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Abstract

Tracking human motion is an integral part to developing
powerful human-computer interfaces. Several successful
tracking algorithms were developed that model human body
as an articulated tree. We propose a learning-based method
for creating such articulated models from observations of
multiple rigid motions. This paper is concerned with re-
covering topology of the articulated model, when the rigid
motion of constituent segments is known.

Our approach is based on finding the maximum likeli-
hood tree shaped factorization of the joint probability den-
sity function (PDF) of rigid segment motions. The topol-
ogy of graphical model formed from this factorization cor-
responds to topology of the underlying articulated body. We
demonstrate the performance of our algorithm both on syn-
thetic and real motion capture data.

1. Introduction
Full-body tracking and analysis of biological motion have
become active research topics in recent years. A com-
mon approach to this task is to model the body as a kine-
matic tree, and reformulate the problem as an articulated
body tracking[8]. Most of the state-of-the-art systems rely
on predefined kinematic models [21, 20, 18]. Some meth-
ods require manual initialization, while other use heuristics
[15, 7], or predefined protocols [13] to adapt the model to
observations.

We are interested in a principled way to recover articu-
lated models from observations. The recovered models may
then be used for further tracking and/or recognition. We
would like to approach model estimation as a multistage
problem. In the first stage the rigidly moving segments are
tracked independently; at the second stage, the topology of
the body (the connectivity between the segments) is recov-
ered. After the topology is determined, the joint positions
and the joint angle limits can be determined.

In this paper we concentrate on the second stage of this
task, estimating the underlying topology of the observed
articulated body, when the motion of the constituent rigid

bodies is known. We approach this as a learning problem,
in the spirit of [19]. If we assume that the body may be mod-
eled as a kinematic tree, and motion of a particular rigid seg-
ment is known, then the motions of the rigid segments that
are connected through that segment are independent of each
other. That is, we can model a probability distribution of the
full body-pose as a tree-structured graphical model, where
each node corresponds to pose of a rigid segment. This ob-
servation allows us to formulate the problem of recovering
topology of an articulated body as finding the tree-shaped
graphical model that best (in Maximum Likelihood sense)
describes the observations.

The rest of the paper is structured as follows: in Sec-
tion 2 we describe relevant prior work, we then describe
the probabilistic formulation in Section 3, and finally we
present the algorithm used for computations (Section 4), our
experiments and the conclusions.

2. Prior Work
While state-of-the-art tracking algorithms [21, 9, 5, 20, 18]
do not address either model creation or model initialization,
the necessity of automating these two steps has been long
recognized.

The approach in [13] required a subject to follow a set
of predefined movements, and recovered the descriptions
of body parts and body topology from deformations of ap-
parent contours. Various heuristics were used in [15, 7] to
adapt an articulated model of known topology to 3D ob-
servations. Analysis of magnetic motion capture data was
used by [16] to recover limb lengths and joint locations for
known topology, it also suggested similar analysis for topol-
ogy extraction. A learning based approach for decomposing
a set of observed marker positions and velocities into sets
corresponding to various body parts was described in [19].
Our work builds on the latter two approaches in estimating
the topology of the articulated tree model underlying the
observed motion.

Several methods have been used to recover multiple rigid
motions from video, such as factorization [3, 22], RANSAC
[10], and learning based methods [12]. In this work we as-
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sume that the 3-D rigid motions has been recovered and are
represented using 2-D Scaled Prismatic Model (SPM).

2.1 Scaled Prismatic Model

A 2-D Scaled Prismatic Model (SPM) can be obtained
by orthographically “projecting” 3-D model to the image
plane[17]. An SPM has four degrees of freedom: in-plane
translation, rotation, and uniform scale. 3-D rigid motion
of an object, may be simulated by SPM transformations,
using in-plane translation for rigid translation, rotation for
uniform scaling for plane-parallel and out-of plane rotations
respectively.

SPM motion (or pose) may be expressed as a linear trans-
formation in projective space (P2) as

M =




a −b e
b a f
0 0 1


 (1)

If motion is not a pure translation, we can parameterize
it by coordinates of fixed point (cx, cy), rotation angleα,
and scales,

M =




s cos α −s sin α cx − scx cos α + scy sin α
s sin α s cosα cy − scx sinα− scy cos α

0 0 1




(2)

3. Probabilistic Formulation

As previously stated, we wish to infer the underlying topol-
ogy of an articulated body from noisy observations of a set
of rigid body motions. Towards that end we will adopt a
statistical framework for fitting a joint probability density
over the observations. Here we describe the principles un-
derlying our approach in very general terms. As a practical
matter, one must make choices regarding density models
underlying the observations. We discuss one such choice
although other choices are also suitable.

