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Abstract

We propose a novel probabilistic tracking framework for articulated bodies that incorporates direct
estimation of the pose posterior distribution. We derive a single frame articulated pose sampler, and
perform Bayesian tracking over time via Monte Carlo integration. In contrast to traditional particle
filtering approaches, which propagate individual samples through time and are sensitive to the sample
distribution, we generate samples directly from the current observation. Our method has the initializa-
tion benefits of single frame pose detection approaches, and stability benefits of sequential Monte Carlo
methods. We have experimented with simple 2D head, hand, and contour edge observation likelihoods;
our method is able to infer a distribution of full articulated pose from these simple features.

1. Introduction
Recovering human pose from image data is an important computer vision problem with applications in
such areas as human-computer interaction, surveillance and content-based database retrieval.

Pose changes in sequential image data are commonly estimated using differential trackers [20, 1, 2, 3].
These trackers combine dynamics, prior pose information and the current frame data to estimate pose
(or a pose distribution) for the current frame. This approach suffers from several common drawbacks,
most critically error accumulation over time and the need for manual initialization. A complimentary
approach is to track using the repeated application of a single image pose estimation technique at every
frame [5, 17, 13, 18]. However, these methods do not use the pose information from previous frames and
only estimate a single “best” pose that corresponds to the current observed image. Sequences of such
estimates do not always correspond to correct dynamics due to the ambiguities that arise from projecting
3D bodies onto 2D images.

Our probabilistic tracking framework incorporates features of both approaches. For a single frame, the
distribution of articulated pose parameters is estimated from static observations; with multiple frames,
pose posteriors are propagated through time using a Bayesian technique. Our framework uses informa-
tion from the current observation early in the inference process which improves the tracking stability
when a strong dynamics model is not available.

Since parametric modeling of pose distributions is not feasible, we represent them with weighed
sample sets. In our system, single frame pose parameter distributions are estimated using an importance
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sampling technique [11]. We represent image likelihood functions using a generative model of body
appearance (described in Section 3). Proposal distributions are automatically constructed from image
measurements, kinematic constraints, and parameter priors (Section 4). Pose distribution samples for
the current frame are evaluated with respect to a sampled representation of the prior pose distribution,
producing a pose posterior conditioned on all observed data (Section 5). Since the pose is sampled at
each frame independently, our system does not require initialization and is able to gracefully recover
from tracking failures. Propagation over time ensures the temporal continuity of the pose estimate.

2. Prior Work
The problem of analyzing human pose from a single image has been addressed in several contexts. A
2D model in a dynamic programming framework was used for detecting humans or estimating human
pose in natural scenes [17, 5]. A learning approach was taken by [18] to infer body pose from segmented
silhouettes. Shape context matching was used in [13] to automatically locate joint positions. A tracking-
by-continuous-detection framework that used geometric hashing was presented in [22]. Since these
approaches generally produce a single estimate, using them naively in a tracking algorithm may produce
errors when the pose cannot be uniquely determined from the image.

In recent years, particle filtering techniques have been widely used for articulated pose tracking. The
posterior probability distribution is generated using dynamics and noise models to propagate samples
of the prior over time; new weights are assigned based on the image likelihood model. This approach
suffers from several drawbacks, such as drift due to noise or rapid motions, and the necessity to use a
large number of particles to faithfully represent distributions in high dimensional spaces. In such spaces,
sample impoverishment [9] may prevent particle filters from tracking multimodal distribution for long
periods of time.

Several methods have been proposed for dealing with large particle set sizes, such as hybrid Monte
Carlo filtering [3], annealed particle filters [4], and partitioned sampling [10]. ICONDENSATION [6]
addressed the initialization and drift problems by combining regular CONDENSATIONpropagation with
direct sampling from the re-initialization prior (which is commonly modeled with a simple parametric
distribution). The major difference between our approach and CONDENSATION variants is that the
samples of the posterior distribution from the previous frame are only used for generating the pose prior
and not a proposal distribution. Thus the dependence on precise knowledge of body dynamics is reduced.

We use a generative appearance model defined by a Bayesian network similar in spirit to ones used in
[8] for 3D articulated tracking and in [7] for modeling interactions of multiple independently moving ob-
jects in 2D. The major contribution of this work is incorporation of inverse kinematics-based constraints
[12] directly into the likelihood computation stage of inference process, as opposed to using them during
state prior propagation as done in [21].

