

simple geometry and topology. In this work we present new shape-and-texture ap-

pearance models that overcome these limitations. In the first part of our work we

develop a 4D shape-and-texture appearance model, built using light-fields. This

model is capable of representing objects with complex surface reflectance and ge-

ometry. We demonstrate our light-field appearance model using 50 light-fields of

the human head captured from a real-time camera array. Next, we present a non-

parametric appearance model of the shape and texture of objects whose appearance

manifolds exhibit a varying topology, e.g. have holes. We demonstrate this model

using 2D mouth images of speaking people. In our experiments we evaluate the

performance of each method and provide a comparison with conventional, linear

single- and multi-view deformable models.
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1 Introduction

Computer vision techniques aim to infer salient semantic information from

low-level, visual signals. Object recognition, detection and tracking are com-

mon visual tasks that people perform everyday to navigate and understand

the world. An object’s appearance is governed by many internal and external

factors that can make the object difficult to recognize/detect. Object appear-

ance models, such as [1–6], learn the complex appearance of an object from

examples. These models define a knowledge-base of object appearance and

can be used to recognize an object imaged under an arbitrary configuration

or imaging condition.

Statistical shape-and-texture appearance models, also called deformable mod-

els, provide a powerful framework for learning object appearance [1,7]. These

techniques exploit image morphing to define a rich, compact representation

of object appearance. With these methods object appearance is decomposed

into its shape and texture components. Intuitively the data variation in the

decoupled shape and texture vector spaces is potentially simpler than that

in the original image space. As a consequence fewer examples are needed to

construct the model. Camera geometry or 3D structure can be used to further

decouple and simplify the model [8].

In this paper we describe two complementary extensions to the shape-and-
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texture appearance modeling framework. First, we define a deformable model

over light-fields, to model pose and non-Lambertian effects. Second, we ex-

tend the deformable model to objects whose appearance manifolds are nonlin-

ear, e.g. have holes. Both of these techniques have been discussed in previous

publications [9,10]. In this work we place each technique under a unifying

framework, offer a more detailed description of each technique, and provide

additional results and discussion.

Linear methods such as [2,11] independently model the shape and texture

vector spaces of an object with Principle Component Analysis (PCA). If object

pose is also to be encoded in the model, these techniques may perform poorly,

since the appearance variation of an object imaged under variable pose is in

general nonlinear. Nonlinear methods can be used to define 2D appearance

models that capture pose variation [3,12,13]. Pose variation, however, is easily

represented in 3D, where object pose is kept as an external parameter to

the model, as was done by Blanz and Vetter [8]. In their work, objects are

represented using simply textured, detailed polygonal meshes. These meshes

can be expensive to acquire and this approach has difficulty in representing

complex lighting or objects whose surfaces exhibit a non-Lambertian surface

reflectance.

The first contribution we present is a 4D shape-and-texture appearance model

that can easily model objects with non-Lambertian surface reflectance and

complex geometry. Using our approach, each prototype is imaged using a light-

field and the view-based 2D shape of each object is computed (see Figure 1).

We pursue a method to match a light-field deformable model to monocular

images using a rendered Jacobian function. With this method, a full light-field

of an object is recovered from a single 2D image which can then be used to
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Fig. 1. Light-field appearance manifold of the human face. Provided an image of a
previously unseen object with unknown pose, our algorithm matches the object to a
point on the manifold that best approximates the object’s appearance in the input
view. A full light-field of the object is recovered.

render the object under previously unseen views.

There are many objects that, even in the absence of pose change, can exhibit

nonlinear shape and texture variation, for which the conventional shape and

texture mappings using PCA may poorly approximate the true space, using a

light-field or monocular deformable model. This is especially true of biological

objects that can deform quite drastically, such as a hand or mouth, or whose

texture can drastically vary across different examples (e.g., cats, dogs). The

appearance space of such objects has a varying topology; i.e., the object ap-

pearance manifold consists of multiple parts or holes. The shape and texture

spaces of complex objects can also have varying dimensionality across differ-

ent parts of the space. For example, an open mouth may have shape features

associated with the teeth that are absent from a closed mouth.
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Fig. 2. Non-parametric deformable model of the mouth. The mouth appearance
manifold has a varying topology, i.e. it has separate regions and holes, each region
having the same parts of the mouth visible. The non-parametric deformable model
analyzes a novel input by morphing between a local neighborhood of examples
computed with nearest-neighbor.

The second contribution is a non-parametric, example-based technique for

modeling shape-and-texture appearance manifolds with varying topology and

dimensionality applicable to light-field or monocular deformable models (see

Figure 2). With this method, we compute a morph between a neighborhood

of examples on the manifold found with nearest-neighbor, using a convex (or

bounded) combination of the neighborhood’s shape and texture to match the

input image. The non-parametric deformable model generalizes well to com-

plex manifolds and, unlike a parametric method, it makes no assumptions

about the global structure of the manifold.

We evaluate the above algorithms on two distinct data sets: a light-field head

data set and a monocular mouth data set. In our first experiment, we con-

struct a linear, light-field appearance manifold of the human head using a
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light-field database of 50 subjects. Each light-field was captured online us-

ing a 6x8 camera array [14]. We show light-fields synthesized from 2D im-

ages of subjects outside of the database, captured with unknown pose. A

comparison to a complementary approach, the view-based AAM [13], is also

performed. Our second experiment demonstrates a shape-and-texture appear-

ance manifold of the mouth represented with the non-parametric deformable

model outlined above. For this experiment we use speaking person video se-

quences of five subjects from the AVTIMIT database [15]. We compare the

non-parametric technique to a conventional linear shape-and-texture model

and a Gaussian mixture deformable model and show that the non-parametric

deformable model outperforms these methods.

In the following section we discuss related work. In Section 3 we provide a

formal description of light-field appearance manifolds and describe our direct

search matching algorithm. The non-parametric shape-and-texture model is

outlined in Section 4. We outline our experimental setup and discuss results

in Section 5. Finally, in Section 6 we give a concluding summary and remarks.

2 Related Work

Linear models of shape and texture have been widely applied to the model-

ing, tracking and recognition of objects [7,11,4]. Provided a set of example

images, linear shape-and-texture appearance models decompose each image

into a shape and texture representation and then model the variation of the

data in these spaces using PCA. The shape of an object describes the object’s

geometry and is typically defined by a set of feature points that outline the

object contours. The texture is the “shape free” representation of the object
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and is obtained by warping each image to a reference coordinate frame that

is usually defined by the average shape computed from the training images.

The Active Appearance Model (AAM) [2] and Multidimensional Morphable

Model (MMM) [11] are probably the most well known linear shape-and-texture

appearance models. By decomposing appearance into separate shape and tex-

ture spaces they achieve a compact, expressive model of appearance, more

powerful than pure intensity models defined with PCA (e.g. Eigenfaces [6]).

