Recovering Articulated Model Topology from Observed Motion
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Abstract bodies is known. We approach this as a learning problem,
in the spirit of [19]. If we assume that the body may be mod-
Tracking human motion is an integral part to developing eled as a kinematic tree, and motion of a particular rigid seg-
powerful human-computer interfaces. Several successfulment is known, then the motions of the rigid segments that
tracking algorithms were developed that model human body are connected through that segment are independent of each
as an articulated tree. We propose a learning-based methodother. That is, we can model a probability distribution of the
for creating such articulated models from observations of full body-pose as a tree-structured graphical model, where
multiple rigid motions. This paper is concerned with re- each node corresponds to pose of a rigid segment. This ob-
covering topology of the articulated model, when the rigid servation allows us to formulate the problem of recovering
motion of constituent segments is known. topology of an articulated body as finding the tree-shaped
Our approach is based on finding the maximum likeli- graphical model that best (in Maximum Likelihood sense)
hood tree shaped factorization of the joint probability den- describes the observations.
sity function (PDF) of rigid segment motions. The topol-  The rest of the paper is structured as follows: in Sec-
ogy of graphical model formed from this factorization cor- tion 2 we describe relevant prior work, we then describe
responds to topology of the underlying articulated body. We the probabilistic formulation in Section 3, and finally we
demonstrate the performance of our algorithm both on syn- present the algorithm used for computations (Section 4), our
thetic and real motion capture data. experiments and the conclusions.

1. Introduction 2. Prior Work

Full-body tracking and analysis of biological motion have While state-of-the-art tracking algorithms [21, 9, 5, 20, 18]
become active research topics in recent years. A com-do not address either model creation or model initialization,
mon approach to this task is to model the body as a kine-the necessity of automating these two steps has been long
matic tree, and reformulate the problem as an articulatedrecognized.
body tracking[8]. Most of the state-of-the-art systems rely ~ The approach in [13] required a subject to follow a set
on predefined kinematic models [21, 20, 18]. Some meth-of predefined movements, and recovered the descriptions
ods require manual initialization, while other use heuristics of body parts and body topology from deformations of ap-
[15, 7], or predefined protocols [13] to adapt the model to parent contours. Various heuristics were used in [15, 7] to
observations. adapt an articulated model of known topology to 3D ob-

We are interested in a principled way to recover articu- servations. Analysis of magnetic motion capture data was
lated models from observations. The recovered models mayused by [16] to recover limb lengths and joint locations for
then be used for further tracking and/or recognition. We known topology, it also suggested similar analysis for topol-
would like to approach model estimation as a multistage ogy extraction. A learning based approach for decomposing
problem. In the first stage the rigidly moving segments are a set of observed marker positions and velocities into sets
tracked independently; at the second stage, the topology oftorresponding to various body parts was described in [19].
the body (the connectivity between the segments) is recov-Our work builds on the latter two approaches in estimating
ered. After the topology is determined, the joint positions the topology of the articulated tree model underlying the
and the joint angle limits can be determined. observed motion.

In this paper we concentrate on the second stage of this Several methods have been used to recover multiple rigid
task, estimating the underlying topology of the observed motions from video, such as factorization [3, 22], RANSAC
articulated body, when the motion of the constituent rigid [10], and learning based methods [12]. In this work we as-



sume that the 3-D rigid motions has been recovered and ard-urthermore, if the corresponding graphical model is a

represented using 2-D Scaled Prismatic Model (SPM).

2.1 Scaled Prismatic Model

A 2-D Scaled Prismatic Model (SPM) can be obtained
by orthographically “projecting” 3-D model to the image

plane[17]. An SPM has four degrees of freedom: in-plane
translation, rotation, and uniform scale. 3-D rigid motion
of an object, may be simulated by SPM transformations,
using in-plane translation for rigid translation, rotation for
uniform scaling for plane-parallel and out-of plane rotations
respectively.

spanning tree, it can be expressed as a product of condi-
tional densities (e.g. see [14])

P (My,.... My) = [T Parjpacns,) (Milpa(My)) - (4)
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where p@l/,) is the parent of\/,. While multiple nodes
may have the same parent, each individual node has only
one parent node. Furthermore, in any decomposition one
node (the root node) has no parent. Any node (variable) in
the model can serve as the root node [11]. Consequently,
a tree model puts constraints dn Of the possible tree
models (choices oF), we wish to choose the maximum