3. Human Upper Body Model
We model the human upper body with the articulated model in Figure 1. The model configuration
at time t is described by parameter vector(φ, Θt), whereφ ∈ R7 contains time independent metric
parameters (neck and upper and lower arm lengths, body width, depth and length, and head size, and
Θt = (θt

1, . . . θ
t
6) ∈ R16 contains pose parameters (three rotational degrees of freedom at neck and each
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Figure 1: Articulated model of human upper body used in this work. The model consists of head (S1),
torso (S2), and two arms with upper and lower arm segments (S3−S5 andS4−S6 respectively) and hands
(S7 andS8). The model configuration includes 7 metric parameters: head radius, neck length, body
width (distance between shoulder joints) length and depth, and upper and lower arm lengths. The pose is
specified by 16 parameters: 11 internal rotational parameters (3 degrees of freedom at the neck, 3 degrees
of freedom at each shoulder, and 1 at each elbow) and 5 global degrees of freedom (2 translational and
3 rotational).

shoulder, one at each elbow, and five global position parameters). Since we assume that the observed
images are formed using orthographic projection, the global depth parameter is ignored.

The parameters of articulated joints{θt
i}, metric parametersφ and segment appearances{Ai} are

modeled as independent. The pose of theith segment,Pi, is deterministically computed from the pose
of its parent in the articulated tree, denotedPpi

and appropriate joint parametersθi. Segment appearance
Ai and posePi are combined to produce a segment latent imageLi. PosesPi are also used to compute
binary support mapsMi for each segment (note that if the segment is not occluded, the support map
depends only on the corresponding pose).

Due to the deterministic nature of the above steps, the following conditional pdfs used in the graphical
model become delta functions:

p(Pi|Ppi
, θi, φ) = δ(Pi − f p

i (Ppi
, θi, φ)) (1)

p(Li|Pi, Ai) = δ(Li − f l
i (Pi, Ai))

p(Mi|{Pi}) = δ(Mi − fm
i ({Pi}))

where{Pi} refers toP1, P2, . . . , P8, andfp
i , f l

i , fm
i are functions that are used to compute theith pose,

latent image and support map, respectively.
The combined latent images (masked by their regions of support) corrupted by uncorrelated Gaussian

noise are then observed asI,

p(I(x, y)|Mi, Li) = N(I(x, y); (
∑

i

(Mi · Li)(x, y)), σ2(x, y)) (2)
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Figure 2: Generative model for an articulated body image (see Eq. 3). The subscripts correspond to
segment number is Figure 1 (the nodes corresponding toS3, S5 andS7 are symmetric toS4, S6 andS8

and are not shown). The segment pose at timet, P t
i is depends on the pose of a parent segmentP t

pi
,

body lengthsφ, and corresponding joint parametersθt
i . θ1 contains the global position parameters. The

latent image of a segment,Lt
i is obtained by transforming appearanceAi according to the poseP t

i . The
observed imageI depends on the latent images masked by support mapsMt = (M t

1, · · · ,M t
8) that are,

in turn, determined from all segment poses.

The joint probability of the described model may then be factored as

p(φ,{θi}, {Pi}, {Ai}, {Li}, {Mi}, I) = (3)

p(φ)
∏

i

p(θi)
∏

i

p(Ai)
∏

i

p(Pi|Ppi , θi, φ)

∏

i

p(Li|Pi, Ai)
∏

i

p(Mi|{Pi})p(I|{Li}, {Mi})

This generative model is described by a graphical network in Figure 2.
In our model, theith segment is “responsible” for the region of the observed imageI that corresponds

to its support mapMi. Let us define theith observation region

Ii = IMi = (
∑

i

MiLi + ν)Mi = LiMi + νMi (4)

Since support mapsMi are disjoint, the observation regions are independent, conditioned on{Mi}
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and{Li}. Furthermore, analyzing the conditionalp(Ii|Pi, Ai,Mi), we find that

p(Ii|Pi, Ai,Mi) (5)

=
∫

Li

p(Ii|Li,Mi)p(Li|Pi, Ai)

=
∫

Li

p(LiMi + νMi|Li,Mi)δ(Li − f l
i (Pi, Ai))

=
∏

x,y∈Mi

N(Ii(x, y); (f l
i (Pi, Ai))(x, y), σ2(x, y))

allowing us to use the simplified image generation model that induces the following joint pdf factoriza-
tion

p(φ,{θi}, {Pi}, {Ai}, {Mi}, {Ii}) = (6)

p(φ)
∏

i

p(θi)
∏

i

p(Ai)
∏

i

p(Pi|Ppi
, θi, φ)