In these methods small amounts of pose change are typically modeled implic-

itly as part of shape variation on the linear manifold. For representing objects

with large amounts of rotation, nonlinear models have been proposed sepa-

rately for shape [12] and appearance [3]. An alternative approach to capturing

pose variation is to use an explicit multi-view representation which builds a

PCA model at several viewpoints. This approach has been used for pure inten-

sity models [16] as well as shape and texture models [13]. A model of inter-view

variation can be recovered using the approach of Cootes et. al [13], and miss-

ing views could be reconstructed. However, in this approach pose change is

encoded as shape and intensity variation, in contrast to 3D approaches where

pose is an external parameter. Additionally, views are relatively sparse, and

individual features are not matched across views.

Deformable models with 3D shape features have the advantage that viewpoint

change can be explicitly optimized while matching or rendering the model.

Blanz and Vetter [8] showed how a morphable model could be created from

3D range scans of human heads. This approach represented objects as simply

textured 3D shapes, and relied on high-resolution range scanners to construct

a model; non-Lambertian and dynamic effects are difficult to capture using

this framework. With some manual intervention, 3D models can be learned
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directly from monocular video [17,18]; an automatic method for computing a

3D morphable model from video was described by Brand [19]. These methods

all used textured polygonal mesh models for representing and rendering shape.

Multi-view 2D [13] and textured polygonal 3D [8,17,18] appearance models

cannot model objects with complex surface reflectance. Image-based models

have become popular in computer graphics recently and can capture these

phenomena; with an image-based model, 3D object appearance is captured in

a set of sampled views or ray bundles. Light-field [20] and lumigraph [21] ren-

dering techniques create new images by resampling the set of stored rays that

represent an object. Most recently the unstructured lumigraph was proposed

by Buehler et. al. [22], and generalized the light-field/lumigraph representation

to handle arbitrary camera placement and geometric proxies.

Recently, Gross et. al. [23] have proposed eigen light-fields, a PCA-based ap-

pearance model built using light-fields. They extend the approach of Turk and

Pentland [6] to light-fields and define a robust pose-invariant face recognition

algorithm using the resulting model. A method to morph two light-fields was

presented in [24]; this algorithm extended the classic Beier and Neely algo-

rithm [25] to work directly on the sampled light-field representation and to

account for self-occlusion across views. Features were manually defined, and

only a morph between two (synthetically rendered) light-fields was shown in

their work.

In this paper we first develop the concept of a light-field appearance manifold,

in which 3 or more light-fields are “vectorized” (in the sense of [1]) and placed

in correspondence. We construct a light-field appearance manifold of facial

appearance from real images, and show how that model can be automatically
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matched to single static intensity images with non-Lambertian effects (e.g.

glasses). Our model differs from the multi-view appearance models of Cootes

et. al. [13,26] in that we build a 4D representation of appearance with light-

fields. With our method, model coefficients between views are explicitly linked

and we do not model any pose variation within the deformable model at a

single view. We are therefore able to model self-occlusion due to pose change,

and complex lighting effects better than a view-based AAM. We support this

claim in our experimental results section. Our model is more similar to the

Coupled-View AAM of Cootes et. al. Like our model, the Coupled-View AAM

explicitly links the coefficients between views. This model however, has no

formal mechanism for combining the discrete image samples to synthesize in-

between object poses that is provided by the use of light-fields and light-field

rendering [20,21].

As we also show in this paper, conventional shape-and-texture appearance

models, such as the AAM and MMM, are unable to faithfully represent the

appearance of complex objects with nonlinear appearance manifolds, such as

mouths, whose manifolds may have parts or holes. Many nonlinear models have

been defined separately for shape and appearance [12,27,3]. Romdhani et. al.

[12] use Kernel PCA to define a nonlinear shape model for representing shape

across object pose. Cootes et. al. [27] show how a Gaussian mixture model can

be used to construct a nonlinear active shape model that restricts its search to

valid shapes on the object shape manifold, thus avoiding erroneous matches.

In their work, Cootes et. al. extend this idea to define a nonlinear model of

shape and appearance called the view-based AAM [13]. The view-based AAM

defines a piecewise linear representation of the shape-and-texture appearance

manifold in a very similar fashion to the Gaussian mixture model described in
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Section 5. The key differences between the Gaussian mixture model and the

method described in [13] is that the Gaussian mixture deformable model of

Section 5 automatically learns the different regions of the manifold from the

data and is not restricted to learning mixture components that vary across

pose alone.

A nearest neighbor algorithm is explored by Grauman et. al. [28]. In her work

she defines an active shape model across body poses. Several authors have

developed example-based models of object appearance, including the metric

mixtures approach of Toyama and Blake [29], however, these methods do not

exploit shape and texture decomposition. Similarly, Murase and Nayar [3]

present a manifold learning algorithm that maps out the space of images of an

object imaged across different poses. To the author’s knowledge this is the first

work that explores example-based techniques for modeling shape-and-texture

appearance manifolds.

In the learning literature a number of manifold learning methods have been

proposed, two of which are Isometric Feature Mapping (ISOMAP) [30] and

Local Linear Embedding (LLE) [31]. ISOMAP uses geodesic distance, or dis-

tance along the manifold, to compute the coordinates of each data point on

the manifold, while LLE uses local geometry to compute these coordinates—it

finds a mapping such that the local geometry of points in the high-dimensional

input space is preserved on the manifold. Both ISOMAP and LLE are non-

parametric manifold learning methods that function over k-size neighborhoods

in the original high-dimensional input space. Our non-parametric deformable

model technique can be used to improve the mappings found with these tech-

niques when used to compute appearance manifolds, i.e., when the input space

is over images. In specific, image morphing can be used to get a better ap-
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proximation of the local geometry or distances used by both of these methods

to perform manifold learning. We believe this to be an interesting application

of our model and leave this for future work.

3 Light-Field Appearance Manifolds

In this section we discuss how to build an appearance model that represents

object appearance in 4D using light-fields. With our model, each point on

the shape-and-texture appearance manifold maps to a light-field of an object

(see Figure 1). Pose is kept as an external parameter to the model and the

resulting appearance manifold for simple objects, such as the human head, is

well approximated using a linear model. Light-fields are purely image-based

and do not use any scene geometry to model the appearance of an object.

Unlike the view-based 2D models of [13] and the 3D models of [8], our model

easily represents object classes with complex surfaces and geometry. One of

the main ideas behind this section is that pose variation is easily handled in 4D

with light-fields, and thus more efficient models of appearance can be derived

than with 2D approaches. In the next section we discuss nonlinear techniques

for modeling the shape-and-texture appearance manifold of complex objects.

For simplicity, we present a linear model in this section, however, the nonlinear

techniques of Section 4 are directly applicable.

In the following sub-sections we define the concepts of shape and texture in the

context of light-fields and show how to build a generative model of appearance

over these vector spaces. To match the model, we extend the direct search

algorithm of [2] to function over the space of light-fields. We show how to

match a light-field or 2D image of an object to a point on the manifold. When
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matching to an image, we automatically estimate its pose by searching over the

views of the model light-field. In turn, the model fit can be used to synthesize

the object under unseen views. In Section 3.1 we provide formal definitions of

light-field shape and texture in the context of both geometric and optical flow

based shape features. We then describe the light-field appearance manifold

in Section 3.2. The direct search algorithm employed to match the model is

explained in Section 3.3.