We denote the set of observed motions ofN rigid bodies
at timet, 1 ≤ t ≤ F as a set

{
Mt

s|1 ≤ s ≤ N
}

. Graph-
ical models provide a useful methodology for expressing
the dependency structure of a set of random variables(cf.
[11]). Variables are assigned to the vertices of a graph, that
is Mi =

{
Mt

i |1 ≤ t ≤ F
}

) while edges between nodes in-
dicate dependency. We shall denote an edge between two
variables,Mi andMj by

Eij =
{

1 there is an edge betweenMi andMj

0 otherwise
(3)

Furthermore, if the corresponding graphical model is a
spanning tree, it can be expressed as a product of condi-
tional densities (e.g. see [14])

PM (M1, . . . , MN ) =
∏

Ms

PMs|pa(Ms) (Ms|pa(Ms)) (4)

where pa(Ms) is the parent ofMs. While multiple nodes
may have the same parent, each individual node has only
one parent node. Furthermore, in any decomposition one
node (the root node) has no parent. Any node (variable) in
the model can serve as the root node [11]. Consequently,
a tree model puts constraints onE. Of the possible tree
models (choices ofE), we wish to choose the maximum
likelihood tree which is equivalent to the minimum entropy
tree [4]. The entropy of a tree model can be written

H(M) =
∑

s

H(Ms)−
∑

Eij=1

I(Mi; Mj) (5)

whereH(Ms) is the marginal entropy of each variable and
I(Mi; Mj) is the mutual information between nodesMi

and Mj and quantifies their statistical dependence. Con-
sequently, the minimum entropy tree corresponds to the
choice of E which minimizes the sum of the pairwise
mutual informations [1]. The tree denoted byE can be
found via the maximum spanning tree algorithm [2] using
I(Mi; Mj) for all i, j as the edge weights.

Our conjecture is that the if our data are sampled from
a variety of motions the topology of the estimated density
model is likely to be the same as the topology of the articu-
lated body model. The follows from the intuition that when
considering only pairwise relationships, the relative mo-
tions of physically connected bodies will be most strongly
related.

3.1 Estimation of Mutual Information

As a necessary step to choosing the minimum entropy span-
ning tree we must estimate the pairwise mutual informa-
tions between rigid motionsMi andMj for all i, j pairs.
As stated, in order to do so we must make a choice regard-
ing the parameterization of motion and a probability density
over that parameterization. Since in this work we are con-
cerned with extracting articulated model topology and not
the 3-D descriptions of the model, we have elected to use
Scaled Prismatic Model (Section 2.1),

We parameterize rigid motions,Mt
i , by the vector of

quantitiesmt
i = (cx, cy, s, α)T where(cx, cy) is the instan-

taneous center of rotation,s is a relative scaling, andα is
the rotation. In general,

H(Mi) 6= H(mi) (6)
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but, since there is a one-to-one correspondence between the
Mi’s andmi’s [4]

I(Mi;Mj) = I(mi; mj) (7)

and consequently we can estimate theI(Mi;Mj) by first
computingmt

i,m
t
j from Mt

i ,M
t
j . From the normal dis-

tribution assumption, the pairwise mutual informations,
I(mi;mj), are a function of the estimated covariances ma-
trices and can be computed thusly

I(mi;mj) = H(mi) + H(mj)−H(mi,mj) (8)

=
1
2

log
(
(πe)4 |Σmi |

)
+

1
2

log
(
(πe)4

∣∣Σmj

∣∣
)
−

1
2

log
(
(πe)8

∣∣Σmi,mj

∣∣
)

(9)

or equivalently

I(mi;mj) = H(mi)−H(mj |mi) (10)

=
1
2

log
(
(πe)4 |Σmi |

)
−

1
2

log
(
(πe)4

∣∣Σmj |mi

∣∣
)

(11)

wheremj |mi indicates a relative motion described in the
next section. In practice, the estimates of covariance matri-
ces are not perfect and furthermore the Gaussian assump-
tion is only an approximate model. Consequently, some
estimates of mutual information may yield invalid results.
These terms are set to zero in practice (no edge will be
placed between these nodes). Note that the Gaussian model
on themi’s does not assume Gaussianity on theMi’s due to
their nonlinear relationship. Furthermore we approximate
mj |mi with mj|i derived from equation 13.