∏
i

p(Mi|{Pi})
∏

i

p(Ii|{Pi}, {Ai}, {Mi})

This equation will be used for evaluating image likelihoods of poses generated using our single frame
pose sampling framework

4. Sampling Articulated Pose
We with to infer a distribution of articulated pose parameters from a single frame. In this work, we
assume that segment appearances{Ai} and prior distributions of parametersp(θi) are known, and wish
to describe the posterior distributionp(Θ|{Ai}, I). In the following discussion we assume that metric
parameters of the model (φ0) are also known and concentrate on sampling the posterior distribution of
pose parametersp(Θt|I t). We address estimation ofφ in Section 6. Using Bayes’ rule, independence
assumptions, and Eq. 3 the pose posterior distribution may be expressed as

p(Θ|{Ai}, φ0, I) ∼ p(I|Θ, {Ai}, φ0)p(Θ) (7)

The complexity of natural images makes it hard to specify this distribution analytically. While eval-
uating the posterior (up to a scaling factor) at any particularΘ0 is relatively easy, sampling from it
(necessary for tasks such as providing input to an articulated tracker) is hard. The alternative approach
is to use Monte Carlo methods and representp(Θ|{Ai}, I) as a set of samples with attached weights
{Θi, πi}. One such method is importance sampling [11].

In the importance sampling framework, instead of sampling a target distributionp(x), a proposal
distribution q(x) that approximatesp(x) is sampled, and then the weight of the samplexk is set to
πk = p(xk)

q(xk)
. A reasonable choice of a proposal distribution used in this technique should “concentrate”

the samples in the areas of configuration space with high values of target distribution.

4.1. Proposal Distribution
Our approach to constructing a proposal distribution is based on the assumption that partial pose infor-
mation for certain segments in the model may be extracted directly from the image. That is, it is possible
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to efficiently sample from the conditionalp(P̂i|Ai, I), whereP̂i contains partial information aboutPi.
In our system such segments are head and hands (segments 1, 7, and 8). The appropriate models are
discussed in Section 6.

We define our proposal distribution as

q(Θ|A1, A7, A8, φ0, I) = q(Θ|P̂1, P̂7, P̂8, φ0) (8)

q(P̂1|A1, I)q(P̂7|A7, I)q(P̂8|A8, I)

= qhead(θ1|P̂1, φ0)qneck(θ2|θ1, P̂7, P̂8, φ0)

qleft arm(θ3, θ5|θ1, θ2, P̂7, φ0)

qright arm(θ4, θ6|θ1, θ2, P̂8, φ0)

p(P̂1|A1, I)p(P̂7|A7, I)p(P̂8|A8, I)

We sample fromq in five steps:

1. Obtain head and hands pose samplesP̂ s
1 , P̂ s

7 , andP̂ s
8 from the appropriate distributions.

2. Compute global parametersθs
1 from P̂ s

1 .

3. Obtain neck joint configurationθs
2 from qneck

4. Obtain left arm configuration (θs
3 andθs

5) by sampling fromqleft arm

5. Obtain right arm configuration (θs
4 andθs

6) by sampling fromqright arm

4.2. Kinematic Constraints
We would like to specifyqneck(·), qleft arm(·), andqright arm(·) based on image information, joint parameter
priors and kinematic constraints.

The samples of the distributions conditioned on the image,P̂ s
1 = (Ω, xp1 , yp1)

T , P̂ s
7 = (xp7 , yp7)

T , and
P̂ s

8 = (xp8 , yp8)
T are the orientation and image position of the head and image plane coordinates hands

(Section 6).
Without loss of generality we define the world coordinate system to havex andy axes parallel to

image axes, andz axis passing through the origin of the image plane. Then the external parameters of
the articulated model are simplyθ1 = (Ω, xp1 , yp1)

T , andP s
1 = f p

1 (θ1, φ0).
Let us define afeasibleconfiguration of shoulder poseP2 = fp

2 (θ2, f
p
1 (θ1)) and image plane hand

locationsP̂7, P̂8 to be one in which it is possible to reach each hand from a corresponding shoulder, that
is, the image plane distance from the shoulder joint to the hand is less than the arm-length. Then, if we
disallow all infeasible configurations, we can defineqneck as

qneck(θ2|θ1, P̂7 = P̂ s
7 , P̂8 = P̂ s

8 , φ0) (9)

∼
{

p(θ2) (fp
2 (θ2, f

p
1 (θ1)), P̂ s

7 , P̂ s
8 ) is feasible

0 otherwise

6



A

Y

X

C

B

Z

Figure 3: When the 3D position of the shoulderA and position of the handC in the xy-plane are
known, the arm has two degrees of freedom, depth of the hand and rotation of the elbowB about the
shoulder-hand line.