3.1 Light-Field Shape and Texture

In this section we provide a formal description of the shape and texture of a

set of light-field prototypes that define the appearance manifold of an object

class. Let L(u, v, s, t) be a light-field consisting of a set of sample views of the

scene, parameterized by view indices (u, v) and scene radiance indices (s, t),

and let L1, ..., Ln be a set of prototype light-fields with shape X ′
1, ..., X

′
n. Below

we define light-field shape both in the context of 2D feature-points and 4D

vector fields. We first discuss the feature point based shape representation

and then the vector field based shape representation that can be computed

automatically with optical flow.

For most image-based rendering techniques, X ′
i is a set of 3D feature points

which outline the shape of the imaged object. With a light-field, no 3D shape

information is needed to render a novel view of the object. It is therefore

sufficient to represent the shape of each light-field as the set of 2D feature

points, which are the projections of the 3D features into each view. More
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Fig. 3. Example shape and texture of a prototype light-field. Light-field shape is
defined by the set of view-based 2D shapes, x(u,v). The texture of a prototype
light-field is its “shape-free” equivalent obtained by warping the input light-field to
the reference shape.

formally, we define the shape, X, of a light-field L as

X = {x(u,v)

∣∣∣(u, v) ∈ L} (1)

where x(u,v) is the shape in a view (u, v) of L. If the camera array is strongly

calibrated, it is sufficient to find correspondences in two views and re-project

to the remaining views. With only weak calibration and the assumption of a

densely sampled array, feature points may be specified in selected views of the

light-field and tracked into all other views using optical flow [32]. An example

shape feature vector is displayed for a prototype light-field of the human head

in Figure 3.

Once shape is defined for each prototype light-field, to increase model efficiency

Procrustes analysis [33] is performed to place the shape of each object into

a common coordinate frame. Effectively, Procrustes analysis applies a rigid

body transformation to the shape of each light-field such that each object is

aligned to the same approximate 3D pose. From the set of normalized shapes
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Xi of each prototype, the reference shape Xref is computed as

Xref = MαX̄ (2)

where X̄ is the mean aligned shape and Mα is a matrix which scales and

translates the mean shape such that it is expressed in pixel coordinates (i.e.

with respect to the height and width of the discrete views of the light-field).

The matrix Mα constrains the shape in each view of the reference light-field

to be within the height and width of the view.

As in [1], the texture of a prototype light-field is its “shape free” equivalent.

It is found by warping each light-field to the reference shape Xref . As will be

shown in the next section, this allows for the definition of a texture vector

space that is decoupled from shape variation. Specifically, the texture of a

light-field L is defined as

G′(u, v, s, t) = L(D(u, v, s, t)) = L ◦ D(u, v, s, t) (3)

where D is the mapping,

D : R4 −→ R4 (4)

that specifies for each ray in Lref a corresponding ray in the prototype light-

field L and is computed using the shape of L and Xref . Note Equation (3)

implements the light-field warping operation [24]. As in the 2D deformable

models of [2], the texture of each prototype, G′
i, is normalized to be under the

same global illumination. This results in normalized light-field texture vectors

Gi.

Above we presented a feature-point based light-field shape representation that
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Algorithm 1 Compute Average Light-Field

Let L1, ..., Ln be a set of prototype light-fields.
Select an arbitrary light-field Li as the reference light-field Lref

repeat
for all Li do

Compute correspondence fields Xi between Lref and Li using optical
flow.
Backwards warp each view of Li onto Lref using Xi.

end for
Compute the average over all Xi and Gi.
Forward warp each view of Taverage using Xaverage to create Laverage.
Convergence test: is Laverage − Lref < limit ?
Copy Laverage to Lref

until convergence

is acquired using a semi-automatic process. The shape of a light-field can also

be computed using optical flow. With this technique, the shape of a light-field

is defined directly as the 4D deformation field which places the light-field in

correspondence with the model reference light-field:

Xi = Di(u, v, s, t), (5)

where Di is defined by the mapping (4) and specifies for each ray in the

reference light-field Lref a corresponding ray in the prototype light-field L.

The shape Xi of each prototype light-field, defined using Equation (5), is

computed by applying optical flow between the views of each prototype light-

field and that of the reference light-field. As in the MMM [11] the reference

object is chosen to be the average object, since by definition its difference in

shape and texture is minimal between each of the light-field prototypes and

therefore it is the preferred reference light-field. Using optical flow, the average

light-field is computed via the bootstrapping algorithm outlined in [34]. This

algorithm is presented as Algorithm 1. For efficiency we applied the algorithm

independently to each view of the prototype set.
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Using definition (5), light-field texture is computed as,

Gi(u, v, s, t) = L ◦ Xi(u, v, s, t). (6)

We will use the above definitions of light-field shape and texture to define a

light-field appearance manifold in the following section.

3.2 Light-Field Appearance Manifolds

As illustrated in the previous section, once a reference is defined, each pro-

totype light-field may be described in terms of its shape and texture. The

combination of shape and texture form an appearance manifold: given a set of

light-fields of the same object class, the combination of their texture warped

by a combination of their shape describes a new object whose shape and tex-

ture are well approximated by that of the prototype light-fields. Compact and

efficient linear models of shape and texture variation may be obtained using

PCA, as shown in [2], [11]; or a nonlinear method such as the method de-

scribed in Section 4 can be used. For the remainder of this section we use a

linear PCA model.

Given the set of prototype light-fields L1, ..., Ln, each having shape Xi and

texture Gi, PCA is applied independently to the shape and texture vectors to

give

X = X̄ + Psbs

G = Ḡ + Pgbg

(7)

Using Equation (7), the shape and texture of each model light-field is described
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by its corresponding shape and texture parameters bs and bg. As there may

exist a correlation between shape and texture, a more compact model of shape

and texture variation is obtained by performing PCA on the concatenated

shape and texture parameter vectors of each prototype light-field. This results

in a combined shape-and-texture PCA space:

X = X̄ + Qsc

G = Ḡ + Qgc

(8)

where as in [2],

Qs = PsW
−1
s Pcs

Qg = PgPcg

(9)

and Ws is a matrix that commensurates the variation in shape and texture

when performing the combined shape-and-texture PCA. In our experiments

we use Ws = rI where r =
√

σ2
s/σ

2
g . Here σ2

s and σ2
g represent the total

variance of the normalized shape and texture vectors.

Equation (8) maps each model light-field to a vector c in the combined shape-

and-texture PCA space. To generalize the model to allow for arbitrary 3D

pose and global illumination, Equation (8) may be re-defined as follows,

Xm = St(X̄ + Qsc)

Gm = Tu(Ḡ + Qgc)

(10)

where St is a function that applies a rigid body transformation to the model

shape according to a pose parameter vector t, Tu is a function which scales
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and shifts the model texture using an illumination parameter vector u, and

the parameter vectors t and u are as defined in [2]. Note, the reference light-

field has parameters c = 0, t = α and u = 0, where α is a pose vector that is

equivalent to the matrix Mα in Equation (2).