4. Algorithm
The input to our algorithm is a set of SPM poses (Section
2.1) {Pt

s|1 ≤ s ≤ S, 1 ≤ t ≤ T}, whereS is the number
of rigid segments tracked andF is the number of frames. In
order to compute the mutual information between the mo-
tion of segmentss1 and s2, we first compute motions of
segments1 in frames1 < t ≤ F relative to its position is
framet1 = 1,

Mt1t
s1

= Pt
s1

(Pt1
s1

)−1 (12)

and transformation ofs1 relative tos2 (with the relative
posePs1|s2

= (Ps2)−1Ps1),

Mt1t
s1|s2

= ((Pt
s2

)−1Ps1

t)((Pt1
s2

)−1Pt1
s1

)−1 (13)

The parameter vectorsmt1t
s1

= (cx, cy, s, α)T andmt1t
s1|s2

are then extracted from the transformation matricesMs1

andMs1|s2
(cf. Section 2.1), and the mutual information

is estimated as described in Section 3.1. In order to avoid
numerical errors in estimating parameters (and propagating
them to mutual information computation), we disregard any
framest for which eitherαt1t

s1
< π/12 or αt1t

s1|s2
< π/12,

since estimating coordinates(cx, cy) of the instantaneous
center of rotation is numerically unstable for motions with
small rotations.

5. Results
We have tested our algorithm both on synthetic and motion
capture data. Two synthetic sequences were generated in
the following way. The rigid segments were positioned by
randomly perturbing parameters of the corresponding kine-
matic tree structure. A set of feature points was then se-
lected for each segment. At each time step point positions
were computed based on the corresponding segment pose,
and perturbed with Gaussian noise with zero mean and stan-
dard deviation of 1 pixel. The inputs to the algorithm were
the segment poses re-estimated from the feature point coor-
dinates. In the motion capture-based experiment, the seg-
ment poses were estimated from the marker positions.

The results of the experiments are shown in the Figures
5.1, 5.2 and 5.3. The first experiment involved a simple
kinematic chain with 3 segments in order to demonstrate
the operation of the algorithm. The sample configurations
of the articulated body are shown in the first row of the Fig-
ures 5.1. The poses of the middle and right segments rela-
tive to the left one are shown in the next two rows. As can
be seen from comparing the second and third row, knowl-
edge about pose of the left segment provides much more
information about the middle segment than about the right
one (the motion of middle segment relative to the left one
is a pure rotation). The graph computed using method from
Section 3.1 and the corresponding maximum spanning tree
are in Figures 5.1(m, o).

The second experiment involved a humanoid torso-like
synthetic model containing 5 rigid segments. It was pro-
cessed in a way similar to the first experiment. The results
are shown in Figure 5.2.

For the human motion experiment, we have used motion
capture data of a dance sequence (Figure 5.3(a-d)). The
rigid segment motion was extracted from the positions of
the markers tracked across 220 frames (the marker corre-
spondence to the body locations was known). The algo-
rithm was able to correctly recover the articulated body
topology (Compare Figures 5.3(f) and 5.3(a)), when pro-
vided only with the extracted segment poses. The dance is
a highly structured activity, so not all degrees of freedom
were explored in this sequence, and mutual information be-
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tween some unconnected segments (e.g. thighsS3 andS7)
was determined to be relatively large, although this did not
impact the final result.

6. Conclusions and Future Work
We have presented a novel general technique for recover-
ing the underlying articulated structure from information
about rigid segment motion under very weak assumptions
(that this structure may be represented by a tree with un-
known topology). While the results presented in this paper
were obtained using the Scaled Prismatic model and Gaus-
sian probability densities our methodology does not rely on
either modeling assumption. Alternative parameterizations
will be the subject of future analysis. The further extensions
of this work would also include automatic localization of
the joints between the neighboring segments in the articu-
lated tree and determination of the degrees of freedom for
each joint. Together with improved rigid segment tracking
this would bring us close to solving an important task of au-
tomatic creation and initialization of models for articulated
tracking.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 5.1: Simple kinematic chain topology recovery. The first row shows 4 sample frames from a 100 frame synthetic
sequence. The next two rows show the poses of the middle and the right segments (respectively) relative to the left one. As
can be seen, the pose of the left segment provides much more information about the pose of the middle segment (to which is
it directly connected), than about the right one (the middle segment motion is a pure rotation). The mutual information graph
is shown in (m), and the maximum spanning tree is in (n).
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Figure 5.2: Humanoid torso synthetic test. The first sample frames from a randomly generated 150 frame sequence are shown
in (a), (b), (c) and (d). The adjacency matrix of the mutual information graph is shown in (e), with intensities corresponding
to edge weights. The vertices in the graph correspond to the rigid segments labeled in (a). (f) is the recovered articulated
topology.
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Figure 5.3: Motion Capture based test. (a), (b), (c) and (d) are the sample frames from a 220 frame sequence. The adjacency
matrix of the mutual information graph is shown in (e), with intensities corresponding to edge weights.The vertices in the
graph correspond to the rigid segments labeled in (a). (f) is the recovered articulated topology.
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