Let us consider left arm as a two link assembly shown in Figure 3. The shoulders poseP s
2 =

f p
2 (P s

1 , θs
2) uniquely determines the position of the left shoulder jointA = (xA, yA, zA)T . The posi-

tion of the left hand,C is known up to the translation alongz axis

C = (xP s
7
, yP s

7
, zC)T (10)

zA − r ≤ zC ≤ zA + r (11)

r =
√

(lupper arm+ llower arm)2 − (xA − xP s
7
)2 − (yA − yP s

7
)2

where limits in Eq. 11 ensure that the distance between the shoulder joint and the hand is not greater
than the total arm-length(lupper arm+ llower arm). The whole assembly may then be rotated about the line
AC by 0 ≤ ψ < 2π. The configuration of the armΘl = (θ3, θ5)

T is thenuniquelydetermined byψ, and
zC (i.e. Θl = g(zC , ψ, P1, θ2, P̂7)). We modelqleft arm as

qleft arm(θ3, θ5|θ1, θ2, P̂7, φ0) (12)

= p(θ3, θ5|zC , ψ, θ2, θ2, P̂7, φ0)

p(zC |P1, θ2, P̂7, φ0)p(ψ|P1, θ2, P̂7, φ0)

p(θ3)p(θ5)

= δ(Θl − g(zC , ψ, P1, θ2, P̂7, φ0))

p(zC |P1, θ2, P̂7, φ0)p(ψ|P1, θ2, P̂7, φ0)

p(θ3)p(θ5)

where

p(zC |P1, θ2, P̂7, φ0) = u(zC ; zA − r, zA + r) (13)

p(ψ|P1, θ2, P̂7, φ0) = u(ψ; 0, 2π) (14)
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The corresponding proposal distribution for the right arm,qright arm, is defined in the same fashion.
Once the sampleΘ = (θ1, . . . , θ6) is selected, we need to determine its weightπ = p(Θ|{Ai},φ0,I)

q(Θ)
.

Note that

qleft arm (Θ3,Θ5|θ1, θ2, P̂7, φ0) (15)

=

∫
δ(Θl − g(zC , ψ, P1, θ2, P̂7, φ0))

p(zC |P1, θ2, P̂7, φ0)p(φ0|P1, θ2, P̂7), φ0

p(θ3)p(θ5)dzcdψ

∼
{

p(θ3)p(θ5) if configuration is valid

0 otherwise

And thus, if we have obtained a sampleΘ = (θ1, . . . , θ6) from q(·), then

q(θ1, . . . , θ6|A1, A7, A8, φ0, I) (16)

= p(P̂1|A1, I)p(P̂7|A7, I)p(P̂8|A8, I)
6∏

i=2

p(θi)

and the weight is given by

π=
p(Θ|{Ai}, φ0, I)

q(Θ{Ai}, φ0, I)
(17)

=
p(θ1)

∏
i p(Ii|{Pi}, {Ai}, {Mi})

p(P̂1|A1, I)p(P̂7|A7, I)p(P̂8|A8, I)

By processing a frameIt using algorithm described in this section, we obtain a sample set{(Θt
i, π

t
i)}

representation ofp(Θt|It) that may then be used for tracking or estimating the Maximum Likelihood
pose at the current timestep.

5. Pose Propagation Over Time
As has been discussed above, we would like to combine the pose estimate at the current frame with
the previous observations, to produce a posterior distributionp(Θt|I0 . . . I t). We make a Markovian
assumption that all information about observationsI0 . . . I t is preserved in distribution ofΘt−1, that is
p(Θt|Θt−1, I0 . . . I t−1) = p(Θt|Θt−1). We then can express the full posterior as

p(Θt|I0 . . . I t) ∼ p(I0 . . . I t−1|Θt)p(I t|Θt)p(Θt) (18)

∼ p(Θt|I t)

p(Θt)