The set of all light-fields of an object define a manifold of object appearance

in light-field space. With our model, the light-field appearance manifold of an

object class is modeled as,

Lmodel = Gm ◦ Dm (11)

where Lmodel is a model light-field that maps to a point on the appearance

manifold and, as in Equation 4, Dm is a 4D deformation field which maps each

ray in the model light-field to a ray in the reference light-field. Using feature-

point based shape, Dm is computed using the shape of the model light-field,

Xm and the reference light-field, Xref . When Xm is defined using shape derived

from optical flow, we set Dm = Xm and we re-define Equation (11) as

Lmodel = Gm ◦f Xm (12)

where ◦f denotes the forward warping operation.

In the remaining section we present a direct search algorithm that optimizes

the model over the combined shape-texture space and describe how the light-

field appearance manifold can be automatically optimized over images with

unknown pose.
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3.3 Model Matching

In this section, we show how to generalize the matching technique of [2] to

light-fields. We first illustrate how to match a light-field and then discuss the

more interesting task of fitting a model light-field to a single 2D image.

A novel light-field, Ls, is matched to a point c̃ on the shape-and-texture ap-

pearance manifold by minimizing the following nonlinear objective function:

E(p) = |Gm − Gs|2 (13)

where pT = (cT |tT |uT ) are the parameters of the model, Gm is the model

texture and Gs is the normalized texture of Ls assuming it has shape Xm. Gs

is computed by warping Ls from Xm to the reference shape Xref . The model

shape and texture are computed at p using Equation (10). For simplicity, we

assume that the object imaged by Ls has the same approximate 3D pose as

the training light-fields.

The direct search gradient descent algorithm of [2] is easily extendible to a

light-field deformable model. In [2] a linear relationship for the change in image

intensity with respect to the change in model parameters was derived via a

first order Taylor expansion of the residual function r(p) = Gm − Gs = δg.

In particular, given a point p on the manifold, the parameter gradient that

minimizes the objective function (13) was computed as, δp = −Rδg, where

the matrix R is the pseudo-inverse of the Jacobian, J = ∂r
∂p

, derived from the

Taylor expansion of the residual function.

In a 2D deformable model the columns of the Jacobian are intensity gradient
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images which model how image intensity changes with respect to each model

parameter. Analogously, the Jacobian of a light-field deformable model repre-

sents the change in light-field intensity with respect to the change in model

parameters, each of its columns representing light-field intensity gradients that

describe the intensity change across all the views of a light-field. As in a 2D

AAM, the Jacobian is learned via numerical differentiation.

A more interesting extension of the AAM framework arises when performing

direct search to match a light-field deformable model to a single 2D image;

with a light-field the Jacobian matrix is rendered based on pose. A novel image

Is is matched to a point on the light-field appearance manifold by minimizing

the objective,

E(p, ε) = |F (Gm, ε) − gs|2 (14)

where ε is the camera pose of Is, F is a function that renders the pose ε of the

model texture [20,22] and gs is the texture of Is assuming it has shape xm.

gs is computed by warping Is from xm to the reference shape xref . Both 2D

shapes are obtained by rendering Xm and Xref into view ε using,

x = Fx(X, ε) (15)

where Fx is a variant of the light-field rendering function F : it renders shape

in view ε via a linear interpolation of the 2D shape features defined in each

view of X.

Overall, the objective function in Equation (14) compares the novel 2D image

to the corresponding view in Lmodel. Minimizing this objective function fits a

model light-field, Lmodel, that best approximates I in view ε. An efficient way

to optimize Equation (14) is by defining a two step iteration process, in which
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the pose ε is optimized independently of the model parameters p. We estimate

ε using the pose estimation algorithm described below. The pose parameter t

can be used to further refine this pose estimate during matching.

Once ε is approximated, direct search may be employed to match I to a point

on the shape-and-texture appearance manifold. As previously discussed, each

column of the Jacobian, J of a light-field deformable model is a light-field

intensity gradient. To approximate the intensity gradient in view ε of the

target image I, light-field rendering is applied to each column of J. This yields

a “rendered” Jacobian matrix, Jε, specified as,

Ji
ε = F (Ji, ε), i = 1, ..., m (16)

where Ji represents column i of the matrix J and m is the number of columns

in J. Note similar to the model and image textures of Equation (13) the

columns of Jε have shape xref defined above.

Using Jε, we optimize Equation (14) using the direct search algorithm pre-

sented in Algorithm 2. An important step of the algorithm, is in the application

of the pose parameter vector t. In this step, the global affine warp St is applied

to the rendered model image and not to the model light-field (step 3 of the

Residual function in Algorithm 2). This is because rotating, scaling, and/or

translating the images of Lmodel according to St may violate the light-field

construction when matching to an image. To see this, consider manipulating

a single-slab light-field. Applying St to this light-field effectively rotates or

displaces the focal plane (st-plane) of the light slab (note, scaling the images

correlates to widening the gap between the camera and focal planes of the

light slab). Clearly, moving the focal plane of the light-field will alter where
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the scene rays will intersect it. If the imaged object is planar then the scene

rays will follow the motion of the focal plane. For non-planar objects this is

not necessarily the case, however.

Algorithm 2 Direct Search Algorithm for Matching an Image

Let Is be an input image with estimated pose ε, Xm, Gm the model shape
and texture vectors of the light-field appearance manifold, and J the model
Jacobian.

Compute Jε using Equation (16).
Set p = p0

Evaluate δg = Residual(Is,p, ε)
repeat

Compute error E0 = |δg|2
Evaluate δp = −Rδg
Update parameters, p1 = p + δp
Evaluate δg = Residual(Is,p1, ε)
Compute error at new p value: E = |δg|2
if |E − E0| ≥ 0 then

Try different step sizes: k = 1.5, 0.5, 0.25, ...
Set p1 = p + kδp
Evaluate δg = Residual(Is,p1, ε)
Compute error E = |δg|2

end if
if |E − E0| < 0 then

Set p = p1

end if
until |E − E0| ≥ 0

function δg = Residual(Is,p, ε)
xref = Fx(Xref , ε)
xs = Fx(Xm(bs, t0), ε)
xs = St(xs)
gs = Whiten(Is ◦ W (xs, xref))
gm = Whiten(F (Gm(bg), ε))
δg = gm − gs

function gw = Whiten(g)
gw = g − mean(g)
gw = gw/var(gw)

By applying the affine warp on the rendered model image the model light-field

remains in the coordinate frame of the reference light-field, while still affording
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the model affine flexibility in the coordinate frame of the input image. Another

benefit of the above matching algorithm is that it avoids the need to optimize

over z, the depth of the focal plane of the unstructured lumigraph, during

matching. The scaling performed by St when applied to the model light-field

effectively changes this value and thus z would need to be optimized over

as well when performing the match. By keeping the model light-field in the

coordinate frame of the reference light-field, this need is eliminated and we let

z = z0, the depth of the average light-field.