SPM motion (or pose) may be expressed as a linear transyjyelihood tree which is equivalent to the minimum entropy

formation in projective spac&¥?) as
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If motion is not a pure translation, we can parameterize
it by coordinates of fixed pointc(, c,), rotation anglex,
and scales,
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3. Probabilistic Formulation

As previously stated, we wish to infer the underlying topol-

ogy of an articulated body from noisy observations of a set

of rigid body motions. Towards that end we will adopt a
statistical framework for fitting a joint probability density

tree [4]. The entropy of a tree model can be written

> I(M;; M)
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H(M) =) H(M,) - 5)

where H (Mj) is the marginal entropy of each variable and
I(M;; M;) is the mutual information between nodas;
and M; and quantifies their statistical dependence. Con-
sequently, the minimum entropy tree corresponds to the
choice of E which minimizes the sum of the pairwise
mutual informations [1]. The tree denoted &y can be
found via the maximum spanning tree algorithm [2] using
I(M;; My) for all 4, j as the edge weights.

Our conjecture is that the if our data are sampled from
a variety of motions the topology of the estimated density
model is likely to be the same as the topology of the articu-
lated body model. The follows from the intuition that when
considering only pairwise relationships, the relative mo-
tions of physically connected bodies will be most strongly
related.

3.1 Estimation of Mutual Information

over the observations. Here we describe the principles un-

derlying our approach in very general terms. As a practical

As a necessary step to choosing the minimum entropy span-

matter, one must make choices regarding density modelgling tree we must estimate the pairwise mutual informa-
underlying the observations. We discuss one such choicelions between rigid motiona/; and M; for all 4, j pairs.

although other choices are also suitable.

We denote the set of observed motions\ofigid bodies
attimet,1 < ¢t < F as a se{ M{|1 < s < N}. Graph-
ical models provide a useful methodology for expressing

As stated, in order to do so we must make a choice regard-
ing the parameterization of motion and a probability density
over that parameterization. Since in this work we are con-
cerned with extracting articulated model topology and not

the dependency structure of a set of random variables(cf.(ne 3-D descriptions of the model, we have elected to use
[11]). Variables are assigned to the vertices of a graph, thatScaled Prismatic Model (Section 2.1),

is M; = {MF|1 <t < F}) while edges between nodes in-

We parameterize rigid motiondyIf, by the vector of

dicate dependency. We shall denote an edge between twguantitiesn! = (c,, ¢y, s, a)T where(c,, ¢,) is the instan-

variables,M; andM; by
1 there is an edge betwedd; and/;
0 otherwise
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taneous center of rotation,is a relative scaling, and is
the rotation. In general,

H(M;) # H(m;) (6)



but, since there is a one-to-one correspondence between the The parameter vectors’!’ = (c,,c,, s, a)” andm

Mj's andm;’s [4]

I(M;s; M) = I(mi;my) (7
and consequently we can estimate f{d/1;; M;) by first
computingm, m’ from Mf, M¢. From the normal dis-
tribution assumption, the pairwise mutual informations,
I(m;;m; ), are a function of the estimated covariances ma-
trices and can be computed thusly

I(mi;my)

“log ((me) yznw,,,jD 9)
or equivalently
I(miymg) = H(mg) — H(mj|m;) (10)
= J1os (o) [9l) -
%log ((776)4 IS0, ) (11)
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are then extracted from the transformation matrihlég

and My, |, (cf. Section 2.1), and the mutual information
is estimated as described in Section 3.1. In order to avoid
numerical errors in estimating parameters (and propagating
them to mutual information computation), we disregard any
framest for which eitherall’ < 7/12 or o}l < 7/12,
since estimating coordinatés,, c,) of the instantaneous
center of rotation is numerically unstable for motions with
small rotations.

5. Results

We have tested our algorithm both on synthetic and motion
capture data. Two synthetic sequences were generated in
the following way. The rigid segments were positioned by
randomly perturbing parameters of the corresponding kine-
matic tree structure. A set of feature points was then se-
lected for each segment. At each time step point positions
were computed based on the corresponding segment pose,
and perturbed with Gaussian noise with zero mean and stan-
dard deviation of 1 pixel. The inputs to the algorithm were
the segment poses re-estimated from the feature point coor-
dinates. In the motion capture-based experiment, the seg-
ment poses were estimated from the marker positions.