∫
p(Θt|Θt−1)p(Θt−1|I0 . . . I t−1)dΘt−1

In order to use the pose samples{Θt
i} used to representp(Θt|I t) to represent the full posterior, we

need to compute the new weightsλt
i. If we assume that the priorp(Θt−1|I0 . . . I t−1) is also represented
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Algorithm 1 Sampling based articulated pose tracking
for all t ≥ 0 do

EXTRACT image features such as face position and flesh-colored blobs from the frameI t.
CONSTRUCTa proposal distributionqt(Θt) from the extracted features and pose parameter priors.
GENERATEN t samples{(Θt

i, π
t
i)|1 ≤ i ≤ N t} from the proposal distribution with

corresponding weight computed asπt
i = p(Θt

i|I t)/q(Θt
i).

if the priorp(Θt−1|I0 . . . I t−1) is availablethen
GENERATEsamples{(Θt

i, λ
t
i)|1 ≤ i ≤ N t} from p(Θt|I0 . . . I t) by evaluating

λt
i = πt

i

∑Nt−1

j=1 λt−1
j p(Θt = Θt

i|Θt−1 = Θt−1
j )/p(Θi

t)
UPDATE p(φ) from {(Θt

i, λ
t
i)|1 ≤ i ≤ N t}

else
USE{(Θt

i, π
t
i)} as the estimate ofp(Θt|I0 . . . I t)

end if
end for

with a set of weighted particles{(Θt−1
j , λt−1

j )} obtained at the previous iteration of the algorithm,λt
i

may be computed as

λt
i =

πt
i

p(Θi
t)

Nt−1∑
j=1

λt−1
j p(Θt = Θt

i|Θt−1 = Θt−1
j ) (19)

The complete tracking algorithm is presented in Algorithm 1.

6. Implementation
The description of our algorithm is completed by specification of the parameter priorsp(θi), appearance
Ai, and image formation models. We also need to address recovering metric model parametersφ.

We have obtained the joint angle limits from [14], and have represented shoulder and elbow angle prior
probabilities as uniform between those limits. The neck angle prior was specified as a broad Gaussian
centered on the origin.

For our method to be practical, the image formation modelsp(Ii|Pi, Ai,Mi) have to be efficient to
evaluate, and, in the case of head and hands, lead to simple-to-sample-from posteriorsp(P̂i|I, Ai). Many
general techniques are possible. Here we use simple implementations flesh color and face patter detec-
tion.

Our general framework requires the estimate of the head posep(P̂1|I, A1). Ideally, we would use a
face detector that is capable of detecting faces that have orientations other that frontal, while reporting
size, location and orientation. For most of the experiments in this paper (other than Figure 5(b)) we
assume that the person is in the upright position facing the camera, so we estimatep(P̂1|I, A1) based on
the output of a 2D frontal face detector (we use the method described in [23]). The detector output is a
set of image squares that are reasonably well centered on the faces, and the distribution is represented as
a mixture of Gaussians,

p(P̂1|I, A1) =
∑

f

N(P̂1; cf ,

(
0.05r2

f 0
0 0.05r2

f

)
) (20)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Stages of processing input image (a). The face rectangle (b) was located using a face detector
[23], and the flesh color map (c) was computed by a detector initialized from the color distribution in
the face rectangle . The result (d) of filtering the raw binary map (Section 6) was used to initialize the
hand position distribution. Two sample poses with corresponding test edges overlaid on gradient image
are shown in (e, f) and (g, h). The pose (e) was determined to be more likely that (g).

wherecf is a center of the detected square, andrf is half of its width.
The face square size is also used to estimate the distribution of the metric parameter vectorφ. We use

anthropometric data from [14] combined with empirically estimated ratio ofrf to head radius to define
means and standard deviations of Gaussian distributions from which elements ofφ is drawn. Once the
tracker has settled in, we replace the original metric priorp(φ) by the new priorpe(φ) that is computed
from the body sizes estimated the previous frames.

We model hands as flesh-colored blobs. The flesh color segmentation is performed on the input im-
age using detector initialized from the middle region of the face rectangle (Figure 4(c)). Connected
components are then computed from the resulting binary image. All components that either overlap
the face rectangle, are larger than it in one of the dimensions, or have area smaller than 10% of the
face rectangle area are filtered out. The hand pose posteriorp(P̂7|I, A7) = p(P̂8|I, A8) is then approx-
imated as mixture-of-Gaussians where each constituent Gaussian distribution is initialized from one of
the remaining components (Figure 4(d)).