Note, when fitting the model to an object light-field, we can safely apply St

to the images of the model light-field. This is because the set of allowable

affine transformations is constrained by the 3D pose of the input light-field.

Matching an image is more ambiguous, and can result in transformations St

that when applied to the images of the light-field violate its construction.

To estimate ε during matching, we first use gradient descent on the views of the

light-field to obtain a coarse estimate of the object’s pose. Provided an input

image Is, we obtain an initial estimate of the object’s pose, ε0, by performing

cross-correlation between the image and each view of the average light-field.

We then match the image to this view and each of its eight-connected neigh-

bors. We move to the neighbor with smallest fit error and iterate until the

central view has the smallest fitting error of its neighbors. To avoid local

minima we randomly perturb the fit upon convergence. Final convergence is

declared when the algorithm converges to the same discrete pose twice.

Once convergence is declared at a discrete pose of the model light-field, gra-

dient descent can once again be applied to obtain a refined pose estimate. In

our implementation, we efficiently estimate the object’s pose, ε, by fitting a
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quadratic to the fit error of the eight-connected neighborhood centered about

the computed discrete pose. The pose, ε, is set to the minimum of the fit

quadratic.

4 Nonlinear Appearance Manifolds

In this section we present a nonlinear technique for modeling shape-and-

texture appearance manifolds. Here we focus on 2D appearance models, how-

ever, this technique is directly applicable to the 4D appearance model of the

previous section.

The images of a complex object such as a mouth generally belong to a non-

linear appearance manifold with parts or holes as demonstrated by Figure 4.

This figure illustrates the shape and texture of example mouth images taken

from the AVTIMIT database [15]. The average image and shape are displayed

along with example textures and shapes of selected prototype images.

Consider modeling the mouth appearance using a linear model such as an

AAM. Figure 4 demonstrates the difficulty with modeling the mouth using

a linear method. In particular, notice the stretched region in the texture of

a closed mouth and that the inside of the mouth is lost in the texture of an

open mouth. These artifacts cripple the computed model; in general, linear

methods have difficulty modeling the full range of mouth appearance. Such

artifacts are a result of the varying topology of the appearance manifold of

this object—some features (or surfaces) are visible in certain mouth images

but not in others (e.g., teeth). Intuitively, this is seen by the fact that there

exist sets of mouth configurations for which the same parts of the mouth are
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Reference Image Reference Shape

Input Shape Texture

Fig. 4. Linear models compute a texture space by warping each example to a single
reference frame. Note the stretched region present in the closed mouth textures and
that the inside of the mouth is lost in the texture of the open mouth.

visible in each set.

In addition to varying topology, the shape-and-texture spaces of nonrigid ob-

ject classes can have varying dimensionality across examples when different

sets of landmarks are used. Once again, consider the mouth images of Figure

4. The presence of teeth in the open mouth introduces new shape features that

are absent from the image of the closed mouth. Allowing for varying shape

dimensionality results in a more expressive and accurate model of appearance.

Below we present a non-parametric deformable model for modeling shape-
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Input First Five Nearest Neighbors

Fig. 5. First five nearest neighbors computed with our algorithm on a database of
100 mouth images.

and-texture appearance manifolds. Unlike a parametric approach, this model

assumes nothing of the global structure of the appearance manifold. Instead,

it looks at local neighborhoods on the manifold that are assumed to belong to

the same region of the topology computed with nearest-neighbor. As we show

below, the nearest-neighbor model is easily extendible for use with shapes of

variable dimensionality.

4.1 Non-Parametric Deformable Model

The nearest-neighbor model provides an implicit representation of the man-

ifold. Specifically, this model focuses on local neighborhoods of the manifold

defined by k examples. In this region it is assumed that the same parts of

26



the nonrigid object are visible. Given the local neighborhood, the shape and

texture of a new input is found by taking bounded combinations of the shape

and texture of the k neighborhood examples. Therefore, given a new image,

we wish to find a local neighborhood observing the above properties, whose

shape and texture best explain the input.

We use nearest-neighbor search to find a set of examples on the manifold

whose appearance most closely approximate that of the input. Given a novel

input, xs, we compare it to each image, xi, of the prototype set to compute

its k nearest neighbors. Although we use an exhaustive search there exist fast

methods for computing approximate nearest neighbors [35] that we leave for

future work. In our algorithm, we compute proximity using Euclidean distance

in pixel space. We compute the distance,

d(xs,x) = ‖xs − x‖2, (17)

between xs and each prototype image and retain the k examples having small-

est distance. Figure 5 displays the results of this nearest-neighbor algorithm

on a database of 100 images of a single subject’s mouth taken from the AV-

TIMIT database. The nearest neighbors of a novel input appear to form a

local neighborhood in image space.

The shape and texture of an input image are computed by taking a convex

combination of the shape and texture of its k nearest neighbors. Let xj and

sj , j = 1, ..., k be the k nearest neighbors of the input and their associated

shapes. The texture of each example is computed as

tj = xj ◦ W (sj , sref), j = 1, ..., k, (18)
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Initial 3 Iterations 8 Iterations Converged

Fig. 6. A convincing reconstruction of the shape and texture of an input mouth
image is computed in a few iterations using the gradient descent algorithm of the
nearest neighbor model.

where ◦ denotes the warping function, W () is a function that computes the

piecewise affine correspondence between two images given their shape [2], and

sref is the reference shape of the local neighborhood defined to be the mean

of the example shapes,

sref =
1

k

∑
j

sj . (19)

Given the k nearest neighbors of the input, we search over bounded combina-

tions of their shape and texture that best match the input by minimizing the

following error objective function,

E(xs,b, c, t) = ‖xs ◦ W (sm(c, t), sref) − tm(b)‖2, (20)

where

tm(b) =
∑

j bjtj,

sm(c, t) = St(
∑

j cjsj),

St is a function that applies a rigid body transformation to the model shape

according to a pose parameter vector t and bj , cj take values on the closed

interval [α, β]. Note that α and β restrict the search to a bounded region of
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Fig. 7. Variable size shape representation used by the nearest-neighbor model. Each
example image is labeled with varying feature sets according to what parts of the
mouth are visible. Three examples are shown: (left) with only lip features, (middle)
with lip and top teeth features, (right) with lip, top and bottom teeth features.

the manifold containing the k nearest-neighbor examples. If α = 0 and β = 1

then the search is restricted to the convex hull of the example shape-and-

texture vectors. This restriction results in a compact representation of the

manifold and assures that we match an input to a point on the manifold.

We minimize the objective function (20) using gradient descent. Figure 6 dis-

plays an example match using the above algorithm. The algorithm is able to

generate a convincing reconstruction of the mouth from the shape and texture

of the nearest-neighbor examples.