The results of the experiments are shown in the Figures

wherem;|m; indicates a relative motion described inthe £ 1 £5 4nd 53 The first experiment involved a simple
next section. In practice, the estimates of covariance matri'kinématic chain with 3 segments in order to demonstrate

ces are n?t perfect a”?' furthermorle the Gaussmr: assUMBe gperation of the algorithm. The sample configurations
tion is only an approximate model. Consequently, SOMe q¢q articulated body are shown in the first row of the Fig-
estimates of mutual information may yield invalid results. |\ \o< 51 The poses of the middle and right segments rela-

These terms are set to zero in practice (no edgg will betive to the left one are shown in the next two rows. As can
placed between these nodes). Note that the Gaussian mod%le seen from comparing the second and third row, knowl-

ohn Fhemi’lg does nlot .assuhme GaUShS|an|ty on Migs due t'o edge about pose of the left segment provides much more
their nonlinear relationship. Furthermore we approximate ;o mation about the middle segment than about the right

m;|m; with m;,; derived from equation 13. one (the motion of middle segment relative to the left one
is a pure rotation). The graph computed using method from
Section 3.1 and the corresponding maximum spanning tree
are in Figures 5.1(m, o).

The second experiment involved a humanoid torso-like
synthetic model containing 5 rigid segments. It was pro-
cessed in a way similar to the first experiment. The results
are shown in Figure 5.2.

For the human motion experiment, we have used motion
capture data of a dance sequence (Figure 5.3(a-d)). The
rigid segment motion was extracted from the positions of
the markers tracked across 220 frames (the marker corre-
spondence to the body locations was known). The algo-
rithm was able to correctly recover the articulated body
topology (Compare Figures 5.3(f) and 5.3(a)), when pro-
vided only with the extracted segment poses. The dance is
a highly structured activity, so not all degrees of freedom
were explored in this sequence, and mutual information be-

Jlé
4. Algorithm

The input to our algorithm is a set of SPM poses (Section
2.1){Pt1 < s < S,1 <t <T}, whereS is the number
of rigid segments tracked aridis the number of frames. In
order to compute the mutual information between the mo-
tion of segments;; and s, we first compute motions of
segments; in framesl < ¢ < F relative to its position is
framet; =1,
Mt =P (P)7! (12)

and transformation of; relative tosy (with the relative

posePsl\S2 = (Psz)_lpsl)y

MEE = (PL) 7P O((PY) P (13)



tween some unconnected segments (e.g. thigrend.S;)

was determined to be relatively large, although this did not

impact the final result.

6.

Conclusions and Future Work

(10]

(11]

We have presented a novel general technique for recover-
ing the underlying articulated structure from information [12]

about rigid segment motion under very weak assumptions
(that this structure may be represented by a tree with un-

known topology). While the results presented in this paper [13]
were obtained using the Scaled Prismatic model and Gaus-
sian probability densities our methodology does not rely on

either modeling assumption. Alternative parameterizations, 4

will be the subject of future analysis. The further extensions
of this work would also include automatic localization of

the joints between the neighboring segments in the articu-
lated tree and determination of the degrees of freedom for

each joint. Together with improved rigid segment tracking
this would bring us close to solving an important task of au-
tomatic creation and initialization of models for articulated
tracking.

References

(1]

C. K. Chow and C. N. Liu. Approximating discrete probabil-
ity distributions with dependence treedlEEE Transactions
on Information TheorylT-14(3):462—-467, May 1968.

[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.

Rivern. Introduction to Algorithms MIT Press, Cambridge,
MA, 1990.

[3] Joao Paolo Costeira and Takeo Kanade. A multibody factor-

ization method for independently moving objectsterna-
tional Journal of Computer Visiqr29(3):159-179, 1998.

[4] T. M. Cover and J. A. Thomas.Elements of Information

Theory John Wiley & Sons, Inc., New York, 1991.

[5] Jonathan Deutscher, Andrew Blake, and Reidm lan. Articu-

(6]

(7]

(8]

9]

lated body motion capture by annealed particle filtering. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion, 2000.