We model elongated segments in the model (torso, lower and upper arms) as cylinders, and use the
intensity gradient as image measurement. Along the contour of the segment’s image plane projection
(cf. Figure 4(f, h)), we expect the gradient to be perpendicular to the edge, and to have high magnitude
[15, 16]. LetGα

i be the gradient direction image,E be the set of the points on the predicted edges
under the support map, andα0 be the predicted gradient direction. Then we define the image likelihood
function as an average match along the predicted edges,

p(Ii|Pi, Ai,Mi) ∼ 1

|E|
∑

(x,y)∈E

ecos 2(Gα
i (x,y)−α0) (21)

Sampling from Gaussian and uniform distributions is implemented using direct methods [11]. The
distributions defined in Eqs. 9 and 12 are sampled by discretizing the parameter space, assigning each
discrete samplesi weight wi proportional to the value of the appropriate pdf (qneck(si . . . ) or qarm(si)
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(a) (b)

(c) (d)

Figure 5: Sampling pose from a single image. For each example, twenty samples from the estimated
posterior are shown overlaid on the image and the maximum likelihood pose is shown in 3D.

respectively), and then drawing sample from produced weighted sample set{(si, wi)}. The state propa-
gation probability is modeled using diffusion dynamics.

7. Results
We have applied our algorithm to a set of images of people in natural settings. Various stages of the
algorithm are shown in Figure 4. The face rectangle detected in the input image (a) is shown in (b).
Raw flesh color segmentation results and filtered image used to construct hand position distribution are
(c) and (d). Panes (e) and (f), and (g) and (h) contain sample pose and corresponding edges overlaid on
gradient magnitude image.

The results of applying our single frame pose detection algorithm to a set of four images is shown in
Figure 5. For each of the examples, we present 20 random samples from the posterior pose distribution
overlaid over the source image and the 3D reconstruction of the maximum likelihood particle. The
head region and global transformation for the profile view (b) were manually initialized. Despite gross
estimation errors in some samples, reporting arangeof poses as opposed to a single result allows a higher
level process to use additional information (such as motion or context) to select the most appropriate one.

An example of the algorithm’s failure is shown in Figure 6. The image likelihood computation is
confused by the strong background gradients, which results in incorrect pose estimation.

We have applied our tracking algorithm to the video sequence in Figure 7. The selected frames with
poses sampled from estimated posterior are shown in top row. For comparison, the bottom row contains
sample poses estimated using a simple CONDENSATION implementation (using diffusion dynamics).
While our algorithm was able to successfully track through the whole sequence, strong drift and sample
impoverishment have crippled CONDENSATIONafter the 50th frame.

Our system is currently implemented in in unoptimized C++. The total running time for a single frame
while drawing 1000 samples (a number that has been empirically determined to be sufficient to represent
pose distribution for these examples) requires, on average, three seconds.
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Figure 6: An example of the failure of pose estimation on a still frame. The algorithm was confused by
the strong background image gradients, which resulted in assigning high probabilities to incorrect poses.
Use of dynamic information in video mitigates such errors.

Frame 0 Frame 50 Frame 100 Frame 150 Frame 200 Frame 250 Frame 300 Frame 350

Figure 7: Applying our algorithm (top row) and CONDENSATION (bottom row) to a motion sequence.
While our algorithm was able to track the body for the duration of the sequence, the CONDENSATION
based tracker began drifting after the 50th frame.

8. Conclusions and Future Work
We have presented a technique for sampling human upper body pose posterior distribution from single
images, and its application to tracking. In our approach, the kinematic constraints and image information
are incorporated at early stages of inference process, which allows us to reduce the number of samples
needed to approximate the high-dimensional articulated body distributions.

We use importance sampling with proposal distribution is constructed from prior probabilities of joint
angles obtained from anthropometric data, inverse kinematics constraints, and from image face and
hand locations detected by well-known methods. The observation likelihoods are represented using a
novel Bayesian network description of a generative appearance model that also explicitly incorporates
kinematic constraints. The distribution is propagated in time using Bayesian methods and Monte Carlo
integration.

While our system behaves relatively well in moderately cluttered backgrounds, such backgrounds
may confuse the simple segment appearance model that is used (e.g. Figure 6). Incorporating rich
segment models of [19] or stereo input would alleviate this problem. Another enhancement would be
incorporation of stronger dynamics model and more advanced sampling techniques such as hybrid Monte
Carlo filters [3] applied both to samples estimated for the current image and propagated from the prior.
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