It is straightforward to extend the nearest-neighbor model to handle varying

shape dimensionality. With this representation a shape vector, sM , is defined

as

sM = 〈x1, x2, ..., xM , y1, y2, ..., yM〉 . (21)

In the above representation, each shape has dimensionality 2M . This shape

representation is illustrated by Figure 7. In the nearest-neighbor model we

associate each prototype image with a shape vector that has dimensionality

according to what is visible in the image. When computing nearest neigh-

bors, we intersect the shapes of the neighborhood examples and use the shape

features common to all examples to match the novel input. To compute the

shape of the input, we keep the shape features that appear in a majority of
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Input

Five Nearest Neighbors

Result

Fig. 8. Shape intersection algorithm used by the nearest-neighbor model. To com-
pute the shape of the input, the shape of the nearest neighbors is intersected and
the shape features that appear in a majority of the examples are used.

its nearest-neighbor examples. This process is illustrated by Figure 8. The use

of multiple shape dimensionality results in a more expressive and accurate

appearance model.

5 Experiments

In this section we evaluate the light-field deformable model and the non-

parametric deformable model of this paper. We begin by describing our im-

plementation and experimental setup. We then demonstrate a light-field head

appearance manifold of the human head. In this experiment we compare the

view-based AAM to our method and display full light-fields synthesized from

2D images of novel subjects with unknown pose. Next, we demonstrate the

non-parametric shape-and-texture appearance model using speaking mouth

video sequences of five subjects taken from the AVTIMIT database. We per-

form a qualitative and quantitative evaluation of the non-parametric model

and compare it against a baseline linear method and a parametric deformable
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model.

5.1 Experimental Setup

We built a light-field appearance manifold of the human head by capturing

light-fields of 50 subjects using a real-time light-field camera array [14]. We

collected 48 views (6 × 8) of each individual and manually segmented the

head from each light-field (Figure 9). Our head database, displayed in Figure

10, consists of 37 males and 13 females of various races. Of these people,

7 are bearded and 17 are wearing glasses. The images in each view of the

prototype light-fields have resolution 320 x 240. Within each image, the head

spans a region of approximately 80 x 120 pixels. The field of view captured

by the camera array is approximately 25 degrees horizontally and 20 degrees

vertically. To perform feature tracking, as described in Section 3, we used

a multi-resolution Lukas-Kanade optical flow algorithm [?], with 4 pyramid

levels and Laplacian smoothing 1 . When matching our model to an image

we assume that the object’s image location is approximately known. In the

case of a head model, such information can be readily obtained from a face

detector [36].

For comparison, we built a view-based AAM using the views of the light-

field camera array [13]. In both the definition of the view-based and light-field

active appearance models the parameter perturbations displayed in Table 1

were used to numerically compute the Jacobian matrix. To avoid over-fitting

to noise, shape-and-texture PCA vectors having low variance were discarded

from each model, the remaining PCA vectors modeling 90% of the total model

1 We acknowledge Tony Ezzat for the Lukas-Kanade optical flow implementation.
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(a) (b)

Fig. 9. (a) Light-field camera array. [14] (b) example 6 × 8 head light-field taken
from our light-field head database.

Fig. 10. Head database of 50 subjects. A single, frontal view of the 6 × 8 light-field
of each subject is displayed.

variance.

We implemented the view-based AAM and light-field appearance models in

MATLAB. To perform light-field rendering we use the unstructured lumigraph
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algorithm described in [22]. This algorithm has two parameters: l for the num-

ber of source views used to render the scene and z0 the approximate depth of

the focal plane of the light-field. In our experiments we used a value of l = 4

when optimizing both the feature based and the optical flow based models.

As discussed in Section 3 the model light-fields are kept in the coordinate

frame of the reference light-field upon matching, thus we need only note the

approximate depth of the reference light-field to optimize the model. In our

experiments we found values of 11 ≤ z0 ≤ 12 to work well for the approx-

imate depth of the reference light-field of both the optical flow and feature

based models. Our matching algorithm typically converged between 4 and 15

iterations when matching to an image and between 4 and 10 iterations when

matching to a light-field. Each iteration took a few seconds in un-optimized

MATLAB. We believe that using a real-time light-field renderer [22] would

result in matching times similar to those reported for a 2D AAM [37].

To evaluate the non-parametric algorithm of Section 4, we used mouth se-

quences of five subjects taken from the AVTIMIT database [15] (see Figure

11). The sequence of each subject consisted of 8 different utterances and con-

tained on the order of 900 frames. For each subject we randomly hand selected

about 100 frames from their first three utterances and manually labeled them

with lip shape features 2 . Using the labeled features, we cropped the images of

each subject to only contain the mouth. Using this training set we constructed

an Active Appearance Model [2] for each subject. The training images of each

subject were also labeled with teeth features (see Figure 7) to form shape vec-

tors with variable dimension. These shapes were used by the nearest-neighbor

2 Subject one’s database contained 122 examples. The databases of subjects 2
through 5 had 100 examples.
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Variables Perturbations

x, y ±5% and ±10% of the height and width of the reference shape

θ ±5, ±15 degrees

scale ±5%, ±15%

c1−k ±0.25, ±0.5 standard deviations

Table 1
Perturbation scheme used to train our linear models. [37]

model discussed in Section 4.

For comparison, we also built a Gaussian mixture deformable model for each

subject using a three dimensional subspace of the training image data com-

puted with PCA, retaining 56 % of the total model variance, and with m = 5

mixture components. We found these parameters to work well in our exper-

iments. Using a three dimensional subspace also allowed us to visualize our

models. To compute the Gaussian mixture, we used the NetLab library [38].

With this model, the local shape-and-texture variation at each mixture com-

ponent is modeled using a linear deformable model. In particular, at each

component, we compute an AAM using the examples that lie under the sup-

port of the component’s Gaussian. We consider an example to be under the

support of a Gaussian if it is less than three standard deviations away from

the mean. To analyze a new example image with this model, we independently

fit each local AAM to the example and retain the fit with the lowest error.

The local AAMs constructed in the Gaussian mixture model and the single

AAM models were constructed using the parameters listed in Table 1. In each

local AAM, as well as the single AAM, 95 % of the model variance was retained

by the combined shape-and-texture space. In our experiments we evaluated

the nearest-neighbor algorithm for varying values of k. The value used is made

explicit in each experiment. We set α = 0 and β = 1, restricting the solution
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Fig. 11. Video sequences of five subjects taken from the AVTIMIT database [15]
used to train and test our models. A frame from each sequence is shown.

to the convex hull of the shape and texture of the computed neighborhood

examples. We also restricted t such that the model image is rotated at most

±10 degrees, its size is scaled between [0.75,1.5] and it is translated by at most

±10 pixels in the horizontal and vertical directions.

The test set of each subject was formed by taking 500 images from the subject’s

video sequence that are outside the training set. In our experiments, we assume

that the location of the mouth is coarsely initialized by an external mouth

detector. Both the Gaussian mixture model and the AAM optimize for location

during model search and therefore require only approximate initialization of

the mouth location. We refine the mouth location estimate in the nearest-

neighbor model by finding the nearest neighbor using the input location and

then computing a normalized cross correlation between the nearest neighbor

and same-sized patches in the input image centered about locations in an

11 × 11 search window about the initial center. We reset the center of the

mouth to the location having the highest correlation score and repeat this

process until convergence or the maximum number of iterations is reached.