David E. DiFranco, Tat-Jen Cham, and James M. Regh. Re-

construction of 3-d figure motion from 2-d correspondences.
In Computer Vision and Pattern Recognitj@901.

Dariu M. Gavrila and Larry S. Davis. Tracking of humans in
action: a 3-d model-based approachARPA Image Under-
standing WorkshgpPalm Springs, Feb 1996.

David C. Hogg. Model-based vision: A program to see a
walking person. Image and Vision Computind (1):5-20,
1983.

Nicholas R. Howe, Michael E. Leventon, and William T.
Freeman. Bayesian reconstruction of 3d human motion from
single-camera videoAdvances in Neural Information Pro-
cessing Systems2, 2000.

(18]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

Yi-Ping Hung, Cheng-Yuan Tang, Sheng-Wen Shin, Zen
Chen, and Wei-Song Lin. A 3d feature-based tracker for
tracking multiple moving objects with a controlled binocular

head. Technical report, Academia Sinica Institute of Infor-
mation Science, 1995.

Finn Jensen.
Springer, 1996.

N. Jojic and B.J. Frey. Learning flexible sprites in video
layers. InComputer Vision and Pattern Recognitigmages
1:199-206, 2001.

loannis A. Kakadiaris and Dimirti Metaxas. 3d human body
acquisition from multiple views. I®roc. Fifth International
Conference on Computer Visigpages 618—-623, 1995.

An Introduction to Bayesian Networks

] Marina Meila.Learning Mixtures of TreedPhD thesis, MIT,

1998.

Ivana Mikic, Mohan Triverdi, Edward Hunter, and Pamela
Cosman. Articulated body posture estimation from multi-
camera voxel data. I@omputer Vision and Pattern Recog-
nition, 2001.

J. O'Brien, R. E. Bodenheimer, G. Brostow, and J. K. Hod-
gins. Automatic joint parameter estimation from magnetic
motion capture data. I&raphics Interface’2000pages 53—
60, 2000.

James M. Regh and Daniel D. Morris. Singularities in artic-
ulated object tracking with 2-d and 3-d models. Technical
report, Digital Equipment Corporation, 1997.

Hedvig Sidenbladh, Michael J. Black, and David J. Fleet.
Stochastic tracking of 3d human figures using 2d image mo-
tion. In Proc. European Conference on Computer Vision
2000.

Yang Song, Luis Goncalves, Enrico Di Bernardo, and Pietro
Perona. Monocular perception of biological motion - de-
tection and labeling. IfProc. International Conference on
Computer Visionpages 805-812, 1999.

B. Stenger, P. R. S. Mendonca, and R. Cipolla. Model-based
hand tracking using an unscented kalman filRenc. British
Machine Vision Conferenc2001.

Ying Wu, Jonh Y. Lin, and Thomas S. Huang. Capturing
natural hand articulation. IRroc. International Conference
on Computer Vision2001.

Ying Wu, Zhengyou Zhang, Thomas S. Huang, and John Y.
Lin. Multibody grouping via orthogonal subspace decompo-
sition. InProc. IEEE Conf. on Computer Vision and Pattern
Recognition2001.



(@ (b) () (d)

) () (9) (h)

(i) () (k) (0

(o= .—I S
(m) (n)

Figure 5.1: Simple kinematic chain topology recovery. The first row shows 4 sample frames from a 100 frame synthetic
sequence. The next two rows show the poses of the middle and the right segments (respectively) relative to the left one. As
can be seen, the pose of the left segment provides much more information about the pose of the middle segment (to which is
it directly connected), than about the right one (the middle segment motion is a pure rotation). The mutual information graph
is shown in (m), and the maximum spanning tree is in (n).
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Figure 5.2: Humanoid torso synthetic test. The first sample frames from a randomly generated 150 frame sequence are shown
in (a), (b), (c) and (d). The adjacency matrix of the mutual information graph is shown in (e), with intensities corresponding
to edge weights. The vertices in the graph correspond to the rigid segments labeled in (a). (f) is the recovered articulated

topology.
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Figure 5.3: Motion Capture based test. (a), (b), (c) and (d) are the sample frames from a 220 frame sequence. The adjacency
matrix of the mutual information graph is shown in (e), with intensities corresponding to edge weights.The vertices in the
graph correspond to the rigid segments labeled in (a). (f) is the recovered articulated topology.