In our experiments, we found this algorithm typically converged in a few

iterations.
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5.2 Light-Field Head Manifold Results

5.2.1 Comparison to View-Based Linear Model

To compare our method to a view-based AAM we built a single-view 2D

AAM and compared it against a feature-based light-field deformable model.

Each model was constructed in color using all fifty subjects, and was matched

to two people in the training set, imaged from an unknown pose. The resulting

fits are displayed in Figure 12. In the figure, the first subject without glasses

is modeled equally well using both methods. The second subject is wearing

glasses which self-occlude the subject in extreme views of the camera array.

These self-occlusions are difficult to model using a view-based AAM, where

inter-pose variation is modeled as shape. Note that the view-dependent tex-

turing effects in the person’s glasses are preserved by the light-field deformable

model, but are lost by the view-based AAM even though the person remains

in the model.

The difference in performance between each model is explained by how they

model pose variation. The view-based AAM blends the shape and texture

of multiple poses at a given local-linear model. Thus, one would expect that

inter-pose self-occlusion and view-dependent texture would not be properly

modeled using this technique, unless many such local linear models are in-

troduced, rendering the model inefficient. The light-field deformable model

represents appearance in 4D, thus the shape and texture of each pose are

kept separate and pose is an external parameter of the model. As a result

the light-field deformable model can easily handle the view-dependent texture

and self-occlusions introduced by the glasses whereas the view-based AAM
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Input View-Based AAM Light-field Model

Fig. 12. Comparison of a light-field deformable model to a view-based AAM. The
left column shows the input, the middle column the best fit with a 2D AAM,
and the right column the light-field fit. The 2D and light-field appearance models
both exhibit qualitatively good fits when the surface is approximately smooth and
Lambertian. Unlike the light-field deformable model, the 2D model is unable to
model the specularity in the glasses of the second subject.

cannot.

Note that the blurring in the light-field result is caused by low image resolution

(we are using 80x120 image regions) and calibration error of the light-field

dataset. We believe that the collection of a better dataset would amplify the

difference between the view-based AAM and light-field model and we leave this

as future work. What is important to note is that the white specular regions

in the glasses are preserved by our model and are lost by the view-based AAM
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even though the subject is in the training dataset.

5.2.2 Light-field Model Synthesis

To demonstrate the light-field synthesis capabilities of a light-field deformable

model, we match the model to a single 2D image or light-field of novel sub-

jects using “leave-one-out” experimentation. Figure 13 illustrates light-field

synthesis for two people taken out of the model. To conserve space, only se-

lected views of each light-field are displayed. Both fits are shown superimposed

onto the corresponding input light-field. Each light-field is also provided for

ground truth comparison. As seen from the figure, the input light-fields are

well matched and a convincing reconstruction of each person is generated.

Specifically, the shape and texture of both individuals is well captured across

views.

Figure 14 illustrates our model’s ability to generate convincing light-field re-

constructions from 2D images. This figure provides two example matches to

2D images with unknown pose. For each match, the person was removed from

the model and imaged at a randomly selected pose not present at a discrete

view of the light-field model. The synthesized light-field, rendered at the se-

lected pose of each person, is displayed below each input image. The synthe-

sized light-fields are also displayed. Note our method built a light-field with

48 views from a single 2D image.

Figures 13 and 14 display results for both the feature-point based and optical

flow based shape features. Comparing the results of these figures one finds that

each model performs quite similarly: the synthesized light-fields resulting from

each model are approximately the same. Such performance is expected since
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Optical Flow Based Shape

Feature-Point Based Shape

Fig. 13. Feature-point based and optical flow based light-field deformable model
optimized over light-fields of two subjects outside of the model database.

each model is trained on the same training set and each model is designed

with the same framework using PCA. Close inspection of each figure shows

that there are some minor differences between the fit of each algorithm, due to

the use of different shape features. For example, the optical flow based model

has difficulty about the edges of the face due to ambiguity in the optical flow,

however, as illustrated by the figures these errors are minor.
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Optical Flow Based Shape

Feature-Point Based Shape

Input Input

Match MatchSynthesized Synthesized
Light-Field Light-Field

InputInput

Match MatchSynthesized Synthesized
Light-Field Light-Field

Fig. 14. Feature-point based and optical flow based light-field deformable models
optimized over images of objects with unknown pose. The models were optimized
over 2 subjects removed from the model database. Our method is able to synthesize
convincing light-fields from a single input image.

5.3 Non-Parametric Mouth Manifold Results

A qualitative comparison of the non-parametric deformable model with the

AAM and the Gaussian mixture deformable model is provided in Figure 15. In

the figure, three images from the 500-image test set of the first four subjects
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Fig. 15. Qualitative comparison between each nonlinear method and a baseline lin-
ear model. The input and synthesized image computed with each model is shown
for each example. To conserve space, only the synthesized shape from the near-
est-neighbor model is displayed. The AAM has difficulty modeling the full range of
mouth appearance. The last two examples of each subject illustrate scenarios where
the nonlinear methods outperform the AAM.

are displayed along with the synthesized images generated by each model. To

conserve space, only the synthesized shape from the nearest-neighbor model is

displayed; the main difference in performance is noted in the synthesized image

of each model. The RMS fit error is also provided below each fit. In this ex-

periment, the nearest-neighbor models have k = 10. For each subject, the first

test image is modeled well using all three models. Comparing the RMS error

of each fit, however, the single AAM does the worst and the nearest-neighbor

deformable models perform the best. The next two examples of each subject

demonstrate scenarios where the nonlinear methods outperform the AAM.

This is especially seen in the examples of the first three subjects. The fourth

subject under-articulates when he speaks and therefore his mouth appear-

ance varies less than the first three subjects and the difference in performance

between the three methods is less drastic on this subject.
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Fig. 16. Qualitative comparison of each method on the fifth subject: (right) input
test image displayed along with synthesized image generated from each model and
synthesized shape from nearest-neighbor model and (left) first ten nearest-neighbors
computed for the third example. The results for the first and second input image
display cases where the AAM performs similarly and worse than the nonlinear meth-
ods respectively. The last two examples show cases where the nonlinear techniques
perform poorly. Note, that unlike the nearest-neighbor model, the Gaussian mixture
model can converge to non-mouth images much like the linear AAM.

All three methods had difficulty modeling the fifth subject. Selected test im-

ages of this subject are displayed in a similar fashion to Figure 15 in Figure

16. The first test image is an example of where each method performs sim-

ilarly and the second an example where the nonlinear techniques perform

better than the linear AAM. The last two examples are instances of where the

nearest-neighbor and Gaussian deformable models perform poorly. Note the

AAM also had difficulty modeling these images.

The poor performance of the nearest-neighbor deformable model on the third

example of Figure 16 is attributed to error in the nearest-neighbor compu-

tation: we currently compute nearest-neighbor using a naive, intensity-based

distance metric that is sensitive to differences in rotation, translation and scale.

The 10 nearest-neighbors computed for the third test frame are displayed in

Figure 16. The nearest-neighbors do not match the input well. In contrast to

the other subjects, this subject displayed a fair amount of head motion when

he spoke. It is possible that the error in the nearest-neighbor computation is
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attributed to the difference in rotation between the input image and training

images, although it may also be because the input image is not well repre-

sented by the training set. The former case may be corrected by using more

intelligent distance metrics which we discuss as part of future work.

Note that, while the nearest-neighbor deformable model degraded gracefully

in the presence of error, the Gaussian mixture deformable model failed much

in the same way a linear AAM would in the fourth example of Figure 16. This

makes sense since it is possible that one or more of the fit mixture components

of the Gaussian mixture span portions of the space with holes and the model

can converge to non-mouth images. This error in the model may be due to poor

model selection, but can also be because the mouth appearance manifold is

poorly represented as piecewise linear. The nearest-neighbor deformable model

avoids the need to perform model selection and generalizes better to complex

manifolds.

A quantitative comparison of each model is provided by Figure 17. In the fig-

ure, a Root-Mean-Square error box plot is shown for each approach computed

over the 2500-image test set, combined from all five subjects. This result is

also summarized by Table 2 which gives the average RMS error rate along

with the standard deviation away from the mean for each technique. A pair-

wise comparison of the error distributions of each technique using statistical

t-tests gave p-values of p<<0.01 for each distribution pair. Both the Gaussian

mixture model and the nearest-neighbor do the same or significantly better

than the single AAM throughout the test sequence. The error box plot shows

that with k = 20 the nearest-neighbor algorithm outperforms each approach

on a whole (different values of k are considered next). The noteworthy per-

formance of the nearest-neighbor model is expected since it makes the fewest
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Fig. 17. Quantitative comparison between each method and a baseline linear model
(Summarized in Table 2). A box plot of the RMS error of each model evaluated over
2500 test mouth images, combined from all five subjects, is shown. In the plot, the
horizontal lines of each box represent the top quartile, median and bottom quartile
values, the whiskers give the extent of the rest of the data and the red crosses label
data outliers. Of the three methods, the AAM displays the worst performance and
the nearest-neighbor model performs the best.

assumptions about the underlying structure of the appearance manifold.

The poor performance of the single AAM on the above mouth dataset is a di-

rect result of the simplicity of the model. This model assumes a single texture

space over the mouth appearance manifold. Since the appearance manifold has

varying topology, a global texture space is ill-defined; the appearance varia-

tion of the mouth is not well represented using a single reference coordinate

frame. This point was demonstrated by Figure 4 in Section 4. Also, the single

AAM has no knowledge of the local structure of the manifold and can there-

fore converge to non-mouth images. Each of these properties contribute to

the AAM’s poor performance in modeling the appearance of the mouth. The

nearest-neighbor and Gaussian mixture deformable models provide shape-and-
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Method AAM GMM NPM

Average RMS Error 18.7 ± 11.7 14.2 ± 7.3 11.3 ± 5.7

Table 2
Method Comparison. The average RMS error of each technique is displayed ± the
standard deviation. A pair-wise comparison of the error distributions of each tech-
nique using statistical t-tests gave p-values of p<<0.01 for each distribution pair.

texture mappings that take into account the varying topology of the mouth

appearance manifold and therefore are able to more faithfully represent the

full range of mouth appearance variation.

Finally, we evaluate the performance of the nearest-neighbor algorithm for

different k values. Figure 18 displays an RMS error box plot for the nearest-

neighbor model evaluated over the 2500 test frames with different k values.

The figure illustrates that the model performs better for increasing values of k.

This verifies our intuition that morphing between examples does better than

simply taking the nearest neighbor. As the number of examples increases the

model is provided with more degrees of freedom and can therefore match the

input image more closely.

The model reaches optimal performance around k = 20 for this dataset. For

larger values of k (k > 20) the model begins to degrade in performance. This

is expected since for larger values of k the assumptions made by the model

may no longer hold and its performance becomes more similar to that of a

linear deformable model which performs a global search over the manifold.

Note, however, that even when k is set such that it includes all the examples

in the training set (k = 100), the non-parametric model still performs better

than the AAM. This is because the non-parametric model restricts its search

to the convex hull of the examples during matching, whereas the AAM does

not.
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Fig. 18. Quantitative comparison of the nearest-neighbor method for different k.
An RMS error box plot for the nearest-neighbor model evaluated over the 2500 test
frames is displayed for different k values. The model performs better for increasing
values of k. As the number of examples increases the model is provided with more
degrees of freedom and can therefore match the input more closely. Too large k
degrades model performance. The optimal value of k for this dataset is around
k = 20.

6 Conclusions

This paper addresses some of the important limitations of contemporary shape-

and-texture appearance models. We introduced a novel deformable modeling

method based on an image-based rendering technique. Light-field deformable

models have the potential to overcome some of the limitations presented by

current 2D and 3D appearance models. They can easily model complex scenes,

non-Lambertian surfaces, and view variation. We demonstrated the construc-

tion of a light-field manifold of the human head using a light-field dataset

of 50 subjects and showed how to match the model to a light-field or single

2D image of a novel subject with unknown pose. The experiments performed

on this dataset showed some of the advantages of the light-field model, how-
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ever, we believe that the collection of a more extensive (both in the number

of light-field views and subjects collected) and higher-quality dataset would

better demonstrate the advantages of our approach.

We have presented a non-parametric technique for modeling the shape-and-

texture appearance manifolds of complex objects whose appearance manifold

has a varying topology consisting of parts or holes. This model generalizes

well to complex manifolds, offers a compact representation of the manifold

and allows for varying feature sets. In particular, with this technique a new

input is analyzed by morphing a local set of examples that belong to a convex

or bounded region of the manifold.

We evaluated the performance of the non-parametric deformable model us-

ing the AVTIMIT database, where we built a shape-and-texture appearance

model of the mouth. We compared this approach to a baseline linear model

and Gaussian mixture deformable model. We demonstrated that linear mod-

els poorly represent the appearance of complex objects such as mouths and

that the nonlinear techniques of this paper are able to define a more convinc-

ing shape-and-texture mouth appearance model by taking into account the

varying topology of the mouth appearance manifold. Of the three methods

the linear deformable model performed the worst and the non-parametric de-

formable model performed the best. The noteworthy performance of the non-

parametric model is expected since it makes the fewest assumptions about the

underlying structure of the object appearance manifold.

There are many interesting avenues of future work. A clear next step of this

work would be to demonstrate a nonlinear light-field deformable model that

benefits from the strengths of each approach described in this paper. Sep-
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arately, interesting topics of future work include the investigation of other

image-based rendering techniques for constructing deformable models that

require less imagery than light-fields and the use of BRDF models for rep-

resenting objects under varying illumination. The development of a person-

independent mouth deformable model would also be an exciting extension to

this work. Possible improvements to the non-parametric deformable model in-

clude the use of Locality Sensitive Hashing [35] as an alternative, more efficient

method for computing nearest neighbors and the consideration of different dis-

tance metrics that are less sensitive to lighting, location, orientation and scale.
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